1//==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This implements the Emit routines for the SelectionDAG class, which creates
10// MachineInstrs based on the decisions of the SelectionDAG instruction
11// selection.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstrEmitter.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/BinaryFormat/Dwarf.h"
18#include "llvm/CodeGen/MachineConstantPool.h"
19#include "llvm/CodeGen/MachineFunction.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/StackMaps.h"
23#include "llvm/CodeGen/TargetInstrInfo.h"
24#include "llvm/CodeGen/TargetLowering.h"
25#include "llvm/CodeGen/TargetSubtargetInfo.h"
26#include "llvm/IR/DebugInfoMetadata.h"
27#include "llvm/IR/PseudoProbe.h"
28#include "llvm/Support/ErrorHandling.h"
29#include "llvm/Target/TargetMachine.h"
30using namespace llvm;
31
32#define DEBUG_TYPE "instr-emitter"
33
34/// MinRCSize - Smallest register class we allow when constraining virtual
35/// registers.  If satisfying all register class constraints would require
36/// using a smaller register class, emit a COPY to a new virtual register
37/// instead.
38const unsigned MinRCSize = 4;
39
40/// CountResults - The results of target nodes have register or immediate
41/// operands first, then an optional chain, and optional glue operands (which do
42/// not go into the resulting MachineInstr).
43unsigned InstrEmitter::CountResults(SDNode *Node) {
44  unsigned N = Node->getNumValues();
45  while (N && Node->getValueType(N - 1) == MVT::Glue)
46    --N;
47  if (N && Node->getValueType(N - 1) == MVT::Other)
48    --N;    // Skip over chain result.
49  return N;
50}
51
52/// countOperands - The inputs to target nodes have any actual inputs first,
53/// followed by an optional chain operand, then an optional glue operand.
54/// Compute the number of actual operands that will go into the resulting
55/// MachineInstr.
56///
57/// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
58/// the chain and glue. These operands may be implicit on the machine instr.
59static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
60                              unsigned &NumImpUses) {
61  unsigned N = Node->getNumOperands();
62  while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
63    --N;
64  if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
65    --N; // Ignore chain if it exists.
66
67  // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
68  NumImpUses = N - NumExpUses;
69  for (unsigned I = N; I > NumExpUses; --I) {
70    if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
71      continue;
72    if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
73      if (RN->getReg().isPhysical())
74        continue;
75    NumImpUses = N - I;
76    break;
77  }
78
79  return N;
80}
81
82/// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
83/// implicit physical register output.
84void InstrEmitter::EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone,
85                                   Register SrcReg,
86                                   DenseMap<SDValue, Register> &VRBaseMap) {
87  Register VRBase;
88  if (SrcReg.isVirtual()) {
89    // Just use the input register directly!
90    SDValue Op(Node, ResNo);
91    if (IsClone)
92      VRBaseMap.erase(Op);
93    bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
94    (void)isNew; // Silence compiler warning.
95    assert(isNew && "Node emitted out of order - early");
96    return;
97  }
98
99  // If the node is only used by a CopyToReg and the dest reg is a vreg, use
100  // the CopyToReg'd destination register instead of creating a new vreg.
101  bool MatchReg = true;
102  const TargetRegisterClass *UseRC = nullptr;
103  MVT VT = Node->getSimpleValueType(ResNo);
104
105  // Stick to the preferred register classes for legal types.
106  if (TLI->isTypeLegal(VT))
107    UseRC = TLI->getRegClassFor(VT, Node->isDivergent());
108
109  for (SDNode *User : Node->uses()) {
110    bool Match = true;
111    if (User->getOpcode() == ISD::CopyToReg &&
112        User->getOperand(2).getNode() == Node &&
113        User->getOperand(2).getResNo() == ResNo) {
114      Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
115      if (DestReg.isVirtual()) {
116        VRBase = DestReg;
117        Match = false;
118      } else if (DestReg != SrcReg)
119        Match = false;
120    } else {
121      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
122        SDValue Op = User->getOperand(i);
123        if (Op.getNode() != Node || Op.getResNo() != ResNo)
124          continue;
125        MVT VT = Node->getSimpleValueType(Op.getResNo());
126        if (VT == MVT::Other || VT == MVT::Glue)
127          continue;
128        Match = false;
129        if (User->isMachineOpcode()) {
130          const MCInstrDesc &II = TII->get(User->getMachineOpcode());
131          const TargetRegisterClass *RC = nullptr;
132          if (i + II.getNumDefs() < II.getNumOperands()) {
133            RC = TRI->getAllocatableClass(
134                TII->getRegClass(II, i + II.getNumDefs(), TRI, *MF));
135          }
136          if (!UseRC)
137            UseRC = RC;
138          else if (RC) {
139            const TargetRegisterClass *ComRC =
140                TRI->getCommonSubClass(UseRC, RC);
141            // If multiple uses expect disjoint register classes, we emit
142            // copies in AddRegisterOperand.
143            if (ComRC)
144              UseRC = ComRC;
145          }
146        }
147      }
148    }
149    MatchReg &= Match;
150    if (VRBase)
151      break;
152  }
153
154  const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
155  SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
156
157  // Figure out the register class to create for the destreg.
158  if (VRBase) {
159    DstRC = MRI->getRegClass(VRBase);
160  } else if (UseRC) {
161    assert(TRI->isTypeLegalForClass(*UseRC, VT) &&
162           "Incompatible phys register def and uses!");
163    DstRC = UseRC;
164  } else
165    DstRC = SrcRC;
166
167  // If all uses are reading from the src physical register and copying the
168  // register is either impossible or very expensive, then don't create a copy.
169  if (MatchReg && SrcRC->getCopyCost() < 0) {
170    VRBase = SrcReg;
171  } else {
172    // Create the reg, emit the copy.
173    VRBase = MRI->createVirtualRegister(DstRC);
174    BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
175            VRBase).addReg(SrcReg);
176  }
177
178  SDValue Op(Node, ResNo);
179  if (IsClone)
180    VRBaseMap.erase(Op);
181  bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
182  (void)isNew; // Silence compiler warning.
183  assert(isNew && "Node emitted out of order - early");
184}
185
186void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
187                                       MachineInstrBuilder &MIB,
188                                       const MCInstrDesc &II,
189                                       bool IsClone, bool IsCloned,
190                                       DenseMap<SDValue, Register> &VRBaseMap) {
191  assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
192         "IMPLICIT_DEF should have been handled as a special case elsewhere!");
193
194  unsigned NumResults = CountResults(Node);
195  bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
196                             II.isVariadic() && II.variadicOpsAreDefs();
197  unsigned NumVRegs = HasVRegVariadicDefs ? NumResults : II.getNumDefs();
198  if (Node->getMachineOpcode() == TargetOpcode::STATEPOINT)
199    NumVRegs = NumResults;
200  for (unsigned i = 0; i < NumVRegs; ++i) {
201    // If the specific node value is only used by a CopyToReg and the dest reg
202    // is a vreg in the same register class, use the CopyToReg'd destination
203    // register instead of creating a new vreg.
204    Register VRBase;
205    const TargetRegisterClass *RC =
206      TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
207    // Always let the value type influence the used register class. The
208    // constraints on the instruction may be too lax to represent the value
209    // type correctly. For example, a 64-bit float (X86::FR64) can't live in
210    // the 32-bit float super-class (X86::FR32).
211    if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
212      const TargetRegisterClass *VTRC = TLI->getRegClassFor(
213          Node->getSimpleValueType(i),
214          (Node->isDivergent() || (RC && TRI->isDivergentRegClass(RC))));
215      if (RC)
216        VTRC = TRI->getCommonSubClass(RC, VTRC);
217      if (VTRC)
218        RC = VTRC;
219    }
220
221    if (!II.operands().empty() && II.operands()[i].isOptionalDef()) {
222      // Optional def must be a physical register.
223      VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
224      assert(VRBase.isPhysical());
225      MIB.addReg(VRBase, RegState::Define);
226    }
227
228    if (!VRBase && !IsClone && !IsCloned)
229      for (SDNode *User : Node->uses()) {
230        if (User->getOpcode() == ISD::CopyToReg &&
231            User->getOperand(2).getNode() == Node &&
232            User->getOperand(2).getResNo() == i) {
233          Register Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
234          if (Reg.isVirtual()) {
235            const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
236            if (RegRC == RC) {
237              VRBase = Reg;
238              MIB.addReg(VRBase, RegState::Define);
239              break;
240            }
241          }
242        }
243      }
244
245    // Create the result registers for this node and add the result regs to
246    // the machine instruction.
247    if (VRBase == 0) {
248      assert(RC && "Isn't a register operand!");
249      VRBase = MRI->createVirtualRegister(RC);
250      MIB.addReg(VRBase, RegState::Define);
251    }
252
253    // If this def corresponds to a result of the SDNode insert the VRBase into
254    // the lookup map.
255    if (i < NumResults) {
256      SDValue Op(Node, i);
257      if (IsClone)
258        VRBaseMap.erase(Op);
259      bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
260      (void)isNew; // Silence compiler warning.
261      assert(isNew && "Node emitted out of order - early");
262    }
263  }
264}
265
266/// getVR - Return the virtual register corresponding to the specified result
267/// of the specified node.
268Register InstrEmitter::getVR(SDValue Op,
269                             DenseMap<SDValue, Register> &VRBaseMap) {
270  if (Op.isMachineOpcode() &&
271      Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
272    // Add an IMPLICIT_DEF instruction before every use.
273    // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
274    // does not include operand register class info.
275    const TargetRegisterClass *RC = TLI->getRegClassFor(
276        Op.getSimpleValueType(), Op.getNode()->isDivergent());
277    Register VReg = MRI->createVirtualRegister(RC);
278    BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
279            TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
280    return VReg;
281  }
282
283  DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
284  assert(I != VRBaseMap.end() && "Node emitted out of order - late");
285  return I->second;
286}
287
288
289/// AddRegisterOperand - Add the specified register as an operand to the
290/// specified machine instr. Insert register copies if the register is
291/// not in the required register class.
292void
293InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
294                                 SDValue Op,
295                                 unsigned IIOpNum,
296                                 const MCInstrDesc *II,
297                                 DenseMap<SDValue, Register> &VRBaseMap,
298                                 bool IsDebug, bool IsClone, bool IsCloned) {
299  assert(Op.getValueType() != MVT::Other &&
300         Op.getValueType() != MVT::Glue &&
301         "Chain and glue operands should occur at end of operand list!");
302  // Get/emit the operand.
303  Register VReg = getVR(Op, VRBaseMap);
304
305  const MCInstrDesc &MCID = MIB->getDesc();
306  bool isOptDef = IIOpNum < MCID.getNumOperands() &&
307                  MCID.operands()[IIOpNum].isOptionalDef();
308
309  // If the instruction requires a register in a different class, create
310  // a new virtual register and copy the value into it, but first attempt to
311  // shrink VReg's register class within reason.  For example, if VReg == GR32
312  // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
313  if (II) {
314    const TargetRegisterClass *OpRC = nullptr;
315    if (IIOpNum < II->getNumOperands())
316      OpRC = TII->getRegClass(*II, IIOpNum, TRI, *MF);
317
318    if (OpRC) {
319      unsigned MinNumRegs = MinRCSize;
320      // Don't apply any RC size limit for IMPLICIT_DEF. Each use has a unique
321      // virtual register.
322      if (Op.isMachineOpcode() &&
323          Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)
324        MinNumRegs = 0;
325
326      const TargetRegisterClass *ConstrainedRC
327        = MRI->constrainRegClass(VReg, OpRC, MinNumRegs);
328      if (!ConstrainedRC) {
329        OpRC = TRI->getAllocatableClass(OpRC);
330        assert(OpRC && "Constraints cannot be fulfilled for allocation");
331        Register NewVReg = MRI->createVirtualRegister(OpRC);
332        BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
333                TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
334        VReg = NewVReg;
335      } else {
336        assert(ConstrainedRC->isAllocatable() &&
337           "Constraining an allocatable VReg produced an unallocatable class?");
338      }
339    }
340  }
341
342  // If this value has only one use, that use is a kill. This is a
343  // conservative approximation. InstrEmitter does trivial coalescing
344  // with CopyFromReg nodes, so don't emit kill flags for them.
345  // Avoid kill flags on Schedule cloned nodes, since there will be
346  // multiple uses.
347  // Tied operands are never killed, so we need to check that. And that
348  // means we need to determine the index of the operand.
349  bool isKill = Op.hasOneUse() &&
350                Op.getNode()->getOpcode() != ISD::CopyFromReg &&
351                !IsDebug &&
352                !(IsClone || IsCloned);
353  if (isKill) {
354    unsigned Idx = MIB->getNumOperands();
355    while (Idx > 0 &&
356           MIB->getOperand(Idx-1).isReg() &&
357           MIB->getOperand(Idx-1).isImplicit())
358      --Idx;
359    bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
360    if (isTied)
361      isKill = false;
362  }
363
364  MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
365             getDebugRegState(IsDebug));
366}
367
368/// AddOperand - Add the specified operand to the specified machine instr.  II
369/// specifies the instruction information for the node, and IIOpNum is the
370/// operand number (in the II) that we are adding.
371void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
372                              SDValue Op,
373                              unsigned IIOpNum,
374                              const MCInstrDesc *II,
375                              DenseMap<SDValue, Register> &VRBaseMap,
376                              bool IsDebug, bool IsClone, bool IsCloned) {
377  if (Op.isMachineOpcode()) {
378    AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
379                       IsDebug, IsClone, IsCloned);
380  } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
381    MIB.addImm(C->getSExtValue());
382  } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
383    MIB.addFPImm(F->getConstantFPValue());
384  } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
385    Register VReg = R->getReg();
386    MVT OpVT = Op.getSimpleValueType();
387    const TargetRegisterClass *IIRC =
388        II ? TRI->getAllocatableClass(TII->getRegClass(*II, IIOpNum, TRI, *MF))
389           : nullptr;
390    const TargetRegisterClass *OpRC =
391        TLI->isTypeLegal(OpVT)
392            ? TLI->getRegClassFor(OpVT,
393                                  Op.getNode()->isDivergent() ||
394                                      (IIRC && TRI->isDivergentRegClass(IIRC)))
395            : nullptr;
396
397    if (OpRC && IIRC && OpRC != IIRC && VReg.isVirtual()) {
398      Register NewVReg = MRI->createVirtualRegister(IIRC);
399      BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
400               TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
401      VReg = NewVReg;
402    }
403    // Turn additional physreg operands into implicit uses on non-variadic
404    // instructions. This is used by call and return instructions passing
405    // arguments in registers.
406    bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
407    MIB.addReg(VReg, getImplRegState(Imp));
408  } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
409    MIB.addRegMask(RM->getRegMask());
410  } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
411    MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
412                         TGA->getTargetFlags());
413  } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
414    MIB.addMBB(BBNode->getBasicBlock());
415  } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
416    MIB.addFrameIndex(FI->getIndex());
417  } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
418    MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
419  } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
420    int Offset = CP->getOffset();
421    Align Alignment = CP->getAlign();
422
423    unsigned Idx;
424    MachineConstantPool *MCP = MF->getConstantPool();
425    if (CP->isMachineConstantPoolEntry())
426      Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Alignment);
427    else
428      Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Alignment);
429    MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
430  } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
431    MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
432  } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
433    MIB.addSym(SymNode->getMCSymbol());
434  } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
435    MIB.addBlockAddress(BA->getBlockAddress(),
436                        BA->getOffset(),
437                        BA->getTargetFlags());
438  } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
439    MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
440  } else {
441    assert(Op.getValueType() != MVT::Other &&
442           Op.getValueType() != MVT::Glue &&
443           "Chain and glue operands should occur at end of operand list!");
444    AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
445                       IsDebug, IsClone, IsCloned);
446  }
447}
448
449Register InstrEmitter::ConstrainForSubReg(Register VReg, unsigned SubIdx,
450                                          MVT VT, bool isDivergent, const DebugLoc &DL) {
451  const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
452  const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
453
454  // RC is a sub-class of VRC that supports SubIdx.  Try to constrain VReg
455  // within reason.
456  if (RC && RC != VRC)
457    RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
458
459  // VReg has been adjusted.  It can be used with SubIdx operands now.
460  if (RC)
461    return VReg;
462
463  // VReg couldn't be reasonably constrained.  Emit a COPY to a new virtual
464  // register instead.
465  RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT, isDivergent), SubIdx);
466  assert(RC && "No legal register class for VT supports that SubIdx");
467  Register NewReg = MRI->createVirtualRegister(RC);
468  BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
469    .addReg(VReg);
470  return NewReg;
471}
472
473/// EmitSubregNode - Generate machine code for subreg nodes.
474///
475void InstrEmitter::EmitSubregNode(SDNode *Node,
476                                  DenseMap<SDValue, Register> &VRBaseMap,
477                                  bool IsClone, bool IsCloned) {
478  Register VRBase;
479  unsigned Opc = Node->getMachineOpcode();
480
481  // If the node is only used by a CopyToReg and the dest reg is a vreg, use
482  // the CopyToReg'd destination register instead of creating a new vreg.
483  for (SDNode *User : Node->uses()) {
484    if (User->getOpcode() == ISD::CopyToReg &&
485        User->getOperand(2).getNode() == Node) {
486      Register DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
487      if (DestReg.isVirtual()) {
488        VRBase = DestReg;
489        break;
490      }
491    }
492  }
493
494  if (Opc == TargetOpcode::EXTRACT_SUBREG) {
495    // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub.  There are no
496    // constraints on the %dst register, COPY can target all legal register
497    // classes.
498    unsigned SubIdx = Node->getConstantOperandVal(1);
499    const TargetRegisterClass *TRC =
500      TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
501
502    Register Reg;
503    MachineInstr *DefMI;
504    RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(0));
505    if (R && R->getReg().isPhysical()) {
506      Reg = R->getReg();
507      DefMI = nullptr;
508    } else {
509      Reg = R ? R->getReg() : getVR(Node->getOperand(0), VRBaseMap);
510      DefMI = MRI->getVRegDef(Reg);
511    }
512
513    Register SrcReg, DstReg;
514    unsigned DefSubIdx;
515    if (DefMI &&
516        TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
517        SubIdx == DefSubIdx &&
518        TRC == MRI->getRegClass(SrcReg)) {
519      // Optimize these:
520      // r1025 = s/zext r1024, 4
521      // r1026 = extract_subreg r1025, 4
522      // to a copy
523      // r1026 = copy r1024
524      VRBase = MRI->createVirtualRegister(TRC);
525      BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
526              TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
527      MRI->clearKillFlags(SrcReg);
528    } else {
529      // Reg may not support a SubIdx sub-register, and we may need to
530      // constrain its register class or issue a COPY to a compatible register
531      // class.
532      if (Reg.isVirtual())
533        Reg = ConstrainForSubReg(Reg, SubIdx,
534                                 Node->getOperand(0).getSimpleValueType(),
535                                 Node->isDivergent(), Node->getDebugLoc());
536      // Create the destreg if it is missing.
537      if (!VRBase)
538        VRBase = MRI->createVirtualRegister(TRC);
539
540      // Create the extract_subreg machine instruction.
541      MachineInstrBuilder CopyMI =
542          BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
543                  TII->get(TargetOpcode::COPY), VRBase);
544      if (Reg.isVirtual())
545        CopyMI.addReg(Reg, 0, SubIdx);
546      else
547        CopyMI.addReg(TRI->getSubReg(Reg, SubIdx));
548    }
549  } else if (Opc == TargetOpcode::INSERT_SUBREG ||
550             Opc == TargetOpcode::SUBREG_TO_REG) {
551    SDValue N0 = Node->getOperand(0);
552    SDValue N1 = Node->getOperand(1);
553    SDValue N2 = Node->getOperand(2);
554    unsigned SubIdx = N2->getAsZExtVal();
555
556    // Figure out the register class to create for the destreg.  It should be
557    // the largest legal register class supporting SubIdx sub-registers.
558    // RegisterCoalescer will constrain it further if it decides to eliminate
559    // the INSERT_SUBREG instruction.
560    //
561    //   %dst = INSERT_SUBREG %src, %sub, SubIdx
562    //
563    // is lowered by TwoAddressInstructionPass to:
564    //
565    //   %dst = COPY %src
566    //   %dst:SubIdx = COPY %sub
567    //
568    // There is no constraint on the %src register class.
569    //
570    const TargetRegisterClass *SRC =
571        TLI->getRegClassFor(Node->getSimpleValueType(0), Node->isDivergent());
572    SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
573    assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
574
575    if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
576      VRBase = MRI->createVirtualRegister(SRC);
577
578    // Create the insert_subreg or subreg_to_reg machine instruction.
579    MachineInstrBuilder MIB =
580      BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
581
582    // If creating a subreg_to_reg, then the first input operand
583    // is an implicit value immediate, otherwise it's a register
584    if (Opc == TargetOpcode::SUBREG_TO_REG) {
585      const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
586      MIB.addImm(SD->getZExtValue());
587    } else
588      AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
589                 IsClone, IsCloned);
590    // Add the subregister being inserted
591    AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
592               IsClone, IsCloned);
593    MIB.addImm(SubIdx);
594    MBB->insert(InsertPos, MIB);
595  } else
596    llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
597
598  SDValue Op(Node, 0);
599  bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
600  (void)isNew; // Silence compiler warning.
601  assert(isNew && "Node emitted out of order - early");
602}
603
604/// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
605/// COPY_TO_REGCLASS is just a normal copy, except that the destination
606/// register is constrained to be in a particular register class.
607///
608void
609InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
610                                     DenseMap<SDValue, Register> &VRBaseMap) {
611  unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
612
613  // Create the new VReg in the destination class and emit a copy.
614  unsigned DstRCIdx = Node->getConstantOperandVal(1);
615  const TargetRegisterClass *DstRC =
616    TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
617  Register NewVReg = MRI->createVirtualRegister(DstRC);
618  BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
619    NewVReg).addReg(VReg);
620
621  SDValue Op(Node, 0);
622  bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
623  (void)isNew; // Silence compiler warning.
624  assert(isNew && "Node emitted out of order - early");
625}
626
627/// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
628///
629void InstrEmitter::EmitRegSequence(SDNode *Node,
630                                  DenseMap<SDValue, Register> &VRBaseMap,
631                                  bool IsClone, bool IsCloned) {
632  unsigned DstRCIdx = Node->getConstantOperandVal(0);
633  const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
634  Register NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
635  const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
636  MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
637  unsigned NumOps = Node->getNumOperands();
638  // If the input pattern has a chain, then the root of the corresponding
639  // output pattern will get a chain as well. This can happen to be a
640  // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
641  if (NumOps && Node->getOperand(NumOps-1).getValueType() == MVT::Other)
642    --NumOps; // Ignore chain if it exists.
643
644  assert((NumOps & 1) == 1 &&
645         "REG_SEQUENCE must have an odd number of operands!");
646  for (unsigned i = 1; i != NumOps; ++i) {
647    SDValue Op = Node->getOperand(i);
648    if ((i & 1) == 0) {
649      RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
650      // Skip physical registers as they don't have a vreg to get and we'll
651      // insert copies for them in TwoAddressInstructionPass anyway.
652      if (!R || !R->getReg().isPhysical()) {
653        unsigned SubIdx = Op->getAsZExtVal();
654        unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
655        const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
656        const TargetRegisterClass *SRC =
657        TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
658        if (SRC && SRC != RC) {
659          MRI->setRegClass(NewVReg, SRC);
660          RC = SRC;
661        }
662      }
663    }
664    AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
665               IsClone, IsCloned);
666  }
667
668  MBB->insert(InsertPos, MIB);
669  SDValue Op(Node, 0);
670  bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
671  (void)isNew; // Silence compiler warning.
672  assert(isNew && "Node emitted out of order - early");
673}
674
675/// EmitDbgValue - Generate machine instruction for a dbg_value node.
676///
677MachineInstr *
678InstrEmitter::EmitDbgValue(SDDbgValue *SD,
679                           DenseMap<SDValue, Register> &VRBaseMap) {
680  DebugLoc DL = SD->getDebugLoc();
681  assert(cast<DILocalVariable>(SD->getVariable())
682             ->isValidLocationForIntrinsic(DL) &&
683         "Expected inlined-at fields to agree");
684
685  SD->setIsEmitted();
686
687  assert(!SD->getLocationOps().empty() &&
688         "dbg_value with no location operands?");
689
690  if (SD->isInvalidated())
691    return EmitDbgNoLocation(SD);
692
693  // Attempt to produce a DBG_INSTR_REF if we've been asked to.
694  if (EmitDebugInstrRefs)
695    if (auto *InstrRef = EmitDbgInstrRef(SD, VRBaseMap))
696      return InstrRef;
697
698  // Emit variadic dbg_value nodes as DBG_VALUE_LIST if they have not been
699  // emitted as instruction references.
700  if (SD->isVariadic())
701    return EmitDbgValueList(SD, VRBaseMap);
702
703  // Emit single-location dbg_value nodes as DBG_VALUE if they have not been
704  // emitted as instruction references.
705  return EmitDbgValueFromSingleOp(SD, VRBaseMap);
706}
707
708MachineOperand GetMOForConstDbgOp(const SDDbgOperand &Op) {
709  const Value *V = Op.getConst();
710  if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
711    if (CI->getBitWidth() > 64)
712      return MachineOperand::CreateCImm(CI);
713    return MachineOperand::CreateImm(CI->getSExtValue());
714  }
715  if (const ConstantFP *CF = dyn_cast<ConstantFP>(V))
716    return MachineOperand::CreateFPImm(CF);
717  // Note: This assumes that all nullptr constants are zero-valued.
718  if (isa<ConstantPointerNull>(V))
719    return MachineOperand::CreateImm(0);
720  // Undef or unhandled value type, so return an undef operand.
721  return MachineOperand::CreateReg(
722      /* Reg */ 0U, /* isDef */ false, /* isImp */ false,
723      /* isKill */ false, /* isDead */ false,
724      /* isUndef */ false, /* isEarlyClobber */ false,
725      /* SubReg */ 0, /* isDebug */ true);
726}
727
728void InstrEmitter::AddDbgValueLocationOps(
729    MachineInstrBuilder &MIB, const MCInstrDesc &DbgValDesc,
730    ArrayRef<SDDbgOperand> LocationOps,
731    DenseMap<SDValue, Register> &VRBaseMap) {
732  for (const SDDbgOperand &Op : LocationOps) {
733    switch (Op.getKind()) {
734    case SDDbgOperand::FRAMEIX:
735      MIB.addFrameIndex(Op.getFrameIx());
736      break;
737    case SDDbgOperand::VREG:
738      MIB.addReg(Op.getVReg());
739      break;
740    case SDDbgOperand::SDNODE: {
741      SDValue V = SDValue(Op.getSDNode(), Op.getResNo());
742      // It's possible we replaced this SDNode with other(s) and therefore
743      // didn't generate code for it. It's better to catch these cases where
744      // they happen and transfer the debug info, but trying to guarantee that
745      // in all cases would be very fragile; this is a safeguard for any
746      // that were missed.
747      if (VRBaseMap.count(V) == 0)
748        MIB.addReg(0U); // undef
749      else
750        AddOperand(MIB, V, (*MIB).getNumOperands(), &DbgValDesc, VRBaseMap,
751                   /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
752    } break;
753    case SDDbgOperand::CONST:
754      MIB.add(GetMOForConstDbgOp(Op));
755      break;
756    }
757  }
758}
759
760MachineInstr *
761InstrEmitter::EmitDbgInstrRef(SDDbgValue *SD,
762                              DenseMap<SDValue, Register> &VRBaseMap) {
763  MDNode *Var = SD->getVariable();
764  const DIExpression *Expr = (DIExpression *)SD->getExpression();
765  DebugLoc DL = SD->getDebugLoc();
766  const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_INSTR_REF);
767
768  // Returns true if the given operand is not a legal debug operand for a
769  // DBG_INSTR_REF.
770  auto IsInvalidOp = [](SDDbgOperand DbgOp) {
771    return DbgOp.getKind() == SDDbgOperand::FRAMEIX;
772  };
773  // Returns true if the given operand is not itself an instruction reference
774  // but is a legal debug operand for a DBG_INSTR_REF.
775  auto IsNonInstrRefOp = [](SDDbgOperand DbgOp) {
776    return DbgOp.getKind() == SDDbgOperand::CONST;
777  };
778
779  // If this variable location does not depend on any instructions or contains
780  // any stack locations, produce it as a standard debug value instead.
781  if (any_of(SD->getLocationOps(), IsInvalidOp) ||
782      all_of(SD->getLocationOps(), IsNonInstrRefOp)) {
783    if (SD->isVariadic())
784      return EmitDbgValueList(SD, VRBaseMap);
785    return EmitDbgValueFromSingleOp(SD, VRBaseMap);
786  }
787
788  // Immediately fold any indirectness from the LLVM-IR intrinsic into the
789  // expression:
790  if (SD->isIndirect())
791    Expr = DIExpression::append(Expr, dwarf::DW_OP_deref);
792  // If this is not already a variadic expression, it must be modified to become
793  // one.
794  if (!SD->isVariadic())
795    Expr = DIExpression::convertToVariadicExpression(Expr);
796
797  SmallVector<MachineOperand> MOs;
798
799  // It may not be immediately possible to identify the MachineInstr that
800  // defines a VReg, it can depend for example on the order blocks are
801  // emitted in. When this happens, or when further analysis is needed later,
802  // produce an instruction like this:
803  //
804  //    DBG_INSTR_REF !123, !456, %0:gr64
805  //
806  // i.e., point the instruction at the vreg, and patch it up later in
807  // MachineFunction::finalizeDebugInstrRefs.
808  auto AddVRegOp = [&](unsigned VReg) {
809    MOs.push_back(MachineOperand::CreateReg(
810        /* Reg */ VReg, /* isDef */ false, /* isImp */ false,
811        /* isKill */ false, /* isDead */ false,
812        /* isUndef */ false, /* isEarlyClobber */ false,
813        /* SubReg */ 0, /* isDebug */ true));
814  };
815  unsigned OpCount = SD->getLocationOps().size();
816  for (unsigned OpIdx = 0; OpIdx < OpCount; ++OpIdx) {
817    SDDbgOperand DbgOperand = SD->getLocationOps()[OpIdx];
818
819    // Try to find both the defined register and the instruction defining it.
820    MachineInstr *DefMI = nullptr;
821    unsigned VReg;
822
823    if (DbgOperand.getKind() == SDDbgOperand::VREG) {
824      VReg = DbgOperand.getVReg();
825
826      // No definition means that block hasn't been emitted yet. Leave a vreg
827      // reference to be fixed later.
828      if (!MRI->hasOneDef(VReg)) {
829        AddVRegOp(VReg);
830        continue;
831      }
832
833      DefMI = &*MRI->def_instr_begin(VReg);
834    } else if (DbgOperand.getKind() == SDDbgOperand::SDNODE) {
835      // Look up the corresponding VReg for the given SDNode, if any.
836      SDNode *Node = DbgOperand.getSDNode();
837      SDValue Op = SDValue(Node, DbgOperand.getResNo());
838      DenseMap<SDValue, Register>::iterator I = VRBaseMap.find(Op);
839      // No VReg -> produce a DBG_VALUE $noreg instead.
840      if (I == VRBaseMap.end())
841        break;
842
843      // Try to pick out a defining instruction at this point.
844      VReg = getVR(Op, VRBaseMap);
845
846      // Again, if there's no instruction defining the VReg right now, fix it up
847      // later.
848      if (!MRI->hasOneDef(VReg)) {
849        AddVRegOp(VReg);
850        continue;
851      }
852
853      DefMI = &*MRI->def_instr_begin(VReg);
854    } else {
855      assert(DbgOperand.getKind() == SDDbgOperand::CONST);
856      MOs.push_back(GetMOForConstDbgOp(DbgOperand));
857      continue;
858    }
859
860    // Avoid copy like instructions: they don't define values, only move them.
861    // Leave a virtual-register reference until it can be fixed up later, to
862    // find the underlying value definition.
863    if (DefMI->isCopyLike() || TII->isCopyInstr(*DefMI)) {
864      AddVRegOp(VReg);
865      continue;
866    }
867
868    // Find the operand number which defines the specified VReg.
869    unsigned OperandIdx = 0;
870    for (const auto &MO : DefMI->operands()) {
871      if (MO.isReg() && MO.isDef() && MO.getReg() == VReg)
872        break;
873      ++OperandIdx;
874    }
875    assert(OperandIdx < DefMI->getNumOperands());
876
877    // Make the DBG_INSTR_REF refer to that instruction, and that operand.
878    unsigned InstrNum = DefMI->getDebugInstrNum();
879    MOs.push_back(MachineOperand::CreateDbgInstrRef(InstrNum, OperandIdx));
880  }
881
882  // If we haven't created a valid MachineOperand for every DbgOp, abort and
883  // produce an undef DBG_VALUE.
884  if (MOs.size() != OpCount)
885    return EmitDbgNoLocation(SD);
886
887  return BuildMI(*MF, DL, RefII, false, MOs, Var, Expr);
888}
889
890MachineInstr *InstrEmitter::EmitDbgNoLocation(SDDbgValue *SD) {
891  // An invalidated SDNode must generate an undef DBG_VALUE: although the
892  // original value is no longer computed, earlier DBG_VALUEs live ranges
893  // must not leak into later code.
894  DIVariable *Var = SD->getVariable();
895  const DIExpression *Expr =
896      DIExpression::convertToUndefExpression(SD->getExpression());
897  DebugLoc DL = SD->getDebugLoc();
898  const MCInstrDesc &Desc = TII->get(TargetOpcode::DBG_VALUE);
899  return BuildMI(*MF, DL, Desc, false, 0U, Var, Expr);
900}
901
902MachineInstr *
903InstrEmitter::EmitDbgValueList(SDDbgValue *SD,
904                               DenseMap<SDValue, Register> &VRBaseMap) {
905  MDNode *Var = SD->getVariable();
906  DIExpression *Expr = SD->getExpression();
907  DebugLoc DL = SD->getDebugLoc();
908  // DBG_VALUE_LIST := "DBG_VALUE_LIST" var, expression, loc (, loc)*
909  const MCInstrDesc &DbgValDesc = TII->get(TargetOpcode::DBG_VALUE_LIST);
910  // Build the DBG_VALUE_LIST instruction base.
911  auto MIB = BuildMI(*MF, DL, DbgValDesc);
912  MIB.addMetadata(Var);
913  MIB.addMetadata(Expr);
914  AddDbgValueLocationOps(MIB, DbgValDesc, SD->getLocationOps(), VRBaseMap);
915  return &*MIB;
916}
917
918MachineInstr *
919InstrEmitter::EmitDbgValueFromSingleOp(SDDbgValue *SD,
920                                       DenseMap<SDValue, Register> &VRBaseMap) {
921  MDNode *Var = SD->getVariable();
922  DIExpression *Expr = SD->getExpression();
923  DebugLoc DL = SD->getDebugLoc();
924  const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
925
926  assert(SD->getLocationOps().size() == 1 &&
927         "Non variadic dbg_value should have only one location op");
928
929  // See about constant-folding the expression.
930  // Copy the location operand in case we replace it.
931  SmallVector<SDDbgOperand, 1> LocationOps(1, SD->getLocationOps()[0]);
932  if (Expr && LocationOps[0].getKind() == SDDbgOperand::CONST) {
933    const Value *V = LocationOps[0].getConst();
934    if (auto *C = dyn_cast<ConstantInt>(V)) {
935      std::tie(Expr, C) = Expr->constantFold(C);
936      LocationOps[0] = SDDbgOperand::fromConst(C);
937    }
938  }
939
940  // Emit non-variadic dbg_value nodes as DBG_VALUE.
941  // DBG_VALUE := "DBG_VALUE" loc, isIndirect, var, expr
942  auto MIB = BuildMI(*MF, DL, II);
943  AddDbgValueLocationOps(MIB, II, LocationOps, VRBaseMap);
944
945  if (SD->isIndirect())
946    MIB.addImm(0U);
947  else
948    MIB.addReg(0U);
949
950  return MIB.addMetadata(Var).addMetadata(Expr);
951}
952
953MachineInstr *
954InstrEmitter::EmitDbgLabel(SDDbgLabel *SD) {
955  MDNode *Label = SD->getLabel();
956  DebugLoc DL = SD->getDebugLoc();
957  assert(cast<DILabel>(Label)->isValidLocationForIntrinsic(DL) &&
958         "Expected inlined-at fields to agree");
959
960  const MCInstrDesc &II = TII->get(TargetOpcode::DBG_LABEL);
961  MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
962  MIB.addMetadata(Label);
963
964  return &*MIB;
965}
966
967/// EmitMachineNode - Generate machine code for a target-specific node and
968/// needed dependencies.
969///
970void InstrEmitter::
971EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
972                DenseMap<SDValue, Register> &VRBaseMap) {
973  unsigned Opc = Node->getMachineOpcode();
974
975  // Handle subreg insert/extract specially
976  if (Opc == TargetOpcode::EXTRACT_SUBREG ||
977      Opc == TargetOpcode::INSERT_SUBREG ||
978      Opc == TargetOpcode::SUBREG_TO_REG) {
979    EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
980    return;
981  }
982
983  // Handle COPY_TO_REGCLASS specially.
984  if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
985    EmitCopyToRegClassNode(Node, VRBaseMap);
986    return;
987  }
988
989  // Handle REG_SEQUENCE specially.
990  if (Opc == TargetOpcode::REG_SEQUENCE) {
991    EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
992    return;
993  }
994
995  if (Opc == TargetOpcode::IMPLICIT_DEF)
996    // We want a unique VR for each IMPLICIT_DEF use.
997    return;
998
999  const MCInstrDesc &II = TII->get(Opc);
1000  unsigned NumResults = CountResults(Node);
1001  unsigned NumDefs = II.getNumDefs();
1002  const MCPhysReg *ScratchRegs = nullptr;
1003
1004  // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
1005  if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
1006    // Stackmaps do not have arguments and do not preserve their calling
1007    // convention. However, to simplify runtime support, they clobber the same
1008    // scratch registers as AnyRegCC.
1009    unsigned CC = CallingConv::AnyReg;
1010    if (Opc == TargetOpcode::PATCHPOINT) {
1011      CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
1012      NumDefs = NumResults;
1013    }
1014    ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
1015  } else if (Opc == TargetOpcode::STATEPOINT) {
1016    NumDefs = NumResults;
1017  }
1018
1019  unsigned NumImpUses = 0;
1020  unsigned NodeOperands =
1021    countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
1022  bool HasVRegVariadicDefs = !MF->getTarget().usesPhysRegsForValues() &&
1023                             II.isVariadic() && II.variadicOpsAreDefs();
1024  bool HasPhysRegOuts = NumResults > NumDefs && !II.implicit_defs().empty() &&
1025                        !HasVRegVariadicDefs;
1026#ifndef NDEBUG
1027  unsigned NumMIOperands = NodeOperands + NumResults;
1028  if (II.isVariadic())
1029    assert(NumMIOperands >= II.getNumOperands() &&
1030           "Too few operands for a variadic node!");
1031  else
1032    assert(NumMIOperands >= II.getNumOperands() &&
1033           NumMIOperands <=
1034               II.getNumOperands() + II.implicit_defs().size() + NumImpUses &&
1035           "#operands for dag node doesn't match .td file!");
1036#endif
1037
1038  // Create the new machine instruction.
1039  MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
1040
1041  // Add result register values for things that are defined by this
1042  // instruction.
1043  if (NumResults) {
1044    CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
1045
1046    // Transfer any IR flags from the SDNode to the MachineInstr
1047    MachineInstr *MI = MIB.getInstr();
1048    const SDNodeFlags Flags = Node->getFlags();
1049    if (Flags.hasNoSignedZeros())
1050      MI->setFlag(MachineInstr::MIFlag::FmNsz);
1051
1052    if (Flags.hasAllowReciprocal())
1053      MI->setFlag(MachineInstr::MIFlag::FmArcp);
1054
1055    if (Flags.hasNoNaNs())
1056      MI->setFlag(MachineInstr::MIFlag::FmNoNans);
1057
1058    if (Flags.hasNoInfs())
1059      MI->setFlag(MachineInstr::MIFlag::FmNoInfs);
1060
1061    if (Flags.hasAllowContract())
1062      MI->setFlag(MachineInstr::MIFlag::FmContract);
1063
1064    if (Flags.hasApproximateFuncs())
1065      MI->setFlag(MachineInstr::MIFlag::FmAfn);
1066
1067    if (Flags.hasAllowReassociation())
1068      MI->setFlag(MachineInstr::MIFlag::FmReassoc);
1069
1070    if (Flags.hasNoUnsignedWrap())
1071      MI->setFlag(MachineInstr::MIFlag::NoUWrap);
1072
1073    if (Flags.hasNoSignedWrap())
1074      MI->setFlag(MachineInstr::MIFlag::NoSWrap);
1075
1076    if (Flags.hasExact())
1077      MI->setFlag(MachineInstr::MIFlag::IsExact);
1078
1079    if (Flags.hasNoFPExcept())
1080      MI->setFlag(MachineInstr::MIFlag::NoFPExcept);
1081
1082    if (Flags.hasUnpredictable())
1083      MI->setFlag(MachineInstr::MIFlag::Unpredictable);
1084  }
1085
1086  // Emit all of the actual operands of this instruction, adding them to the
1087  // instruction as appropriate.
1088  bool HasOptPRefs = NumDefs > NumResults;
1089  assert((!HasOptPRefs || !HasPhysRegOuts) &&
1090         "Unable to cope with optional defs and phys regs defs!");
1091  unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
1092  for (unsigned i = NumSkip; i != NodeOperands; ++i)
1093    AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
1094               VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
1095
1096  // Add scratch registers as implicit def and early clobber
1097  if (ScratchRegs)
1098    for (unsigned i = 0; ScratchRegs[i]; ++i)
1099      MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
1100                                 RegState::EarlyClobber);
1101
1102  // Set the memory reference descriptions of this instruction now that it is
1103  // part of the function.
1104  MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands());
1105
1106  // Set the CFI type.
1107  MIB->setCFIType(*MF, Node->getCFIType());
1108
1109  // Insert the instruction into position in the block. This needs to
1110  // happen before any custom inserter hook is called so that the
1111  // hook knows where in the block to insert the replacement code.
1112  MBB->insert(InsertPos, MIB);
1113
1114  // The MachineInstr may also define physregs instead of virtregs.  These
1115  // physreg values can reach other instructions in different ways:
1116  //
1117  // 1. When there is a use of a Node value beyond the explicitly defined
1118  //    virtual registers, we emit a CopyFromReg for one of the implicitly
1119  //    defined physregs.  This only happens when HasPhysRegOuts is true.
1120  //
1121  // 2. A CopyFromReg reading a physreg may be glued to this instruction.
1122  //
1123  // 3. A glued instruction may implicitly use a physreg.
1124  //
1125  // 4. A glued instruction may use a RegisterSDNode operand.
1126  //
1127  // Collect all the used physreg defs, and make sure that any unused physreg
1128  // defs are marked as dead.
1129  SmallVector<Register, 8> UsedRegs;
1130
1131  // Additional results must be physical register defs.
1132  if (HasPhysRegOuts) {
1133    for (unsigned i = NumDefs; i < NumResults; ++i) {
1134      Register Reg = II.implicit_defs()[i - NumDefs];
1135      if (!Node->hasAnyUseOfValue(i))
1136        continue;
1137      // This implicitly defined physreg has a use.
1138      UsedRegs.push_back(Reg);
1139      EmitCopyFromReg(Node, i, IsClone, Reg, VRBaseMap);
1140    }
1141  }
1142
1143  // Scan the glue chain for any used physregs.
1144  if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
1145    for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
1146      if (F->getOpcode() == ISD::CopyFromReg) {
1147        UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
1148        continue;
1149      } else if (F->getOpcode() == ISD::CopyToReg) {
1150        // Skip CopyToReg nodes that are internal to the glue chain.
1151        continue;
1152      }
1153      // Collect declared implicit uses.
1154      const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
1155      append_range(UsedRegs, MCID.implicit_uses());
1156      // In addition to declared implicit uses, we must also check for
1157      // direct RegisterSDNode operands.
1158      for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
1159        if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
1160          Register Reg = R->getReg();
1161          if (Reg.isPhysical())
1162            UsedRegs.push_back(Reg);
1163        }
1164    }
1165  }
1166
1167  // Add rounding control registers as implicit def for function call.
1168  if (II.isCall() && MF->getFunction().hasFnAttribute(Attribute::StrictFP)) {
1169    ArrayRef<MCPhysReg> RCRegs = TLI->getRoundingControlRegisters();
1170    for (MCPhysReg Reg : RCRegs)
1171      UsedRegs.push_back(Reg);
1172  }
1173
1174  // Finally mark unused registers as dead.
1175  if (!UsedRegs.empty() || !II.implicit_defs().empty() || II.hasOptionalDef())
1176    MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
1177
1178  // STATEPOINT is too 'dynamic' to have meaningful machine description.
1179  // We have to manually tie operands.
1180  if (Opc == TargetOpcode::STATEPOINT && NumDefs > 0) {
1181    assert(!HasPhysRegOuts && "STATEPOINT mishandled");
1182    MachineInstr *MI = MIB;
1183    unsigned Def = 0;
1184    int First = StatepointOpers(MI).getFirstGCPtrIdx();
1185    assert(First > 0 && "Statepoint has Defs but no GC ptr list");
1186    unsigned Use = (unsigned)First;
1187    while (Def < NumDefs) {
1188      if (MI->getOperand(Use).isReg())
1189        MI->tieOperands(Def++, Use);
1190      Use = StackMaps::getNextMetaArgIdx(MI, Use);
1191    }
1192  }
1193
1194  // Run post-isel target hook to adjust this instruction if needed.
1195  if (II.hasPostISelHook())
1196    TLI->AdjustInstrPostInstrSelection(*MIB, Node);
1197}
1198
1199/// EmitSpecialNode - Generate machine code for a target-independent node and
1200/// needed dependencies.
1201void InstrEmitter::
1202EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
1203                DenseMap<SDValue, Register> &VRBaseMap) {
1204  switch (Node->getOpcode()) {
1205  default:
1206#ifndef NDEBUG
1207    Node->dump();
1208#endif
1209    llvm_unreachable("This target-independent node should have been selected!");
1210  case ISD::EntryToken:
1211  case ISD::MERGE_VALUES:
1212  case ISD::TokenFactor: // fall thru
1213    break;
1214  case ISD::CopyToReg: {
1215    Register DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1216    SDValue SrcVal = Node->getOperand(2);
1217    if (DestReg.isVirtual() && SrcVal.isMachineOpcode() &&
1218        SrcVal.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
1219      // Instead building a COPY to that vreg destination, build an
1220      // IMPLICIT_DEF instruction instead.
1221      BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1222              TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
1223      break;
1224    }
1225    Register SrcReg;
1226    if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
1227      SrcReg = R->getReg();
1228    else
1229      SrcReg = getVR(SrcVal, VRBaseMap);
1230
1231    if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
1232      break;
1233
1234    BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
1235            DestReg).addReg(SrcReg);
1236    break;
1237  }
1238  case ISD::CopyFromReg: {
1239    unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
1240    EmitCopyFromReg(Node, 0, IsClone, SrcReg, VRBaseMap);
1241    break;
1242  }
1243  case ISD::EH_LABEL:
1244  case ISD::ANNOTATION_LABEL: {
1245    unsigned Opc = (Node->getOpcode() == ISD::EH_LABEL)
1246                       ? TargetOpcode::EH_LABEL
1247                       : TargetOpcode::ANNOTATION_LABEL;
1248    MCSymbol *S = cast<LabelSDNode>(Node)->getLabel();
1249    BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
1250            TII->get(Opc)).addSym(S);
1251    break;
1252  }
1253
1254  case ISD::LIFETIME_START:
1255  case ISD::LIFETIME_END: {
1256    unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START)
1257                         ? TargetOpcode::LIFETIME_START
1258                         : TargetOpcode::LIFETIME_END;
1259    auto *FI = cast<FrameIndexSDNode>(Node->getOperand(1));
1260    BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1261    .addFrameIndex(FI->getIndex());
1262    break;
1263  }
1264
1265  case ISD::PSEUDO_PROBE: {
1266    unsigned TarOp = TargetOpcode::PSEUDO_PROBE;
1267    auto Guid = cast<PseudoProbeSDNode>(Node)->getGuid();
1268    auto Index = cast<PseudoProbeSDNode>(Node)->getIndex();
1269    auto Attr = cast<PseudoProbeSDNode>(Node)->getAttributes();
1270
1271    BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
1272        .addImm(Guid)
1273        .addImm(Index)
1274        .addImm((uint8_t)PseudoProbeType::Block)
1275        .addImm(Attr);
1276    break;
1277  }
1278
1279  case ISD::INLINEASM:
1280  case ISD::INLINEASM_BR: {
1281    unsigned NumOps = Node->getNumOperands();
1282    if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1283      --NumOps;  // Ignore the glue operand.
1284
1285    // Create the inline asm machine instruction.
1286    unsigned TgtOpc = Node->getOpcode() == ISD::INLINEASM_BR
1287                          ? TargetOpcode::INLINEASM_BR
1288                          : TargetOpcode::INLINEASM;
1289    MachineInstrBuilder MIB =
1290        BuildMI(*MF, Node->getDebugLoc(), TII->get(TgtOpc));
1291
1292    // Add the asm string as an external symbol operand.
1293    SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
1294    const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
1295    MIB.addExternalSymbol(AsmStr);
1296
1297    // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1298    // bits.
1299    int64_t ExtraInfo =
1300      cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
1301                          getZExtValue();
1302    MIB.addImm(ExtraInfo);
1303
1304    // Remember to operand index of the group flags.
1305    SmallVector<unsigned, 8> GroupIdx;
1306
1307    // Remember registers that are part of early-clobber defs.
1308    SmallVector<unsigned, 8> ECRegs;
1309
1310    // Add all of the operand registers to the instruction.
1311    for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1312      unsigned Flags = Node->getConstantOperandVal(i);
1313      const InlineAsm::Flag F(Flags);
1314      const unsigned NumVals = F.getNumOperandRegisters();
1315
1316      GroupIdx.push_back(MIB->getNumOperands());
1317      MIB.addImm(Flags);
1318      ++i;  // Skip the ID value.
1319
1320      switch (F.getKind()) {
1321      case InlineAsm::Kind::RegDef:
1322        for (unsigned j = 0; j != NumVals; ++j, ++i) {
1323          Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1324          // FIXME: Add dead flags for physical and virtual registers defined.
1325          // For now, mark physical register defs as implicit to help fast
1326          // regalloc. This makes inline asm look a lot like calls.
1327          MIB.addReg(Reg, RegState::Define | getImplRegState(Reg.isPhysical()));
1328        }
1329        break;
1330      case InlineAsm::Kind::RegDefEarlyClobber:
1331      case InlineAsm::Kind::Clobber:
1332        for (unsigned j = 0; j != NumVals; ++j, ++i) {
1333          Register Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1334          MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber |
1335                              getImplRegState(Reg.isPhysical()));
1336          ECRegs.push_back(Reg);
1337        }
1338        break;
1339      case InlineAsm::Kind::RegUse: // Use of register.
1340      case InlineAsm::Kind::Imm:    // Immediate.
1341      case InlineAsm::Kind::Mem:    // Non-function addressing mode.
1342        // The addressing mode has been selected, just add all of the
1343        // operands to the machine instruction.
1344        for (unsigned j = 0; j != NumVals; ++j, ++i)
1345          AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
1346                     /*IsDebug=*/false, IsClone, IsCloned);
1347
1348        // Manually set isTied bits.
1349        if (F.isRegUseKind()) {
1350          unsigned DefGroup;
1351          if (F.isUseOperandTiedToDef(DefGroup)) {
1352            unsigned DefIdx = GroupIdx[DefGroup] + 1;
1353            unsigned UseIdx = GroupIdx.back() + 1;
1354            for (unsigned j = 0; j != NumVals; ++j)
1355              MIB->tieOperands(DefIdx + j, UseIdx + j);
1356          }
1357        }
1358        break;
1359      case InlineAsm::Kind::Func: // Function addressing mode.
1360        for (unsigned j = 0; j != NumVals; ++j, ++i) {
1361          SDValue Op = Node->getOperand(i);
1362          AddOperand(MIB, Op, 0, nullptr, VRBaseMap,
1363                     /*IsDebug=*/false, IsClone, IsCloned);
1364
1365          // Adjust Target Flags for function reference.
1366          if (auto *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
1367            unsigned NewFlags =
1368                MF->getSubtarget().classifyGlobalFunctionReference(
1369                    TGA->getGlobal());
1370            unsigned LastIdx = MIB.getInstr()->getNumOperands() - 1;
1371            MIB.getInstr()->getOperand(LastIdx).setTargetFlags(NewFlags);
1372          }
1373        }
1374      }
1375    }
1376
1377    // GCC inline assembly allows input operands to also be early-clobber
1378    // output operands (so long as the operand is written only after it's
1379    // used), but this does not match the semantics of our early-clobber flag.
1380    // If an early-clobber operand register is also an input operand register,
1381    // then remove the early-clobber flag.
1382    for (unsigned Reg : ECRegs) {
1383      if (MIB->readsRegister(Reg, TRI)) {
1384        MachineOperand *MO =
1385            MIB->findRegisterDefOperand(Reg, false, false, TRI);
1386        assert(MO && "No def operand for clobbered register?");
1387        MO->setIsEarlyClobber(false);
1388      }
1389    }
1390
1391    // Get the mdnode from the asm if it exists and add it to the instruction.
1392    SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1393    const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1394    if (MD)
1395      MIB.addMetadata(MD);
1396
1397    MBB->insert(InsertPos, MIB);
1398    break;
1399  }
1400  }
1401}
1402
1403/// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1404/// at the given position in the given block.
1405InstrEmitter::InstrEmitter(const TargetMachine &TM, MachineBasicBlock *mbb,
1406                           MachineBasicBlock::iterator insertpos)
1407    : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1408      TII(MF->getSubtarget().getInstrInfo()),
1409      TRI(MF->getSubtarget().getRegisterInfo()),
1410      TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1411      InsertPos(insertpos) {
1412  EmitDebugInstrRefs = mbb->getParent()->useDebugInstrRef();
1413}
1414