1//===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
10// register allocator for LLVM. This allocator works by constructing a PBQP
11// problem representing the register allocation problem under consideration,
12// solving this using a PBQP solver, and mapping the solution back to a
13// register assignment. If any variables are selected for spilling then spill
14// code is inserted and the process repeated.
15//
16// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
17// for register allocation. For more information on PBQP for register
18// allocation, see the following papers:
19//
20//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
21//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
22//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
23//
24//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
25//   architectures. In Proceedings of the Joint Conference on Languages,
26//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
27//   NY, USA, 139-148.
28//
29//===----------------------------------------------------------------------===//
30
31#include "llvm/CodeGen/RegAllocPBQP.h"
32#include "RegisterCoalescer.h"
33#include "llvm/ADT/ArrayRef.h"
34#include "llvm/ADT/BitVector.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/DenseSet.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/ADT/SmallPtrSet.h"
39#include "llvm/ADT/SmallVector.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/Analysis/AliasAnalysis.h"
42#include "llvm/CodeGen/CalcSpillWeights.h"
43#include "llvm/CodeGen/LiveInterval.h"
44#include "llvm/CodeGen/LiveIntervals.h"
45#include "llvm/CodeGen/LiveRangeEdit.h"
46#include "llvm/CodeGen/LiveStacks.h"
47#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
48#include "llvm/CodeGen/MachineDominators.h"
49#include "llvm/CodeGen/MachineFunction.h"
50#include "llvm/CodeGen/MachineFunctionPass.h"
51#include "llvm/CodeGen/MachineInstr.h"
52#include "llvm/CodeGen/MachineLoopInfo.h"
53#include "llvm/CodeGen/MachineRegisterInfo.h"
54#include "llvm/CodeGen/PBQP/Graph.h"
55#include "llvm/CodeGen/PBQP/Math.h"
56#include "llvm/CodeGen/PBQP/Solution.h"
57#include "llvm/CodeGen/PBQPRAConstraint.h"
58#include "llvm/CodeGen/RegAllocRegistry.h"
59#include "llvm/CodeGen/SlotIndexes.h"
60#include "llvm/CodeGen/Spiller.h"
61#include "llvm/CodeGen/TargetRegisterInfo.h"
62#include "llvm/CodeGen/TargetSubtargetInfo.h"
63#include "llvm/CodeGen/VirtRegMap.h"
64#include "llvm/Config/llvm-config.h"
65#include "llvm/IR/Function.h"
66#include "llvm/IR/Module.h"
67#include "llvm/MC/MCRegisterInfo.h"
68#include "llvm/Pass.h"
69#include "llvm/Support/CommandLine.h"
70#include "llvm/Support/Compiler.h"
71#include "llvm/Support/Debug.h"
72#include "llvm/Support/FileSystem.h"
73#include "llvm/Support/Printable.h"
74#include "llvm/Support/raw_ostream.h"
75#include <algorithm>
76#include <cassert>
77#include <cstddef>
78#include <limits>
79#include <map>
80#include <memory>
81#include <queue>
82#include <set>
83#include <sstream>
84#include <string>
85#include <system_error>
86#include <tuple>
87#include <utility>
88#include <vector>
89
90using namespace llvm;
91
92#define DEBUG_TYPE "regalloc"
93
94static RegisterRegAlloc
95RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
96                       createDefaultPBQPRegisterAllocator);
97
98static cl::opt<bool>
99PBQPCoalescing("pbqp-coalescing",
100                cl::desc("Attempt coalescing during PBQP register allocation."),
101                cl::init(false), cl::Hidden);
102
103#ifndef NDEBUG
104static cl::opt<bool>
105PBQPDumpGraphs("pbqp-dump-graphs",
106               cl::desc("Dump graphs for each function/round in the compilation unit."),
107               cl::init(false), cl::Hidden);
108#endif
109
110namespace {
111
112///
113/// PBQP based allocators solve the register allocation problem by mapping
114/// register allocation problems to Partitioned Boolean Quadratic
115/// Programming problems.
116class RegAllocPBQP : public MachineFunctionPass {
117public:
118  static char ID;
119
120  /// Construct a PBQP register allocator.
121  RegAllocPBQP(char *cPassID = nullptr)
122      : MachineFunctionPass(ID), customPassID(cPassID) {
123    initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
124    initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
125    initializeLiveStacksPass(*PassRegistry::getPassRegistry());
126    initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
127  }
128
129  /// Return the pass name.
130  StringRef getPassName() const override { return "PBQP Register Allocator"; }
131
132  /// PBQP analysis usage.
133  void getAnalysisUsage(AnalysisUsage &au) const override;
134
135  /// Perform register allocation
136  bool runOnMachineFunction(MachineFunction &MF) override;
137
138  MachineFunctionProperties getRequiredProperties() const override {
139    return MachineFunctionProperties().set(
140        MachineFunctionProperties::Property::NoPHIs);
141  }
142
143  MachineFunctionProperties getClearedProperties() const override {
144    return MachineFunctionProperties().set(
145      MachineFunctionProperties::Property::IsSSA);
146  }
147
148private:
149  using RegSet = std::set<Register>;
150
151  char *customPassID;
152
153  RegSet VRegsToAlloc, EmptyIntervalVRegs;
154
155  /// Inst which is a def of an original reg and whose defs are already all
156  /// dead after remat is saved in DeadRemats. The deletion of such inst is
157  /// postponed till all the allocations are done, so its remat expr is
158  /// always available for the remat of all the siblings of the original reg.
159  SmallPtrSet<MachineInstr *, 32> DeadRemats;
160
161  /// Finds the initial set of vreg intervals to allocate.
162  void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
163
164  /// Constructs an initial graph.
165  void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
166
167  /// Spill the given VReg.
168  void spillVReg(Register VReg, SmallVectorImpl<Register> &NewIntervals,
169                 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
170                 Spiller &VRegSpiller);
171
172  /// Given a solved PBQP problem maps this solution back to a register
173  /// assignment.
174  bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
175                         const PBQP::Solution &Solution,
176                         VirtRegMap &VRM,
177                         Spiller &VRegSpiller);
178
179  /// Postprocessing before final spilling. Sets basic block "live in"
180  /// variables.
181  void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
182                     VirtRegMap &VRM) const;
183
184  void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS);
185};
186
187char RegAllocPBQP::ID = 0;
188
189/// Set spill costs for each node in the PBQP reg-alloc graph.
190class SpillCosts : public PBQPRAConstraint {
191public:
192  void apply(PBQPRAGraph &G) override {
193    LiveIntervals &LIS = G.getMetadata().LIS;
194
195    // A minimum spill costs, so that register constraints can be set
196    // without normalization in the [0.0:MinSpillCost( interval.
197    const PBQP::PBQPNum MinSpillCost = 10.0;
198
199    for (auto NId : G.nodeIds()) {
200      PBQP::PBQPNum SpillCost =
201          LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight();
202      if (SpillCost == 0.0)
203        SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
204      else
205        SpillCost += MinSpillCost;
206      PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
207      NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
208      G.setNodeCosts(NId, std::move(NodeCosts));
209    }
210  }
211};
212
213/// Add interference edges between overlapping vregs.
214class Interference : public PBQPRAConstraint {
215private:
216  using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *;
217  using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>;
218  using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>;
219  using DisjointAllowedRegsCache = DenseSet<IKey>;
220  using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>;
221  using IEdgeCache = DenseSet<IEdgeKey>;
222
223  bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
224                               PBQPRAGraph::NodeId MId,
225                               const DisjointAllowedRegsCache &D) const {
226    const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
227    const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
228
229    if (NRegs == MRegs)
230      return false;
231
232    if (NRegs < MRegs)
233      return D.contains(IKey(NRegs, MRegs));
234
235    return D.contains(IKey(MRegs, NRegs));
236  }
237
238  void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
239                              PBQPRAGraph::NodeId MId,
240                              DisjointAllowedRegsCache &D) {
241    const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
242    const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
243
244    assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
245
246    if (NRegs < MRegs)
247      D.insert(IKey(NRegs, MRegs));
248    else
249      D.insert(IKey(MRegs, NRegs));
250  }
251
252  // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
253  // for the fast interference graph construction algorithm. The last is there
254  // to save us from looking up node ids via the VRegToNode map in the graph
255  // metadata.
256  using IntervalInfo =
257      std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>;
258
259  static SlotIndex getStartPoint(const IntervalInfo &I) {
260    return std::get<0>(I)->segments[std::get<1>(I)].start;
261  }
262
263  static SlotIndex getEndPoint(const IntervalInfo &I) {
264    return std::get<0>(I)->segments[std::get<1>(I)].end;
265  }
266
267  static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
268    return std::get<2>(I);
269  }
270
271  static bool lowestStartPoint(const IntervalInfo &I1,
272                               const IntervalInfo &I2) {
273    // Condition reversed because priority queue has the *highest* element at
274    // the front, rather than the lowest.
275    return getStartPoint(I1) > getStartPoint(I2);
276  }
277
278  static bool lowestEndPoint(const IntervalInfo &I1,
279                             const IntervalInfo &I2) {
280    SlotIndex E1 = getEndPoint(I1);
281    SlotIndex E2 = getEndPoint(I2);
282
283    if (E1 < E2)
284      return true;
285
286    if (E1 > E2)
287      return false;
288
289    // If two intervals end at the same point, we need a way to break the tie or
290    // the set will assume they're actually equal and refuse to insert a
291    // "duplicate". Just compare the vregs - fast and guaranteed unique.
292    return std::get<0>(I1)->reg() < std::get<0>(I2)->reg();
293  }
294
295  static bool isAtLastSegment(const IntervalInfo &I) {
296    return std::get<1>(I) == std::get<0>(I)->size() - 1;
297  }
298
299  static IntervalInfo nextSegment(const IntervalInfo &I) {
300    return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
301  }
302
303public:
304  void apply(PBQPRAGraph &G) override {
305    // The following is loosely based on the linear scan algorithm introduced in
306    // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
307    // isn't linear, because the size of the active set isn't bound by the
308    // number of registers, but rather the size of the largest clique in the
309    // graph. Still, we expect this to be better than N^2.
310    LiveIntervals &LIS = G.getMetadata().LIS;
311
312    // Interferenc matrices are incredibly regular - they're only a function of
313    // the allowed sets, so we cache them to avoid the overhead of constructing
314    // and uniquing them.
315    IMatrixCache C;
316
317    // Finding an edge is expensive in the worst case (O(max_clique(G))). So
318    // cache locally edges we have already seen.
319    IEdgeCache EC;
320
321    // Cache known disjoint allowed registers pairs
322    DisjointAllowedRegsCache D;
323
324    using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>;
325    using IntervalQueue =
326        std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
327                            decltype(&lowestStartPoint)>;
328    IntervalSet Active(lowestEndPoint);
329    IntervalQueue Inactive(lowestStartPoint);
330
331    // Start by building the inactive set.
332    for (auto NId : G.nodeIds()) {
333      Register VReg = G.getNodeMetadata(NId).getVReg();
334      LiveInterval &LI = LIS.getInterval(VReg);
335      assert(!LI.empty() && "PBQP graph contains node for empty interval");
336      Inactive.push(std::make_tuple(&LI, 0, NId));
337    }
338
339    while (!Inactive.empty()) {
340      // Tentatively grab the "next" interval - this choice may be overriden
341      // below.
342      IntervalInfo Cur = Inactive.top();
343
344      // Retire any active intervals that end before Cur starts.
345      IntervalSet::iterator RetireItr = Active.begin();
346      while (RetireItr != Active.end() &&
347             (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
348        // If this interval has subsequent segments, add the next one to the
349        // inactive list.
350        if (!isAtLastSegment(*RetireItr))
351          Inactive.push(nextSegment(*RetireItr));
352
353        ++RetireItr;
354      }
355      Active.erase(Active.begin(), RetireItr);
356
357      // One of the newly retired segments may actually start before the
358      // Cur segment, so re-grab the front of the inactive list.
359      Cur = Inactive.top();
360      Inactive.pop();
361
362      // At this point we know that Cur overlaps all active intervals. Add the
363      // interference edges.
364      PBQP::GraphBase::NodeId NId = getNodeId(Cur);
365      for (const auto &A : Active) {
366        PBQP::GraphBase::NodeId MId = getNodeId(A);
367
368        // Do not add an edge when the nodes' allowed registers do not
369        // intersect: there is obviously no interference.
370        if (haveDisjointAllowedRegs(G, NId, MId, D))
371          continue;
372
373        // Check that we haven't already added this edge
374        IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
375        if (EC.count(EK))
376          continue;
377
378        // This is a new edge - add it to the graph.
379        if (!createInterferenceEdge(G, NId, MId, C))
380          setDisjointAllowedRegs(G, NId, MId, D);
381        else
382          EC.insert(EK);
383      }
384
385      // Finally, add Cur to the Active set.
386      Active.insert(Cur);
387    }
388  }
389
390private:
391  // Create an Interference edge and add it to the graph, unless it is
392  // a null matrix, meaning the nodes' allowed registers do not have any
393  // interference. This case occurs frequently between integer and floating
394  // point registers for example.
395  // return true iff both nodes interferes.
396  bool createInterferenceEdge(PBQPRAGraph &G,
397                              PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
398                              IMatrixCache &C) {
399    const TargetRegisterInfo &TRI =
400        *G.getMetadata().MF.getSubtarget().getRegisterInfo();
401    const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
402    const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
403
404    // Try looking the edge costs up in the IMatrixCache first.
405    IKey K(&NRegs, &MRegs);
406    IMatrixCache::iterator I = C.find(K);
407    if (I != C.end()) {
408      G.addEdgeBypassingCostAllocator(NId, MId, I->second);
409      return true;
410    }
411
412    PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
413    bool NodesInterfere = false;
414    for (unsigned I = 0; I != NRegs.size(); ++I) {
415      MCRegister PRegN = NRegs[I];
416      for (unsigned J = 0; J != MRegs.size(); ++J) {
417        MCRegister PRegM = MRegs[J];
418        if (TRI.regsOverlap(PRegN, PRegM)) {
419          M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
420          NodesInterfere = true;
421        }
422      }
423    }
424
425    if (!NodesInterfere)
426      return false;
427
428    PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
429    C[K] = G.getEdgeCostsPtr(EId);
430
431    return true;
432  }
433};
434
435class Coalescing : public PBQPRAConstraint {
436public:
437  void apply(PBQPRAGraph &G) override {
438    MachineFunction &MF = G.getMetadata().MF;
439    MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
440    CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
441
442    // Scan the machine function and add a coalescing cost whenever CoalescerPair
443    // gives the Ok.
444    for (const auto &MBB : MF) {
445      for (const auto &MI : MBB) {
446        // Skip not-coalescable or already coalesced copies.
447        if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
448          continue;
449
450        Register DstReg = CP.getDstReg();
451        Register SrcReg = CP.getSrcReg();
452
453        PBQP::PBQPNum CBenefit = MBFI.getBlockFreqRelativeToEntryBlock(&MBB);
454
455        if (CP.isPhys()) {
456          if (!MF.getRegInfo().isAllocatable(DstReg))
457            continue;
458
459          PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
460
461          const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
462            G.getNodeMetadata(NId).getAllowedRegs();
463
464          unsigned PRegOpt = 0;
465          while (PRegOpt < Allowed.size() && Allowed[PRegOpt].id() != DstReg)
466            ++PRegOpt;
467
468          if (PRegOpt < Allowed.size()) {
469            PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
470            NewCosts[PRegOpt + 1] -= CBenefit;
471            G.setNodeCosts(NId, std::move(NewCosts));
472          }
473        } else {
474          PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
475          PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
476          const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
477            &G.getNodeMetadata(N1Id).getAllowedRegs();
478          const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
479            &G.getNodeMetadata(N2Id).getAllowedRegs();
480
481          PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
482          if (EId == G.invalidEdgeId()) {
483            PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
484                                         Allowed2->size() + 1, 0);
485            addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
486            G.addEdge(N1Id, N2Id, std::move(Costs));
487          } else {
488            if (G.getEdgeNode1Id(EId) == N2Id) {
489              std::swap(N1Id, N2Id);
490              std::swap(Allowed1, Allowed2);
491            }
492            PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
493            addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
494            G.updateEdgeCosts(EId, std::move(Costs));
495          }
496        }
497      }
498    }
499  }
500
501private:
502  void addVirtRegCoalesce(
503                    PBQPRAGraph::RawMatrix &CostMat,
504                    const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
505                    const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
506                    PBQP::PBQPNum Benefit) {
507    assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
508    assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
509    for (unsigned I = 0; I != Allowed1.size(); ++I) {
510      MCRegister PReg1 = Allowed1[I];
511      for (unsigned J = 0; J != Allowed2.size(); ++J) {
512        MCRegister PReg2 = Allowed2[J];
513        if (PReg1 == PReg2)
514          CostMat[I + 1][J + 1] -= Benefit;
515      }
516    }
517  }
518};
519
520/// PBQP-specific implementation of weight normalization.
521class PBQPVirtRegAuxInfo final : public VirtRegAuxInfo {
522  float normalize(float UseDefFreq, unsigned Size, unsigned NumInstr) override {
523    // All intervals have a spill weight that is mostly proportional to the
524    // number of uses, with uses in loops having a bigger weight.
525    return NumInstr * VirtRegAuxInfo::normalize(UseDefFreq, Size, 1);
526  }
527
528public:
529  PBQPVirtRegAuxInfo(MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
530                     const MachineLoopInfo &Loops,
531                     const MachineBlockFrequencyInfo &MBFI)
532      : VirtRegAuxInfo(MF, LIS, VRM, Loops, MBFI) {}
533};
534} // end anonymous namespace
535
536// Out-of-line destructor/anchor for PBQPRAConstraint.
537PBQPRAConstraint::~PBQPRAConstraint() = default;
538
539void PBQPRAConstraint::anchor() {}
540
541void PBQPRAConstraintList::anchor() {}
542
543void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
544  au.setPreservesCFG();
545  au.addRequired<AAResultsWrapperPass>();
546  au.addPreserved<AAResultsWrapperPass>();
547  au.addRequired<SlotIndexes>();
548  au.addPreserved<SlotIndexes>();
549  au.addRequired<LiveIntervals>();
550  au.addPreserved<LiveIntervals>();
551  //au.addRequiredID(SplitCriticalEdgesID);
552  if (customPassID)
553    au.addRequiredID(*customPassID);
554  au.addRequired<LiveStacks>();
555  au.addPreserved<LiveStacks>();
556  au.addRequired<MachineBlockFrequencyInfo>();
557  au.addPreserved<MachineBlockFrequencyInfo>();
558  au.addRequired<MachineLoopInfo>();
559  au.addPreserved<MachineLoopInfo>();
560  au.addRequired<MachineDominatorTree>();
561  au.addPreserved<MachineDominatorTree>();
562  au.addRequired<VirtRegMap>();
563  au.addPreserved<VirtRegMap>();
564  MachineFunctionPass::getAnalysisUsage(au);
565}
566
567void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
568                                            LiveIntervals &LIS) {
569  const MachineRegisterInfo &MRI = MF.getRegInfo();
570
571  // Iterate over all live ranges.
572  for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
573    Register Reg = Register::index2VirtReg(I);
574    if (MRI.reg_nodbg_empty(Reg))
575      continue;
576    VRegsToAlloc.insert(Reg);
577  }
578}
579
580static bool isACalleeSavedRegister(MCRegister Reg,
581                                   const TargetRegisterInfo &TRI,
582                                   const MachineFunction &MF) {
583  const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs();
584  for (unsigned i = 0; CSR[i] != 0; ++i)
585    if (TRI.regsOverlap(Reg, CSR[i]))
586      return true;
587  return false;
588}
589
590void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
591                                   Spiller &VRegSpiller) {
592  MachineFunction &MF = G.getMetadata().MF;
593
594  LiveIntervals &LIS = G.getMetadata().LIS;
595  const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
596  const TargetRegisterInfo &TRI =
597      *G.getMetadata().MF.getSubtarget().getRegisterInfo();
598
599  std::vector<Register> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
600
601  std::map<Register, std::vector<MCRegister>> VRegAllowedMap;
602
603  while (!Worklist.empty()) {
604    Register VReg = Worklist.back();
605    Worklist.pop_back();
606
607    LiveInterval &VRegLI = LIS.getInterval(VReg);
608
609    // If this is an empty interval move it to the EmptyIntervalVRegs set then
610    // continue.
611    if (VRegLI.empty()) {
612      EmptyIntervalVRegs.insert(VRegLI.reg());
613      VRegsToAlloc.erase(VRegLI.reg());
614      continue;
615    }
616
617    const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
618
619    // Record any overlaps with regmask operands.
620    BitVector RegMaskOverlaps;
621    LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
622
623    // Compute an initial allowed set for the current vreg.
624    std::vector<MCRegister> VRegAllowed;
625    ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
626    for (MCPhysReg R : RawPRegOrder) {
627      MCRegister PReg(R);
628      if (MRI.isReserved(PReg))
629        continue;
630
631      // vregLI crosses a regmask operand that clobbers preg.
632      if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
633        continue;
634
635      // vregLI overlaps fixed regunit interference.
636      bool Interference = false;
637      for (MCRegUnit Unit : TRI.regunits(PReg)) {
638        if (VRegLI.overlaps(LIS.getRegUnit(Unit))) {
639          Interference = true;
640          break;
641        }
642      }
643      if (Interference)
644        continue;
645
646      // preg is usable for this virtual register.
647      VRegAllowed.push_back(PReg);
648    }
649
650    // Check for vregs that have no allowed registers. These should be
651    // pre-spilled and the new vregs added to the worklist.
652    if (VRegAllowed.empty()) {
653      SmallVector<Register, 8> NewVRegs;
654      spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
655      llvm::append_range(Worklist, NewVRegs);
656      continue;
657    }
658
659    VRegAllowedMap[VReg.id()] = std::move(VRegAllowed);
660  }
661
662  for (auto &KV : VRegAllowedMap) {
663    auto VReg = KV.first;
664
665    // Move empty intervals to the EmptyIntervalVReg set.
666    if (LIS.getInterval(VReg).empty()) {
667      EmptyIntervalVRegs.insert(VReg);
668      VRegsToAlloc.erase(VReg);
669      continue;
670    }
671
672    auto &VRegAllowed = KV.second;
673
674    PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
675
676    // Tweak cost of callee saved registers, as using then force spilling and
677    // restoring them. This would only happen in the prologue / epilogue though.
678    for (unsigned i = 0; i != VRegAllowed.size(); ++i)
679      if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
680        NodeCosts[1 + i] += 1.0;
681
682    PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
683    G.getNodeMetadata(NId).setVReg(VReg);
684    G.getNodeMetadata(NId).setAllowedRegs(
685      G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
686    G.getMetadata().setNodeIdForVReg(VReg, NId);
687  }
688}
689
690void RegAllocPBQP::spillVReg(Register VReg,
691                             SmallVectorImpl<Register> &NewIntervals,
692                             MachineFunction &MF, LiveIntervals &LIS,
693                             VirtRegMap &VRM, Spiller &VRegSpiller) {
694  VRegsToAlloc.erase(VReg);
695  LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM,
696                    nullptr, &DeadRemats);
697  VRegSpiller.spill(LRE);
698
699  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
700  (void)TRI;
701  LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: "
702                    << LRE.getParent().weight() << ", New vregs: ");
703
704  // Copy any newly inserted live intervals into the list of regs to
705  // allocate.
706  for (const Register &R : LRE) {
707    const LiveInterval &LI = LIS.getInterval(R);
708    assert(!LI.empty() && "Empty spill range.");
709    LLVM_DEBUG(dbgs() << printReg(LI.reg(), &TRI) << " ");
710    VRegsToAlloc.insert(LI.reg());
711  }
712
713  LLVM_DEBUG(dbgs() << ")\n");
714}
715
716bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
717                                     const PBQP::Solution &Solution,
718                                     VirtRegMap &VRM,
719                                     Spiller &VRegSpiller) {
720  MachineFunction &MF = G.getMetadata().MF;
721  LiveIntervals &LIS = G.getMetadata().LIS;
722  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
723  (void)TRI;
724
725  // Set to true if we have any spills
726  bool AnotherRoundNeeded = false;
727
728  // Clear the existing allocation.
729  VRM.clearAllVirt();
730
731  // Iterate over the nodes mapping the PBQP solution to a register
732  // assignment.
733  for (auto NId : G.nodeIds()) {
734    Register VReg = G.getNodeMetadata(NId).getVReg();
735    unsigned AllocOpt = Solution.getSelection(NId);
736
737    if (AllocOpt != PBQP::RegAlloc::getSpillOptionIdx()) {
738      MCRegister PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOpt - 1];
739      LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> "
740                        << TRI.getName(PReg) << "\n");
741      assert(PReg != 0 && "Invalid preg selected.");
742      VRM.assignVirt2Phys(VReg, PReg);
743    } else {
744      // Spill VReg. If this introduces new intervals we'll need another round
745      // of allocation.
746      SmallVector<Register, 8> NewVRegs;
747      spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
748      AnotherRoundNeeded |= !NewVRegs.empty();
749    }
750  }
751
752  return !AnotherRoundNeeded;
753}
754
755void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
756                                 LiveIntervals &LIS,
757                                 VirtRegMap &VRM) const {
758  MachineRegisterInfo &MRI = MF.getRegInfo();
759
760  // First allocate registers for the empty intervals.
761  for (const Register &R : EmptyIntervalVRegs) {
762    LiveInterval &LI = LIS.getInterval(R);
763
764    Register PReg = MRI.getSimpleHint(LI.reg());
765
766    if (PReg == 0) {
767      const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg());
768      const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF);
769      for (MCRegister CandidateReg : RawPRegOrder) {
770        if (!VRM.getRegInfo().isReserved(CandidateReg)) {
771          PReg = CandidateReg;
772          break;
773        }
774      }
775      assert(PReg &&
776             "No un-reserved physical registers in this register class");
777    }
778
779    VRM.assignVirt2Phys(LI.reg(), PReg);
780  }
781}
782
783void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) {
784  VRegSpiller.postOptimization();
785  /// Remove dead defs because of rematerialization.
786  for (auto *DeadInst : DeadRemats) {
787    LIS.RemoveMachineInstrFromMaps(*DeadInst);
788    DeadInst->eraseFromParent();
789  }
790  DeadRemats.clear();
791}
792
793bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
794  LiveIntervals &LIS = getAnalysis<LiveIntervals>();
795  MachineBlockFrequencyInfo &MBFI =
796    getAnalysis<MachineBlockFrequencyInfo>();
797
798  VirtRegMap &VRM = getAnalysis<VirtRegMap>();
799
800  PBQPVirtRegAuxInfo VRAI(MF, LIS, VRM, getAnalysis<MachineLoopInfo>(), MBFI);
801  VRAI.calculateSpillWeightsAndHints();
802
803  // FIXME: we create DefaultVRAI here to match existing behavior pre-passing
804  // the VRAI through the spiller to the live range editor. However, it probably
805  // makes more sense to pass the PBQP VRAI. The existing behavior had
806  // LiveRangeEdit make its own VirtRegAuxInfo object.
807  VirtRegAuxInfo DefaultVRAI(MF, LIS, VRM, getAnalysis<MachineLoopInfo>(),
808                             MBFI);
809  std::unique_ptr<Spiller> VRegSpiller(
810      createInlineSpiller(*this, MF, VRM, DefaultVRAI));
811
812  MF.getRegInfo().freezeReservedRegs(MF);
813
814  LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
815
816  // Allocator main loop:
817  //
818  // * Map current regalloc problem to a PBQP problem
819  // * Solve the PBQP problem
820  // * Map the solution back to a register allocation
821  // * Spill if necessary
822  //
823  // This process is continued till no more spills are generated.
824
825  // Find the vreg intervals in need of allocation.
826  findVRegIntervalsToAlloc(MF, LIS);
827
828#ifndef NDEBUG
829  const Function &F = MF.getFunction();
830  std::string FullyQualifiedName =
831    F.getParent()->getModuleIdentifier() + "." + F.getName().str();
832#endif
833
834  // If there are non-empty intervals allocate them using pbqp.
835  if (!VRegsToAlloc.empty()) {
836    const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
837    std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
838      std::make_unique<PBQPRAConstraintList>();
839    ConstraintsRoot->addConstraint(std::make_unique<SpillCosts>());
840    ConstraintsRoot->addConstraint(std::make_unique<Interference>());
841    if (PBQPCoalescing)
842      ConstraintsRoot->addConstraint(std::make_unique<Coalescing>());
843    ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
844
845    bool PBQPAllocComplete = false;
846    unsigned Round = 0;
847
848    while (!PBQPAllocComplete) {
849      LLVM_DEBUG(dbgs() << "  PBQP Regalloc round " << Round << ":\n");
850      (void) Round;
851
852      PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
853      initializeGraph(G, VRM, *VRegSpiller);
854      ConstraintsRoot->apply(G);
855
856#ifndef NDEBUG
857      if (PBQPDumpGraphs) {
858        std::ostringstream RS;
859        RS << Round;
860        std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
861                                    ".pbqpgraph";
862        std::error_code EC;
863        raw_fd_ostream OS(GraphFileName, EC, sys::fs::OF_TextWithCRLF);
864        LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
865                          << GraphFileName << "\"\n");
866        G.dump(OS);
867      }
868#endif
869
870      PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
871      PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
872      ++Round;
873    }
874  }
875
876  // Finalise allocation, allocate empty ranges.
877  finalizeAlloc(MF, LIS, VRM);
878  postOptimization(*VRegSpiller, LIS);
879  VRegsToAlloc.clear();
880  EmptyIntervalVRegs.clear();
881
882  LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
883
884  return true;
885}
886
887/// Create Printable object for node and register info.
888static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
889                               const PBQP::RegAlloc::PBQPRAGraph &G) {
890  return Printable([NId, &G](raw_ostream &OS) {
891    const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
892    const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
893    Register VReg = G.getNodeMetadata(NId).getVReg();
894    const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
895    OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')';
896  });
897}
898
899#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
900LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
901  for (auto NId : nodeIds()) {
902    const Vector &Costs = getNodeCosts(NId);
903    assert(Costs.getLength() != 0 && "Empty vector in graph.");
904    OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
905  }
906  OS << '\n';
907
908  for (auto EId : edgeIds()) {
909    NodeId N1Id = getEdgeNode1Id(EId);
910    NodeId N2Id = getEdgeNode2Id(EId);
911    assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
912    const Matrix &M = getEdgeCosts(EId);
913    assert(M.getRows() != 0 && "No rows in matrix.");
914    assert(M.getCols() != 0 && "No cols in matrix.");
915    OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
916    OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
917    OS << M << '\n';
918  }
919}
920
921LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const {
922  dump(dbgs());
923}
924#endif
925
926void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
927  OS << "graph {\n";
928  for (auto NId : nodeIds()) {
929    OS << "  node" << NId << " [ label=\""
930       << PrintNodeInfo(NId, *this) << "\\n"
931       << getNodeCosts(NId) << "\" ]\n";
932  }
933
934  OS << "  edge [ len=" << nodeIds().size() << " ]\n";
935  for (auto EId : edgeIds()) {
936    OS << "  node" << getEdgeNode1Id(EId)
937       << " -- node" << getEdgeNode2Id(EId)
938       << " [ label=\"";
939    const Matrix &EdgeCosts = getEdgeCosts(EId);
940    for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
941      OS << EdgeCosts.getRowAsVector(i) << "\\n";
942    }
943    OS << "\" ]\n";
944  }
945  OS << "}\n";
946}
947
948FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
949  return new RegAllocPBQP(customPassID);
950}
951
952FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
953  return createPBQPRegisterAllocator();
954}
955