1//===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the RAGreedy function pass for register allocation in
10// optimized builds.
11//
12//===----------------------------------------------------------------------===//
13
14#include "RegAllocGreedy.h"
15#include "AllocationOrder.h"
16#include "InterferenceCache.h"
17#include "LiveDebugVariables.h"
18#include "RegAllocBase.h"
19#include "RegAllocEvictionAdvisor.h"
20#include "RegAllocPriorityAdvisor.h"
21#include "SpillPlacement.h"
22#include "SplitKit.h"
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/BitVector.h"
25#include "llvm/ADT/IndexedMap.h"
26#include "llvm/ADT/SmallSet.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/ADT/Statistic.h"
29#include "llvm/ADT/StringRef.h"
30#include "llvm/Analysis/AliasAnalysis.h"
31#include "llvm/Analysis/OptimizationRemarkEmitter.h"
32#include "llvm/CodeGen/CalcSpillWeights.h"
33#include "llvm/CodeGen/EdgeBundles.h"
34#include "llvm/CodeGen/LiveInterval.h"
35#include "llvm/CodeGen/LiveIntervalUnion.h"
36#include "llvm/CodeGen/LiveIntervals.h"
37#include "llvm/CodeGen/LiveRangeEdit.h"
38#include "llvm/CodeGen/LiveRegMatrix.h"
39#include "llvm/CodeGen/LiveStacks.h"
40#include "llvm/CodeGen/MachineBasicBlock.h"
41#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
42#include "llvm/CodeGen/MachineDominators.h"
43#include "llvm/CodeGen/MachineFrameInfo.h"
44#include "llvm/CodeGen/MachineFunction.h"
45#include "llvm/CodeGen/MachineFunctionPass.h"
46#include "llvm/CodeGen/MachineInstr.h"
47#include "llvm/CodeGen/MachineLoopInfo.h"
48#include "llvm/CodeGen/MachineOperand.h"
49#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
50#include "llvm/CodeGen/MachineRegisterInfo.h"
51#include "llvm/CodeGen/RegAllocRegistry.h"
52#include "llvm/CodeGen/RegisterClassInfo.h"
53#include "llvm/CodeGen/SlotIndexes.h"
54#include "llvm/CodeGen/Spiller.h"
55#include "llvm/CodeGen/TargetInstrInfo.h"
56#include "llvm/CodeGen/TargetRegisterInfo.h"
57#include "llvm/CodeGen/TargetSubtargetInfo.h"
58#include "llvm/CodeGen/VirtRegMap.h"
59#include "llvm/IR/DebugInfoMetadata.h"
60#include "llvm/IR/Function.h"
61#include "llvm/IR/LLVMContext.h"
62#include "llvm/InitializePasses.h"
63#include "llvm/MC/MCRegisterInfo.h"
64#include "llvm/Pass.h"
65#include "llvm/Support/BlockFrequency.h"
66#include "llvm/Support/BranchProbability.h"
67#include "llvm/Support/CommandLine.h"
68#include "llvm/Support/Debug.h"
69#include "llvm/Support/MathExtras.h"
70#include "llvm/Support/Timer.h"
71#include "llvm/Support/raw_ostream.h"
72#include <algorithm>
73#include <cassert>
74#include <cstdint>
75#include <utility>
76
77using namespace llvm;
78
79#define DEBUG_TYPE "regalloc"
80
81STATISTIC(NumGlobalSplits, "Number of split global live ranges");
82STATISTIC(NumLocalSplits,  "Number of split local live ranges");
83STATISTIC(NumEvicted,      "Number of interferences evicted");
84
85static cl::opt<SplitEditor::ComplementSpillMode> SplitSpillMode(
86    "split-spill-mode", cl::Hidden,
87    cl::desc("Spill mode for splitting live ranges"),
88    cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
89               clEnumValN(SplitEditor::SM_Size, "size", "Optimize for size"),
90               clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed")),
91    cl::init(SplitEditor::SM_Speed));
92
93static cl::opt<unsigned>
94LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden,
95                             cl::desc("Last chance recoloring max depth"),
96                             cl::init(5));
97
98static cl::opt<unsigned> LastChanceRecoloringMaxInterference(
99    "lcr-max-interf", cl::Hidden,
100    cl::desc("Last chance recoloring maximum number of considered"
101             " interference at a time"),
102    cl::init(8));
103
104static cl::opt<bool> ExhaustiveSearch(
105    "exhaustive-register-search", cl::NotHidden,
106    cl::desc("Exhaustive Search for registers bypassing the depth "
107             "and interference cutoffs of last chance recoloring"),
108    cl::Hidden);
109
110static cl::opt<bool> EnableDeferredSpilling(
111    "enable-deferred-spilling", cl::Hidden,
112    cl::desc("Instead of spilling a variable right away, defer the actual "
113             "code insertion to the end of the allocation. That way the "
114             "allocator might still find a suitable coloring for this "
115             "variable because of other evicted variables."),
116    cl::init(false));
117
118// FIXME: Find a good default for this flag and remove the flag.
119static cl::opt<unsigned>
120CSRFirstTimeCost("regalloc-csr-first-time-cost",
121              cl::desc("Cost for first time use of callee-saved register."),
122              cl::init(0), cl::Hidden);
123
124static cl::opt<unsigned long> GrowRegionComplexityBudget(
125    "grow-region-complexity-budget",
126    cl::desc("growRegion() does not scale with the number of BB edges, so "
127             "limit its budget and bail out once we reach the limit."),
128    cl::init(10000), cl::Hidden);
129
130static cl::opt<bool> GreedyRegClassPriorityTrumpsGlobalness(
131    "greedy-regclass-priority-trumps-globalness",
132    cl::desc("Change the greedy register allocator's live range priority "
133             "calculation to make the AllocationPriority of the register class "
134             "more important then whether the range is global"),
135    cl::Hidden);
136
137static cl::opt<bool> GreedyReverseLocalAssignment(
138    "greedy-reverse-local-assignment",
139    cl::desc("Reverse allocation order of local live ranges, such that "
140             "shorter local live ranges will tend to be allocated first"),
141    cl::Hidden);
142
143static cl::opt<unsigned> SplitThresholdForRegWithHint(
144    "split-threshold-for-reg-with-hint",
145    cl::desc("The threshold for splitting a virtual register with a hint, in "
146             "percentate"),
147    cl::init(75), cl::Hidden);
148
149static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
150                                       createGreedyRegisterAllocator);
151
152char RAGreedy::ID = 0;
153char &llvm::RAGreedyID = RAGreedy::ID;
154
155INITIALIZE_PASS_BEGIN(RAGreedy, "greedy",
156                "Greedy Register Allocator", false, false)
157INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
158INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
159INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
160INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
161INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
162INITIALIZE_PASS_DEPENDENCY(LiveStacks)
163INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
164INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
165INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
166INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
167INITIALIZE_PASS_DEPENDENCY(EdgeBundles)
168INITIALIZE_PASS_DEPENDENCY(SpillPlacement)
169INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
170INITIALIZE_PASS_DEPENDENCY(RegAllocEvictionAdvisorAnalysis)
171INITIALIZE_PASS_DEPENDENCY(RegAllocPriorityAdvisorAnalysis)
172INITIALIZE_PASS_END(RAGreedy, "greedy",
173                "Greedy Register Allocator", false, false)
174
175#ifndef NDEBUG
176const char *const RAGreedy::StageName[] = {
177    "RS_New",
178    "RS_Assign",
179    "RS_Split",
180    "RS_Split2",
181    "RS_Spill",
182    "RS_Memory",
183    "RS_Done"
184};
185#endif
186
187// Hysteresis to use when comparing floats.
188// This helps stabilize decisions based on float comparisons.
189const float Hysteresis = (2007 / 2048.0f); // 0.97998046875
190
191FunctionPass* llvm::createGreedyRegisterAllocator() {
192  return new RAGreedy();
193}
194
195FunctionPass *llvm::createGreedyRegisterAllocator(RegClassFilterFunc Ftor) {
196  return new RAGreedy(Ftor);
197}
198
199RAGreedy::RAGreedy(RegClassFilterFunc F):
200  MachineFunctionPass(ID),
201  RegAllocBase(F) {
202}
203
204void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
205  AU.setPreservesCFG();
206  AU.addRequired<MachineBlockFrequencyInfo>();
207  AU.addPreserved<MachineBlockFrequencyInfo>();
208  AU.addRequired<LiveIntervals>();
209  AU.addPreserved<LiveIntervals>();
210  AU.addRequired<SlotIndexes>();
211  AU.addPreserved<SlotIndexes>();
212  AU.addRequired<LiveDebugVariables>();
213  AU.addPreserved<LiveDebugVariables>();
214  AU.addRequired<LiveStacks>();
215  AU.addPreserved<LiveStacks>();
216  AU.addRequired<MachineDominatorTree>();
217  AU.addPreserved<MachineDominatorTree>();
218  AU.addRequired<MachineLoopInfo>();
219  AU.addPreserved<MachineLoopInfo>();
220  AU.addRequired<VirtRegMap>();
221  AU.addPreserved<VirtRegMap>();
222  AU.addRequired<LiveRegMatrix>();
223  AU.addPreserved<LiveRegMatrix>();
224  AU.addRequired<EdgeBundles>();
225  AU.addRequired<SpillPlacement>();
226  AU.addRequired<MachineOptimizationRemarkEmitterPass>();
227  AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
228  AU.addRequired<RegAllocPriorityAdvisorAnalysis>();
229  MachineFunctionPass::getAnalysisUsage(AU);
230}
231
232//===----------------------------------------------------------------------===//
233//                     LiveRangeEdit delegate methods
234//===----------------------------------------------------------------------===//
235
236bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg) {
237  LiveInterval &LI = LIS->getInterval(VirtReg);
238  if (VRM->hasPhys(VirtReg)) {
239    Matrix->unassign(LI);
240    aboutToRemoveInterval(LI);
241    return true;
242  }
243  // Unassigned virtreg is probably in the priority queue.
244  // RegAllocBase will erase it after dequeueing.
245  // Nonetheless, clear the live-range so that the debug
246  // dump will show the right state for that VirtReg.
247  LI.clear();
248  return false;
249}
250
251void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg) {
252  if (!VRM->hasPhys(VirtReg))
253    return;
254
255  // Register is assigned, put it back on the queue for reassignment.
256  LiveInterval &LI = LIS->getInterval(VirtReg);
257  Matrix->unassign(LI);
258  RegAllocBase::enqueue(&LI);
259}
260
261void RAGreedy::LRE_DidCloneVirtReg(Register New, Register Old) {
262  ExtraInfo->LRE_DidCloneVirtReg(New, Old);
263}
264
265void RAGreedy::ExtraRegInfo::LRE_DidCloneVirtReg(Register New, Register Old) {
266  // Cloning a register we haven't even heard about yet?  Just ignore it.
267  if (!Info.inBounds(Old))
268    return;
269
270  // LRE may clone a virtual register because dead code elimination causes it to
271  // be split into connected components. The new components are much smaller
272  // than the original, so they should get a new chance at being assigned.
273  // same stage as the parent.
274  Info[Old].Stage = RS_Assign;
275  Info.grow(New.id());
276  Info[New] = Info[Old];
277}
278
279void RAGreedy::releaseMemory() {
280  SpillerInstance.reset();
281  GlobalCand.clear();
282}
283
284void RAGreedy::enqueueImpl(const LiveInterval *LI) { enqueue(Queue, LI); }
285
286void RAGreedy::enqueue(PQueue &CurQueue, const LiveInterval *LI) {
287  // Prioritize live ranges by size, assigning larger ranges first.
288  // The queue holds (size, reg) pairs.
289  const Register Reg = LI->reg();
290  assert(Reg.isVirtual() && "Can only enqueue virtual registers");
291
292  auto Stage = ExtraInfo->getOrInitStage(Reg);
293  if (Stage == RS_New) {
294    Stage = RS_Assign;
295    ExtraInfo->setStage(Reg, Stage);
296  }
297
298  unsigned Ret = PriorityAdvisor->getPriority(*LI);
299
300  // The virtual register number is a tie breaker for same-sized ranges.
301  // Give lower vreg numbers higher priority to assign them first.
302  CurQueue.push(std::make_pair(Ret, ~Reg));
303}
304
305unsigned DefaultPriorityAdvisor::getPriority(const LiveInterval &LI) const {
306  const unsigned Size = LI.getSize();
307  const Register Reg = LI.reg();
308  unsigned Prio;
309  LiveRangeStage Stage = RA.getExtraInfo().getStage(LI);
310
311  if (Stage == RS_Split) {
312    // Unsplit ranges that couldn't be allocated immediately are deferred until
313    // everything else has been allocated.
314    Prio = Size;
315  } else if (Stage == RS_Memory) {
316    // Memory operand should be considered last.
317    // Change the priority such that Memory operand are assigned in
318    // the reverse order that they came in.
319    // TODO: Make this a member variable and probably do something about hints.
320    static unsigned MemOp = 0;
321    Prio = MemOp++;
322  } else {
323    // Giant live ranges fall back to the global assignment heuristic, which
324    // prevents excessive spilling in pathological cases.
325    const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
326    bool ForceGlobal = RC.GlobalPriority ||
327                       (!ReverseLocalAssignment &&
328                        (Size / SlotIndex::InstrDist) >
329                            (2 * RegClassInfo.getNumAllocatableRegs(&RC)));
330    unsigned GlobalBit = 0;
331
332    if (Stage == RS_Assign && !ForceGlobal && !LI.empty() &&
333        LIS->intervalIsInOneMBB(LI)) {
334      // Allocate original local ranges in linear instruction order. Since they
335      // are singly defined, this produces optimal coloring in the absence of
336      // global interference and other constraints.
337      if (!ReverseLocalAssignment)
338        Prio = LI.beginIndex().getApproxInstrDistance(Indexes->getLastIndex());
339      else {
340        // Allocating bottom up may allow many short LRGs to be assigned first
341        // to one of the cheap registers. This could be much faster for very
342        // large blocks on targets with many physical registers.
343        Prio = Indexes->getZeroIndex().getApproxInstrDistance(LI.endIndex());
344      }
345    } else {
346      // Allocate global and split ranges in long->short order. Long ranges that
347      // don't fit should be spilled (or split) ASAP so they don't create
348      // interference.  Mark a bit to prioritize global above local ranges.
349      Prio = Size;
350      GlobalBit = 1;
351    }
352
353    // Priority bit layout:
354    // 31 RS_Assign priority
355    // 30 Preference priority
356    // if (RegClassPriorityTrumpsGlobalness)
357    //   29-25 AllocPriority
358    //   24 GlobalBit
359    // else
360    //   29 Global bit
361    //   28-24 AllocPriority
362    // 0-23 Size/Instr distance
363
364    // Clamp the size to fit with the priority masking scheme
365    Prio = std::min(Prio, (unsigned)maxUIntN(24));
366    assert(isUInt<5>(RC.AllocationPriority) && "allocation priority overflow");
367
368    if (RegClassPriorityTrumpsGlobalness)
369      Prio |= RC.AllocationPriority << 25 | GlobalBit << 24;
370    else
371      Prio |= GlobalBit << 29 | RC.AllocationPriority << 24;
372
373    // Mark a higher bit to prioritize global and local above RS_Split.
374    Prio |= (1u << 31);
375
376    // Boost ranges that have a physical register hint.
377    if (VRM->hasKnownPreference(Reg))
378      Prio |= (1u << 30);
379  }
380
381  return Prio;
382}
383
384const LiveInterval *RAGreedy::dequeue() { return dequeue(Queue); }
385
386const LiveInterval *RAGreedy::dequeue(PQueue &CurQueue) {
387  if (CurQueue.empty())
388    return nullptr;
389  LiveInterval *LI = &LIS->getInterval(~CurQueue.top().second);
390  CurQueue.pop();
391  return LI;
392}
393
394//===----------------------------------------------------------------------===//
395//                            Direct Assignment
396//===----------------------------------------------------------------------===//
397
398/// tryAssign - Try to assign VirtReg to an available register.
399MCRegister RAGreedy::tryAssign(const LiveInterval &VirtReg,
400                               AllocationOrder &Order,
401                               SmallVectorImpl<Register> &NewVRegs,
402                               const SmallVirtRegSet &FixedRegisters) {
403  MCRegister PhysReg;
404  for (auto I = Order.begin(), E = Order.end(); I != E && !PhysReg; ++I) {
405    assert(*I);
406    if (!Matrix->checkInterference(VirtReg, *I)) {
407      if (I.isHint())
408        return *I;
409      else
410        PhysReg = *I;
411    }
412  }
413  if (!PhysReg.isValid())
414    return PhysReg;
415
416  // PhysReg is available, but there may be a better choice.
417
418  // If we missed a simple hint, try to cheaply evict interference from the
419  // preferred register.
420  if (Register Hint = MRI->getSimpleHint(VirtReg.reg()))
421    if (Order.isHint(Hint)) {
422      MCRegister PhysHint = Hint.asMCReg();
423      LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint, TRI) << '\n');
424
425      if (EvictAdvisor->canEvictHintInterference(VirtReg, PhysHint,
426                                                 FixedRegisters)) {
427        evictInterference(VirtReg, PhysHint, NewVRegs);
428        return PhysHint;
429      }
430
431      // We can also split the virtual register in cold blocks.
432      if (trySplitAroundHintReg(PhysHint, VirtReg, NewVRegs, Order))
433        return 0;
434
435      // Record the missed hint, we may be able to recover
436      // at the end if the surrounding allocation changed.
437      SetOfBrokenHints.insert(&VirtReg);
438    }
439
440  // Try to evict interference from a cheaper alternative.
441  uint8_t Cost = RegCosts[PhysReg];
442
443  // Most registers have 0 additional cost.
444  if (!Cost)
445    return PhysReg;
446
447  LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is available at cost "
448                    << (unsigned)Cost << '\n');
449  MCRegister CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost, FixedRegisters);
450  return CheapReg ? CheapReg : PhysReg;
451}
452
453//===----------------------------------------------------------------------===//
454//                         Interference eviction
455//===----------------------------------------------------------------------===//
456
457bool RegAllocEvictionAdvisor::canReassign(const LiveInterval &VirtReg,
458                                          MCRegister FromReg) const {
459  auto HasRegUnitInterference = [&](MCRegUnit Unit) {
460    // Instantiate a "subquery", not to be confused with the Queries array.
461    LiveIntervalUnion::Query SubQ(VirtReg, Matrix->getLiveUnions()[Unit]);
462    return SubQ.checkInterference();
463  };
464
465  for (MCRegister Reg :
466       AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix)) {
467    if (Reg == FromReg)
468      continue;
469    // If no units have interference, reassignment is possible.
470    if (none_of(TRI->regunits(Reg), HasRegUnitInterference)) {
471      LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg << " from "
472                        << printReg(FromReg, TRI) << " to "
473                        << printReg(Reg, TRI) << '\n');
474      return true;
475    }
476  }
477  return false;
478}
479
480/// evictInterference - Evict any interferring registers that prevent VirtReg
481/// from being assigned to Physreg. This assumes that canEvictInterference
482/// returned true.
483void RAGreedy::evictInterference(const LiveInterval &VirtReg,
484                                 MCRegister PhysReg,
485                                 SmallVectorImpl<Register> &NewVRegs) {
486  // Make sure that VirtReg has a cascade number, and assign that cascade
487  // number to every evicted register. These live ranges than then only be
488  // evicted by a newer cascade, preventing infinite loops.
489  unsigned Cascade = ExtraInfo->getOrAssignNewCascade(VirtReg.reg());
490
491  LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg, TRI)
492                    << " interference: Cascade " << Cascade << '\n');
493
494  // Collect all interfering virtregs first.
495  SmallVector<const LiveInterval *, 8> Intfs;
496  for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
497    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
498    // We usually have the interfering VRegs cached so collectInterferingVRegs()
499    // should be fast, we may need to recalculate if when different physregs
500    // overlap the same register unit so we had different SubRanges queried
501    // against it.
502    ArrayRef<const LiveInterval *> IVR = Q.interferingVRegs();
503    Intfs.append(IVR.begin(), IVR.end());
504  }
505
506  // Evict them second. This will invalidate the queries.
507  for (const LiveInterval *Intf : Intfs) {
508    // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
509    if (!VRM->hasPhys(Intf->reg()))
510      continue;
511
512    Matrix->unassign(*Intf);
513    assert((ExtraInfo->getCascade(Intf->reg()) < Cascade ||
514            VirtReg.isSpillable() < Intf->isSpillable()) &&
515           "Cannot decrease cascade number, illegal eviction");
516    ExtraInfo->setCascade(Intf->reg(), Cascade);
517    ++NumEvicted;
518    NewVRegs.push_back(Intf->reg());
519  }
520}
521
522/// Returns true if the given \p PhysReg is a callee saved register and has not
523/// been used for allocation yet.
524bool RegAllocEvictionAdvisor::isUnusedCalleeSavedReg(MCRegister PhysReg) const {
525  MCRegister CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg);
526  if (!CSR)
527    return false;
528
529  return !Matrix->isPhysRegUsed(PhysReg);
530}
531
532std::optional<unsigned>
533RegAllocEvictionAdvisor::getOrderLimit(const LiveInterval &VirtReg,
534                                       const AllocationOrder &Order,
535                                       unsigned CostPerUseLimit) const {
536  unsigned OrderLimit = Order.getOrder().size();
537
538  if (CostPerUseLimit < uint8_t(~0u)) {
539    // Check of any registers in RC are below CostPerUseLimit.
540    const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg());
541    uint8_t MinCost = RegClassInfo.getMinCost(RC);
542    if (MinCost >= CostPerUseLimit) {
543      LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << " minimum cost = "
544                        << MinCost << ", no cheaper registers to be found.\n");
545      return std::nullopt;
546    }
547
548    // It is normal for register classes to have a long tail of registers with
549    // the same cost. We don't need to look at them if they're too expensive.
550    if (RegCosts[Order.getOrder().back()] >= CostPerUseLimit) {
551      OrderLimit = RegClassInfo.getLastCostChange(RC);
552      LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
553                        << " regs.\n");
554    }
555  }
556  return OrderLimit;
557}
558
559bool RegAllocEvictionAdvisor::canAllocatePhysReg(unsigned CostPerUseLimit,
560                                                 MCRegister PhysReg) const {
561  if (RegCosts[PhysReg] >= CostPerUseLimit)
562    return false;
563  // The first use of a callee-saved register in a function has cost 1.
564  // Don't start using a CSR when the CostPerUseLimit is low.
565  if (CostPerUseLimit == 1 && isUnusedCalleeSavedReg(PhysReg)) {
566    LLVM_DEBUG(
567        dbgs() << printReg(PhysReg, TRI) << " would clobber CSR "
568               << printReg(RegClassInfo.getLastCalleeSavedAlias(PhysReg), TRI)
569               << '\n');
570    return false;
571  }
572  return true;
573}
574
575/// tryEvict - Try to evict all interferences for a physreg.
576/// @param  VirtReg Currently unassigned virtual register.
577/// @param  Order   Physregs to try.
578/// @return         Physreg to assign VirtReg, or 0.
579MCRegister RAGreedy::tryEvict(const LiveInterval &VirtReg,
580                              AllocationOrder &Order,
581                              SmallVectorImpl<Register> &NewVRegs,
582                              uint8_t CostPerUseLimit,
583                              const SmallVirtRegSet &FixedRegisters) {
584  NamedRegionTimer T("evict", "Evict", TimerGroupName, TimerGroupDescription,
585                     TimePassesIsEnabled);
586
587  MCRegister BestPhys = EvictAdvisor->tryFindEvictionCandidate(
588      VirtReg, Order, CostPerUseLimit, FixedRegisters);
589  if (BestPhys.isValid())
590    evictInterference(VirtReg, BestPhys, NewVRegs);
591  return BestPhys;
592}
593
594//===----------------------------------------------------------------------===//
595//                              Region Splitting
596//===----------------------------------------------------------------------===//
597
598/// addSplitConstraints - Fill out the SplitConstraints vector based on the
599/// interference pattern in Physreg and its aliases. Add the constraints to
600/// SpillPlacement and return the static cost of this split in Cost, assuming
601/// that all preferences in SplitConstraints are met.
602/// Return false if there are no bundles with positive bias.
603bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
604                                   BlockFrequency &Cost) {
605  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
606
607  // Reset interference dependent info.
608  SplitConstraints.resize(UseBlocks.size());
609  BlockFrequency StaticCost = BlockFrequency(0);
610  for (unsigned I = 0; I != UseBlocks.size(); ++I) {
611    const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
612    SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
613
614    BC.Number = BI.MBB->getNumber();
615    Intf.moveToBlock(BC.Number);
616    BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
617    BC.Exit = (BI.LiveOut &&
618               !LIS->getInstructionFromIndex(BI.LastInstr)->isImplicitDef())
619                  ? SpillPlacement::PrefReg
620                  : SpillPlacement::DontCare;
621    BC.ChangesValue = BI.FirstDef.isValid();
622
623    if (!Intf.hasInterference())
624      continue;
625
626    // Number of spill code instructions to insert.
627    unsigned Ins = 0;
628
629    // Interference for the live-in value.
630    if (BI.LiveIn) {
631      if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number)) {
632        BC.Entry = SpillPlacement::MustSpill;
633        ++Ins;
634      } else if (Intf.first() < BI.FirstInstr) {
635        BC.Entry = SpillPlacement::PrefSpill;
636        ++Ins;
637      } else if (Intf.first() < BI.LastInstr) {
638        ++Ins;
639      }
640
641      // Abort if the spill cannot be inserted at the MBB' start
642      if (((BC.Entry == SpillPlacement::MustSpill) ||
643           (BC.Entry == SpillPlacement::PrefSpill)) &&
644          SlotIndex::isEarlierInstr(BI.FirstInstr,
645                                    SA->getFirstSplitPoint(BC.Number)))
646        return false;
647    }
648
649    // Interference for the live-out value.
650    if (BI.LiveOut) {
651      if (Intf.last() >= SA->getLastSplitPoint(BC.Number)) {
652        BC.Exit = SpillPlacement::MustSpill;
653        ++Ins;
654      } else if (Intf.last() > BI.LastInstr) {
655        BC.Exit = SpillPlacement::PrefSpill;
656        ++Ins;
657      } else if (Intf.last() > BI.FirstInstr) {
658        ++Ins;
659      }
660    }
661
662    // Accumulate the total frequency of inserted spill code.
663    while (Ins--)
664      StaticCost += SpillPlacer->getBlockFrequency(BC.Number);
665  }
666  Cost = StaticCost;
667
668  // Add constraints for use-blocks. Note that these are the only constraints
669  // that may add a positive bias, it is downhill from here.
670  SpillPlacer->addConstraints(SplitConstraints);
671  return SpillPlacer->scanActiveBundles();
672}
673
674/// addThroughConstraints - Add constraints and links to SpillPlacer from the
675/// live-through blocks in Blocks.
676bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
677                                     ArrayRef<unsigned> Blocks) {
678  const unsigned GroupSize = 8;
679  SpillPlacement::BlockConstraint BCS[GroupSize];
680  unsigned TBS[GroupSize];
681  unsigned B = 0, T = 0;
682
683  for (unsigned Number : Blocks) {
684    Intf.moveToBlock(Number);
685
686    if (!Intf.hasInterference()) {
687      assert(T < GroupSize && "Array overflow");
688      TBS[T] = Number;
689      if (++T == GroupSize) {
690        SpillPlacer->addLinks(ArrayRef(TBS, T));
691        T = 0;
692      }
693      continue;
694    }
695
696    assert(B < GroupSize && "Array overflow");
697    BCS[B].Number = Number;
698
699    // Abort if the spill cannot be inserted at the MBB' start
700    MachineBasicBlock *MBB = MF->getBlockNumbered(Number);
701    auto FirstNonDebugInstr = MBB->getFirstNonDebugInstr();
702    if (FirstNonDebugInstr != MBB->end() &&
703        SlotIndex::isEarlierInstr(LIS->getInstructionIndex(*FirstNonDebugInstr),
704                                  SA->getFirstSplitPoint(Number)))
705      return false;
706    // Interference for the live-in value.
707    if (Intf.first() <= Indexes->getMBBStartIdx(Number))
708      BCS[B].Entry = SpillPlacement::MustSpill;
709    else
710      BCS[B].Entry = SpillPlacement::PrefSpill;
711
712    // Interference for the live-out value.
713    if (Intf.last() >= SA->getLastSplitPoint(Number))
714      BCS[B].Exit = SpillPlacement::MustSpill;
715    else
716      BCS[B].Exit = SpillPlacement::PrefSpill;
717
718    if (++B == GroupSize) {
719      SpillPlacer->addConstraints(ArrayRef(BCS, B));
720      B = 0;
721    }
722  }
723
724  SpillPlacer->addConstraints(ArrayRef(BCS, B));
725  SpillPlacer->addLinks(ArrayRef(TBS, T));
726  return true;
727}
728
729bool RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
730  // Keep track of through blocks that have not been added to SpillPlacer.
731  BitVector Todo = SA->getThroughBlocks();
732  SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
733  unsigned AddedTo = 0;
734#ifndef NDEBUG
735  unsigned Visited = 0;
736#endif
737
738  unsigned long Budget = GrowRegionComplexityBudget;
739  while (true) {
740    ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
741    // Find new through blocks in the periphery of PrefRegBundles.
742    for (unsigned Bundle : NewBundles) {
743      // Look at all blocks connected to Bundle in the full graph.
744      ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
745      // Limit compilation time by bailing out after we use all our budget.
746      if (Blocks.size() >= Budget)
747        return false;
748      Budget -= Blocks.size();
749      for (unsigned Block : Blocks) {
750        if (!Todo.test(Block))
751          continue;
752        Todo.reset(Block);
753        // This is a new through block. Add it to SpillPlacer later.
754        ActiveBlocks.push_back(Block);
755#ifndef NDEBUG
756        ++Visited;
757#endif
758      }
759    }
760    // Any new blocks to add?
761    if (ActiveBlocks.size() == AddedTo)
762      break;
763
764    // Compute through constraints from the interference, or assume that all
765    // through blocks prefer spilling when forming compact regions.
766    auto NewBlocks = ArrayRef(ActiveBlocks).slice(AddedTo);
767    if (Cand.PhysReg) {
768      if (!addThroughConstraints(Cand.Intf, NewBlocks))
769        return false;
770    } else {
771      // Providing that the variable being spilled does not look like a loop
772      // induction variable, which is expensive to spill around and better
773      // pushed into a condition inside the loop if possible, provide a strong
774      // negative bias on through blocks to prevent unwanted liveness on loop
775      // backedges.
776      bool PrefSpill = true;
777      if (SA->looksLikeLoopIV() && NewBlocks.size() >= 2) {
778        // Check that the current bundle is adding a Header + start+end of
779        // loop-internal blocks. If the block is indeed a header, don't make
780        // the NewBlocks as PrefSpill to allow the variable to be live in
781        // Header<->Latch.
782        MachineLoop *L = Loops->getLoopFor(MF->getBlockNumbered(NewBlocks[0]));
783        if (L && L->getHeader()->getNumber() == (int)NewBlocks[0] &&
784            all_of(NewBlocks.drop_front(), [&](unsigned Block) {
785              return L == Loops->getLoopFor(MF->getBlockNumbered(Block));
786            }))
787          PrefSpill = false;
788      }
789      if (PrefSpill)
790        SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
791    }
792    AddedTo = ActiveBlocks.size();
793
794    // Perhaps iterating can enable more bundles?
795    SpillPlacer->iterate();
796  }
797  LLVM_DEBUG(dbgs() << ", v=" << Visited);
798  return true;
799}
800
801/// calcCompactRegion - Compute the set of edge bundles that should be live
802/// when splitting the current live range into compact regions.  Compact
803/// regions can be computed without looking at interference.  They are the
804/// regions formed by removing all the live-through blocks from the live range.
805///
806/// Returns false if the current live range is already compact, or if the
807/// compact regions would form single block regions anyway.
808bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
809  // Without any through blocks, the live range is already compact.
810  if (!SA->getNumThroughBlocks())
811    return false;
812
813  // Compact regions don't correspond to any physreg.
814  Cand.reset(IntfCache, MCRegister::NoRegister);
815
816  LLVM_DEBUG(dbgs() << "Compact region bundles");
817
818  // Use the spill placer to determine the live bundles. GrowRegion pretends
819  // that all the through blocks have interference when PhysReg is unset.
820  SpillPlacer->prepare(Cand.LiveBundles);
821
822  // The static split cost will be zero since Cand.Intf reports no interference.
823  BlockFrequency Cost;
824  if (!addSplitConstraints(Cand.Intf, Cost)) {
825    LLVM_DEBUG(dbgs() << ", none.\n");
826    return false;
827  }
828
829  if (!growRegion(Cand)) {
830    LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
831    return false;
832  }
833
834  SpillPlacer->finish();
835
836  if (!Cand.LiveBundles.any()) {
837    LLVM_DEBUG(dbgs() << ", none.\n");
838    return false;
839  }
840
841  LLVM_DEBUG({
842    for (int I : Cand.LiveBundles.set_bits())
843      dbgs() << " EB#" << I;
844    dbgs() << ".\n";
845  });
846  return true;
847}
848
849/// calcSpillCost - Compute how expensive it would be to split the live range in
850/// SA around all use blocks instead of forming bundle regions.
851BlockFrequency RAGreedy::calcSpillCost() {
852  BlockFrequency Cost = BlockFrequency(0);
853  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
854  for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
855    unsigned Number = BI.MBB->getNumber();
856    // We normally only need one spill instruction - a load or a store.
857    Cost += SpillPlacer->getBlockFrequency(Number);
858
859    // Unless the value is redefined in the block.
860    if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
861      Cost += SpillPlacer->getBlockFrequency(Number);
862  }
863  return Cost;
864}
865
866/// calcGlobalSplitCost - Return the global split cost of following the split
867/// pattern in LiveBundles. This cost should be added to the local cost of the
868/// interference pattern in SplitConstraints.
869///
870BlockFrequency RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand,
871                                             const AllocationOrder &Order) {
872  BlockFrequency GlobalCost = BlockFrequency(0);
873  const BitVector &LiveBundles = Cand.LiveBundles;
874  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
875  for (unsigned I = 0; I != UseBlocks.size(); ++I) {
876    const SplitAnalysis::BlockInfo &BI = UseBlocks[I];
877    SpillPlacement::BlockConstraint &BC = SplitConstraints[I];
878    bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, false)];
879    bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, true)];
880    unsigned Ins = 0;
881
882    Cand.Intf.moveToBlock(BC.Number);
883
884    if (BI.LiveIn)
885      Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
886    if (BI.LiveOut)
887      Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
888    while (Ins--)
889      GlobalCost += SpillPlacer->getBlockFrequency(BC.Number);
890  }
891
892  for (unsigned Number : Cand.ActiveBlocks) {
893    bool RegIn  = LiveBundles[Bundles->getBundle(Number, false)];
894    bool RegOut = LiveBundles[Bundles->getBundle(Number, true)];
895    if (!RegIn && !RegOut)
896      continue;
897    if (RegIn && RegOut) {
898      // We need double spill code if this block has interference.
899      Cand.Intf.moveToBlock(Number);
900      if (Cand.Intf.hasInterference()) {
901        GlobalCost += SpillPlacer->getBlockFrequency(Number);
902        GlobalCost += SpillPlacer->getBlockFrequency(Number);
903      }
904      continue;
905    }
906    // live-in / stack-out or stack-in live-out.
907    GlobalCost += SpillPlacer->getBlockFrequency(Number);
908  }
909  return GlobalCost;
910}
911
912/// splitAroundRegion - Split the current live range around the regions
913/// determined by BundleCand and GlobalCand.
914///
915/// Before calling this function, GlobalCand and BundleCand must be initialized
916/// so each bundle is assigned to a valid candidate, or NoCand for the
917/// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
918/// objects must be initialized for the current live range, and intervals
919/// created for the used candidates.
920///
921/// @param LREdit    The LiveRangeEdit object handling the current split.
922/// @param UsedCands List of used GlobalCand entries. Every BundleCand value
923///                  must appear in this list.
924void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
925                                 ArrayRef<unsigned> UsedCands) {
926  // These are the intervals created for new global ranges. We may create more
927  // intervals for local ranges.
928  const unsigned NumGlobalIntvs = LREdit.size();
929  LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
930                    << " globals.\n");
931  assert(NumGlobalIntvs && "No global intervals configured");
932
933  // Isolate even single instructions when dealing with a proper sub-class.
934  // That guarantees register class inflation for the stack interval because it
935  // is all copies.
936  Register Reg = SA->getParent().reg();
937  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
938
939  // First handle all the blocks with uses.
940  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
941  for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
942    unsigned Number = BI.MBB->getNumber();
943    unsigned IntvIn = 0, IntvOut = 0;
944    SlotIndex IntfIn, IntfOut;
945    if (BI.LiveIn) {
946      unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
947      if (CandIn != NoCand) {
948        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
949        IntvIn = Cand.IntvIdx;
950        Cand.Intf.moveToBlock(Number);
951        IntfIn = Cand.Intf.first();
952      }
953    }
954    if (BI.LiveOut) {
955      unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
956      if (CandOut != NoCand) {
957        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
958        IntvOut = Cand.IntvIdx;
959        Cand.Intf.moveToBlock(Number);
960        IntfOut = Cand.Intf.last();
961      }
962    }
963
964    // Create separate intervals for isolated blocks with multiple uses.
965    if (!IntvIn && !IntvOut) {
966      LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " isolated.\n");
967      if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
968        SE->splitSingleBlock(BI);
969      continue;
970    }
971
972    if (IntvIn && IntvOut)
973      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
974    else if (IntvIn)
975      SE->splitRegInBlock(BI, IntvIn, IntfIn);
976    else
977      SE->splitRegOutBlock(BI, IntvOut, IntfOut);
978  }
979
980  // Handle live-through blocks. The relevant live-through blocks are stored in
981  // the ActiveBlocks list with each candidate. We need to filter out
982  // duplicates.
983  BitVector Todo = SA->getThroughBlocks();
984  for (unsigned UsedCand : UsedCands) {
985    ArrayRef<unsigned> Blocks = GlobalCand[UsedCand].ActiveBlocks;
986    for (unsigned Number : Blocks) {
987      if (!Todo.test(Number))
988        continue;
989      Todo.reset(Number);
990
991      unsigned IntvIn = 0, IntvOut = 0;
992      SlotIndex IntfIn, IntfOut;
993
994      unsigned CandIn = BundleCand[Bundles->getBundle(Number, false)];
995      if (CandIn != NoCand) {
996        GlobalSplitCandidate &Cand = GlobalCand[CandIn];
997        IntvIn = Cand.IntvIdx;
998        Cand.Intf.moveToBlock(Number);
999        IntfIn = Cand.Intf.first();
1000      }
1001
1002      unsigned CandOut = BundleCand[Bundles->getBundle(Number, true)];
1003      if (CandOut != NoCand) {
1004        GlobalSplitCandidate &Cand = GlobalCand[CandOut];
1005        IntvOut = Cand.IntvIdx;
1006        Cand.Intf.moveToBlock(Number);
1007        IntfOut = Cand.Intf.last();
1008      }
1009      if (!IntvIn && !IntvOut)
1010        continue;
1011      SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
1012    }
1013  }
1014
1015  ++NumGlobalSplits;
1016
1017  SmallVector<unsigned, 8> IntvMap;
1018  SE->finish(&IntvMap);
1019  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1020
1021  unsigned OrigBlocks = SA->getNumLiveBlocks();
1022
1023  // Sort out the new intervals created by splitting. We get four kinds:
1024  // - Remainder intervals should not be split again.
1025  // - Candidate intervals can be assigned to Cand.PhysReg.
1026  // - Block-local splits are candidates for local splitting.
1027  // - DCE leftovers should go back on the queue.
1028  for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1029    const LiveInterval &Reg = LIS->getInterval(LREdit.get(I));
1030
1031    // Ignore old intervals from DCE.
1032    if (ExtraInfo->getOrInitStage(Reg.reg()) != RS_New)
1033      continue;
1034
1035    // Remainder interval. Don't try splitting again, spill if it doesn't
1036    // allocate.
1037    if (IntvMap[I] == 0) {
1038      ExtraInfo->setStage(Reg, RS_Spill);
1039      continue;
1040    }
1041
1042    // Global intervals. Allow repeated splitting as long as the number of live
1043    // blocks is strictly decreasing.
1044    if (IntvMap[I] < NumGlobalIntvs) {
1045      if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
1046        LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1047                          << " blocks as original.\n");
1048        // Don't allow repeated splitting as a safe guard against looping.
1049        ExtraInfo->setStage(Reg, RS_Split2);
1050      }
1051      continue;
1052    }
1053
1054    // Other intervals are treated as new. This includes local intervals created
1055    // for blocks with multiple uses, and anything created by DCE.
1056  }
1057
1058  if (VerifyEnabled)
1059    MF->verify(this, "After splitting live range around region");
1060}
1061
1062MCRegister RAGreedy::tryRegionSplit(const LiveInterval &VirtReg,
1063                                    AllocationOrder &Order,
1064                                    SmallVectorImpl<Register> &NewVRegs) {
1065  if (!TRI->shouldRegionSplitForVirtReg(*MF, VirtReg))
1066    return MCRegister::NoRegister;
1067  unsigned NumCands = 0;
1068  BlockFrequency SpillCost = calcSpillCost();
1069  BlockFrequency BestCost;
1070
1071  // Check if we can split this live range around a compact region.
1072  bool HasCompact = calcCompactRegion(GlobalCand.front());
1073  if (HasCompact) {
1074    // Yes, keep GlobalCand[0] as the compact region candidate.
1075    NumCands = 1;
1076    BestCost = BlockFrequency::max();
1077  } else {
1078    // No benefit from the compact region, our fallback will be per-block
1079    // splitting. Make sure we find a solution that is cheaper than spilling.
1080    BestCost = SpillCost;
1081    LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = "
1082                      << printBlockFreq(*MBFI, BestCost) << '\n');
1083  }
1084
1085  unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
1086                                               NumCands, false /*IgnoreCSR*/);
1087
1088  // No solutions found, fall back to single block splitting.
1089  if (!HasCompact && BestCand == NoCand)
1090    return MCRegister::NoRegister;
1091
1092  return doRegionSplit(VirtReg, BestCand, HasCompact, NewVRegs);
1093}
1094
1095unsigned
1096RAGreedy::calculateRegionSplitCostAroundReg(MCPhysReg PhysReg,
1097                                            AllocationOrder &Order,
1098                                            BlockFrequency &BestCost,
1099                                            unsigned &NumCands,
1100                                            unsigned &BestCand) {
1101  // Discard bad candidates before we run out of interference cache cursors.
1102  // This will only affect register classes with a lot of registers (>32).
1103  if (NumCands == IntfCache.getMaxCursors()) {
1104    unsigned WorstCount = ~0u;
1105    unsigned Worst = 0;
1106    for (unsigned CandIndex = 0; CandIndex != NumCands; ++CandIndex) {
1107      if (CandIndex == BestCand || !GlobalCand[CandIndex].PhysReg)
1108        continue;
1109      unsigned Count = GlobalCand[CandIndex].LiveBundles.count();
1110      if (Count < WorstCount) {
1111        Worst = CandIndex;
1112        WorstCount = Count;
1113      }
1114    }
1115    --NumCands;
1116    GlobalCand[Worst] = GlobalCand[NumCands];
1117    if (BestCand == NumCands)
1118      BestCand = Worst;
1119  }
1120
1121  if (GlobalCand.size() <= NumCands)
1122    GlobalCand.resize(NumCands+1);
1123  GlobalSplitCandidate &Cand = GlobalCand[NumCands];
1124  Cand.reset(IntfCache, PhysReg);
1125
1126  SpillPlacer->prepare(Cand.LiveBundles);
1127  BlockFrequency Cost;
1128  if (!addSplitConstraints(Cand.Intf, Cost)) {
1129    LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << "\tno positive bundles\n");
1130    return BestCand;
1131  }
1132  LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
1133                    << "\tstatic = " << printBlockFreq(*MBFI, Cost));
1134  if (Cost >= BestCost) {
1135    LLVM_DEBUG({
1136      if (BestCand == NoCand)
1137        dbgs() << " worse than no bundles\n";
1138      else
1139        dbgs() << " worse than "
1140               << printReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
1141    });
1142    return BestCand;
1143  }
1144  if (!growRegion(Cand)) {
1145    LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1146    return BestCand;
1147  }
1148
1149  SpillPlacer->finish();
1150
1151  // No live bundles, defer to splitSingleBlocks().
1152  if (!Cand.LiveBundles.any()) {
1153    LLVM_DEBUG(dbgs() << " no bundles.\n");
1154    return BestCand;
1155  }
1156
1157  Cost += calcGlobalSplitCost(Cand, Order);
1158  LLVM_DEBUG({
1159    dbgs() << ", total = " << printBlockFreq(*MBFI, Cost) << " with bundles";
1160    for (int I : Cand.LiveBundles.set_bits())
1161      dbgs() << " EB#" << I;
1162    dbgs() << ".\n";
1163  });
1164  if (Cost < BestCost) {
1165    BestCand = NumCands;
1166    BestCost = Cost;
1167  }
1168  ++NumCands;
1169
1170  return BestCand;
1171}
1172
1173unsigned RAGreedy::calculateRegionSplitCost(const LiveInterval &VirtReg,
1174                                            AllocationOrder &Order,
1175                                            BlockFrequency &BestCost,
1176                                            unsigned &NumCands,
1177                                            bool IgnoreCSR) {
1178  unsigned BestCand = NoCand;
1179  for (MCPhysReg PhysReg : Order) {
1180    assert(PhysReg);
1181    if (IgnoreCSR && EvictAdvisor->isUnusedCalleeSavedReg(PhysReg))
1182      continue;
1183
1184    calculateRegionSplitCostAroundReg(PhysReg, Order, BestCost, NumCands,
1185                                      BestCand);
1186  }
1187
1188  return BestCand;
1189}
1190
1191unsigned RAGreedy::doRegionSplit(const LiveInterval &VirtReg, unsigned BestCand,
1192                                 bool HasCompact,
1193                                 SmallVectorImpl<Register> &NewVRegs) {
1194  SmallVector<unsigned, 8> UsedCands;
1195  // Prepare split editor.
1196  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1197  SE->reset(LREdit, SplitSpillMode);
1198
1199  // Assign all edge bundles to the preferred candidate, or NoCand.
1200  BundleCand.assign(Bundles->getNumBundles(), NoCand);
1201
1202  // Assign bundles for the best candidate region.
1203  if (BestCand != NoCand) {
1204    GlobalSplitCandidate &Cand = GlobalCand[BestCand];
1205    if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
1206      UsedCands.push_back(BestCand);
1207      Cand.IntvIdx = SE->openIntv();
1208      LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand.PhysReg, TRI) << " in "
1209                        << B << " bundles, intv " << Cand.IntvIdx << ".\n");
1210      (void)B;
1211    }
1212  }
1213
1214  // Assign bundles for the compact region.
1215  if (HasCompact) {
1216    GlobalSplitCandidate &Cand = GlobalCand.front();
1217    assert(!Cand.PhysReg && "Compact region has no physreg");
1218    if (unsigned B = Cand.getBundles(BundleCand, 0)) {
1219      UsedCands.push_back(0);
1220      Cand.IntvIdx = SE->openIntv();
1221      LLVM_DEBUG(dbgs() << "Split for compact region in " << B
1222                        << " bundles, intv " << Cand.IntvIdx << ".\n");
1223      (void)B;
1224    }
1225  }
1226
1227  splitAroundRegion(LREdit, UsedCands);
1228  return 0;
1229}
1230
1231// VirtReg has a physical Hint, this function tries to split VirtReg around
1232// Hint if we can place new COPY instructions in cold blocks.
1233bool RAGreedy::trySplitAroundHintReg(MCPhysReg Hint,
1234                                     const LiveInterval &VirtReg,
1235                                     SmallVectorImpl<Register> &NewVRegs,
1236                                     AllocationOrder &Order) {
1237  // Split the VirtReg may generate COPY instructions in multiple cold basic
1238  // blocks, and increase code size. So we avoid it when the function is
1239  // optimized for size.
1240  if (MF->getFunction().hasOptSize())
1241    return false;
1242
1243  // Don't allow repeated splitting as a safe guard against looping.
1244  if (ExtraInfo->getStage(VirtReg) >= RS_Split2)
1245    return false;
1246
1247  BlockFrequency Cost = BlockFrequency(0);
1248  Register Reg = VirtReg.reg();
1249
1250  // Compute the cost of assigning a non Hint physical register to VirtReg.
1251  // We define it as the total frequency of broken COPY instructions to/from
1252  // Hint register, and after split, they can be deleted.
1253  for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
1254    if (!TII->isFullCopyInstr(Instr))
1255      continue;
1256    Register OtherReg = Instr.getOperand(1).getReg();
1257    if (OtherReg == Reg) {
1258      OtherReg = Instr.getOperand(0).getReg();
1259      if (OtherReg == Reg)
1260        continue;
1261      // Check if VirtReg interferes with OtherReg after this COPY instruction.
1262      if (VirtReg.liveAt(LIS->getInstructionIndex(Instr).getRegSlot()))
1263        continue;
1264    }
1265    MCRegister OtherPhysReg =
1266        OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
1267    if (OtherPhysReg == Hint)
1268      Cost += MBFI->getBlockFreq(Instr.getParent());
1269  }
1270
1271  // Decrease the cost so it will be split in colder blocks.
1272  BranchProbability Threshold(SplitThresholdForRegWithHint, 100);
1273  Cost *= Threshold;
1274  if (Cost == BlockFrequency(0))
1275    return false;
1276
1277  unsigned NumCands = 0;
1278  unsigned BestCand = NoCand;
1279  SA->analyze(&VirtReg);
1280  calculateRegionSplitCostAroundReg(Hint, Order, Cost, NumCands, BestCand);
1281  if (BestCand == NoCand)
1282    return false;
1283
1284  doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
1285  return true;
1286}
1287
1288//===----------------------------------------------------------------------===//
1289//                            Per-Block Splitting
1290//===----------------------------------------------------------------------===//
1291
1292/// tryBlockSplit - Split a global live range around every block with uses. This
1293/// creates a lot of local live ranges, that will be split by tryLocalSplit if
1294/// they don't allocate.
1295unsigned RAGreedy::tryBlockSplit(const LiveInterval &VirtReg,
1296                                 AllocationOrder &Order,
1297                                 SmallVectorImpl<Register> &NewVRegs) {
1298  assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
1299  Register Reg = VirtReg.reg();
1300  bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
1301  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1302  SE->reset(LREdit, SplitSpillMode);
1303  ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
1304  for (const SplitAnalysis::BlockInfo &BI : UseBlocks) {
1305    if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
1306      SE->splitSingleBlock(BI);
1307  }
1308  // No blocks were split.
1309  if (LREdit.empty())
1310    return 0;
1311
1312  // We did split for some blocks.
1313  SmallVector<unsigned, 8> IntvMap;
1314  SE->finish(&IntvMap);
1315
1316  // Tell LiveDebugVariables about the new ranges.
1317  DebugVars->splitRegister(Reg, LREdit.regs(), *LIS);
1318
1319  // Sort out the new intervals created by splitting. The remainder interval
1320  // goes straight to spilling, the new local ranges get to stay RS_New.
1321  for (unsigned I = 0, E = LREdit.size(); I != E; ++I) {
1322    const LiveInterval &LI = LIS->getInterval(LREdit.get(I));
1323    if (ExtraInfo->getOrInitStage(LI.reg()) == RS_New && IntvMap[I] == 0)
1324      ExtraInfo->setStage(LI, RS_Spill);
1325  }
1326
1327  if (VerifyEnabled)
1328    MF->verify(this, "After splitting live range around basic blocks");
1329  return 0;
1330}
1331
1332//===----------------------------------------------------------------------===//
1333//                         Per-Instruction Splitting
1334//===----------------------------------------------------------------------===//
1335
1336/// Get the number of allocatable registers that match the constraints of \p Reg
1337/// on \p MI and that are also in \p SuperRC.
1338static unsigned getNumAllocatableRegsForConstraints(
1339    const MachineInstr *MI, Register Reg, const TargetRegisterClass *SuperRC,
1340    const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1341    const RegisterClassInfo &RCI) {
1342  assert(SuperRC && "Invalid register class");
1343
1344  const TargetRegisterClass *ConstrainedRC =
1345      MI->getRegClassConstraintEffectForVReg(Reg, SuperRC, TII, TRI,
1346                                             /* ExploreBundle */ true);
1347  if (!ConstrainedRC)
1348    return 0;
1349  return RCI.getNumAllocatableRegs(ConstrainedRC);
1350}
1351
1352static LaneBitmask getInstReadLaneMask(const MachineRegisterInfo &MRI,
1353                                       const TargetRegisterInfo &TRI,
1354                                       const MachineInstr &FirstMI,
1355                                       Register Reg) {
1356  LaneBitmask Mask;
1357  SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
1358  (void)AnalyzeVirtRegInBundle(const_cast<MachineInstr &>(FirstMI), Reg, &Ops);
1359
1360  for (auto [MI, OpIdx] : Ops) {
1361    const MachineOperand &MO = MI->getOperand(OpIdx);
1362    assert(MO.isReg() && MO.getReg() == Reg);
1363    unsigned SubReg = MO.getSubReg();
1364    if (SubReg == 0 && MO.isUse()) {
1365      if (MO.isUndef())
1366        continue;
1367      return MRI.getMaxLaneMaskForVReg(Reg);
1368    }
1369
1370    LaneBitmask SubRegMask = TRI.getSubRegIndexLaneMask(SubReg);
1371    if (MO.isDef()) {
1372      if (!MO.isUndef())
1373        Mask |= ~SubRegMask;
1374    } else
1375      Mask |= SubRegMask;
1376  }
1377
1378  return Mask;
1379}
1380
1381/// Return true if \p MI at \P Use reads a subset of the lanes live in \p
1382/// VirtReg.
1383static bool readsLaneSubset(const MachineRegisterInfo &MRI,
1384                            const MachineInstr *MI, const LiveInterval &VirtReg,
1385                            const TargetRegisterInfo *TRI, SlotIndex Use,
1386                            const TargetInstrInfo *TII) {
1387  // Early check the common case. Beware of the semi-formed bundles SplitKit
1388  // creates by setting the bundle flag on copies without a matching BUNDLE.
1389
1390  auto DestSrc = TII->isCopyInstr(*MI);
1391  if (DestSrc && !MI->isBundled() &&
1392      DestSrc->Destination->getSubReg() == DestSrc->Source->getSubReg())
1393    return false;
1394
1395  // FIXME: We're only considering uses, but should be consider defs too?
1396  LaneBitmask ReadMask = getInstReadLaneMask(MRI, *TRI, *MI, VirtReg.reg());
1397
1398  LaneBitmask LiveAtMask;
1399  for (const LiveInterval::SubRange &S : VirtReg.subranges()) {
1400    if (S.liveAt(Use))
1401      LiveAtMask |= S.LaneMask;
1402  }
1403
1404  // If the live lanes aren't different from the lanes used by the instruction,
1405  // this doesn't help.
1406  return (ReadMask & ~(LiveAtMask & TRI->getCoveringLanes())).any();
1407}
1408
1409/// tryInstructionSplit - Split a live range around individual instructions.
1410/// This is normally not worthwhile since the spiller is doing essentially the
1411/// same thing. However, when the live range is in a constrained register
1412/// class, it may help to insert copies such that parts of the live range can
1413/// be moved to a larger register class.
1414///
1415/// This is similar to spilling to a larger register class.
1416unsigned RAGreedy::tryInstructionSplit(const LiveInterval &VirtReg,
1417                                       AllocationOrder &Order,
1418                                       SmallVectorImpl<Register> &NewVRegs) {
1419  const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1420  // There is no point to this if there are no larger sub-classes.
1421
1422  bool SplitSubClass = true;
1423  if (!RegClassInfo.isProperSubClass(CurRC)) {
1424    if (!VirtReg.hasSubRanges())
1425      return 0;
1426    SplitSubClass = false;
1427  }
1428
1429  // Always enable split spill mode, since we're effectively spilling to a
1430  // register.
1431  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1432  SE->reset(LREdit, SplitEditor::SM_Size);
1433
1434  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1435  if (Uses.size() <= 1)
1436    return 0;
1437
1438  LLVM_DEBUG(dbgs() << "Split around " << Uses.size()
1439                    << " individual instrs.\n");
1440
1441  const TargetRegisterClass *SuperRC =
1442      TRI->getLargestLegalSuperClass(CurRC, *MF);
1443  unsigned SuperRCNumAllocatableRegs =
1444      RegClassInfo.getNumAllocatableRegs(SuperRC);
1445  // Split around every non-copy instruction if this split will relax
1446  // the constraints on the virtual register.
1447  // Otherwise, splitting just inserts uncoalescable copies that do not help
1448  // the allocation.
1449  for (const SlotIndex Use : Uses) {
1450    if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Use)) {
1451      if (TII->isFullCopyInstr(*MI) ||
1452          (SplitSubClass &&
1453           SuperRCNumAllocatableRegs ==
1454               getNumAllocatableRegsForConstraints(MI, VirtReg.reg(), SuperRC,
1455                                                   TII, TRI, RegClassInfo)) ||
1456          // TODO: Handle split for subranges with subclass constraints?
1457          (!SplitSubClass && VirtReg.hasSubRanges() &&
1458           !readsLaneSubset(*MRI, MI, VirtReg, TRI, Use, TII))) {
1459        LLVM_DEBUG(dbgs() << "    skip:\t" << Use << '\t' << *MI);
1460        continue;
1461      }
1462    }
1463    SE->openIntv();
1464    SlotIndex SegStart = SE->enterIntvBefore(Use);
1465    SlotIndex SegStop = SE->leaveIntvAfter(Use);
1466    SE->useIntv(SegStart, SegStop);
1467  }
1468
1469  if (LREdit.empty()) {
1470    LLVM_DEBUG(dbgs() << "All uses were copies.\n");
1471    return 0;
1472  }
1473
1474  SmallVector<unsigned, 8> IntvMap;
1475  SE->finish(&IntvMap);
1476  DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1477  // Assign all new registers to RS_Spill. This was the last chance.
1478  ExtraInfo->setStage(LREdit.begin(), LREdit.end(), RS_Spill);
1479  return 0;
1480}
1481
1482//===----------------------------------------------------------------------===//
1483//                             Local Splitting
1484//===----------------------------------------------------------------------===//
1485
1486/// calcGapWeights - Compute the maximum spill weight that needs to be evicted
1487/// in order to use PhysReg between two entries in SA->UseSlots.
1488///
1489/// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
1490///
1491void RAGreedy::calcGapWeights(MCRegister PhysReg,
1492                              SmallVectorImpl<float> &GapWeight) {
1493  assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
1494  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1495  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1496  const unsigned NumGaps = Uses.size()-1;
1497
1498  // Start and end points for the interference check.
1499  SlotIndex StartIdx =
1500    BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
1501  SlotIndex StopIdx =
1502    BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
1503
1504  GapWeight.assign(NumGaps, 0.0f);
1505
1506  // Add interference from each overlapping register.
1507  for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1508    if (!Matrix->query(const_cast<LiveInterval &>(SA->getParent()), Unit)
1509             .checkInterference())
1510      continue;
1511
1512    // We know that VirtReg is a continuous interval from FirstInstr to
1513    // LastInstr, so we don't need InterferenceQuery.
1514    //
1515    // Interference that overlaps an instruction is counted in both gaps
1516    // surrounding the instruction. The exception is interference before
1517    // StartIdx and after StopIdx.
1518    //
1519    LiveIntervalUnion::SegmentIter IntI =
1520        Matrix->getLiveUnions()[Unit].find(StartIdx);
1521    for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
1522      // Skip the gaps before IntI.
1523      while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
1524        if (++Gap == NumGaps)
1525          break;
1526      if (Gap == NumGaps)
1527        break;
1528
1529      // Update the gaps covered by IntI.
1530      const float weight = IntI.value()->weight();
1531      for (; Gap != NumGaps; ++Gap) {
1532        GapWeight[Gap] = std::max(GapWeight[Gap], weight);
1533        if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
1534          break;
1535      }
1536      if (Gap == NumGaps)
1537        break;
1538    }
1539  }
1540
1541  // Add fixed interference.
1542  for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1543    const LiveRange &LR = LIS->getRegUnit(Unit);
1544    LiveRange::const_iterator I = LR.find(StartIdx);
1545    LiveRange::const_iterator E = LR.end();
1546
1547    // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
1548    for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
1549      while (Uses[Gap+1].getBoundaryIndex() < I->start)
1550        if (++Gap == NumGaps)
1551          break;
1552      if (Gap == NumGaps)
1553        break;
1554
1555      for (; Gap != NumGaps; ++Gap) {
1556        GapWeight[Gap] = huge_valf;
1557        if (Uses[Gap+1].getBaseIndex() >= I->end)
1558          break;
1559      }
1560      if (Gap == NumGaps)
1561        break;
1562    }
1563  }
1564}
1565
1566/// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
1567/// basic block.
1568///
1569unsigned RAGreedy::tryLocalSplit(const LiveInterval &VirtReg,
1570                                 AllocationOrder &Order,
1571                                 SmallVectorImpl<Register> &NewVRegs) {
1572  // TODO: the function currently only handles a single UseBlock; it should be
1573  // possible to generalize.
1574  if (SA->getUseBlocks().size() != 1)
1575    return 0;
1576
1577  const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
1578
1579  // Note that it is possible to have an interval that is live-in or live-out
1580  // while only covering a single block - A phi-def can use undef values from
1581  // predecessors, and the block could be a single-block loop.
1582  // We don't bother doing anything clever about such a case, we simply assume
1583  // that the interval is continuous from FirstInstr to LastInstr. We should
1584  // make sure that we don't do anything illegal to such an interval, though.
1585
1586  ArrayRef<SlotIndex> Uses = SA->getUseSlots();
1587  if (Uses.size() <= 2)
1588    return 0;
1589  const unsigned NumGaps = Uses.size()-1;
1590
1591  LLVM_DEBUG({
1592    dbgs() << "tryLocalSplit: ";
1593    for (const auto &Use : Uses)
1594      dbgs() << ' ' << Use;
1595    dbgs() << '\n';
1596  });
1597
1598  // If VirtReg is live across any register mask operands, compute a list of
1599  // gaps with register masks.
1600  SmallVector<unsigned, 8> RegMaskGaps;
1601  if (Matrix->checkRegMaskInterference(VirtReg)) {
1602    // Get regmask slots for the whole block.
1603    ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
1604    LLVM_DEBUG(dbgs() << RMS.size() << " regmasks in block:");
1605    // Constrain to VirtReg's live range.
1606    unsigned RI =
1607        llvm::lower_bound(RMS, Uses.front().getRegSlot()) - RMS.begin();
1608    unsigned RE = RMS.size();
1609    for (unsigned I = 0; I != NumGaps && RI != RE; ++I) {
1610      // Look for Uses[I] <= RMS <= Uses[I + 1].
1611      assert(!SlotIndex::isEarlierInstr(RMS[RI], Uses[I]));
1612      if (SlotIndex::isEarlierInstr(Uses[I + 1], RMS[RI]))
1613        continue;
1614      // Skip a regmask on the same instruction as the last use. It doesn't
1615      // overlap the live range.
1616      if (SlotIndex::isSameInstr(Uses[I + 1], RMS[RI]) && I + 1 == NumGaps)
1617        break;
1618      LLVM_DEBUG(dbgs() << ' ' << RMS[RI] << ':' << Uses[I] << '-'
1619                        << Uses[I + 1]);
1620      RegMaskGaps.push_back(I);
1621      // Advance ri to the next gap. A regmask on one of the uses counts in
1622      // both gaps.
1623      while (RI != RE && SlotIndex::isEarlierInstr(RMS[RI], Uses[I + 1]))
1624        ++RI;
1625    }
1626    LLVM_DEBUG(dbgs() << '\n');
1627  }
1628
1629  // Since we allow local split results to be split again, there is a risk of
1630  // creating infinite loops. It is tempting to require that the new live
1631  // ranges have less instructions than the original. That would guarantee
1632  // convergence, but it is too strict. A live range with 3 instructions can be
1633  // split 2+3 (including the COPY), and we want to allow that.
1634  //
1635  // Instead we use these rules:
1636  //
1637  // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
1638  //    noop split, of course).
1639  // 2. Require progress be made for ranges with getStage() == RS_Split2. All
1640  //    the new ranges must have fewer instructions than before the split.
1641  // 3. New ranges with the same number of instructions are marked RS_Split2,
1642  //    smaller ranges are marked RS_New.
1643  //
1644  // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
1645  // excessive splitting and infinite loops.
1646  //
1647  bool ProgressRequired = ExtraInfo->getStage(VirtReg) >= RS_Split2;
1648
1649  // Best split candidate.
1650  unsigned BestBefore = NumGaps;
1651  unsigned BestAfter = 0;
1652  float BestDiff = 0;
1653
1654  const float blockFreq =
1655      SpillPlacer->getBlockFrequency(BI.MBB->getNumber()).getFrequency() *
1656      (1.0f / MBFI->getEntryFreq().getFrequency());
1657  SmallVector<float, 8> GapWeight;
1658
1659  for (MCPhysReg PhysReg : Order) {
1660    assert(PhysReg);
1661    // Keep track of the largest spill weight that would need to be evicted in
1662    // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
1663    calcGapWeights(PhysReg, GapWeight);
1664
1665    // Remove any gaps with regmask clobbers.
1666    if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
1667      for (unsigned I = 0, E = RegMaskGaps.size(); I != E; ++I)
1668        GapWeight[RegMaskGaps[I]] = huge_valf;
1669
1670    // Try to find the best sequence of gaps to close.
1671    // The new spill weight must be larger than any gap interference.
1672
1673    // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
1674    unsigned SplitBefore = 0, SplitAfter = 1;
1675
1676    // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
1677    // It is the spill weight that needs to be evicted.
1678    float MaxGap = GapWeight[0];
1679
1680    while (true) {
1681      // Live before/after split?
1682      const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
1683      const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
1684
1685      LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << ' ' << Uses[SplitBefore]
1686                        << '-' << Uses[SplitAfter] << " I=" << MaxGap);
1687
1688      // Stop before the interval gets so big we wouldn't be making progress.
1689      if (!LiveBefore && !LiveAfter) {
1690        LLVM_DEBUG(dbgs() << " all\n");
1691        break;
1692      }
1693      // Should the interval be extended or shrunk?
1694      bool Shrink = true;
1695
1696      // How many gaps would the new range have?
1697      unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
1698
1699      // Legally, without causing looping?
1700      bool Legal = !ProgressRequired || NewGaps < NumGaps;
1701
1702      if (Legal && MaxGap < huge_valf) {
1703        // Estimate the new spill weight. Each instruction reads or writes the
1704        // register. Conservatively assume there are no read-modify-write
1705        // instructions.
1706        //
1707        // Try to guess the size of the new interval.
1708        const float EstWeight = normalizeSpillWeight(
1709            blockFreq * (NewGaps + 1),
1710            Uses[SplitBefore].distance(Uses[SplitAfter]) +
1711                (LiveBefore + LiveAfter) * SlotIndex::InstrDist,
1712            1);
1713        // Would this split be possible to allocate?
1714        // Never allocate all gaps, we wouldn't be making progress.
1715        LLVM_DEBUG(dbgs() << " w=" << EstWeight);
1716        if (EstWeight * Hysteresis >= MaxGap) {
1717          Shrink = false;
1718          float Diff = EstWeight - MaxGap;
1719          if (Diff > BestDiff) {
1720            LLVM_DEBUG(dbgs() << " (best)");
1721            BestDiff = Hysteresis * Diff;
1722            BestBefore = SplitBefore;
1723            BestAfter = SplitAfter;
1724          }
1725        }
1726      }
1727
1728      // Try to shrink.
1729      if (Shrink) {
1730        if (++SplitBefore < SplitAfter) {
1731          LLVM_DEBUG(dbgs() << " shrink\n");
1732          // Recompute the max when necessary.
1733          if (GapWeight[SplitBefore - 1] >= MaxGap) {
1734            MaxGap = GapWeight[SplitBefore];
1735            for (unsigned I = SplitBefore + 1; I != SplitAfter; ++I)
1736              MaxGap = std::max(MaxGap, GapWeight[I]);
1737          }
1738          continue;
1739        }
1740        MaxGap = 0;
1741      }
1742
1743      // Try to extend the interval.
1744      if (SplitAfter >= NumGaps) {
1745        LLVM_DEBUG(dbgs() << " end\n");
1746        break;
1747      }
1748
1749      LLVM_DEBUG(dbgs() << " extend\n");
1750      MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
1751    }
1752  }
1753
1754  // Didn't find any candidates?
1755  if (BestBefore == NumGaps)
1756    return 0;
1757
1758  LLVM_DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore] << '-'
1759                    << Uses[BestAfter] << ", " << BestDiff << ", "
1760                    << (BestAfter - BestBefore + 1) << " instrs\n");
1761
1762  LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
1763  SE->reset(LREdit);
1764
1765  SE->openIntv();
1766  SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
1767  SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
1768  SE->useIntv(SegStart, SegStop);
1769  SmallVector<unsigned, 8> IntvMap;
1770  SE->finish(&IntvMap);
1771  DebugVars->splitRegister(VirtReg.reg(), LREdit.regs(), *LIS);
1772  // If the new range has the same number of instructions as before, mark it as
1773  // RS_Split2 so the next split will be forced to make progress. Otherwise,
1774  // leave the new intervals as RS_New so they can compete.
1775  bool LiveBefore = BestBefore != 0 || BI.LiveIn;
1776  bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
1777  unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
1778  if (NewGaps >= NumGaps) {
1779    LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
1780    assert(!ProgressRequired && "Didn't make progress when it was required.");
1781    for (unsigned I = 0, E = IntvMap.size(); I != E; ++I)
1782      if (IntvMap[I] == 1) {
1783        ExtraInfo->setStage(LIS->getInterval(LREdit.get(I)), RS_Split2);
1784        LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit.get(I)));
1785      }
1786    LLVM_DEBUG(dbgs() << '\n');
1787  }
1788  ++NumLocalSplits;
1789
1790  return 0;
1791}
1792
1793//===----------------------------------------------------------------------===//
1794//                          Live Range Splitting
1795//===----------------------------------------------------------------------===//
1796
1797/// trySplit - Try to split VirtReg or one of its interferences, making it
1798/// assignable.
1799/// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
1800unsigned RAGreedy::trySplit(const LiveInterval &VirtReg, AllocationOrder &Order,
1801                            SmallVectorImpl<Register> &NewVRegs,
1802                            const SmallVirtRegSet &FixedRegisters) {
1803  // Ranges must be Split2 or less.
1804  if (ExtraInfo->getStage(VirtReg) >= RS_Spill)
1805    return 0;
1806
1807  // Local intervals are handled separately.
1808  if (LIS->intervalIsInOneMBB(VirtReg)) {
1809    NamedRegionTimer T("local_split", "Local Splitting", TimerGroupName,
1810                       TimerGroupDescription, TimePassesIsEnabled);
1811    SA->analyze(&VirtReg);
1812    Register PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
1813    if (PhysReg || !NewVRegs.empty())
1814      return PhysReg;
1815    return tryInstructionSplit(VirtReg, Order, NewVRegs);
1816  }
1817
1818  NamedRegionTimer T("global_split", "Global Splitting", TimerGroupName,
1819                     TimerGroupDescription, TimePassesIsEnabled);
1820
1821  SA->analyze(&VirtReg);
1822
1823  // First try to split around a region spanning multiple blocks. RS_Split2
1824  // ranges already made dubious progress with region splitting, so they go
1825  // straight to single block splitting.
1826  if (ExtraInfo->getStage(VirtReg) < RS_Split2) {
1827    MCRegister PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
1828    if (PhysReg || !NewVRegs.empty())
1829      return PhysReg;
1830  }
1831
1832  // Then isolate blocks.
1833  return tryBlockSplit(VirtReg, Order, NewVRegs);
1834}
1835
1836//===----------------------------------------------------------------------===//
1837//                          Last Chance Recoloring
1838//===----------------------------------------------------------------------===//
1839
1840/// Return true if \p reg has any tied def operand.
1841static bool hasTiedDef(MachineRegisterInfo *MRI, unsigned reg) {
1842  for (const MachineOperand &MO : MRI->def_operands(reg))
1843    if (MO.isTied())
1844      return true;
1845
1846  return false;
1847}
1848
1849/// Return true if the existing assignment of \p Intf overlaps, but is not the
1850/// same, as \p PhysReg.
1851static bool assignedRegPartiallyOverlaps(const TargetRegisterInfo &TRI,
1852                                         const VirtRegMap &VRM,
1853                                         MCRegister PhysReg,
1854                                         const LiveInterval &Intf) {
1855  MCRegister AssignedReg = VRM.getPhys(Intf.reg());
1856  if (PhysReg == AssignedReg)
1857    return false;
1858  return TRI.regsOverlap(PhysReg, AssignedReg);
1859}
1860
1861/// mayRecolorAllInterferences - Check if the virtual registers that
1862/// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
1863/// recolored to free \p PhysReg.
1864/// When true is returned, \p RecoloringCandidates has been augmented with all
1865/// the live intervals that need to be recolored in order to free \p PhysReg
1866/// for \p VirtReg.
1867/// \p FixedRegisters contains all the virtual registers that cannot be
1868/// recolored.
1869bool RAGreedy::mayRecolorAllInterferences(
1870    MCRegister PhysReg, const LiveInterval &VirtReg,
1871    SmallLISet &RecoloringCandidates, const SmallVirtRegSet &FixedRegisters) {
1872  const TargetRegisterClass *CurRC = MRI->getRegClass(VirtReg.reg());
1873
1874  for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
1875    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
1876    // If there is LastChanceRecoloringMaxInterference or more interferences,
1877    // chances are one would not be recolorable.
1878    if (Q.interferingVRegs(LastChanceRecoloringMaxInterference).size() >=
1879            LastChanceRecoloringMaxInterference &&
1880        !ExhaustiveSearch) {
1881      LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
1882      CutOffInfo |= CO_Interf;
1883      return false;
1884    }
1885    for (const LiveInterval *Intf : reverse(Q.interferingVRegs())) {
1886      // If Intf is done and sits on the same register class as VirtReg, it
1887      // would not be recolorable as it is in the same state as
1888      // VirtReg. However there are at least two exceptions.
1889      //
1890      // If VirtReg has tied defs and Intf doesn't, then
1891      // there is still a point in examining if it can be recolorable.
1892      //
1893      // Additionally, if the register class has overlapping tuple members, it
1894      // may still be recolorable using a different tuple. This is more likely
1895      // if the existing assignment aliases with the candidate.
1896      //
1897      if (((ExtraInfo->getStage(*Intf) == RS_Done &&
1898            MRI->getRegClass(Intf->reg()) == CurRC &&
1899            !assignedRegPartiallyOverlaps(*TRI, *VRM, PhysReg, *Intf)) &&
1900           !(hasTiedDef(MRI, VirtReg.reg()) &&
1901             !hasTiedDef(MRI, Intf->reg()))) ||
1902          FixedRegisters.count(Intf->reg())) {
1903        LLVM_DEBUG(
1904            dbgs() << "Early abort: the interference is not recolorable.\n");
1905        return false;
1906      }
1907      RecoloringCandidates.insert(Intf);
1908    }
1909  }
1910  return true;
1911}
1912
1913/// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
1914/// its interferences.
1915/// Last chance recoloring chooses a color for \p VirtReg and recolors every
1916/// virtual register that was using it. The recoloring process may recursively
1917/// use the last chance recoloring. Therefore, when a virtual register has been
1918/// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
1919/// be last-chance-recolored again during this recoloring "session".
1920/// E.g.,
1921/// Let
1922/// vA can use {R1, R2    }
1923/// vB can use {    R2, R3}
1924/// vC can use {R1        }
1925/// Where vA, vB, and vC cannot be split anymore (they are reloads for
1926/// instance) and they all interfere.
1927///
1928/// vA is assigned R1
1929/// vB is assigned R2
1930/// vC tries to evict vA but vA is already done.
1931/// Regular register allocation fails.
1932///
1933/// Last chance recoloring kicks in:
1934/// vC does as if vA was evicted => vC uses R1.
1935/// vC is marked as fixed.
1936/// vA needs to find a color.
1937/// None are available.
1938/// vA cannot evict vC: vC is a fixed virtual register now.
1939/// vA does as if vB was evicted => vA uses R2.
1940/// vB needs to find a color.
1941/// R3 is available.
1942/// Recoloring => vC = R1, vA = R2, vB = R3
1943///
1944/// \p Order defines the preferred allocation order for \p VirtReg.
1945/// \p NewRegs will contain any new virtual register that have been created
1946/// (split, spill) during the process and that must be assigned.
1947/// \p FixedRegisters contains all the virtual registers that cannot be
1948/// recolored.
1949///
1950/// \p RecolorStack tracks the original assignments of successfully recolored
1951/// registers.
1952///
1953/// \p Depth gives the current depth of the last chance recoloring.
1954/// \return a physical register that can be used for VirtReg or ~0u if none
1955/// exists.
1956unsigned RAGreedy::tryLastChanceRecoloring(const LiveInterval &VirtReg,
1957                                           AllocationOrder &Order,
1958                                           SmallVectorImpl<Register> &NewVRegs,
1959                                           SmallVirtRegSet &FixedRegisters,
1960                                           RecoloringStack &RecolorStack,
1961                                           unsigned Depth) {
1962  if (!TRI->shouldUseLastChanceRecoloringForVirtReg(*MF, VirtReg))
1963    return ~0u;
1964
1965  LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg << '\n');
1966
1967  const ssize_t EntryStackSize = RecolorStack.size();
1968
1969  // Ranges must be Done.
1970  assert((ExtraInfo->getStage(VirtReg) >= RS_Done || !VirtReg.isSpillable()) &&
1971         "Last chance recoloring should really be last chance");
1972  // Set the max depth to LastChanceRecoloringMaxDepth.
1973  // We may want to reconsider that if we end up with a too large search space
1974  // for target with hundreds of registers.
1975  // Indeed, in that case we may want to cut the search space earlier.
1976  if (Depth >= LastChanceRecoloringMaxDepth && !ExhaustiveSearch) {
1977    LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
1978    CutOffInfo |= CO_Depth;
1979    return ~0u;
1980  }
1981
1982  // Set of Live intervals that will need to be recolored.
1983  SmallLISet RecoloringCandidates;
1984
1985  // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
1986  // this recoloring "session".
1987  assert(!FixedRegisters.count(VirtReg.reg()));
1988  FixedRegisters.insert(VirtReg.reg());
1989  SmallVector<Register, 4> CurrentNewVRegs;
1990
1991  for (MCRegister PhysReg : Order) {
1992    assert(PhysReg.isValid());
1993    LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg << " to "
1994                      << printReg(PhysReg, TRI) << '\n');
1995    RecoloringCandidates.clear();
1996    CurrentNewVRegs.clear();
1997
1998    // It is only possible to recolor virtual register interference.
1999    if (Matrix->checkInterference(VirtReg, PhysReg) >
2000        LiveRegMatrix::IK_VirtReg) {
2001      LLVM_DEBUG(
2002          dbgs() << "Some interferences are not with virtual registers.\n");
2003
2004      continue;
2005    }
2006
2007    // Early give up on this PhysReg if it is obvious we cannot recolor all
2008    // the interferences.
2009    if (!mayRecolorAllInterferences(PhysReg, VirtReg, RecoloringCandidates,
2010                                    FixedRegisters)) {
2011      LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2012      continue;
2013    }
2014
2015    // RecoloringCandidates contains all the virtual registers that interfere
2016    // with VirtReg on PhysReg (or one of its aliases). Enqueue them for
2017    // recoloring and perform the actual recoloring.
2018    PQueue RecoloringQueue;
2019    for (const LiveInterval *RC : RecoloringCandidates) {
2020      Register ItVirtReg = RC->reg();
2021      enqueue(RecoloringQueue, RC);
2022      assert(VRM->hasPhys(ItVirtReg) &&
2023             "Interferences are supposed to be with allocated variables");
2024
2025      // Record the current allocation.
2026      RecolorStack.push_back(std::make_pair(RC, VRM->getPhys(ItVirtReg)));
2027
2028      // unset the related struct.
2029      Matrix->unassign(*RC);
2030    }
2031
2032    // Do as if VirtReg was assigned to PhysReg so that the underlying
2033    // recoloring has the right information about the interferes and
2034    // available colors.
2035    Matrix->assign(VirtReg, PhysReg);
2036
2037    // Save the current recoloring state.
2038    // If we cannot recolor all the interferences, we will have to start again
2039    // at this point for the next physical register.
2040    SmallVirtRegSet SaveFixedRegisters(FixedRegisters);
2041    if (tryRecoloringCandidates(RecoloringQueue, CurrentNewVRegs,
2042                                FixedRegisters, RecolorStack, Depth)) {
2043      // Push the queued vregs into the main queue.
2044      for (Register NewVReg : CurrentNewVRegs)
2045        NewVRegs.push_back(NewVReg);
2046      // Do not mess up with the global assignment process.
2047      // I.e., VirtReg must be unassigned.
2048      Matrix->unassign(VirtReg);
2049      return PhysReg;
2050    }
2051
2052    LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg << " to "
2053                      << printReg(PhysReg, TRI) << '\n');
2054
2055    // The recoloring attempt failed, undo the changes.
2056    FixedRegisters = SaveFixedRegisters;
2057    Matrix->unassign(VirtReg);
2058
2059    // For a newly created vreg which is also in RecoloringCandidates,
2060    // don't add it to NewVRegs because its physical register will be restored
2061    // below. Other vregs in CurrentNewVRegs are created by calling
2062    // selectOrSplit and should be added into NewVRegs.
2063    for (Register R : CurrentNewVRegs) {
2064      if (RecoloringCandidates.count(&LIS->getInterval(R)))
2065        continue;
2066      NewVRegs.push_back(R);
2067    }
2068
2069    // Roll back our unsuccessful recoloring. Also roll back any successful
2070    // recolorings in any recursive recoloring attempts, since it's possible
2071    // they would have introduced conflicts with assignments we will be
2072    // restoring further up the stack. Perform all unassignments prior to
2073    // reassigning, since sub-recolorings may have conflicted with the registers
2074    // we are going to restore to their original assignments.
2075    for (ssize_t I = RecolorStack.size() - 1; I >= EntryStackSize; --I) {
2076      const LiveInterval *LI;
2077      MCRegister PhysReg;
2078      std::tie(LI, PhysReg) = RecolorStack[I];
2079
2080      if (VRM->hasPhys(LI->reg()))
2081        Matrix->unassign(*LI);
2082    }
2083
2084    for (size_t I = EntryStackSize; I != RecolorStack.size(); ++I) {
2085      const LiveInterval *LI;
2086      MCRegister PhysReg;
2087      std::tie(LI, PhysReg) = RecolorStack[I];
2088      if (!LI->empty() && !MRI->reg_nodbg_empty(LI->reg()))
2089        Matrix->assign(*LI, PhysReg);
2090    }
2091
2092    // Pop the stack of recoloring attempts.
2093    RecolorStack.resize(EntryStackSize);
2094  }
2095
2096  // Last chance recoloring did not worked either, give up.
2097  return ~0u;
2098}
2099
2100/// tryRecoloringCandidates - Try to assign a new color to every register
2101/// in \RecoloringQueue.
2102/// \p NewRegs will contain any new virtual register created during the
2103/// recoloring process.
2104/// \p FixedRegisters[in/out] contains all the registers that have been
2105/// recolored.
2106/// \return true if all virtual registers in RecoloringQueue were successfully
2107/// recolored, false otherwise.
2108bool RAGreedy::tryRecoloringCandidates(PQueue &RecoloringQueue,
2109                                       SmallVectorImpl<Register> &NewVRegs,
2110                                       SmallVirtRegSet &FixedRegisters,
2111                                       RecoloringStack &RecolorStack,
2112                                       unsigned Depth) {
2113  while (!RecoloringQueue.empty()) {
2114    const LiveInterval *LI = dequeue(RecoloringQueue);
2115    LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI << '\n');
2116    MCRegister PhysReg = selectOrSplitImpl(*LI, NewVRegs, FixedRegisters,
2117                                           RecolorStack, Depth + 1);
2118    // When splitting happens, the live-range may actually be empty.
2119    // In that case, this is okay to continue the recoloring even
2120    // if we did not find an alternative color for it. Indeed,
2121    // there will not be anything to color for LI in the end.
2122    if (PhysReg == ~0u || (!PhysReg && !LI->empty()))
2123      return false;
2124
2125    if (!PhysReg) {
2126      assert(LI->empty() && "Only empty live-range do not require a register");
2127      LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2128                        << " succeeded. Empty LI.\n");
2129      continue;
2130    }
2131    LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2132                      << " succeeded with: " << printReg(PhysReg, TRI) << '\n');
2133
2134    Matrix->assign(*LI, PhysReg);
2135    FixedRegisters.insert(LI->reg());
2136  }
2137  return true;
2138}
2139
2140//===----------------------------------------------------------------------===//
2141//                            Main Entry Point
2142//===----------------------------------------------------------------------===//
2143
2144MCRegister RAGreedy::selectOrSplit(const LiveInterval &VirtReg,
2145                                   SmallVectorImpl<Register> &NewVRegs) {
2146  CutOffInfo = CO_None;
2147  LLVMContext &Ctx = MF->getFunction().getContext();
2148  SmallVirtRegSet FixedRegisters;
2149  RecoloringStack RecolorStack;
2150  MCRegister Reg =
2151      selectOrSplitImpl(VirtReg, NewVRegs, FixedRegisters, RecolorStack);
2152  if (Reg == ~0U && (CutOffInfo != CO_None)) {
2153    uint8_t CutOffEncountered = CutOffInfo & (CO_Depth | CO_Interf);
2154    if (CutOffEncountered == CO_Depth)
2155      Ctx.emitError("register allocation failed: maximum depth for recoloring "
2156                    "reached. Use -fexhaustive-register-search to skip "
2157                    "cutoffs");
2158    else if (CutOffEncountered == CO_Interf)
2159      Ctx.emitError("register allocation failed: maximum interference for "
2160                    "recoloring reached. Use -fexhaustive-register-search "
2161                    "to skip cutoffs");
2162    else if (CutOffEncountered == (CO_Depth | CO_Interf))
2163      Ctx.emitError("register allocation failed: maximum interference and "
2164                    "depth for recoloring reached. Use "
2165                    "-fexhaustive-register-search to skip cutoffs");
2166  }
2167  return Reg;
2168}
2169
2170/// Using a CSR for the first time has a cost because it causes push|pop
2171/// to be added to prologue|epilogue. Splitting a cold section of the live
2172/// range can have lower cost than using the CSR for the first time;
2173/// Spilling a live range in the cold path can have lower cost than using
2174/// the CSR for the first time. Returns the physical register if we decide
2175/// to use the CSR; otherwise return 0.
2176MCRegister RAGreedy::tryAssignCSRFirstTime(
2177    const LiveInterval &VirtReg, AllocationOrder &Order, MCRegister PhysReg,
2178    uint8_t &CostPerUseLimit, SmallVectorImpl<Register> &NewVRegs) {
2179  if (ExtraInfo->getStage(VirtReg) == RS_Spill && VirtReg.isSpillable()) {
2180    // We choose spill over using the CSR for the first time if the spill cost
2181    // is lower than CSRCost.
2182    SA->analyze(&VirtReg);
2183    if (calcSpillCost() >= CSRCost)
2184      return PhysReg;
2185
2186    // We are going to spill, set CostPerUseLimit to 1 to make sure that
2187    // we will not use a callee-saved register in tryEvict.
2188    CostPerUseLimit = 1;
2189    return 0;
2190  }
2191  if (ExtraInfo->getStage(VirtReg) < RS_Split) {
2192    // We choose pre-splitting over using the CSR for the first time if
2193    // the cost of splitting is lower than CSRCost.
2194    SA->analyze(&VirtReg);
2195    unsigned NumCands = 0;
2196    BlockFrequency BestCost = CSRCost; // Don't modify CSRCost.
2197    unsigned BestCand = calculateRegionSplitCost(VirtReg, Order, BestCost,
2198                                                 NumCands, true /*IgnoreCSR*/);
2199    if (BestCand == NoCand)
2200      // Use the CSR if we can't find a region split below CSRCost.
2201      return PhysReg;
2202
2203    // Perform the actual pre-splitting.
2204    doRegionSplit(VirtReg, BestCand, false/*HasCompact*/, NewVRegs);
2205    return 0;
2206  }
2207  return PhysReg;
2208}
2209
2210void RAGreedy::aboutToRemoveInterval(const LiveInterval &LI) {
2211  // Do not keep invalid information around.
2212  SetOfBrokenHints.remove(&LI);
2213}
2214
2215void RAGreedy::initializeCSRCost() {
2216  // We use the larger one out of the command-line option and the value report
2217  // by TRI.
2218  CSRCost = BlockFrequency(
2219      std::max((unsigned)CSRFirstTimeCost, TRI->getCSRFirstUseCost()));
2220  if (!CSRCost.getFrequency())
2221    return;
2222
2223  // Raw cost is relative to Entry == 2^14; scale it appropriately.
2224  uint64_t ActualEntry = MBFI->getEntryFreq().getFrequency();
2225  if (!ActualEntry) {
2226    CSRCost = BlockFrequency(0);
2227    return;
2228  }
2229  uint64_t FixedEntry = 1 << 14;
2230  if (ActualEntry < FixedEntry)
2231    CSRCost *= BranchProbability(ActualEntry, FixedEntry);
2232  else if (ActualEntry <= UINT32_MAX)
2233    // Invert the fraction and divide.
2234    CSRCost /= BranchProbability(FixedEntry, ActualEntry);
2235  else
2236    // Can't use BranchProbability in general, since it takes 32-bit numbers.
2237    CSRCost =
2238        BlockFrequency(CSRCost.getFrequency() * (ActualEntry / FixedEntry));
2239}
2240
2241/// Collect the hint info for \p Reg.
2242/// The results are stored into \p Out.
2243/// \p Out is not cleared before being populated.
2244void RAGreedy::collectHintInfo(Register Reg, HintsInfo &Out) {
2245  for (const MachineInstr &Instr : MRI->reg_nodbg_instructions(Reg)) {
2246    if (!TII->isFullCopyInstr(Instr))
2247      continue;
2248    // Look for the other end of the copy.
2249    Register OtherReg = Instr.getOperand(0).getReg();
2250    if (OtherReg == Reg) {
2251      OtherReg = Instr.getOperand(1).getReg();
2252      if (OtherReg == Reg)
2253        continue;
2254    }
2255    // Get the current assignment.
2256    MCRegister OtherPhysReg =
2257        OtherReg.isPhysical() ? OtherReg.asMCReg() : VRM->getPhys(OtherReg);
2258    // Push the collected information.
2259    Out.push_back(HintInfo(MBFI->getBlockFreq(Instr.getParent()), OtherReg,
2260                           OtherPhysReg));
2261  }
2262}
2263
2264/// Using the given \p List, compute the cost of the broken hints if
2265/// \p PhysReg was used.
2266/// \return The cost of \p List for \p PhysReg.
2267BlockFrequency RAGreedy::getBrokenHintFreq(const HintsInfo &List,
2268                                           MCRegister PhysReg) {
2269  BlockFrequency Cost = BlockFrequency(0);
2270  for (const HintInfo &Info : List) {
2271    if (Info.PhysReg != PhysReg)
2272      Cost += Info.Freq;
2273  }
2274  return Cost;
2275}
2276
2277/// Using the register assigned to \p VirtReg, try to recolor
2278/// all the live ranges that are copy-related with \p VirtReg.
2279/// The recoloring is then propagated to all the live-ranges that have
2280/// been recolored and so on, until no more copies can be coalesced or
2281/// it is not profitable.
2282/// For a given live range, profitability is determined by the sum of the
2283/// frequencies of the non-identity copies it would introduce with the old
2284/// and new register.
2285void RAGreedy::tryHintRecoloring(const LiveInterval &VirtReg) {
2286  // We have a broken hint, check if it is possible to fix it by
2287  // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2288  // some register and PhysReg may be available for the other live-ranges.
2289  SmallSet<Register, 4> Visited;
2290  SmallVector<unsigned, 2> RecoloringCandidates;
2291  HintsInfo Info;
2292  Register Reg = VirtReg.reg();
2293  MCRegister PhysReg = VRM->getPhys(Reg);
2294  // Start the recoloring algorithm from the input live-interval, then
2295  // it will propagate to the ones that are copy-related with it.
2296  Visited.insert(Reg);
2297  RecoloringCandidates.push_back(Reg);
2298
2299  LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg, TRI)
2300                    << '(' << printReg(PhysReg, TRI) << ")\n");
2301
2302  do {
2303    Reg = RecoloringCandidates.pop_back_val();
2304
2305    // We cannot recolor physical register.
2306    if (Reg.isPhysical())
2307      continue;
2308
2309    // This may be a skipped class
2310    if (!VRM->hasPhys(Reg)) {
2311      assert(!ShouldAllocateClass(*TRI, *MRI->getRegClass(Reg)) &&
2312             "We have an unallocated variable which should have been handled");
2313      continue;
2314    }
2315
2316    // Get the live interval mapped with this virtual register to be able
2317    // to check for the interference with the new color.
2318    LiveInterval &LI = LIS->getInterval(Reg);
2319    MCRegister CurrPhys = VRM->getPhys(Reg);
2320    // Check that the new color matches the register class constraints and
2321    // that it is free for this live range.
2322    if (CurrPhys != PhysReg && (!MRI->getRegClass(Reg)->contains(PhysReg) ||
2323                                Matrix->checkInterference(LI, PhysReg)))
2324      continue;
2325
2326    LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << '(' << printReg(CurrPhys, TRI)
2327                      << ") is recolorable.\n");
2328
2329    // Gather the hint info.
2330    Info.clear();
2331    collectHintInfo(Reg, Info);
2332    // Check if recoloring the live-range will increase the cost of the
2333    // non-identity copies.
2334    if (CurrPhys != PhysReg) {
2335      LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2336      BlockFrequency OldCopiesCost = getBrokenHintFreq(Info, CurrPhys);
2337      BlockFrequency NewCopiesCost = getBrokenHintFreq(Info, PhysReg);
2338      LLVM_DEBUG(dbgs() << "Old Cost: " << printBlockFreq(*MBFI, OldCopiesCost)
2339                        << "\nNew Cost: "
2340                        << printBlockFreq(*MBFI, NewCopiesCost) << '\n');
2341      if (OldCopiesCost < NewCopiesCost) {
2342        LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2343        continue;
2344      }
2345      // At this point, the cost is either cheaper or equal. If it is
2346      // equal, we consider this is profitable because it may expose
2347      // more recoloring opportunities.
2348      LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2349      // Recolor the live-range.
2350      Matrix->unassign(LI);
2351      Matrix->assign(LI, PhysReg);
2352    }
2353    // Push all copy-related live-ranges to keep reconciling the broken
2354    // hints.
2355    for (const HintInfo &HI : Info) {
2356      if (Visited.insert(HI.Reg).second)
2357        RecoloringCandidates.push_back(HI.Reg);
2358    }
2359  } while (!RecoloringCandidates.empty());
2360}
2361
2362/// Try to recolor broken hints.
2363/// Broken hints may be repaired by recoloring when an evicted variable
2364/// freed up a register for a larger live-range.
2365/// Consider the following example:
2366/// BB1:
2367///   a =
2368///   b =
2369/// BB2:
2370///   ...
2371///   = b
2372///   = a
2373/// Let us assume b gets split:
2374/// BB1:
2375///   a =
2376///   b =
2377/// BB2:
2378///   c = b
2379///   ...
2380///   d = c
2381///   = d
2382///   = a
2383/// Because of how the allocation work, b, c, and d may be assigned different
2384/// colors. Now, if a gets evicted later:
2385/// BB1:
2386///   a =
2387///   st a, SpillSlot
2388///   b =
2389/// BB2:
2390///   c = b
2391///   ...
2392///   d = c
2393///   = d
2394///   e = ld SpillSlot
2395///   = e
2396/// This is likely that we can assign the same register for b, c, and d,
2397/// getting rid of 2 copies.
2398void RAGreedy::tryHintsRecoloring() {
2399  for (const LiveInterval *LI : SetOfBrokenHints) {
2400    assert(LI->reg().isVirtual() &&
2401           "Recoloring is possible only for virtual registers");
2402    // Some dead defs may be around (e.g., because of debug uses).
2403    // Ignore those.
2404    if (!VRM->hasPhys(LI->reg()))
2405      continue;
2406    tryHintRecoloring(*LI);
2407  }
2408}
2409
2410MCRegister RAGreedy::selectOrSplitImpl(const LiveInterval &VirtReg,
2411                                       SmallVectorImpl<Register> &NewVRegs,
2412                                       SmallVirtRegSet &FixedRegisters,
2413                                       RecoloringStack &RecolorStack,
2414                                       unsigned Depth) {
2415  uint8_t CostPerUseLimit = uint8_t(~0u);
2416  // First try assigning a free register.
2417  auto Order =
2418      AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
2419  if (MCRegister PhysReg =
2420          tryAssign(VirtReg, Order, NewVRegs, FixedRegisters)) {
2421    // When NewVRegs is not empty, we may have made decisions such as evicting
2422    // a virtual register, go with the earlier decisions and use the physical
2423    // register.
2424    if (CSRCost.getFrequency() &&
2425        EvictAdvisor->isUnusedCalleeSavedReg(PhysReg) && NewVRegs.empty()) {
2426      MCRegister CSRReg = tryAssignCSRFirstTime(VirtReg, Order, PhysReg,
2427                                                CostPerUseLimit, NewVRegs);
2428      if (CSRReg || !NewVRegs.empty())
2429        // Return now if we decide to use a CSR or create new vregs due to
2430        // pre-splitting.
2431        return CSRReg;
2432    } else
2433      return PhysReg;
2434  }
2435  // Non emtpy NewVRegs means VirtReg has been split.
2436  if (!NewVRegs.empty())
2437    return 0;
2438
2439  LiveRangeStage Stage = ExtraInfo->getStage(VirtReg);
2440  LLVM_DEBUG(dbgs() << StageName[Stage] << " Cascade "
2441                    << ExtraInfo->getCascade(VirtReg.reg()) << '\n');
2442
2443  // Try to evict a less worthy live range, but only for ranges from the primary
2444  // queue. The RS_Split ranges already failed to do this, and they should not
2445  // get a second chance until they have been split.
2446  if (Stage != RS_Split)
2447    if (Register PhysReg =
2448            tryEvict(VirtReg, Order, NewVRegs, CostPerUseLimit,
2449                     FixedRegisters)) {
2450      Register Hint = MRI->getSimpleHint(VirtReg.reg());
2451      // If VirtReg has a hint and that hint is broken record this
2452      // virtual register as a recoloring candidate for broken hint.
2453      // Indeed, since we evicted a variable in its neighborhood it is
2454      // likely we can at least partially recolor some of the
2455      // copy-related live-ranges.
2456      if (Hint && Hint != PhysReg)
2457        SetOfBrokenHints.insert(&VirtReg);
2458      return PhysReg;
2459    }
2460
2461  assert((NewVRegs.empty() || Depth) && "Cannot append to existing NewVRegs");
2462
2463  // The first time we see a live range, don't try to split or spill.
2464  // Wait until the second time, when all smaller ranges have been allocated.
2465  // This gives a better picture of the interference to split around.
2466  if (Stage < RS_Split) {
2467    ExtraInfo->setStage(VirtReg, RS_Split);
2468    LLVM_DEBUG(dbgs() << "wait for second round\n");
2469    NewVRegs.push_back(VirtReg.reg());
2470    return 0;
2471  }
2472
2473  if (Stage < RS_Spill) {
2474    // Try splitting VirtReg or interferences.
2475    unsigned NewVRegSizeBefore = NewVRegs.size();
2476    Register PhysReg = trySplit(VirtReg, Order, NewVRegs, FixedRegisters);
2477    if (PhysReg || (NewVRegs.size() - NewVRegSizeBefore))
2478      return PhysReg;
2479  }
2480
2481  // If we couldn't allocate a register from spilling, there is probably some
2482  // invalid inline assembly. The base class will report it.
2483  if (Stage >= RS_Done || !VirtReg.isSpillable()) {
2484    return tryLastChanceRecoloring(VirtReg, Order, NewVRegs, FixedRegisters,
2485                                   RecolorStack, Depth);
2486  }
2487
2488  // Finally spill VirtReg itself.
2489  if ((EnableDeferredSpilling ||
2490       TRI->shouldUseDeferredSpillingForVirtReg(*MF, VirtReg)) &&
2491      ExtraInfo->getStage(VirtReg) < RS_Memory) {
2492    // TODO: This is experimental and in particular, we do not model
2493    // the live range splitting done by spilling correctly.
2494    // We would need a deep integration with the spiller to do the
2495    // right thing here. Anyway, that is still good for early testing.
2496    ExtraInfo->setStage(VirtReg, RS_Memory);
2497    LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
2498    NewVRegs.push_back(VirtReg.reg());
2499  } else {
2500    NamedRegionTimer T("spill", "Spiller", TimerGroupName,
2501                       TimerGroupDescription, TimePassesIsEnabled);
2502    LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this, &DeadRemats);
2503    spiller().spill(LRE);
2504    ExtraInfo->setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
2505
2506    // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
2507    // the new regs are kept in LDV (still mapping to the old register), until
2508    // we rewrite spilled locations in LDV at a later stage.
2509    DebugVars->splitRegister(VirtReg.reg(), LRE.regs(), *LIS);
2510
2511    if (VerifyEnabled)
2512      MF->verify(this, "After spilling");
2513  }
2514
2515  // The live virtual register requesting allocation was spilled, so tell
2516  // the caller not to allocate anything during this round.
2517  return 0;
2518}
2519
2520void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed &R) {
2521  using namespace ore;
2522  if (Spills) {
2523    R << NV("NumSpills", Spills) << " spills ";
2524    R << NV("TotalSpillsCost", SpillsCost) << " total spills cost ";
2525  }
2526  if (FoldedSpills) {
2527    R << NV("NumFoldedSpills", FoldedSpills) << " folded spills ";
2528    R << NV("TotalFoldedSpillsCost", FoldedSpillsCost)
2529      << " total folded spills cost ";
2530  }
2531  if (Reloads) {
2532    R << NV("NumReloads", Reloads) << " reloads ";
2533    R << NV("TotalReloadsCost", ReloadsCost) << " total reloads cost ";
2534  }
2535  if (FoldedReloads) {
2536    R << NV("NumFoldedReloads", FoldedReloads) << " folded reloads ";
2537    R << NV("TotalFoldedReloadsCost", FoldedReloadsCost)
2538      << " total folded reloads cost ";
2539  }
2540  if (ZeroCostFoldedReloads)
2541    R << NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads)
2542      << " zero cost folded reloads ";
2543  if (Copies) {
2544    R << NV("NumVRCopies", Copies) << " virtual registers copies ";
2545    R << NV("TotalCopiesCost", CopiesCost) << " total copies cost ";
2546  }
2547}
2548
2549RAGreedy::RAGreedyStats RAGreedy::computeStats(MachineBasicBlock &MBB) {
2550  RAGreedyStats Stats;
2551  const MachineFrameInfo &MFI = MF->getFrameInfo();
2552  int FI;
2553
2554  auto isSpillSlotAccess = [&MFI](const MachineMemOperand *A) {
2555    return MFI.isSpillSlotObjectIndex(cast<FixedStackPseudoSourceValue>(
2556        A->getPseudoValue())->getFrameIndex());
2557  };
2558  auto isPatchpointInstr = [](const MachineInstr &MI) {
2559    return MI.getOpcode() == TargetOpcode::PATCHPOINT ||
2560           MI.getOpcode() == TargetOpcode::STACKMAP ||
2561           MI.getOpcode() == TargetOpcode::STATEPOINT;
2562  };
2563  for (MachineInstr &MI : MBB) {
2564    auto DestSrc = TII->isCopyInstr(MI);
2565    if (DestSrc) {
2566      const MachineOperand &Dest = *DestSrc->Destination;
2567      const MachineOperand &Src = *DestSrc->Source;
2568      Register SrcReg = Src.getReg();
2569      Register DestReg = Dest.getReg();
2570      // Only count `COPY`s with a virtual register as source or destination.
2571      if (SrcReg.isVirtual() || DestReg.isVirtual()) {
2572        if (SrcReg.isVirtual()) {
2573          SrcReg = VRM->getPhys(SrcReg);
2574          if (SrcReg && Src.getSubReg())
2575            SrcReg = TRI->getSubReg(SrcReg, Src.getSubReg());
2576        }
2577        if (DestReg.isVirtual()) {
2578          DestReg = VRM->getPhys(DestReg);
2579          if (DestReg && Dest.getSubReg())
2580            DestReg = TRI->getSubReg(DestReg, Dest.getSubReg());
2581        }
2582        if (SrcReg != DestReg)
2583          ++Stats.Copies;
2584      }
2585      continue;
2586    }
2587
2588    SmallVector<const MachineMemOperand *, 2> Accesses;
2589    if (TII->isLoadFromStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2590      ++Stats.Reloads;
2591      continue;
2592    }
2593    if (TII->isStoreToStackSlot(MI, FI) && MFI.isSpillSlotObjectIndex(FI)) {
2594      ++Stats.Spills;
2595      continue;
2596    }
2597    if (TII->hasLoadFromStackSlot(MI, Accesses) &&
2598        llvm::any_of(Accesses, isSpillSlotAccess)) {
2599      if (!isPatchpointInstr(MI)) {
2600        Stats.FoldedReloads += Accesses.size();
2601        continue;
2602      }
2603      // For statepoint there may be folded and zero cost folded stack reloads.
2604      std::pair<unsigned, unsigned> NonZeroCostRange =
2605          TII->getPatchpointUnfoldableRange(MI);
2606      SmallSet<unsigned, 16> FoldedReloads;
2607      SmallSet<unsigned, 16> ZeroCostFoldedReloads;
2608      for (unsigned Idx = 0, E = MI.getNumOperands(); Idx < E; ++Idx) {
2609        MachineOperand &MO = MI.getOperand(Idx);
2610        if (!MO.isFI() || !MFI.isSpillSlotObjectIndex(MO.getIndex()))
2611          continue;
2612        if (Idx >= NonZeroCostRange.first && Idx < NonZeroCostRange.second)
2613          FoldedReloads.insert(MO.getIndex());
2614        else
2615          ZeroCostFoldedReloads.insert(MO.getIndex());
2616      }
2617      // If stack slot is used in folded reload it is not zero cost then.
2618      for (unsigned Slot : FoldedReloads)
2619        ZeroCostFoldedReloads.erase(Slot);
2620      Stats.FoldedReloads += FoldedReloads.size();
2621      Stats.ZeroCostFoldedReloads += ZeroCostFoldedReloads.size();
2622      continue;
2623    }
2624    Accesses.clear();
2625    if (TII->hasStoreToStackSlot(MI, Accesses) &&
2626        llvm::any_of(Accesses, isSpillSlotAccess)) {
2627      Stats.FoldedSpills += Accesses.size();
2628    }
2629  }
2630  // Set cost of collected statistic by multiplication to relative frequency of
2631  // this basic block.
2632  float RelFreq = MBFI->getBlockFreqRelativeToEntryBlock(&MBB);
2633  Stats.ReloadsCost = RelFreq * Stats.Reloads;
2634  Stats.FoldedReloadsCost = RelFreq * Stats.FoldedReloads;
2635  Stats.SpillsCost = RelFreq * Stats.Spills;
2636  Stats.FoldedSpillsCost = RelFreq * Stats.FoldedSpills;
2637  Stats.CopiesCost = RelFreq * Stats.Copies;
2638  return Stats;
2639}
2640
2641RAGreedy::RAGreedyStats RAGreedy::reportStats(MachineLoop *L) {
2642  RAGreedyStats Stats;
2643
2644  // Sum up the spill and reloads in subloops.
2645  for (MachineLoop *SubLoop : *L)
2646    Stats.add(reportStats(SubLoop));
2647
2648  for (MachineBasicBlock *MBB : L->getBlocks())
2649    // Handle blocks that were not included in subloops.
2650    if (Loops->getLoopFor(MBB) == L)
2651      Stats.add(computeStats(*MBB));
2652
2653  if (!Stats.isEmpty()) {
2654    using namespace ore;
2655
2656    ORE->emit([&]() {
2657      MachineOptimizationRemarkMissed R(DEBUG_TYPE, "LoopSpillReloadCopies",
2658                                        L->getStartLoc(), L->getHeader());
2659      Stats.report(R);
2660      R << "generated in loop";
2661      return R;
2662    });
2663  }
2664  return Stats;
2665}
2666
2667void RAGreedy::reportStats() {
2668  if (!ORE->allowExtraAnalysis(DEBUG_TYPE))
2669    return;
2670  RAGreedyStats Stats;
2671  for (MachineLoop *L : *Loops)
2672    Stats.add(reportStats(L));
2673  // Process non-loop blocks.
2674  for (MachineBasicBlock &MBB : *MF)
2675    if (!Loops->getLoopFor(&MBB))
2676      Stats.add(computeStats(MBB));
2677  if (!Stats.isEmpty()) {
2678    using namespace ore;
2679
2680    ORE->emit([&]() {
2681      DebugLoc Loc;
2682      if (auto *SP = MF->getFunction().getSubprogram())
2683        Loc = DILocation::get(SP->getContext(), SP->getLine(), 1, SP);
2684      MachineOptimizationRemarkMissed R(DEBUG_TYPE, "SpillReloadCopies", Loc,
2685                                        &MF->front());
2686      Stats.report(R);
2687      R << "generated in function";
2688      return R;
2689    });
2690  }
2691}
2692
2693bool RAGreedy::hasVirtRegAlloc() {
2694  for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2695    Register Reg = Register::index2VirtReg(I);
2696    if (MRI->reg_nodbg_empty(Reg))
2697      continue;
2698    const TargetRegisterClass *RC = MRI->getRegClass(Reg);
2699    if (!RC)
2700      continue;
2701    if (ShouldAllocateClass(*TRI, *RC))
2702      return true;
2703  }
2704
2705  return false;
2706}
2707
2708bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
2709  LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
2710                    << "********** Function: " << mf.getName() << '\n');
2711
2712  MF = &mf;
2713  TII = MF->getSubtarget().getInstrInfo();
2714
2715  if (VerifyEnabled)
2716    MF->verify(this, "Before greedy register allocator");
2717
2718  RegAllocBase::init(getAnalysis<VirtRegMap>(),
2719                     getAnalysis<LiveIntervals>(),
2720                     getAnalysis<LiveRegMatrix>());
2721
2722  // Early return if there is no virtual register to be allocated to a
2723  // physical register.
2724  if (!hasVirtRegAlloc())
2725    return false;
2726
2727  Indexes = &getAnalysis<SlotIndexes>();
2728  // Renumber to get accurate and consistent results from
2729  // SlotIndexes::getApproxInstrDistance.
2730  Indexes->packIndexes();
2731  MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
2732  DomTree = &getAnalysis<MachineDominatorTree>();
2733  ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2734  Loops = &getAnalysis<MachineLoopInfo>();
2735  Bundles = &getAnalysis<EdgeBundles>();
2736  SpillPlacer = &getAnalysis<SpillPlacement>();
2737  DebugVars = &getAnalysis<LiveDebugVariables>();
2738
2739  initializeCSRCost();
2740
2741  RegCosts = TRI->getRegisterCosts(*MF);
2742  RegClassPriorityTrumpsGlobalness =
2743      GreedyRegClassPriorityTrumpsGlobalness.getNumOccurrences()
2744          ? GreedyRegClassPriorityTrumpsGlobalness
2745          : TRI->regClassPriorityTrumpsGlobalness(*MF);
2746
2747  ReverseLocalAssignment = GreedyReverseLocalAssignment.getNumOccurrences()
2748                               ? GreedyReverseLocalAssignment
2749                               : TRI->reverseLocalAssignment();
2750
2751  ExtraInfo.emplace();
2752  EvictAdvisor =
2753      getAnalysis<RegAllocEvictionAdvisorAnalysis>().getAdvisor(*MF, *this);
2754  PriorityAdvisor =
2755      getAnalysis<RegAllocPriorityAdvisorAnalysis>().getAdvisor(*MF, *this);
2756
2757  VRAI = std::make_unique<VirtRegAuxInfo>(*MF, *LIS, *VRM, *Loops, *MBFI);
2758  SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM, *VRAI));
2759
2760  VRAI->calculateSpillWeightsAndHints();
2761
2762  LLVM_DEBUG(LIS->dump());
2763
2764  SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
2765  SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree, *MBFI, *VRAI));
2766
2767  IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
2768  GlobalCand.resize(32);  // This will grow as needed.
2769  SetOfBrokenHints.clear();
2770
2771  allocatePhysRegs();
2772  tryHintsRecoloring();
2773
2774  if (VerifyEnabled)
2775    MF->verify(this, "Before post optimization");
2776  postOptimization();
2777  reportStats();
2778
2779  releaseMemory();
2780  return true;
2781}
2782