1//===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass eliminates machine instruction PHI nodes by inserting copy
10// instructions.  This destroys SSA information, but is the desired input for
11// some register allocators.
12//
13//===----------------------------------------------------------------------===//
14
15#include "PHIEliminationUtils.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/Statistic.h"
19#include "llvm/Analysis/LoopInfo.h"
20#include "llvm/CodeGen/LiveInterval.h"
21#include "llvm/CodeGen/LiveIntervals.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineBasicBlock.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineFunction.h"
26#include "llvm/CodeGen/MachineFunctionPass.h"
27#include "llvm/CodeGen/MachineInstr.h"
28#include "llvm/CodeGen/MachineInstrBuilder.h"
29#include "llvm/CodeGen/MachineLoopInfo.h"
30#include "llvm/CodeGen/MachineOperand.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/SlotIndexes.h"
33#include "llvm/CodeGen/TargetInstrInfo.h"
34#include "llvm/CodeGen/TargetOpcodes.h"
35#include "llvm/CodeGen/TargetRegisterInfo.h"
36#include "llvm/CodeGen/TargetSubtargetInfo.h"
37#include "llvm/Pass.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/raw_ostream.h"
41#include <cassert>
42#include <iterator>
43#include <utility>
44
45using namespace llvm;
46
47#define DEBUG_TYPE "phi-node-elimination"
48
49static cl::opt<bool>
50DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
51                     cl::Hidden, cl::desc("Disable critical edge splitting "
52                                          "during PHI elimination"));
53
54static cl::opt<bool>
55SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
56                      cl::Hidden, cl::desc("Split all critical edges during "
57                                           "PHI elimination"));
58
59static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
60    "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
61    cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
62
63namespace {
64
65  class PHIElimination : public MachineFunctionPass {
66    MachineRegisterInfo *MRI = nullptr; // Machine register information
67    LiveVariables *LV = nullptr;
68    LiveIntervals *LIS = nullptr;
69
70  public:
71    static char ID; // Pass identification, replacement for typeid
72
73    PHIElimination() : MachineFunctionPass(ID) {
74      initializePHIEliminationPass(*PassRegistry::getPassRegistry());
75    }
76
77    bool runOnMachineFunction(MachineFunction &MF) override;
78    void getAnalysisUsage(AnalysisUsage &AU) const override;
79
80  private:
81    /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
82    /// in predecessor basic blocks.
83    bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
84
85    void LowerPHINode(MachineBasicBlock &MBB,
86                      MachineBasicBlock::iterator LastPHIIt);
87
88    /// analyzePHINodes - Gather information about the PHI nodes in
89    /// here. In particular, we want to map the number of uses of a virtual
90    /// register which is used in a PHI node. We map that to the BB the
91    /// vreg is coming from. This is used later to determine when the vreg
92    /// is killed in the BB.
93    void analyzePHINodes(const MachineFunction& MF);
94
95    /// Split critical edges where necessary for good coalescer performance.
96    bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
97                       MachineLoopInfo *MLI,
98                       std::vector<SparseBitVector<>> *LiveInSets);
99
100    // These functions are temporary abstractions around LiveVariables and
101    // LiveIntervals, so they can go away when LiveVariables does.
102    bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
103    bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
104
105    using BBVRegPair = std::pair<unsigned, Register>;
106    using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
107
108    // Count the number of non-undef PHI uses of each register in each BB.
109    VRegPHIUse VRegPHIUseCount;
110
111    // Defs of PHI sources which are implicit_def.
112    SmallPtrSet<MachineInstr*, 4> ImpDefs;
113
114    // Map reusable lowered PHI node -> incoming join register.
115    using LoweredPHIMap =
116        DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
117    LoweredPHIMap LoweredPHIs;
118  };
119
120} // end anonymous namespace
121
122STATISTIC(NumLowered, "Number of phis lowered");
123STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
124STATISTIC(NumReused, "Number of reused lowered phis");
125
126char PHIElimination::ID = 0;
127
128char& llvm::PHIEliminationID = PHIElimination::ID;
129
130INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
131                      "Eliminate PHI nodes for register allocation",
132                      false, false)
133INITIALIZE_PASS_DEPENDENCY(LiveVariables)
134INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
135                    "Eliminate PHI nodes for register allocation", false, false)
136
137void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
138  AU.addUsedIfAvailable<LiveVariables>();
139  AU.addPreserved<LiveVariables>();
140  AU.addPreserved<SlotIndexes>();
141  AU.addPreserved<LiveIntervals>();
142  AU.addPreserved<MachineDominatorTree>();
143  AU.addPreserved<MachineLoopInfo>();
144  MachineFunctionPass::getAnalysisUsage(AU);
145}
146
147bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
148  MRI = &MF.getRegInfo();
149  LV = getAnalysisIfAvailable<LiveVariables>();
150  LIS = getAnalysisIfAvailable<LiveIntervals>();
151
152  bool Changed = false;
153
154  // Split critical edges to help the coalescer.
155  if (!DisableEdgeSplitting && (LV || LIS)) {
156    // A set of live-in regs for each MBB which is used to update LV
157    // efficiently also with large functions.
158    std::vector<SparseBitVector<>> LiveInSets;
159    if (LV) {
160      LiveInSets.resize(MF.size());
161      for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
162        // Set the bit for this register for each MBB where it is
163        // live-through or live-in (killed).
164        Register VirtReg = Register::index2VirtReg(Index);
165        MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
166        if (!DefMI)
167          continue;
168        LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
169        SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
170        SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
171        while (AliveBlockItr != EndItr) {
172          unsigned BlockNum = *(AliveBlockItr++);
173          LiveInSets[BlockNum].set(Index);
174        }
175        // The register is live into an MBB in which it is killed but not
176        // defined. See comment for VarInfo in LiveVariables.h.
177        MachineBasicBlock *DefMBB = DefMI->getParent();
178        if (VI.Kills.size() > 1 ||
179            (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
180          for (auto *MI : VI.Kills)
181            LiveInSets[MI->getParent()->getNumber()].set(Index);
182      }
183    }
184
185    MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
186    for (auto &MBB : MF)
187      Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
188  }
189
190  // This pass takes the function out of SSA form.
191  MRI->leaveSSA();
192
193  // Populate VRegPHIUseCount
194  analyzePHINodes(MF);
195
196  // Eliminate PHI instructions by inserting copies into predecessor blocks.
197  for (auto &MBB : MF)
198    Changed |= EliminatePHINodes(MF, MBB);
199
200  // Remove dead IMPLICIT_DEF instructions.
201  for (MachineInstr *DefMI : ImpDefs) {
202    Register DefReg = DefMI->getOperand(0).getReg();
203    if (MRI->use_nodbg_empty(DefReg)) {
204      if (LIS)
205        LIS->RemoveMachineInstrFromMaps(*DefMI);
206      DefMI->eraseFromParent();
207    }
208  }
209
210  // Clean up the lowered PHI instructions.
211  for (auto &I : LoweredPHIs) {
212    if (LIS)
213      LIS->RemoveMachineInstrFromMaps(*I.first);
214    MF.deleteMachineInstr(I.first);
215  }
216
217  // TODO: we should use the incremental DomTree updater here.
218  if (Changed)
219    if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
220      MDT->getBase().recalculate(MF);
221
222  LoweredPHIs.clear();
223  ImpDefs.clear();
224  VRegPHIUseCount.clear();
225
226  MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
227
228  return Changed;
229}
230
231/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
232/// predecessor basic blocks.
233bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
234                                       MachineBasicBlock &MBB) {
235  if (MBB.empty() || !MBB.front().isPHI())
236    return false;   // Quick exit for basic blocks without PHIs.
237
238  // Get an iterator to the last PHI node.
239  MachineBasicBlock::iterator LastPHIIt =
240    std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
241
242  while (MBB.front().isPHI())
243    LowerPHINode(MBB, LastPHIIt);
244
245  return true;
246}
247
248/// Return true if all defs of VirtReg are implicit-defs.
249/// This includes registers with no defs.
250static bool isImplicitlyDefined(unsigned VirtReg,
251                                const MachineRegisterInfo &MRI) {
252  for (MachineInstr &DI : MRI.def_instructions(VirtReg))
253    if (!DI.isImplicitDef())
254      return false;
255  return true;
256}
257
258/// Return true if all sources of the phi node are implicit_def's, or undef's.
259static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
260                                    const MachineRegisterInfo &MRI) {
261  for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
262    const MachineOperand &MO = MPhi.getOperand(I);
263    if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
264      return false;
265  }
266  return true;
267}
268/// LowerPHINode - Lower the PHI node at the top of the specified block.
269void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
270                                  MachineBasicBlock::iterator LastPHIIt) {
271  ++NumLowered;
272
273  MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
274
275  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
276  MachineInstr *MPhi = MBB.remove(&*MBB.begin());
277
278  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
279  Register DestReg = MPhi->getOperand(0).getReg();
280  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
281  bool isDead = MPhi->getOperand(0).isDead();
282
283  // Create a new register for the incoming PHI arguments.
284  MachineFunction &MF = *MBB.getParent();
285  unsigned IncomingReg = 0;
286  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
287
288  // Insert a register to register copy at the top of the current block (but
289  // after any remaining phi nodes) which copies the new incoming register
290  // into the phi node destination.
291  MachineInstr *PHICopy = nullptr;
292  const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
293  if (allPhiOperandsUndefined(*MPhi, *MRI))
294    // If all sources of a PHI node are implicit_def or undef uses, just emit an
295    // implicit_def instead of a copy.
296    PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
297            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
298  else {
299    // Can we reuse an earlier PHI node? This only happens for critical edges,
300    // typically those created by tail duplication.
301    unsigned &entry = LoweredPHIs[MPhi];
302    if (entry) {
303      // An identical PHI node was already lowered. Reuse the incoming register.
304      IncomingReg = entry;
305      reusedIncoming = true;
306      ++NumReused;
307      LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
308                        << *MPhi);
309    } else {
310      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
311      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
312    }
313    // Give the target possiblity to handle special cases fallthrough otherwise
314    PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
315                                  IncomingReg, DestReg);
316  }
317
318  if (MPhi->peekDebugInstrNum()) {
319    // If referred to by debug-info, store where this PHI was.
320    MachineFunction *MF = MBB.getParent();
321    unsigned ID = MPhi->peekDebugInstrNum();
322    auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0);
323    auto Res = MF->DebugPHIPositions.insert({ID, P});
324    assert(Res.second);
325    (void)Res;
326  }
327
328  // Update live variable information if there is any.
329  if (LV) {
330    if (IncomingReg) {
331      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
332
333      MachineInstr *OldKill = nullptr;
334      bool IsPHICopyAfterOldKill = false;
335
336      if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
337        // Calculate whether the PHICopy is after the OldKill.
338        // In general, the PHICopy is inserted as the first non-phi instruction
339        // by default, so it's before the OldKill. But some Target hooks for
340        // createPHIDestinationCopy() may modify the default insert position of
341        // PHICopy.
342        for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
343             I != E; ++I) {
344          if (I == PHICopy)
345            break;
346
347          if (I == OldKill) {
348            IsPHICopyAfterOldKill = true;
349            break;
350          }
351        }
352      }
353
354      // When we are reusing the incoming register and it has been marked killed
355      // by OldKill, if the PHICopy is after the OldKill, we should remove the
356      // killed flag from OldKill.
357      if (IsPHICopyAfterOldKill) {
358        LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
359        LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
360        LLVM_DEBUG(MBB.dump());
361      }
362
363      // Add information to LiveVariables to know that the first used incoming
364      // value or the resued incoming value whose PHICopy is after the OldKIll
365      // is killed. Note that because the value is defined in several places
366      // (once each for each incoming block), the "def" block and instruction
367      // fields for the VarInfo is not filled in.
368      if (!OldKill || IsPHICopyAfterOldKill)
369        LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
370    }
371
372    // Since we are going to be deleting the PHI node, if it is the last use of
373    // any registers, or if the value itself is dead, we need to move this
374    // information over to the new copy we just inserted.
375    LV->removeVirtualRegistersKilled(*MPhi);
376
377    // If the result is dead, update LV.
378    if (isDead) {
379      LV->addVirtualRegisterDead(DestReg, *PHICopy);
380      LV->removeVirtualRegisterDead(DestReg, *MPhi);
381    }
382  }
383
384  // Update LiveIntervals for the new copy or implicit def.
385  if (LIS) {
386    SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
387
388    SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
389    if (IncomingReg) {
390      // Add the region from the beginning of MBB to the copy instruction to
391      // IncomingReg's live interval.
392      LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(IncomingReg);
393      VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
394      if (!IncomingVNI)
395        IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
396                                              LIS->getVNInfoAllocator());
397      IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
398                                                  DestCopyIndex.getRegSlot(),
399                                                  IncomingVNI));
400    }
401
402    LiveInterval &DestLI = LIS->getInterval(DestReg);
403    assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals.");
404
405    SlotIndex NewStart = DestCopyIndex.getRegSlot();
406
407    SmallVector<LiveRange *> ToUpdate({&DestLI});
408    for (auto &SR : DestLI.subranges())
409      ToUpdate.push_back(&SR);
410
411    for (auto LR : ToUpdate) {
412      auto DestSegment = LR->find(MBBStartIndex);
413      assert(DestSegment != LR->end() &&
414             "PHI destination must be live in block");
415
416      if (LR->endIndex().isDead()) {
417        // A dead PHI's live range begins and ends at the start of the MBB, but
418        // the lowered copy, which will still be dead, needs to begin and end at
419        // the copy instruction.
420        VNInfo *OrigDestVNI = LR->getVNInfoAt(DestSegment->start);
421        assert(OrigDestVNI && "PHI destination should be live at block entry.");
422        LR->removeSegment(DestSegment->start, DestSegment->start.getDeadSlot());
423        LR->createDeadDef(NewStart, LIS->getVNInfoAllocator());
424        LR->removeValNo(OrigDestVNI);
425        continue;
426      }
427
428      // Destination copies are not inserted in the same order as the PHI nodes
429      // they replace. Hence the start of the live range may need to be adjusted
430      // to match the actual slot index of the copy.
431      if (DestSegment->start > NewStart) {
432        VNInfo *VNI = LR->getVNInfoAt(DestSegment->start);
433        assert(VNI && "value should be defined for known segment");
434        LR->addSegment(
435            LiveInterval::Segment(NewStart, DestSegment->start, VNI));
436      } else if (DestSegment->start < NewStart) {
437        assert(DestSegment->start >= MBBStartIndex);
438        assert(DestSegment->end >= DestCopyIndex.getRegSlot());
439        LR->removeSegment(DestSegment->start, NewStart);
440      }
441      VNInfo *DestVNI = LR->getVNInfoAt(NewStart);
442      assert(DestVNI && "PHI destination should be live at its definition.");
443      DestVNI->def = NewStart;
444    }
445  }
446
447  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
448  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
449    if (!MPhi->getOperand(i).isUndef()) {
450      --VRegPHIUseCount[BBVRegPair(
451          MPhi->getOperand(i + 1).getMBB()->getNumber(),
452          MPhi->getOperand(i).getReg())];
453    }
454  }
455
456  // Now loop over all of the incoming arguments, changing them to copy into the
457  // IncomingReg register in the corresponding predecessor basic block.
458  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
459  for (int i = NumSrcs - 1; i >= 0; --i) {
460    Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
461    unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
462    bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
463      isImplicitlyDefined(SrcReg, *MRI);
464    assert(SrcReg.isVirtual() &&
465           "Machine PHI Operands must all be virtual registers!");
466
467    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
468    // path the PHI.
469    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
470
471    // Check to make sure we haven't already emitted the copy for this block.
472    // This can happen because PHI nodes may have multiple entries for the same
473    // basic block.
474    if (!MBBsInsertedInto.insert(&opBlock).second)
475      continue;  // If the copy has already been emitted, we're done.
476
477    MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
478    if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
479      assert(SrcRegDef->getOperand(0).isReg() &&
480             SrcRegDef->getOperand(0).isDef() &&
481             "Expected operand 0 to be a reg def!");
482      // Now that the PHI's use has been removed (as the instruction was
483      // removed) there should be no other uses of the SrcReg.
484      assert(MRI->use_empty(SrcReg) &&
485             "Expected a single use from UnspillableTerminator");
486      SrcRegDef->getOperand(0).setReg(IncomingReg);
487
488      // Update LiveVariables.
489      if (LV) {
490        LiveVariables::VarInfo &SrcVI = LV->getVarInfo(SrcReg);
491        LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(IncomingReg);
492        IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks);
493        SrcVI.AliveBlocks.clear();
494      }
495
496      continue;
497    }
498
499    // Find a safe location to insert the copy, this may be the first terminator
500    // in the block (or end()).
501    MachineBasicBlock::iterator InsertPos =
502      findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
503
504    // Insert the copy.
505    MachineInstr *NewSrcInstr = nullptr;
506    if (!reusedIncoming && IncomingReg) {
507      if (SrcUndef) {
508        // The source register is undefined, so there is no need for a real
509        // COPY, but we still need to ensure joint dominance by defs.
510        // Insert an IMPLICIT_DEF instruction.
511        NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
512                              TII->get(TargetOpcode::IMPLICIT_DEF),
513                              IncomingReg);
514
515        // Clean up the old implicit-def, if there even was one.
516        if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
517          if (DefMI->isImplicitDef())
518            ImpDefs.insert(DefMI);
519      } else {
520        // Delete the debug location, since the copy is inserted into a
521        // different basic block.
522        NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr,
523                                               SrcReg, SrcSubReg, IncomingReg);
524      }
525    }
526
527    // We only need to update the LiveVariables kill of SrcReg if this was the
528    // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
529    // out of the predecessor. We can also ignore undef sources.
530    if (LV && !SrcUndef &&
531        !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
532        !LV->isLiveOut(SrcReg, opBlock)) {
533      // We want to be able to insert a kill of the register if this PHI (aka,
534      // the copy we just inserted) is the last use of the source value. Live
535      // variable analysis conservatively handles this by saying that the value
536      // is live until the end of the block the PHI entry lives in. If the value
537      // really is dead at the PHI copy, there will be no successor blocks which
538      // have the value live-in.
539
540      // Okay, if we now know that the value is not live out of the block, we
541      // can add a kill marker in this block saying that it kills the incoming
542      // value!
543
544      // In our final twist, we have to decide which instruction kills the
545      // register.  In most cases this is the copy, however, terminator
546      // instructions at the end of the block may also use the value. In this
547      // case, we should mark the last such terminator as being the killing
548      // block, not the copy.
549      MachineBasicBlock::iterator KillInst = opBlock.end();
550      for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end();
551           ++Term) {
552        if (Term->readsRegister(SrcReg))
553          KillInst = Term;
554      }
555
556      if (KillInst == opBlock.end()) {
557        // No terminator uses the register.
558
559        if (reusedIncoming || !IncomingReg) {
560          // We may have to rewind a bit if we didn't insert a copy this time.
561          KillInst = InsertPos;
562          while (KillInst != opBlock.begin()) {
563            --KillInst;
564            if (KillInst->isDebugInstr())
565              continue;
566            if (KillInst->readsRegister(SrcReg))
567              break;
568          }
569        } else {
570          // We just inserted this copy.
571          KillInst = NewSrcInstr;
572        }
573      }
574      assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
575
576      // Finally, mark it killed.
577      LV->addVirtualRegisterKilled(SrcReg, *KillInst);
578
579      // This vreg no longer lives all of the way through opBlock.
580      unsigned opBlockNum = opBlock.getNumber();
581      LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
582    }
583
584    if (LIS) {
585      if (NewSrcInstr) {
586        LIS->InsertMachineInstrInMaps(*NewSrcInstr);
587        LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
588      }
589
590      if (!SrcUndef &&
591          !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
592        LiveInterval &SrcLI = LIS->getInterval(SrcReg);
593
594        bool isLiveOut = false;
595        for (MachineBasicBlock *Succ : opBlock.successors()) {
596          SlotIndex startIdx = LIS->getMBBStartIdx(Succ);
597          VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
598
599          // Definitions by other PHIs are not truly live-in for our purposes.
600          if (VNI && VNI->def != startIdx) {
601            isLiveOut = true;
602            break;
603          }
604        }
605
606        if (!isLiveOut) {
607          MachineBasicBlock::iterator KillInst = opBlock.end();
608          for (MachineBasicBlock::iterator Term = InsertPos;
609               Term != opBlock.end(); ++Term) {
610            if (Term->readsRegister(SrcReg))
611              KillInst = Term;
612          }
613
614          if (KillInst == opBlock.end()) {
615            // No terminator uses the register.
616
617            if (reusedIncoming || !IncomingReg) {
618              // We may have to rewind a bit if we didn't just insert a copy.
619              KillInst = InsertPos;
620              while (KillInst != opBlock.begin()) {
621                --KillInst;
622                if (KillInst->isDebugInstr())
623                  continue;
624                if (KillInst->readsRegister(SrcReg))
625                  break;
626              }
627            } else {
628              // We just inserted this copy.
629              KillInst = std::prev(InsertPos);
630            }
631          }
632          assert(KillInst->readsRegister(SrcReg) &&
633                 "Cannot find kill instruction");
634
635          SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
636          SrcLI.removeSegment(LastUseIndex.getRegSlot(),
637                              LIS->getMBBEndIdx(&opBlock));
638          for (auto &SR : SrcLI.subranges()) {
639            SR.removeSegment(LastUseIndex.getRegSlot(),
640                             LIS->getMBBEndIdx(&opBlock));
641          }
642        }
643      }
644    }
645  }
646
647  // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
648  if (reusedIncoming || !IncomingReg) {
649    if (LIS)
650      LIS->RemoveMachineInstrFromMaps(*MPhi);
651    MF.deleteMachineInstr(MPhi);
652  }
653}
654
655/// analyzePHINodes - Gather information about the PHI nodes in here. In
656/// particular, we want to map the number of uses of a virtual register which is
657/// used in a PHI node. We map that to the BB the vreg is coming from. This is
658/// used later to determine when the vreg is killed in the BB.
659void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
660  for (const auto &MBB : MF) {
661    for (const auto &BBI : MBB) {
662      if (!BBI.isPHI())
663        break;
664      for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) {
665        if (!BBI.getOperand(i).isUndef()) {
666          ++VRegPHIUseCount[BBVRegPair(
667              BBI.getOperand(i + 1).getMBB()->getNumber(),
668              BBI.getOperand(i).getReg())];
669        }
670      }
671    }
672  }
673}
674
675bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
676                                   MachineBasicBlock &MBB,
677                                   MachineLoopInfo *MLI,
678                                   std::vector<SparseBitVector<>> *LiveInSets) {
679  if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
680    return false;   // Quick exit for basic blocks without PHIs.
681
682  const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
683  bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
684
685  bool Changed = false;
686  for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
687       BBI != BBE && BBI->isPHI(); ++BBI) {
688    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
689      Register Reg = BBI->getOperand(i).getReg();
690      MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
691      // Is there a critical edge from PreMBB to MBB?
692      if (PreMBB->succ_size() == 1)
693        continue;
694
695      // Avoid splitting backedges of loops. It would introduce small
696      // out-of-line blocks into the loop which is very bad for code placement.
697      if (PreMBB == &MBB && !SplitAllCriticalEdges)
698        continue;
699      const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
700      if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
701        continue;
702
703      // LV doesn't consider a phi use live-out, so isLiveOut only returns true
704      // when the source register is live-out for some other reason than a phi
705      // use. That means the copy we will insert in PreMBB won't be a kill, and
706      // there is a risk it may not be coalesced away.
707      //
708      // If the copy would be a kill, there is no need to split the edge.
709      bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
710      if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
711        continue;
712      if (ShouldSplit) {
713        LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
714                          << printMBBReference(*PreMBB) << " -> "
715                          << printMBBReference(MBB) << ": " << *BBI);
716      }
717
718      // If Reg is not live-in to MBB, it means it must be live-in to some
719      // other PreMBB successor, and we can avoid the interference by splitting
720      // the edge.
721      //
722      // If Reg *is* live-in to MBB, the interference is inevitable and a copy
723      // is likely to be left after coalescing. If we are looking at a loop
724      // exiting edge, split it so we won't insert code in the loop, otherwise
725      // don't bother.
726      ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
727
728      // Check for a loop exiting edge.
729      if (!ShouldSplit && CurLoop != PreLoop) {
730        LLVM_DEBUG({
731          dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
732          if (PreLoop)
733            dbgs() << "PreLoop: " << *PreLoop;
734          if (CurLoop)
735            dbgs() << "CurLoop: " << *CurLoop;
736        });
737        // This edge could be entering a loop, exiting a loop, or it could be
738        // both: Jumping directly form one loop to the header of a sibling
739        // loop.
740        // Split unless this edge is entering CurLoop from an outer loop.
741        ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
742      }
743      if (!ShouldSplit && !SplitAllCriticalEdges)
744        continue;
745      if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
746        LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
747        continue;
748      }
749      Changed = true;
750      ++NumCriticalEdgesSplit;
751    }
752  }
753  return Changed;
754}
755
756bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
757  assert((LV || LIS) &&
758         "isLiveIn() requires either LiveVariables or LiveIntervals");
759  if (LIS)
760    return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
761  else
762    return LV->isLiveIn(Reg, *MBB);
763}
764
765bool PHIElimination::isLiveOutPastPHIs(Register Reg,
766                                       const MachineBasicBlock *MBB) {
767  assert((LV || LIS) &&
768         "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
769  // LiveVariables considers uses in PHIs to be in the predecessor basic block,
770  // so that a register used only in a PHI is not live out of the block. In
771  // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
772  // in the predecessor basic block, so that a register used only in a PHI is live
773  // out of the block.
774  if (LIS) {
775    const LiveInterval &LI = LIS->getInterval(Reg);
776    for (const MachineBasicBlock *SI : MBB->successors())
777      if (LI.liveAt(LIS->getMBBStartIdx(SI)))
778        return true;
779    return false;
780  } else {
781    return LV->isLiveOut(Reg, *MBB);
782  }
783}
784