1//===- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator ---*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This file implements the IRTranslator class.
10//===----------------------------------------------------------------------===//
11
12#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
13#include "llvm/ADT/PostOrderIterator.h"
14#include "llvm/ADT/STLExtras.h"
15#include "llvm/ADT/ScopeExit.h"
16#include "llvm/ADT/SmallSet.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Analysis/AssumptionCache.h"
20#include "llvm/Analysis/BranchProbabilityInfo.h"
21#include "llvm/Analysis/Loads.h"
22#include "llvm/Analysis/OptimizationRemarkEmitter.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/GlobalISel/CSEInfo.h"
26#include "llvm/CodeGen/GlobalISel/CSEMIRBuilder.h"
27#include "llvm/CodeGen/GlobalISel/CallLowering.h"
28#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
29#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
30#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
31#include "llvm/CodeGen/LowLevelType.h"
32#include "llvm/CodeGen/LowLevelTypeUtils.h"
33#include "llvm/CodeGen/MachineBasicBlock.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineFunction.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineMemOperand.h"
38#include "llvm/CodeGen/MachineModuleInfo.h"
39#include "llvm/CodeGen/MachineOperand.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/RuntimeLibcalls.h"
42#include "llvm/CodeGen/StackProtector.h"
43#include "llvm/CodeGen/SwitchLoweringUtils.h"
44#include "llvm/CodeGen/TargetFrameLowering.h"
45#include "llvm/CodeGen/TargetInstrInfo.h"
46#include "llvm/CodeGen/TargetLowering.h"
47#include "llvm/CodeGen/TargetOpcodes.h"
48#include "llvm/CodeGen/TargetPassConfig.h"
49#include "llvm/CodeGen/TargetRegisterInfo.h"
50#include "llvm/CodeGen/TargetSubtargetInfo.h"
51#include "llvm/IR/BasicBlock.h"
52#include "llvm/IR/CFG.h"
53#include "llvm/IR/Constant.h"
54#include "llvm/IR/Constants.h"
55#include "llvm/IR/DataLayout.h"
56#include "llvm/IR/DerivedTypes.h"
57#include "llvm/IR/DiagnosticInfo.h"
58#include "llvm/IR/Function.h"
59#include "llvm/IR/GetElementPtrTypeIterator.h"
60#include "llvm/IR/InlineAsm.h"
61#include "llvm/IR/InstrTypes.h"
62#include "llvm/IR/Instructions.h"
63#include "llvm/IR/IntrinsicInst.h"
64#include "llvm/IR/Intrinsics.h"
65#include "llvm/IR/IntrinsicsAMDGPU.h"
66#include "llvm/IR/LLVMContext.h"
67#include "llvm/IR/Metadata.h"
68#include "llvm/IR/PatternMatch.h"
69#include "llvm/IR/Statepoint.h"
70#include "llvm/IR/Type.h"
71#include "llvm/IR/User.h"
72#include "llvm/IR/Value.h"
73#include "llvm/InitializePasses.h"
74#include "llvm/MC/MCContext.h"
75#include "llvm/Pass.h"
76#include "llvm/Support/Casting.h"
77#include "llvm/Support/CodeGen.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/MathExtras.h"
81#include "llvm/Support/raw_ostream.h"
82#include "llvm/Target/TargetIntrinsicInfo.h"
83#include "llvm/Target/TargetMachine.h"
84#include "llvm/Transforms/Utils/Local.h"
85#include "llvm/Transforms/Utils/MemoryOpRemark.h"
86#include <algorithm>
87#include <cassert>
88#include <cstdint>
89#include <iterator>
90#include <optional>
91#include <string>
92#include <utility>
93#include <vector>
94
95#define DEBUG_TYPE "irtranslator"
96
97using namespace llvm;
98
99static cl::opt<bool>
100    EnableCSEInIRTranslator("enable-cse-in-irtranslator",
101                            cl::desc("Should enable CSE in irtranslator"),
102                            cl::Optional, cl::init(false));
103char IRTranslator::ID = 0;
104
105INITIALIZE_PASS_BEGIN(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
106                false, false)
107INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
108INITIALIZE_PASS_DEPENDENCY(GISelCSEAnalysisWrapperPass)
109INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
110INITIALIZE_PASS_DEPENDENCY(StackProtector)
111INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
112INITIALIZE_PASS_END(IRTranslator, DEBUG_TYPE, "IRTranslator LLVM IR -> MI",
113                false, false)
114
115static void reportTranslationError(MachineFunction &MF,
116                                   const TargetPassConfig &TPC,
117                                   OptimizationRemarkEmitter &ORE,
118                                   OptimizationRemarkMissed &R) {
119  MF.getProperties().set(MachineFunctionProperties::Property::FailedISel);
120
121  // Print the function name explicitly if we don't have a debug location (which
122  // makes the diagnostic less useful) or if we're going to emit a raw error.
123  if (!R.getLocation().isValid() || TPC.isGlobalISelAbortEnabled())
124    R << (" (in function: " + MF.getName() + ")").str();
125
126  if (TPC.isGlobalISelAbortEnabled())
127    report_fatal_error(Twine(R.getMsg()));
128  else
129    ORE.emit(R);
130}
131
132IRTranslator::IRTranslator(CodeGenOptLevel optlevel)
133    : MachineFunctionPass(ID), OptLevel(optlevel) {}
134
135#ifndef NDEBUG
136namespace {
137/// Verify that every instruction created has the same DILocation as the
138/// instruction being translated.
139class DILocationVerifier : public GISelChangeObserver {
140  const Instruction *CurrInst = nullptr;
141
142public:
143  DILocationVerifier() = default;
144  ~DILocationVerifier() = default;
145
146  const Instruction *getCurrentInst() const { return CurrInst; }
147  void setCurrentInst(const Instruction *Inst) { CurrInst = Inst; }
148
149  void erasingInstr(MachineInstr &MI) override {}
150  void changingInstr(MachineInstr &MI) override {}
151  void changedInstr(MachineInstr &MI) override {}
152
153  void createdInstr(MachineInstr &MI) override {
154    assert(getCurrentInst() && "Inserted instruction without a current MI");
155
156    // Only print the check message if we're actually checking it.
157#ifndef NDEBUG
158    LLVM_DEBUG(dbgs() << "Checking DILocation from " << *CurrInst
159                      << " was copied to " << MI);
160#endif
161    // We allow insts in the entry block to have no debug loc because
162    // they could have originated from constants, and we don't want a jumpy
163    // debug experience.
164    assert((CurrInst->getDebugLoc() == MI.getDebugLoc() ||
165            (MI.getParent()->isEntryBlock() && !MI.getDebugLoc()) ||
166            (MI.isDebugInstr())) &&
167           "Line info was not transferred to all instructions");
168  }
169};
170} // namespace
171#endif // ifndef NDEBUG
172
173
174void IRTranslator::getAnalysisUsage(AnalysisUsage &AU) const {
175  AU.addRequired<StackProtector>();
176  AU.addRequired<TargetPassConfig>();
177  AU.addRequired<GISelCSEAnalysisWrapperPass>();
178  AU.addRequired<AssumptionCacheTracker>();
179  if (OptLevel != CodeGenOptLevel::None) {
180    AU.addRequired<BranchProbabilityInfoWrapperPass>();
181    AU.addRequired<AAResultsWrapperPass>();
182  }
183  AU.addRequired<TargetLibraryInfoWrapperPass>();
184  AU.addPreserved<TargetLibraryInfoWrapperPass>();
185  getSelectionDAGFallbackAnalysisUsage(AU);
186  MachineFunctionPass::getAnalysisUsage(AU);
187}
188
189IRTranslator::ValueToVRegInfo::VRegListT &
190IRTranslator::allocateVRegs(const Value &Val) {
191  auto VRegsIt = VMap.findVRegs(Val);
192  if (VRegsIt != VMap.vregs_end())
193    return *VRegsIt->second;
194  auto *Regs = VMap.getVRegs(Val);
195  auto *Offsets = VMap.getOffsets(Val);
196  SmallVector<LLT, 4> SplitTys;
197  computeValueLLTs(*DL, *Val.getType(), SplitTys,
198                   Offsets->empty() ? Offsets : nullptr);
199  for (unsigned i = 0; i < SplitTys.size(); ++i)
200    Regs->push_back(0);
201  return *Regs;
202}
203
204ArrayRef<Register> IRTranslator::getOrCreateVRegs(const Value &Val) {
205  auto VRegsIt = VMap.findVRegs(Val);
206  if (VRegsIt != VMap.vregs_end())
207    return *VRegsIt->second;
208
209  if (Val.getType()->isVoidTy())
210    return *VMap.getVRegs(Val);
211
212  // Create entry for this type.
213  auto *VRegs = VMap.getVRegs(Val);
214  auto *Offsets = VMap.getOffsets(Val);
215
216  assert(Val.getType()->isSized() &&
217         "Don't know how to create an empty vreg");
218
219  SmallVector<LLT, 4> SplitTys;
220  computeValueLLTs(*DL, *Val.getType(), SplitTys,
221                   Offsets->empty() ? Offsets : nullptr);
222
223  if (!isa<Constant>(Val)) {
224    for (auto Ty : SplitTys)
225      VRegs->push_back(MRI->createGenericVirtualRegister(Ty));
226    return *VRegs;
227  }
228
229  if (Val.getType()->isAggregateType()) {
230    // UndefValue, ConstantAggregateZero
231    auto &C = cast<Constant>(Val);
232    unsigned Idx = 0;
233    while (auto Elt = C.getAggregateElement(Idx++)) {
234      auto EltRegs = getOrCreateVRegs(*Elt);
235      llvm::copy(EltRegs, std::back_inserter(*VRegs));
236    }
237  } else {
238    assert(SplitTys.size() == 1 && "unexpectedly split LLT");
239    VRegs->push_back(MRI->createGenericVirtualRegister(SplitTys[0]));
240    bool Success = translate(cast<Constant>(Val), VRegs->front());
241    if (!Success) {
242      OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
243                                 MF->getFunction().getSubprogram(),
244                                 &MF->getFunction().getEntryBlock());
245      R << "unable to translate constant: " << ore::NV("Type", Val.getType());
246      reportTranslationError(*MF, *TPC, *ORE, R);
247      return *VRegs;
248    }
249  }
250
251  return *VRegs;
252}
253
254int IRTranslator::getOrCreateFrameIndex(const AllocaInst &AI) {
255  auto MapEntry = FrameIndices.find(&AI);
256  if (MapEntry != FrameIndices.end())
257    return MapEntry->second;
258
259  uint64_t ElementSize = DL->getTypeAllocSize(AI.getAllocatedType());
260  uint64_t Size =
261      ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
262
263  // Always allocate at least one byte.
264  Size = std::max<uint64_t>(Size, 1u);
265
266  int &FI = FrameIndices[&AI];
267  FI = MF->getFrameInfo().CreateStackObject(Size, AI.getAlign(), false, &AI);
268  return FI;
269}
270
271Align IRTranslator::getMemOpAlign(const Instruction &I) {
272  if (const StoreInst *SI = dyn_cast<StoreInst>(&I))
273    return SI->getAlign();
274  if (const LoadInst *LI = dyn_cast<LoadInst>(&I))
275    return LI->getAlign();
276  if (const AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I))
277    return AI->getAlign();
278  if (const AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I))
279    return AI->getAlign();
280
281  OptimizationRemarkMissed R("gisel-irtranslator", "", &I);
282  R << "unable to translate memop: " << ore::NV("Opcode", &I);
283  reportTranslationError(*MF, *TPC, *ORE, R);
284  return Align(1);
285}
286
287MachineBasicBlock &IRTranslator::getMBB(const BasicBlock &BB) {
288  MachineBasicBlock *&MBB = BBToMBB[&BB];
289  assert(MBB && "BasicBlock was not encountered before");
290  return *MBB;
291}
292
293void IRTranslator::addMachineCFGPred(CFGEdge Edge, MachineBasicBlock *NewPred) {
294  assert(NewPred && "new predecessor must be a real MachineBasicBlock");
295  MachinePreds[Edge].push_back(NewPred);
296}
297
298bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U,
299                                     MachineIRBuilder &MIRBuilder) {
300  // Get or create a virtual register for each value.
301  // Unless the value is a Constant => loadimm cst?
302  // or inline constant each time?
303  // Creation of a virtual register needs to have a size.
304  Register Op0 = getOrCreateVReg(*U.getOperand(0));
305  Register Op1 = getOrCreateVReg(*U.getOperand(1));
306  Register Res = getOrCreateVReg(U);
307  uint32_t Flags = 0;
308  if (isa<Instruction>(U)) {
309    const Instruction &I = cast<Instruction>(U);
310    Flags = MachineInstr::copyFlagsFromInstruction(I);
311  }
312
313  MIRBuilder.buildInstr(Opcode, {Res}, {Op0, Op1}, Flags);
314  return true;
315}
316
317bool IRTranslator::translateUnaryOp(unsigned Opcode, const User &U,
318                                    MachineIRBuilder &MIRBuilder) {
319  Register Op0 = getOrCreateVReg(*U.getOperand(0));
320  Register Res = getOrCreateVReg(U);
321  uint32_t Flags = 0;
322  if (isa<Instruction>(U)) {
323    const Instruction &I = cast<Instruction>(U);
324    Flags = MachineInstr::copyFlagsFromInstruction(I);
325  }
326  MIRBuilder.buildInstr(Opcode, {Res}, {Op0}, Flags);
327  return true;
328}
329
330bool IRTranslator::translateFNeg(const User &U, MachineIRBuilder &MIRBuilder) {
331  return translateUnaryOp(TargetOpcode::G_FNEG, U, MIRBuilder);
332}
333
334bool IRTranslator::translateCompare(const User &U,
335                                    MachineIRBuilder &MIRBuilder) {
336  auto *CI = dyn_cast<CmpInst>(&U);
337  Register Op0 = getOrCreateVReg(*U.getOperand(0));
338  Register Op1 = getOrCreateVReg(*U.getOperand(1));
339  Register Res = getOrCreateVReg(U);
340  CmpInst::Predicate Pred =
341      CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
342                                    cast<ConstantExpr>(U).getPredicate());
343  if (CmpInst::isIntPredicate(Pred))
344    MIRBuilder.buildICmp(Pred, Res, Op0, Op1);
345  else if (Pred == CmpInst::FCMP_FALSE)
346    MIRBuilder.buildCopy(
347        Res, getOrCreateVReg(*Constant::getNullValue(U.getType())));
348  else if (Pred == CmpInst::FCMP_TRUE)
349    MIRBuilder.buildCopy(
350        Res, getOrCreateVReg(*Constant::getAllOnesValue(U.getType())));
351  else {
352    uint32_t Flags = 0;
353    if (CI)
354      Flags = MachineInstr::copyFlagsFromInstruction(*CI);
355    MIRBuilder.buildFCmp(Pred, Res, Op0, Op1, Flags);
356  }
357
358  return true;
359}
360
361bool IRTranslator::translateRet(const User &U, MachineIRBuilder &MIRBuilder) {
362  const ReturnInst &RI = cast<ReturnInst>(U);
363  const Value *Ret = RI.getReturnValue();
364  if (Ret && DL->getTypeStoreSize(Ret->getType()).isZero())
365    Ret = nullptr;
366
367  ArrayRef<Register> VRegs;
368  if (Ret)
369    VRegs = getOrCreateVRegs(*Ret);
370
371  Register SwiftErrorVReg = 0;
372  if (CLI->supportSwiftError() && SwiftError.getFunctionArg()) {
373    SwiftErrorVReg = SwiftError.getOrCreateVRegUseAt(
374        &RI, &MIRBuilder.getMBB(), SwiftError.getFunctionArg());
375  }
376
377  // The target may mess up with the insertion point, but
378  // this is not important as a return is the last instruction
379  // of the block anyway.
380  return CLI->lowerReturn(MIRBuilder, Ret, VRegs, FuncInfo, SwiftErrorVReg);
381}
382
383void IRTranslator::emitBranchForMergedCondition(
384    const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
385    MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
386    BranchProbability TProb, BranchProbability FProb, bool InvertCond) {
387  // If the leaf of the tree is a comparison, merge the condition into
388  // the caseblock.
389  if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
390    CmpInst::Predicate Condition;
391    if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
392      Condition = InvertCond ? IC->getInversePredicate() : IC->getPredicate();
393    } else {
394      const FCmpInst *FC = cast<FCmpInst>(Cond);
395      Condition = InvertCond ? FC->getInversePredicate() : FC->getPredicate();
396    }
397
398    SwitchCG::CaseBlock CB(Condition, false, BOp->getOperand(0),
399                           BOp->getOperand(1), nullptr, TBB, FBB, CurBB,
400                           CurBuilder->getDebugLoc(), TProb, FProb);
401    SL->SwitchCases.push_back(CB);
402    return;
403  }
404
405  // Create a CaseBlock record representing this branch.
406  CmpInst::Predicate Pred = InvertCond ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
407  SwitchCG::CaseBlock CB(
408      Pred, false, Cond, ConstantInt::getTrue(MF->getFunction().getContext()),
409      nullptr, TBB, FBB, CurBB, CurBuilder->getDebugLoc(), TProb, FProb);
410  SL->SwitchCases.push_back(CB);
411}
412
413static bool isValInBlock(const Value *V, const BasicBlock *BB) {
414  if (const Instruction *I = dyn_cast<Instruction>(V))
415    return I->getParent() == BB;
416  return true;
417}
418
419void IRTranslator::findMergedConditions(
420    const Value *Cond, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
421    MachineBasicBlock *CurBB, MachineBasicBlock *SwitchBB,
422    Instruction::BinaryOps Opc, BranchProbability TProb,
423    BranchProbability FProb, bool InvertCond) {
424  using namespace PatternMatch;
425  assert((Opc == Instruction::And || Opc == Instruction::Or) &&
426         "Expected Opc to be AND/OR");
427  // Skip over not part of the tree and remember to invert op and operands at
428  // next level.
429  Value *NotCond;
430  if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
431      isValInBlock(NotCond, CurBB->getBasicBlock())) {
432    findMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
433                         !InvertCond);
434    return;
435  }
436
437  const Instruction *BOp = dyn_cast<Instruction>(Cond);
438  const Value *BOpOp0, *BOpOp1;
439  // Compute the effective opcode for Cond, taking into account whether it needs
440  // to be inverted, e.g.
441  //   and (not (or A, B)), C
442  // gets lowered as
443  //   and (and (not A, not B), C)
444  Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
445  if (BOp) {
446    BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
447               ? Instruction::And
448               : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
449                      ? Instruction::Or
450                      : (Instruction::BinaryOps)0);
451    if (InvertCond) {
452      if (BOpc == Instruction::And)
453        BOpc = Instruction::Or;
454      else if (BOpc == Instruction::Or)
455        BOpc = Instruction::And;
456    }
457  }
458
459  // If this node is not part of the or/and tree, emit it as a branch.
460  // Note that all nodes in the tree should have same opcode.
461  bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
462  if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
463      !isValInBlock(BOpOp0, CurBB->getBasicBlock()) ||
464      !isValInBlock(BOpOp1, CurBB->getBasicBlock())) {
465    emitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, TProb, FProb,
466                                 InvertCond);
467    return;
468  }
469
470  //  Create TmpBB after CurBB.
471  MachineFunction::iterator BBI(CurBB);
472  MachineBasicBlock *TmpBB =
473      MF->CreateMachineBasicBlock(CurBB->getBasicBlock());
474  CurBB->getParent()->insert(++BBI, TmpBB);
475
476  if (Opc == Instruction::Or) {
477    // Codegen X | Y as:
478    // BB1:
479    //   jmp_if_X TBB
480    //   jmp TmpBB
481    // TmpBB:
482    //   jmp_if_Y TBB
483    //   jmp FBB
484    //
485
486    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
487    // The requirement is that
488    //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
489    //     = TrueProb for original BB.
490    // Assuming the original probabilities are A and B, one choice is to set
491    // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
492    // A/(1+B) and 2B/(1+B). This choice assumes that
493    //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
494    // Another choice is to assume TrueProb for BB1 equals to TrueProb for
495    // TmpBB, but the math is more complicated.
496
497    auto NewTrueProb = TProb / 2;
498    auto NewFalseProb = TProb / 2 + FProb;
499    // Emit the LHS condition.
500    findMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
501                         NewFalseProb, InvertCond);
502
503    // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
504    SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
505    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
506    // Emit the RHS condition into TmpBB.
507    findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
508                         Probs[1], InvertCond);
509  } else {
510    assert(Opc == Instruction::And && "Unknown merge op!");
511    // Codegen X & Y as:
512    // BB1:
513    //   jmp_if_X TmpBB
514    //   jmp FBB
515    // TmpBB:
516    //   jmp_if_Y TBB
517    //   jmp FBB
518    //
519    //  This requires creation of TmpBB after CurBB.
520
521    // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
522    // The requirement is that
523    //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
524    //     = FalseProb for original BB.
525    // Assuming the original probabilities are A and B, one choice is to set
526    // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
527    // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
528    // TrueProb for BB1 * FalseProb for TmpBB.
529
530    auto NewTrueProb = TProb + FProb / 2;
531    auto NewFalseProb = FProb / 2;
532    // Emit the LHS condition.
533    findMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
534                         NewFalseProb, InvertCond);
535
536    // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
537    SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
538    BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
539    // Emit the RHS condition into TmpBB.
540    findMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
541                         Probs[1], InvertCond);
542  }
543}
544
545bool IRTranslator::shouldEmitAsBranches(
546    const std::vector<SwitchCG::CaseBlock> &Cases) {
547  // For multiple cases, it's better to emit as branches.
548  if (Cases.size() != 2)
549    return true;
550
551  // If this is two comparisons of the same values or'd or and'd together, they
552  // will get folded into a single comparison, so don't emit two blocks.
553  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
554       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
555      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
556       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
557    return false;
558  }
559
560  // Handle: (X != null) | (Y != null) --> (X|Y) != 0
561  // Handle: (X == null) & (Y == null) --> (X|Y) == 0
562  if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
563      Cases[0].PredInfo.Pred == Cases[1].PredInfo.Pred &&
564      isa<Constant>(Cases[0].CmpRHS) &&
565      cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
566    if (Cases[0].PredInfo.Pred == CmpInst::ICMP_EQ &&
567        Cases[0].TrueBB == Cases[1].ThisBB)
568      return false;
569    if (Cases[0].PredInfo.Pred == CmpInst::ICMP_NE &&
570        Cases[0].FalseBB == Cases[1].ThisBB)
571      return false;
572  }
573
574  return true;
575}
576
577bool IRTranslator::translateBr(const User &U, MachineIRBuilder &MIRBuilder) {
578  const BranchInst &BrInst = cast<BranchInst>(U);
579  auto &CurMBB = MIRBuilder.getMBB();
580  auto *Succ0MBB = &getMBB(*BrInst.getSuccessor(0));
581
582  if (BrInst.isUnconditional()) {
583    // If the unconditional target is the layout successor, fallthrough.
584    if (OptLevel == CodeGenOptLevel::None ||
585        !CurMBB.isLayoutSuccessor(Succ0MBB))
586      MIRBuilder.buildBr(*Succ0MBB);
587
588    // Link successors.
589    for (const BasicBlock *Succ : successors(&BrInst))
590      CurMBB.addSuccessor(&getMBB(*Succ));
591    return true;
592  }
593
594  // If this condition is one of the special cases we handle, do special stuff
595  // now.
596  const Value *CondVal = BrInst.getCondition();
597  MachineBasicBlock *Succ1MBB = &getMBB(*BrInst.getSuccessor(1));
598
599  const auto &TLI = *MF->getSubtarget().getTargetLowering();
600
601  // If this is a series of conditions that are or'd or and'd together, emit
602  // this as a sequence of branches instead of setcc's with and/or operations.
603  // As long as jumps are not expensive (exceptions for multi-use logic ops,
604  // unpredictable branches, and vector extracts because those jumps are likely
605  // expensive for any target), this should improve performance.
606  // For example, instead of something like:
607  //     cmp A, B
608  //     C = seteq
609  //     cmp D, E
610  //     F = setle
611  //     or C, F
612  //     jnz foo
613  // Emit:
614  //     cmp A, B
615  //     je foo
616  //     cmp D, E
617  //     jle foo
618  using namespace PatternMatch;
619  const Instruction *CondI = dyn_cast<Instruction>(CondVal);
620  if (!TLI.isJumpExpensive() && CondI && CondI->hasOneUse() &&
621      !BrInst.hasMetadata(LLVMContext::MD_unpredictable)) {
622    Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
623    Value *Vec;
624    const Value *BOp0, *BOp1;
625    if (match(CondI, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
626      Opcode = Instruction::And;
627    else if (match(CondI, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
628      Opcode = Instruction::Or;
629
630    if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
631                    match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
632      findMergedConditions(CondI, Succ0MBB, Succ1MBB, &CurMBB, &CurMBB, Opcode,
633                           getEdgeProbability(&CurMBB, Succ0MBB),
634                           getEdgeProbability(&CurMBB, Succ1MBB),
635                           /*InvertCond=*/false);
636      assert(SL->SwitchCases[0].ThisBB == &CurMBB && "Unexpected lowering!");
637
638      // Allow some cases to be rejected.
639      if (shouldEmitAsBranches(SL->SwitchCases)) {
640        // Emit the branch for this block.
641        emitSwitchCase(SL->SwitchCases[0], &CurMBB, *CurBuilder);
642        SL->SwitchCases.erase(SL->SwitchCases.begin());
643        return true;
644      }
645
646      // Okay, we decided not to do this, remove any inserted MBB's and clear
647      // SwitchCases.
648      for (unsigned I = 1, E = SL->SwitchCases.size(); I != E; ++I)
649        MF->erase(SL->SwitchCases[I].ThisBB);
650
651      SL->SwitchCases.clear();
652    }
653  }
654
655  // Create a CaseBlock record representing this branch.
656  SwitchCG::CaseBlock CB(CmpInst::ICMP_EQ, false, CondVal,
657                         ConstantInt::getTrue(MF->getFunction().getContext()),
658                         nullptr, Succ0MBB, Succ1MBB, &CurMBB,
659                         CurBuilder->getDebugLoc());
660
661  // Use emitSwitchCase to actually insert the fast branch sequence for this
662  // cond branch.
663  emitSwitchCase(CB, &CurMBB, *CurBuilder);
664  return true;
665}
666
667void IRTranslator::addSuccessorWithProb(MachineBasicBlock *Src,
668                                        MachineBasicBlock *Dst,
669                                        BranchProbability Prob) {
670  if (!FuncInfo.BPI) {
671    Src->addSuccessorWithoutProb(Dst);
672    return;
673  }
674  if (Prob.isUnknown())
675    Prob = getEdgeProbability(Src, Dst);
676  Src->addSuccessor(Dst, Prob);
677}
678
679BranchProbability
680IRTranslator::getEdgeProbability(const MachineBasicBlock *Src,
681                                 const MachineBasicBlock *Dst) const {
682  const BasicBlock *SrcBB = Src->getBasicBlock();
683  const BasicBlock *DstBB = Dst->getBasicBlock();
684  if (!FuncInfo.BPI) {
685    // If BPI is not available, set the default probability as 1 / N, where N is
686    // the number of successors.
687    auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
688    return BranchProbability(1, SuccSize);
689  }
690  return FuncInfo.BPI->getEdgeProbability(SrcBB, DstBB);
691}
692
693bool IRTranslator::translateSwitch(const User &U, MachineIRBuilder &MIB) {
694  using namespace SwitchCG;
695  // Extract cases from the switch.
696  const SwitchInst &SI = cast<SwitchInst>(U);
697  BranchProbabilityInfo *BPI = FuncInfo.BPI;
698  CaseClusterVector Clusters;
699  Clusters.reserve(SI.getNumCases());
700  for (const auto &I : SI.cases()) {
701    MachineBasicBlock *Succ = &getMBB(*I.getCaseSuccessor());
702    assert(Succ && "Could not find successor mbb in mapping");
703    const ConstantInt *CaseVal = I.getCaseValue();
704    BranchProbability Prob =
705        BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
706            : BranchProbability(1, SI.getNumCases() + 1);
707    Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
708  }
709
710  MachineBasicBlock *DefaultMBB = &getMBB(*SI.getDefaultDest());
711
712  // Cluster adjacent cases with the same destination. We do this at all
713  // optimization levels because it's cheap to do and will make codegen faster
714  // if there are many clusters.
715  sortAndRangeify(Clusters);
716
717  MachineBasicBlock *SwitchMBB = &getMBB(*SI.getParent());
718
719  // If there is only the default destination, jump there directly.
720  if (Clusters.empty()) {
721    SwitchMBB->addSuccessor(DefaultMBB);
722    if (DefaultMBB != SwitchMBB->getNextNode())
723      MIB.buildBr(*DefaultMBB);
724    return true;
725  }
726
727  SL->findJumpTables(Clusters, &SI, std::nullopt, DefaultMBB, nullptr, nullptr);
728  SL->findBitTestClusters(Clusters, &SI);
729
730  LLVM_DEBUG({
731    dbgs() << "Case clusters: ";
732    for (const CaseCluster &C : Clusters) {
733      if (C.Kind == CC_JumpTable)
734        dbgs() << "JT:";
735      if (C.Kind == CC_BitTests)
736        dbgs() << "BT:";
737
738      C.Low->getValue().print(dbgs(), true);
739      if (C.Low != C.High) {
740        dbgs() << '-';
741        C.High->getValue().print(dbgs(), true);
742      }
743      dbgs() << ' ';
744    }
745    dbgs() << '\n';
746  });
747
748  assert(!Clusters.empty());
749  SwitchWorkList WorkList;
750  CaseClusterIt First = Clusters.begin();
751  CaseClusterIt Last = Clusters.end() - 1;
752  auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
753  WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
754
755  while (!WorkList.empty()) {
756    SwitchWorkListItem W = WorkList.pop_back_val();
757
758    unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
759    // For optimized builds, lower large range as a balanced binary tree.
760    if (NumClusters > 3 &&
761        MF->getTarget().getOptLevel() != CodeGenOptLevel::None &&
762        !DefaultMBB->getParent()->getFunction().hasMinSize()) {
763      splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB, MIB);
764      continue;
765    }
766
767    if (!lowerSwitchWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB, MIB))
768      return false;
769  }
770  return true;
771}
772
773void IRTranslator::splitWorkItem(SwitchCG::SwitchWorkList &WorkList,
774                                 const SwitchCG::SwitchWorkListItem &W,
775                                 Value *Cond, MachineBasicBlock *SwitchMBB,
776                                 MachineIRBuilder &MIB) {
777  using namespace SwitchCG;
778  assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
779         "Clusters not sorted?");
780  assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
781
782  auto [LastLeft, FirstRight, LeftProb, RightProb] =
783      SL->computeSplitWorkItemInfo(W);
784
785  // Use the first element on the right as pivot since we will make less-than
786  // comparisons against it.
787  CaseClusterIt PivotCluster = FirstRight;
788  assert(PivotCluster > W.FirstCluster);
789  assert(PivotCluster <= W.LastCluster);
790
791  CaseClusterIt FirstLeft = W.FirstCluster;
792  CaseClusterIt LastRight = W.LastCluster;
793
794  const ConstantInt *Pivot = PivotCluster->Low;
795
796  // New blocks will be inserted immediately after the current one.
797  MachineFunction::iterator BBI(W.MBB);
798  ++BBI;
799
800  // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
801  // we can branch to its destination directly if it's squeezed exactly in
802  // between the known lower bound and Pivot - 1.
803  MachineBasicBlock *LeftMBB;
804  if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
805      FirstLeft->Low == W.GE &&
806      (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
807    LeftMBB = FirstLeft->MBB;
808  } else {
809    LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
810    FuncInfo.MF->insert(BBI, LeftMBB);
811    WorkList.push_back(
812        {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
813  }
814
815  // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
816  // single cluster, RHS.Low == Pivot, and we can branch to its destination
817  // directly if RHS.High equals the current upper bound.
818  MachineBasicBlock *RightMBB;
819  if (FirstRight == LastRight && FirstRight->Kind == CC_Range && W.LT &&
820      (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
821    RightMBB = FirstRight->MBB;
822  } else {
823    RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
824    FuncInfo.MF->insert(BBI, RightMBB);
825    WorkList.push_back(
826        {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
827  }
828
829  // Create the CaseBlock record that will be used to lower the branch.
830  CaseBlock CB(ICmpInst::Predicate::ICMP_SLT, false, Cond, Pivot, nullptr,
831               LeftMBB, RightMBB, W.MBB, MIB.getDebugLoc(), LeftProb,
832               RightProb);
833
834  if (W.MBB == SwitchMBB)
835    emitSwitchCase(CB, SwitchMBB, MIB);
836  else
837    SL->SwitchCases.push_back(CB);
838}
839
840void IRTranslator::emitJumpTable(SwitchCG::JumpTable &JT,
841                                 MachineBasicBlock *MBB) {
842  // Emit the code for the jump table
843  assert(JT.Reg != -1U && "Should lower JT Header first!");
844  MachineIRBuilder MIB(*MBB->getParent());
845  MIB.setMBB(*MBB);
846  MIB.setDebugLoc(CurBuilder->getDebugLoc());
847
848  Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext());
849  const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
850
851  auto Table = MIB.buildJumpTable(PtrTy, JT.JTI);
852  MIB.buildBrJT(Table.getReg(0), JT.JTI, JT.Reg);
853}
854
855bool IRTranslator::emitJumpTableHeader(SwitchCG::JumpTable &JT,
856                                       SwitchCG::JumpTableHeader &JTH,
857                                       MachineBasicBlock *HeaderBB) {
858  MachineIRBuilder MIB(*HeaderBB->getParent());
859  MIB.setMBB(*HeaderBB);
860  MIB.setDebugLoc(CurBuilder->getDebugLoc());
861
862  const Value &SValue = *JTH.SValue;
863  // Subtract the lowest switch case value from the value being switched on.
864  const LLT SwitchTy = getLLTForType(*SValue.getType(), *DL);
865  Register SwitchOpReg = getOrCreateVReg(SValue);
866  auto FirstCst = MIB.buildConstant(SwitchTy, JTH.First);
867  auto Sub = MIB.buildSub({SwitchTy}, SwitchOpReg, FirstCst);
868
869  // This value may be smaller or larger than the target's pointer type, and
870  // therefore require extension or truncating.
871  auto *PtrIRTy = PointerType::getUnqual(SValue.getContext());
872  const LLT PtrScalarTy = LLT::scalar(DL->getTypeSizeInBits(PtrIRTy));
873  Sub = MIB.buildZExtOrTrunc(PtrScalarTy, Sub);
874
875  JT.Reg = Sub.getReg(0);
876
877  if (JTH.FallthroughUnreachable) {
878    if (JT.MBB != HeaderBB->getNextNode())
879      MIB.buildBr(*JT.MBB);
880    return true;
881  }
882
883  // Emit the range check for the jump table, and branch to the default block
884  // for the switch statement if the value being switched on exceeds the
885  // largest case in the switch.
886  auto Cst = getOrCreateVReg(
887      *ConstantInt::get(SValue.getType(), JTH.Last - JTH.First));
888  Cst = MIB.buildZExtOrTrunc(PtrScalarTy, Cst).getReg(0);
889  auto Cmp = MIB.buildICmp(CmpInst::ICMP_UGT, LLT::scalar(1), Sub, Cst);
890
891  auto BrCond = MIB.buildBrCond(Cmp.getReg(0), *JT.Default);
892
893  // Avoid emitting unnecessary branches to the next block.
894  if (JT.MBB != HeaderBB->getNextNode())
895    BrCond = MIB.buildBr(*JT.MBB);
896  return true;
897}
898
899void IRTranslator::emitSwitchCase(SwitchCG::CaseBlock &CB,
900                                  MachineBasicBlock *SwitchBB,
901                                  MachineIRBuilder &MIB) {
902  Register CondLHS = getOrCreateVReg(*CB.CmpLHS);
903  Register Cond;
904  DebugLoc OldDbgLoc = MIB.getDebugLoc();
905  MIB.setDebugLoc(CB.DbgLoc);
906  MIB.setMBB(*CB.ThisBB);
907
908  if (CB.PredInfo.NoCmp) {
909    // Branch or fall through to TrueBB.
910    addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
911    addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
912                      CB.ThisBB);
913    CB.ThisBB->normalizeSuccProbs();
914    if (CB.TrueBB != CB.ThisBB->getNextNode())
915      MIB.buildBr(*CB.TrueBB);
916    MIB.setDebugLoc(OldDbgLoc);
917    return;
918  }
919
920  const LLT i1Ty = LLT::scalar(1);
921  // Build the compare.
922  if (!CB.CmpMHS) {
923    const auto *CI = dyn_cast<ConstantInt>(CB.CmpRHS);
924    // For conditional branch lowering, we might try to do something silly like
925    // emit an G_ICMP to compare an existing G_ICMP i1 result with true. If so,
926    // just re-use the existing condition vreg.
927    if (MRI->getType(CondLHS).getSizeInBits() == 1 && CI && CI->isOne() &&
928        CB.PredInfo.Pred == CmpInst::ICMP_EQ) {
929      Cond = CondLHS;
930    } else {
931      Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
932      if (CmpInst::isFPPredicate(CB.PredInfo.Pred))
933        Cond =
934            MIB.buildFCmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
935      else
936        Cond =
937            MIB.buildICmp(CB.PredInfo.Pred, i1Ty, CondLHS, CondRHS).getReg(0);
938    }
939  } else {
940    assert(CB.PredInfo.Pred == CmpInst::ICMP_SLE &&
941           "Can only handle SLE ranges");
942
943    const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
944    const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
945
946    Register CmpOpReg = getOrCreateVReg(*CB.CmpMHS);
947    if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
948      Register CondRHS = getOrCreateVReg(*CB.CmpRHS);
949      Cond =
950          MIB.buildICmp(CmpInst::ICMP_SLE, i1Ty, CmpOpReg, CondRHS).getReg(0);
951    } else {
952      const LLT CmpTy = MRI->getType(CmpOpReg);
953      auto Sub = MIB.buildSub({CmpTy}, CmpOpReg, CondLHS);
954      auto Diff = MIB.buildConstant(CmpTy, High - Low);
955      Cond = MIB.buildICmp(CmpInst::ICMP_ULE, i1Ty, Sub, Diff).getReg(0);
956    }
957  }
958
959  // Update successor info
960  addSuccessorWithProb(CB.ThisBB, CB.TrueBB, CB.TrueProb);
961
962  addMachineCFGPred({SwitchBB->getBasicBlock(), CB.TrueBB->getBasicBlock()},
963                    CB.ThisBB);
964
965  // TrueBB and FalseBB are always different unless the incoming IR is
966  // degenerate. This only happens when running llc on weird IR.
967  if (CB.TrueBB != CB.FalseBB)
968    addSuccessorWithProb(CB.ThisBB, CB.FalseBB, CB.FalseProb);
969  CB.ThisBB->normalizeSuccProbs();
970
971  addMachineCFGPred({SwitchBB->getBasicBlock(), CB.FalseBB->getBasicBlock()},
972                    CB.ThisBB);
973
974  MIB.buildBrCond(Cond, *CB.TrueBB);
975  MIB.buildBr(*CB.FalseBB);
976  MIB.setDebugLoc(OldDbgLoc);
977}
978
979bool IRTranslator::lowerJumpTableWorkItem(SwitchCG::SwitchWorkListItem W,
980                                          MachineBasicBlock *SwitchMBB,
981                                          MachineBasicBlock *CurMBB,
982                                          MachineBasicBlock *DefaultMBB,
983                                          MachineIRBuilder &MIB,
984                                          MachineFunction::iterator BBI,
985                                          BranchProbability UnhandledProbs,
986                                          SwitchCG::CaseClusterIt I,
987                                          MachineBasicBlock *Fallthrough,
988                                          bool FallthroughUnreachable) {
989  using namespace SwitchCG;
990  MachineFunction *CurMF = SwitchMBB->getParent();
991  // FIXME: Optimize away range check based on pivot comparisons.
992  JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
993  SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
994  BranchProbability DefaultProb = W.DefaultProb;
995
996  // The jump block hasn't been inserted yet; insert it here.
997  MachineBasicBlock *JumpMBB = JT->MBB;
998  CurMF->insert(BBI, JumpMBB);
999
1000  // Since the jump table block is separate from the switch block, we need
1001  // to keep track of it as a machine predecessor to the default block,
1002  // otherwise we lose the phi edges.
1003  addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
1004                    CurMBB);
1005  addMachineCFGPred({SwitchMBB->getBasicBlock(), DefaultMBB->getBasicBlock()},
1006                    JumpMBB);
1007
1008  auto JumpProb = I->Prob;
1009  auto FallthroughProb = UnhandledProbs;
1010
1011  // If the default statement is a target of the jump table, we evenly
1012  // distribute the default probability to successors of CurMBB. Also
1013  // update the probability on the edge from JumpMBB to Fallthrough.
1014  for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
1015                                        SE = JumpMBB->succ_end();
1016       SI != SE; ++SI) {
1017    if (*SI == DefaultMBB) {
1018      JumpProb += DefaultProb / 2;
1019      FallthroughProb -= DefaultProb / 2;
1020      JumpMBB->setSuccProbability(SI, DefaultProb / 2);
1021      JumpMBB->normalizeSuccProbs();
1022    } else {
1023      // Also record edges from the jump table block to it's successors.
1024      addMachineCFGPred({SwitchMBB->getBasicBlock(), (*SI)->getBasicBlock()},
1025                        JumpMBB);
1026    }
1027  }
1028
1029  if (FallthroughUnreachable)
1030    JTH->FallthroughUnreachable = true;
1031
1032  if (!JTH->FallthroughUnreachable)
1033    addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
1034  addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
1035  CurMBB->normalizeSuccProbs();
1036
1037  // The jump table header will be inserted in our current block, do the
1038  // range check, and fall through to our fallthrough block.
1039  JTH->HeaderBB = CurMBB;
1040  JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
1041
1042  // If we're in the right place, emit the jump table header right now.
1043  if (CurMBB == SwitchMBB) {
1044    if (!emitJumpTableHeader(*JT, *JTH, CurMBB))
1045      return false;
1046    JTH->Emitted = true;
1047  }
1048  return true;
1049}
1050bool IRTranslator::lowerSwitchRangeWorkItem(SwitchCG::CaseClusterIt I,
1051                                            Value *Cond,
1052                                            MachineBasicBlock *Fallthrough,
1053                                            bool FallthroughUnreachable,
1054                                            BranchProbability UnhandledProbs,
1055                                            MachineBasicBlock *CurMBB,
1056                                            MachineIRBuilder &MIB,
1057                                            MachineBasicBlock *SwitchMBB) {
1058  using namespace SwitchCG;
1059  const Value *RHS, *LHS, *MHS;
1060  CmpInst::Predicate Pred;
1061  if (I->Low == I->High) {
1062    // Check Cond == I->Low.
1063    Pred = CmpInst::ICMP_EQ;
1064    LHS = Cond;
1065    RHS = I->Low;
1066    MHS = nullptr;
1067  } else {
1068    // Check I->Low <= Cond <= I->High.
1069    Pred = CmpInst::ICMP_SLE;
1070    LHS = I->Low;
1071    MHS = Cond;
1072    RHS = I->High;
1073  }
1074
1075  // If Fallthrough is unreachable, fold away the comparison.
1076  // The false probability is the sum of all unhandled cases.
1077  CaseBlock CB(Pred, FallthroughUnreachable, LHS, RHS, MHS, I->MBB, Fallthrough,
1078               CurMBB, MIB.getDebugLoc(), I->Prob, UnhandledProbs);
1079
1080  emitSwitchCase(CB, SwitchMBB, MIB);
1081  return true;
1082}
1083
1084void IRTranslator::emitBitTestHeader(SwitchCG::BitTestBlock &B,
1085                                     MachineBasicBlock *SwitchBB) {
1086  MachineIRBuilder &MIB = *CurBuilder;
1087  MIB.setMBB(*SwitchBB);
1088
1089  // Subtract the minimum value.
1090  Register SwitchOpReg = getOrCreateVReg(*B.SValue);
1091
1092  LLT SwitchOpTy = MRI->getType(SwitchOpReg);
1093  Register MinValReg = MIB.buildConstant(SwitchOpTy, B.First).getReg(0);
1094  auto RangeSub = MIB.buildSub(SwitchOpTy, SwitchOpReg, MinValReg);
1095
1096  Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext());
1097  const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1098
1099  LLT MaskTy = SwitchOpTy;
1100  if (MaskTy.getSizeInBits() > PtrTy.getSizeInBits() ||
1101      !llvm::has_single_bit<uint32_t>(MaskTy.getSizeInBits()))
1102    MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1103  else {
1104    // Ensure that the type will fit the mask value.
1105    for (unsigned I = 0, E = B.Cases.size(); I != E; ++I) {
1106      if (!isUIntN(SwitchOpTy.getSizeInBits(), B.Cases[I].Mask)) {
1107        // Switch table case range are encoded into series of masks.
1108        // Just use pointer type, it's guaranteed to fit.
1109        MaskTy = LLT::scalar(PtrTy.getSizeInBits());
1110        break;
1111      }
1112    }
1113  }
1114  Register SubReg = RangeSub.getReg(0);
1115  if (SwitchOpTy != MaskTy)
1116    SubReg = MIB.buildZExtOrTrunc(MaskTy, SubReg).getReg(0);
1117
1118  B.RegVT = getMVTForLLT(MaskTy);
1119  B.Reg = SubReg;
1120
1121  MachineBasicBlock *MBB = B.Cases[0].ThisBB;
1122
1123  if (!B.FallthroughUnreachable)
1124    addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
1125  addSuccessorWithProb(SwitchBB, MBB, B.Prob);
1126
1127  SwitchBB->normalizeSuccProbs();
1128
1129  if (!B.FallthroughUnreachable) {
1130    // Conditional branch to the default block.
1131    auto RangeCst = MIB.buildConstant(SwitchOpTy, B.Range);
1132    auto RangeCmp = MIB.buildICmp(CmpInst::Predicate::ICMP_UGT, LLT::scalar(1),
1133                                  RangeSub, RangeCst);
1134    MIB.buildBrCond(RangeCmp, *B.Default);
1135  }
1136
1137  // Avoid emitting unnecessary branches to the next block.
1138  if (MBB != SwitchBB->getNextNode())
1139    MIB.buildBr(*MBB);
1140}
1141
1142void IRTranslator::emitBitTestCase(SwitchCG::BitTestBlock &BB,
1143                                   MachineBasicBlock *NextMBB,
1144                                   BranchProbability BranchProbToNext,
1145                                   Register Reg, SwitchCG::BitTestCase &B,
1146                                   MachineBasicBlock *SwitchBB) {
1147  MachineIRBuilder &MIB = *CurBuilder;
1148  MIB.setMBB(*SwitchBB);
1149
1150  LLT SwitchTy = getLLTForMVT(BB.RegVT);
1151  Register Cmp;
1152  unsigned PopCount = llvm::popcount(B.Mask);
1153  if (PopCount == 1) {
1154    // Testing for a single bit; just compare the shift count with what it
1155    // would need to be to shift a 1 bit in that position.
1156    auto MaskTrailingZeros =
1157        MIB.buildConstant(SwitchTy, llvm::countr_zero(B.Mask));
1158    Cmp =
1159        MIB.buildICmp(ICmpInst::ICMP_EQ, LLT::scalar(1), Reg, MaskTrailingZeros)
1160            .getReg(0);
1161  } else if (PopCount == BB.Range) {
1162    // There is only one zero bit in the range, test for it directly.
1163    auto MaskTrailingOnes =
1164        MIB.buildConstant(SwitchTy, llvm::countr_one(B.Mask));
1165    Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Reg, MaskTrailingOnes)
1166              .getReg(0);
1167  } else {
1168    // Make desired shift.
1169    auto CstOne = MIB.buildConstant(SwitchTy, 1);
1170    auto SwitchVal = MIB.buildShl(SwitchTy, CstOne, Reg);
1171
1172    // Emit bit tests and jumps.
1173    auto CstMask = MIB.buildConstant(SwitchTy, B.Mask);
1174    auto AndOp = MIB.buildAnd(SwitchTy, SwitchVal, CstMask);
1175    auto CstZero = MIB.buildConstant(SwitchTy, 0);
1176    Cmp = MIB.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), AndOp, CstZero)
1177              .getReg(0);
1178  }
1179
1180  // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
1181  addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
1182  // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
1183  addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
1184  // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
1185  // one as they are relative probabilities (and thus work more like weights),
1186  // and hence we need to normalize them to let the sum of them become one.
1187  SwitchBB->normalizeSuccProbs();
1188
1189  // Record the fact that the IR edge from the header to the bit test target
1190  // will go through our new block. Neeeded for PHIs to have nodes added.
1191  addMachineCFGPred({BB.Parent->getBasicBlock(), B.TargetBB->getBasicBlock()},
1192                    SwitchBB);
1193
1194  MIB.buildBrCond(Cmp, *B.TargetBB);
1195
1196  // Avoid emitting unnecessary branches to the next block.
1197  if (NextMBB != SwitchBB->getNextNode())
1198    MIB.buildBr(*NextMBB);
1199}
1200
1201bool IRTranslator::lowerBitTestWorkItem(
1202    SwitchCG::SwitchWorkListItem W, MachineBasicBlock *SwitchMBB,
1203    MachineBasicBlock *CurMBB, MachineBasicBlock *DefaultMBB,
1204    MachineIRBuilder &MIB, MachineFunction::iterator BBI,
1205    BranchProbability DefaultProb, BranchProbability UnhandledProbs,
1206    SwitchCG::CaseClusterIt I, MachineBasicBlock *Fallthrough,
1207    bool FallthroughUnreachable) {
1208  using namespace SwitchCG;
1209  MachineFunction *CurMF = SwitchMBB->getParent();
1210  // FIXME: Optimize away range check based on pivot comparisons.
1211  BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
1212  // The bit test blocks haven't been inserted yet; insert them here.
1213  for (BitTestCase &BTC : BTB->Cases)
1214    CurMF->insert(BBI, BTC.ThisBB);
1215
1216  // Fill in fields of the BitTestBlock.
1217  BTB->Parent = CurMBB;
1218  BTB->Default = Fallthrough;
1219
1220  BTB->DefaultProb = UnhandledProbs;
1221  // If the cases in bit test don't form a contiguous range, we evenly
1222  // distribute the probability on the edge to Fallthrough to two
1223  // successors of CurMBB.
1224  if (!BTB->ContiguousRange) {
1225    BTB->Prob += DefaultProb / 2;
1226    BTB->DefaultProb -= DefaultProb / 2;
1227  }
1228
1229  if (FallthroughUnreachable)
1230    BTB->FallthroughUnreachable = true;
1231
1232  // If we're in the right place, emit the bit test header right now.
1233  if (CurMBB == SwitchMBB) {
1234    emitBitTestHeader(*BTB, SwitchMBB);
1235    BTB->Emitted = true;
1236  }
1237  return true;
1238}
1239
1240bool IRTranslator::lowerSwitchWorkItem(SwitchCG::SwitchWorkListItem W,
1241                                       Value *Cond,
1242                                       MachineBasicBlock *SwitchMBB,
1243                                       MachineBasicBlock *DefaultMBB,
1244                                       MachineIRBuilder &MIB) {
1245  using namespace SwitchCG;
1246  MachineFunction *CurMF = FuncInfo.MF;
1247  MachineBasicBlock *NextMBB = nullptr;
1248  MachineFunction::iterator BBI(W.MBB);
1249  if (++BBI != FuncInfo.MF->end())
1250    NextMBB = &*BBI;
1251
1252  if (EnableOpts) {
1253    // Here, we order cases by probability so the most likely case will be
1254    // checked first. However, two clusters can have the same probability in
1255    // which case their relative ordering is non-deterministic. So we use Low
1256    // as a tie-breaker as clusters are guaranteed to never overlap.
1257    llvm::sort(W.FirstCluster, W.LastCluster + 1,
1258               [](const CaseCluster &a, const CaseCluster &b) {
1259                 return a.Prob != b.Prob
1260                            ? a.Prob > b.Prob
1261                            : a.Low->getValue().slt(b.Low->getValue());
1262               });
1263
1264    // Rearrange the case blocks so that the last one falls through if possible
1265    // without changing the order of probabilities.
1266    for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster;) {
1267      --I;
1268      if (I->Prob > W.LastCluster->Prob)
1269        break;
1270      if (I->Kind == CC_Range && I->MBB == NextMBB) {
1271        std::swap(*I, *W.LastCluster);
1272        break;
1273      }
1274    }
1275  }
1276
1277  // Compute total probability.
1278  BranchProbability DefaultProb = W.DefaultProb;
1279  BranchProbability UnhandledProbs = DefaultProb;
1280  for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
1281    UnhandledProbs += I->Prob;
1282
1283  MachineBasicBlock *CurMBB = W.MBB;
1284  for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
1285    bool FallthroughUnreachable = false;
1286    MachineBasicBlock *Fallthrough;
1287    if (I == W.LastCluster) {
1288      // For the last cluster, fall through to the default destination.
1289      Fallthrough = DefaultMBB;
1290      FallthroughUnreachable = isa<UnreachableInst>(
1291          DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
1292    } else {
1293      Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
1294      CurMF->insert(BBI, Fallthrough);
1295    }
1296    UnhandledProbs -= I->Prob;
1297
1298    switch (I->Kind) {
1299    case CC_BitTests: {
1300      if (!lowerBitTestWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1301                                DefaultProb, UnhandledProbs, I, Fallthrough,
1302                                FallthroughUnreachable)) {
1303        LLVM_DEBUG(dbgs() << "Failed to lower bit test for switch");
1304        return false;
1305      }
1306      break;
1307    }
1308
1309    case CC_JumpTable: {
1310      if (!lowerJumpTableWorkItem(W, SwitchMBB, CurMBB, DefaultMBB, MIB, BBI,
1311                                  UnhandledProbs, I, Fallthrough,
1312                                  FallthroughUnreachable)) {
1313        LLVM_DEBUG(dbgs() << "Failed to lower jump table");
1314        return false;
1315      }
1316      break;
1317    }
1318    case CC_Range: {
1319      if (!lowerSwitchRangeWorkItem(I, Cond, Fallthrough,
1320                                    FallthroughUnreachable, UnhandledProbs,
1321                                    CurMBB, MIB, SwitchMBB)) {
1322        LLVM_DEBUG(dbgs() << "Failed to lower switch range");
1323        return false;
1324      }
1325      break;
1326    }
1327    }
1328    CurMBB = Fallthrough;
1329  }
1330
1331  return true;
1332}
1333
1334bool IRTranslator::translateIndirectBr(const User &U,
1335                                       MachineIRBuilder &MIRBuilder) {
1336  const IndirectBrInst &BrInst = cast<IndirectBrInst>(U);
1337
1338  const Register Tgt = getOrCreateVReg(*BrInst.getAddress());
1339  MIRBuilder.buildBrIndirect(Tgt);
1340
1341  // Link successors.
1342  SmallPtrSet<const BasicBlock *, 32> AddedSuccessors;
1343  MachineBasicBlock &CurBB = MIRBuilder.getMBB();
1344  for (const BasicBlock *Succ : successors(&BrInst)) {
1345    // It's legal for indirectbr instructions to have duplicate blocks in the
1346    // destination list. We don't allow this in MIR. Skip anything that's
1347    // already a successor.
1348    if (!AddedSuccessors.insert(Succ).second)
1349      continue;
1350    CurBB.addSuccessor(&getMBB(*Succ));
1351  }
1352
1353  return true;
1354}
1355
1356static bool isSwiftError(const Value *V) {
1357  if (auto Arg = dyn_cast<Argument>(V))
1358    return Arg->hasSwiftErrorAttr();
1359  if (auto AI = dyn_cast<AllocaInst>(V))
1360    return AI->isSwiftError();
1361  return false;
1362}
1363
1364bool IRTranslator::translateLoad(const User &U, MachineIRBuilder &MIRBuilder) {
1365  const LoadInst &LI = cast<LoadInst>(U);
1366
1367  unsigned StoreSize = DL->getTypeStoreSize(LI.getType());
1368  if (StoreSize == 0)
1369    return true;
1370
1371  ArrayRef<Register> Regs = getOrCreateVRegs(LI);
1372  ArrayRef<uint64_t> Offsets = *VMap.getOffsets(LI);
1373  Register Base = getOrCreateVReg(*LI.getPointerOperand());
1374  AAMDNodes AAInfo = LI.getAAMetadata();
1375
1376  const Value *Ptr = LI.getPointerOperand();
1377  Type *OffsetIRTy = DL->getIndexType(Ptr->getType());
1378  LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1379
1380  if (CLI->supportSwiftError() && isSwiftError(Ptr)) {
1381    assert(Regs.size() == 1 && "swifterror should be single pointer");
1382    Register VReg =
1383        SwiftError.getOrCreateVRegUseAt(&LI, &MIRBuilder.getMBB(), Ptr);
1384    MIRBuilder.buildCopy(Regs[0], VReg);
1385    return true;
1386  }
1387
1388  auto &TLI = *MF->getSubtarget().getTargetLowering();
1389  MachineMemOperand::Flags Flags =
1390      TLI.getLoadMemOperandFlags(LI, *DL, AC, LibInfo);
1391  if (AA && !(Flags & MachineMemOperand::MOInvariant)) {
1392    if (AA->pointsToConstantMemory(
1393            MemoryLocation(Ptr, LocationSize::precise(StoreSize), AAInfo))) {
1394      Flags |= MachineMemOperand::MOInvariant;
1395    }
1396  }
1397
1398  const MDNode *Ranges =
1399      Regs.size() == 1 ? LI.getMetadata(LLVMContext::MD_range) : nullptr;
1400  for (unsigned i = 0; i < Regs.size(); ++i) {
1401    Register Addr;
1402    MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1403
1404    MachinePointerInfo Ptr(LI.getPointerOperand(), Offsets[i] / 8);
1405    Align BaseAlign = getMemOpAlign(LI);
1406    auto MMO = MF->getMachineMemOperand(
1407        Ptr, Flags, MRI->getType(Regs[i]),
1408        commonAlignment(BaseAlign, Offsets[i] / 8), AAInfo, Ranges,
1409        LI.getSyncScopeID(), LI.getOrdering());
1410    MIRBuilder.buildLoad(Regs[i], Addr, *MMO);
1411  }
1412
1413  return true;
1414}
1415
1416bool IRTranslator::translateStore(const User &U, MachineIRBuilder &MIRBuilder) {
1417  const StoreInst &SI = cast<StoreInst>(U);
1418  if (DL->getTypeStoreSize(SI.getValueOperand()->getType()) == 0)
1419    return true;
1420
1421  ArrayRef<Register> Vals = getOrCreateVRegs(*SI.getValueOperand());
1422  ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*SI.getValueOperand());
1423  Register Base = getOrCreateVReg(*SI.getPointerOperand());
1424
1425  Type *OffsetIRTy = DL->getIndexType(SI.getPointerOperandType());
1426  LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1427
1428  if (CLI->supportSwiftError() && isSwiftError(SI.getPointerOperand())) {
1429    assert(Vals.size() == 1 && "swifterror should be single pointer");
1430
1431    Register VReg = SwiftError.getOrCreateVRegDefAt(&SI, &MIRBuilder.getMBB(),
1432                                                    SI.getPointerOperand());
1433    MIRBuilder.buildCopy(VReg, Vals[0]);
1434    return true;
1435  }
1436
1437  auto &TLI = *MF->getSubtarget().getTargetLowering();
1438  MachineMemOperand::Flags Flags = TLI.getStoreMemOperandFlags(SI, *DL);
1439
1440  for (unsigned i = 0; i < Vals.size(); ++i) {
1441    Register Addr;
1442    MIRBuilder.materializePtrAdd(Addr, Base, OffsetTy, Offsets[i] / 8);
1443
1444    MachinePointerInfo Ptr(SI.getPointerOperand(), Offsets[i] / 8);
1445    Align BaseAlign = getMemOpAlign(SI);
1446    auto MMO = MF->getMachineMemOperand(
1447        Ptr, Flags, MRI->getType(Vals[i]),
1448        commonAlignment(BaseAlign, Offsets[i] / 8), SI.getAAMetadata(), nullptr,
1449        SI.getSyncScopeID(), SI.getOrdering());
1450    MIRBuilder.buildStore(Vals[i], Addr, *MMO);
1451  }
1452  return true;
1453}
1454
1455static uint64_t getOffsetFromIndices(const User &U, const DataLayout &DL) {
1456  const Value *Src = U.getOperand(0);
1457  Type *Int32Ty = Type::getInt32Ty(U.getContext());
1458
1459  // getIndexedOffsetInType is designed for GEPs, so the first index is the
1460  // usual array element rather than looking into the actual aggregate.
1461  SmallVector<Value *, 1> Indices;
1462  Indices.push_back(ConstantInt::get(Int32Ty, 0));
1463
1464  if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
1465    for (auto Idx : EVI->indices())
1466      Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1467  } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
1468    for (auto Idx : IVI->indices())
1469      Indices.push_back(ConstantInt::get(Int32Ty, Idx));
1470  } else {
1471    for (unsigned i = 1; i < U.getNumOperands(); ++i)
1472      Indices.push_back(U.getOperand(i));
1473  }
1474
1475  return 8 * static_cast<uint64_t>(
1476                 DL.getIndexedOffsetInType(Src->getType(), Indices));
1477}
1478
1479bool IRTranslator::translateExtractValue(const User &U,
1480                                         MachineIRBuilder &MIRBuilder) {
1481  const Value *Src = U.getOperand(0);
1482  uint64_t Offset = getOffsetFromIndices(U, *DL);
1483  ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1484  ArrayRef<uint64_t> Offsets = *VMap.getOffsets(*Src);
1485  unsigned Idx = llvm::lower_bound(Offsets, Offset) - Offsets.begin();
1486  auto &DstRegs = allocateVRegs(U);
1487
1488  for (unsigned i = 0; i < DstRegs.size(); ++i)
1489    DstRegs[i] = SrcRegs[Idx++];
1490
1491  return true;
1492}
1493
1494bool IRTranslator::translateInsertValue(const User &U,
1495                                        MachineIRBuilder &MIRBuilder) {
1496  const Value *Src = U.getOperand(0);
1497  uint64_t Offset = getOffsetFromIndices(U, *DL);
1498  auto &DstRegs = allocateVRegs(U);
1499  ArrayRef<uint64_t> DstOffsets = *VMap.getOffsets(U);
1500  ArrayRef<Register> SrcRegs = getOrCreateVRegs(*Src);
1501  ArrayRef<Register> InsertedRegs = getOrCreateVRegs(*U.getOperand(1));
1502  auto *InsertedIt = InsertedRegs.begin();
1503
1504  for (unsigned i = 0; i < DstRegs.size(); ++i) {
1505    if (DstOffsets[i] >= Offset && InsertedIt != InsertedRegs.end())
1506      DstRegs[i] = *InsertedIt++;
1507    else
1508      DstRegs[i] = SrcRegs[i];
1509  }
1510
1511  return true;
1512}
1513
1514bool IRTranslator::translateSelect(const User &U,
1515                                   MachineIRBuilder &MIRBuilder) {
1516  Register Tst = getOrCreateVReg(*U.getOperand(0));
1517  ArrayRef<Register> ResRegs = getOrCreateVRegs(U);
1518  ArrayRef<Register> Op0Regs = getOrCreateVRegs(*U.getOperand(1));
1519  ArrayRef<Register> Op1Regs = getOrCreateVRegs(*U.getOperand(2));
1520
1521  uint32_t Flags = 0;
1522  if (const SelectInst *SI = dyn_cast<SelectInst>(&U))
1523    Flags = MachineInstr::copyFlagsFromInstruction(*SI);
1524
1525  for (unsigned i = 0; i < ResRegs.size(); ++i) {
1526    MIRBuilder.buildSelect(ResRegs[i], Tst, Op0Regs[i], Op1Regs[i], Flags);
1527  }
1528
1529  return true;
1530}
1531
1532bool IRTranslator::translateCopy(const User &U, const Value &V,
1533                                 MachineIRBuilder &MIRBuilder) {
1534  Register Src = getOrCreateVReg(V);
1535  auto &Regs = *VMap.getVRegs(U);
1536  if (Regs.empty()) {
1537    Regs.push_back(Src);
1538    VMap.getOffsets(U)->push_back(0);
1539  } else {
1540    // If we already assigned a vreg for this instruction, we can't change that.
1541    // Emit a copy to satisfy the users we already emitted.
1542    MIRBuilder.buildCopy(Regs[0], Src);
1543  }
1544  return true;
1545}
1546
1547bool IRTranslator::translateBitCast(const User &U,
1548                                    MachineIRBuilder &MIRBuilder) {
1549  // If we're bitcasting to the source type, we can reuse the source vreg.
1550  if (getLLTForType(*U.getOperand(0)->getType(), *DL) ==
1551      getLLTForType(*U.getType(), *DL)) {
1552    // If the source is a ConstantInt then it was probably created by
1553    // ConstantHoisting and we should leave it alone.
1554    if (isa<ConstantInt>(U.getOperand(0)))
1555      return translateCast(TargetOpcode::G_CONSTANT_FOLD_BARRIER, U,
1556                           MIRBuilder);
1557    return translateCopy(U, *U.getOperand(0), MIRBuilder);
1558  }
1559
1560  return translateCast(TargetOpcode::G_BITCAST, U, MIRBuilder);
1561}
1562
1563bool IRTranslator::translateCast(unsigned Opcode, const User &U,
1564                                 MachineIRBuilder &MIRBuilder) {
1565  if (U.getType()->getScalarType()->isBFloatTy() ||
1566      U.getOperand(0)->getType()->getScalarType()->isBFloatTy())
1567    return false;
1568  Register Op = getOrCreateVReg(*U.getOperand(0));
1569  Register Res = getOrCreateVReg(U);
1570  MIRBuilder.buildInstr(Opcode, {Res}, {Op});
1571  return true;
1572}
1573
1574bool IRTranslator::translateGetElementPtr(const User &U,
1575                                          MachineIRBuilder &MIRBuilder) {
1576  Value &Op0 = *U.getOperand(0);
1577  Register BaseReg = getOrCreateVReg(Op0);
1578  Type *PtrIRTy = Op0.getType();
1579  LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
1580  Type *OffsetIRTy = DL->getIndexType(PtrIRTy);
1581  LLT OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1582
1583  uint32_t Flags = 0;
1584  if (isa<Instruction>(U)) {
1585    const Instruction &I = cast<Instruction>(U);
1586    Flags = MachineInstr::copyFlagsFromInstruction(I);
1587  }
1588
1589  // Normalize Vector GEP - all scalar operands should be converted to the
1590  // splat vector.
1591  unsigned VectorWidth = 0;
1592
1593  // True if we should use a splat vector; using VectorWidth alone is not
1594  // sufficient.
1595  bool WantSplatVector = false;
1596  if (auto *VT = dyn_cast<VectorType>(U.getType())) {
1597    VectorWidth = cast<FixedVectorType>(VT)->getNumElements();
1598    // We don't produce 1 x N vectors; those are treated as scalars.
1599    WantSplatVector = VectorWidth > 1;
1600  }
1601
1602  // We might need to splat the base pointer into a vector if the offsets
1603  // are vectors.
1604  if (WantSplatVector && !PtrTy.isVector()) {
1605    BaseReg =
1606        MIRBuilder
1607            .buildSplatVector(LLT::fixed_vector(VectorWidth, PtrTy), BaseReg)
1608            .getReg(0);
1609    PtrIRTy = FixedVectorType::get(PtrIRTy, VectorWidth);
1610    PtrTy = getLLTForType(*PtrIRTy, *DL);
1611    OffsetIRTy = DL->getIndexType(PtrIRTy);
1612    OffsetTy = getLLTForType(*OffsetIRTy, *DL);
1613  }
1614
1615  int64_t Offset = 0;
1616  for (gep_type_iterator GTI = gep_type_begin(&U), E = gep_type_end(&U);
1617       GTI != E; ++GTI) {
1618    const Value *Idx = GTI.getOperand();
1619    if (StructType *StTy = GTI.getStructTypeOrNull()) {
1620      unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
1621      Offset += DL->getStructLayout(StTy)->getElementOffset(Field);
1622      continue;
1623    } else {
1624      uint64_t ElementSize = GTI.getSequentialElementStride(*DL);
1625
1626      // If this is a scalar constant or a splat vector of constants,
1627      // handle it quickly.
1628      if (const auto *CI = dyn_cast<ConstantInt>(Idx)) {
1629        if (std::optional<int64_t> Val = CI->getValue().trySExtValue()) {
1630          Offset += ElementSize * *Val;
1631          continue;
1632        }
1633      }
1634
1635      if (Offset != 0) {
1636        auto OffsetMIB = MIRBuilder.buildConstant({OffsetTy}, Offset);
1637        BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, OffsetMIB.getReg(0))
1638                      .getReg(0);
1639        Offset = 0;
1640      }
1641
1642      Register IdxReg = getOrCreateVReg(*Idx);
1643      LLT IdxTy = MRI->getType(IdxReg);
1644      if (IdxTy != OffsetTy) {
1645        if (!IdxTy.isVector() && WantSplatVector) {
1646          IdxReg = MIRBuilder.buildSplatVector(
1647            OffsetTy.changeElementType(IdxTy), IdxReg).getReg(0);
1648        }
1649
1650        IdxReg = MIRBuilder.buildSExtOrTrunc(OffsetTy, IdxReg).getReg(0);
1651      }
1652
1653      // N = N + Idx * ElementSize;
1654      // Avoid doing it for ElementSize of 1.
1655      Register GepOffsetReg;
1656      if (ElementSize != 1) {
1657        auto ElementSizeMIB = MIRBuilder.buildConstant(
1658            getLLTForType(*OffsetIRTy, *DL), ElementSize);
1659        GepOffsetReg =
1660            MIRBuilder.buildMul(OffsetTy, IdxReg, ElementSizeMIB).getReg(0);
1661      } else
1662        GepOffsetReg = IdxReg;
1663
1664      BaseReg = MIRBuilder.buildPtrAdd(PtrTy, BaseReg, GepOffsetReg).getReg(0);
1665    }
1666  }
1667
1668  if (Offset != 0) {
1669    auto OffsetMIB =
1670        MIRBuilder.buildConstant(OffsetTy, Offset);
1671
1672    if (int64_t(Offset) >= 0 && cast<GEPOperator>(U).isInBounds())
1673      Flags |= MachineInstr::MIFlag::NoUWrap;
1674
1675    MIRBuilder.buildPtrAdd(getOrCreateVReg(U), BaseReg, OffsetMIB.getReg(0),
1676                           Flags);
1677    return true;
1678  }
1679
1680  MIRBuilder.buildCopy(getOrCreateVReg(U), BaseReg);
1681  return true;
1682}
1683
1684bool IRTranslator::translateMemFunc(const CallInst &CI,
1685                                    MachineIRBuilder &MIRBuilder,
1686                                    unsigned Opcode) {
1687  const Value *SrcPtr = CI.getArgOperand(1);
1688  // If the source is undef, then just emit a nop.
1689  if (isa<UndefValue>(SrcPtr))
1690    return true;
1691
1692  SmallVector<Register, 3> SrcRegs;
1693
1694  unsigned MinPtrSize = UINT_MAX;
1695  for (auto AI = CI.arg_begin(), AE = CI.arg_end(); std::next(AI) != AE; ++AI) {
1696    Register SrcReg = getOrCreateVReg(**AI);
1697    LLT SrcTy = MRI->getType(SrcReg);
1698    if (SrcTy.isPointer())
1699      MinPtrSize = std::min<unsigned>(SrcTy.getSizeInBits(), MinPtrSize);
1700    SrcRegs.push_back(SrcReg);
1701  }
1702
1703  LLT SizeTy = LLT::scalar(MinPtrSize);
1704
1705  // The size operand should be the minimum of the pointer sizes.
1706  Register &SizeOpReg = SrcRegs[SrcRegs.size() - 1];
1707  if (MRI->getType(SizeOpReg) != SizeTy)
1708    SizeOpReg = MIRBuilder.buildZExtOrTrunc(SizeTy, SizeOpReg).getReg(0);
1709
1710  auto ICall = MIRBuilder.buildInstr(Opcode);
1711  for (Register SrcReg : SrcRegs)
1712    ICall.addUse(SrcReg);
1713
1714  Align DstAlign;
1715  Align SrcAlign;
1716  unsigned IsVol =
1717      cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1))->getZExtValue();
1718
1719  ConstantInt *CopySize = nullptr;
1720
1721  if (auto *MCI = dyn_cast<MemCpyInst>(&CI)) {
1722    DstAlign = MCI->getDestAlign().valueOrOne();
1723    SrcAlign = MCI->getSourceAlign().valueOrOne();
1724    CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1725  } else if (auto *MCI = dyn_cast<MemCpyInlineInst>(&CI)) {
1726    DstAlign = MCI->getDestAlign().valueOrOne();
1727    SrcAlign = MCI->getSourceAlign().valueOrOne();
1728    CopySize = dyn_cast<ConstantInt>(MCI->getArgOperand(2));
1729  } else if (auto *MMI = dyn_cast<MemMoveInst>(&CI)) {
1730    DstAlign = MMI->getDestAlign().valueOrOne();
1731    SrcAlign = MMI->getSourceAlign().valueOrOne();
1732    CopySize = dyn_cast<ConstantInt>(MMI->getArgOperand(2));
1733  } else {
1734    auto *MSI = cast<MemSetInst>(&CI);
1735    DstAlign = MSI->getDestAlign().valueOrOne();
1736  }
1737
1738  if (Opcode != TargetOpcode::G_MEMCPY_INLINE) {
1739    // We need to propagate the tail call flag from the IR inst as an argument.
1740    // Otherwise, we have to pessimize and assume later that we cannot tail call
1741    // any memory intrinsics.
1742    ICall.addImm(CI.isTailCall() ? 1 : 0);
1743  }
1744
1745  // Create mem operands to store the alignment and volatile info.
1746  MachineMemOperand::Flags LoadFlags = MachineMemOperand::MOLoad;
1747  MachineMemOperand::Flags StoreFlags = MachineMemOperand::MOStore;
1748  if (IsVol) {
1749    LoadFlags |= MachineMemOperand::MOVolatile;
1750    StoreFlags |= MachineMemOperand::MOVolatile;
1751  }
1752
1753  AAMDNodes AAInfo = CI.getAAMetadata();
1754  if (AA && CopySize &&
1755      AA->pointsToConstantMemory(MemoryLocation(
1756          SrcPtr, LocationSize::precise(CopySize->getZExtValue()), AAInfo))) {
1757    LoadFlags |= MachineMemOperand::MOInvariant;
1758
1759    // FIXME: pointsToConstantMemory probably does not imply dereferenceable,
1760    // but the previous usage implied it did. Probably should check
1761    // isDereferenceableAndAlignedPointer.
1762    LoadFlags |= MachineMemOperand::MODereferenceable;
1763  }
1764
1765  ICall.addMemOperand(
1766      MF->getMachineMemOperand(MachinePointerInfo(CI.getArgOperand(0)),
1767                               StoreFlags, 1, DstAlign, AAInfo));
1768  if (Opcode != TargetOpcode::G_MEMSET)
1769    ICall.addMemOperand(MF->getMachineMemOperand(
1770        MachinePointerInfo(SrcPtr), LoadFlags, 1, SrcAlign, AAInfo));
1771
1772  return true;
1773}
1774
1775void IRTranslator::getStackGuard(Register DstReg,
1776                                 MachineIRBuilder &MIRBuilder) {
1777  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1778  MRI->setRegClass(DstReg, TRI->getPointerRegClass(*MF));
1779  auto MIB =
1780      MIRBuilder.buildInstr(TargetOpcode::LOAD_STACK_GUARD, {DstReg}, {});
1781
1782  auto &TLI = *MF->getSubtarget().getTargetLowering();
1783  Value *Global = TLI.getSDagStackGuard(*MF->getFunction().getParent());
1784  if (!Global)
1785    return;
1786
1787  unsigned AddrSpace = Global->getType()->getPointerAddressSpace();
1788  LLT PtrTy = LLT::pointer(AddrSpace, DL->getPointerSizeInBits(AddrSpace));
1789
1790  MachinePointerInfo MPInfo(Global);
1791  auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
1792               MachineMemOperand::MODereferenceable;
1793  MachineMemOperand *MemRef = MF->getMachineMemOperand(
1794      MPInfo, Flags, PtrTy, DL->getPointerABIAlignment(AddrSpace));
1795  MIB.setMemRefs({MemRef});
1796}
1797
1798bool IRTranslator::translateOverflowIntrinsic(const CallInst &CI, unsigned Op,
1799                                              MachineIRBuilder &MIRBuilder) {
1800  ArrayRef<Register> ResRegs = getOrCreateVRegs(CI);
1801  MIRBuilder.buildInstr(
1802      Op, {ResRegs[0], ResRegs[1]},
1803      {getOrCreateVReg(*CI.getOperand(0)), getOrCreateVReg(*CI.getOperand(1))});
1804
1805  return true;
1806}
1807
1808bool IRTranslator::translateFixedPointIntrinsic(unsigned Op, const CallInst &CI,
1809                                                MachineIRBuilder &MIRBuilder) {
1810  Register Dst = getOrCreateVReg(CI);
1811  Register Src0 = getOrCreateVReg(*CI.getOperand(0));
1812  Register Src1 = getOrCreateVReg(*CI.getOperand(1));
1813  uint64_t Scale = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
1814  MIRBuilder.buildInstr(Op, {Dst}, { Src0, Src1, Scale });
1815  return true;
1816}
1817
1818unsigned IRTranslator::getSimpleIntrinsicOpcode(Intrinsic::ID ID) {
1819  switch (ID) {
1820    default:
1821      break;
1822    case Intrinsic::bswap:
1823      return TargetOpcode::G_BSWAP;
1824    case Intrinsic::bitreverse:
1825      return TargetOpcode::G_BITREVERSE;
1826    case Intrinsic::fshl:
1827      return TargetOpcode::G_FSHL;
1828    case Intrinsic::fshr:
1829      return TargetOpcode::G_FSHR;
1830    case Intrinsic::ceil:
1831      return TargetOpcode::G_FCEIL;
1832    case Intrinsic::cos:
1833      return TargetOpcode::G_FCOS;
1834    case Intrinsic::ctpop:
1835      return TargetOpcode::G_CTPOP;
1836    case Intrinsic::exp:
1837      return TargetOpcode::G_FEXP;
1838    case Intrinsic::exp2:
1839      return TargetOpcode::G_FEXP2;
1840    case Intrinsic::exp10:
1841      return TargetOpcode::G_FEXP10;
1842    case Intrinsic::fabs:
1843      return TargetOpcode::G_FABS;
1844    case Intrinsic::copysign:
1845      return TargetOpcode::G_FCOPYSIGN;
1846    case Intrinsic::minnum:
1847      return TargetOpcode::G_FMINNUM;
1848    case Intrinsic::maxnum:
1849      return TargetOpcode::G_FMAXNUM;
1850    case Intrinsic::minimum:
1851      return TargetOpcode::G_FMINIMUM;
1852    case Intrinsic::maximum:
1853      return TargetOpcode::G_FMAXIMUM;
1854    case Intrinsic::canonicalize:
1855      return TargetOpcode::G_FCANONICALIZE;
1856    case Intrinsic::floor:
1857      return TargetOpcode::G_FFLOOR;
1858    case Intrinsic::fma:
1859      return TargetOpcode::G_FMA;
1860    case Intrinsic::log:
1861      return TargetOpcode::G_FLOG;
1862    case Intrinsic::log2:
1863      return TargetOpcode::G_FLOG2;
1864    case Intrinsic::log10:
1865      return TargetOpcode::G_FLOG10;
1866    case Intrinsic::ldexp:
1867      return TargetOpcode::G_FLDEXP;
1868    case Intrinsic::nearbyint:
1869      return TargetOpcode::G_FNEARBYINT;
1870    case Intrinsic::pow:
1871      return TargetOpcode::G_FPOW;
1872    case Intrinsic::powi:
1873      return TargetOpcode::G_FPOWI;
1874    case Intrinsic::rint:
1875      return TargetOpcode::G_FRINT;
1876    case Intrinsic::round:
1877      return TargetOpcode::G_INTRINSIC_ROUND;
1878    case Intrinsic::roundeven:
1879      return TargetOpcode::G_INTRINSIC_ROUNDEVEN;
1880    case Intrinsic::sin:
1881      return TargetOpcode::G_FSIN;
1882    case Intrinsic::sqrt:
1883      return TargetOpcode::G_FSQRT;
1884    case Intrinsic::trunc:
1885      return TargetOpcode::G_INTRINSIC_TRUNC;
1886    case Intrinsic::readcyclecounter:
1887      return TargetOpcode::G_READCYCLECOUNTER;
1888    case Intrinsic::ptrmask:
1889      return TargetOpcode::G_PTRMASK;
1890    case Intrinsic::lrint:
1891      return TargetOpcode::G_INTRINSIC_LRINT;
1892    // FADD/FMUL require checking the FMF, so are handled elsewhere.
1893    case Intrinsic::vector_reduce_fmin:
1894      return TargetOpcode::G_VECREDUCE_FMIN;
1895    case Intrinsic::vector_reduce_fmax:
1896      return TargetOpcode::G_VECREDUCE_FMAX;
1897    case Intrinsic::vector_reduce_fminimum:
1898      return TargetOpcode::G_VECREDUCE_FMINIMUM;
1899    case Intrinsic::vector_reduce_fmaximum:
1900      return TargetOpcode::G_VECREDUCE_FMAXIMUM;
1901    case Intrinsic::vector_reduce_add:
1902      return TargetOpcode::G_VECREDUCE_ADD;
1903    case Intrinsic::vector_reduce_mul:
1904      return TargetOpcode::G_VECREDUCE_MUL;
1905    case Intrinsic::vector_reduce_and:
1906      return TargetOpcode::G_VECREDUCE_AND;
1907    case Intrinsic::vector_reduce_or:
1908      return TargetOpcode::G_VECREDUCE_OR;
1909    case Intrinsic::vector_reduce_xor:
1910      return TargetOpcode::G_VECREDUCE_XOR;
1911    case Intrinsic::vector_reduce_smax:
1912      return TargetOpcode::G_VECREDUCE_SMAX;
1913    case Intrinsic::vector_reduce_smin:
1914      return TargetOpcode::G_VECREDUCE_SMIN;
1915    case Intrinsic::vector_reduce_umax:
1916      return TargetOpcode::G_VECREDUCE_UMAX;
1917    case Intrinsic::vector_reduce_umin:
1918      return TargetOpcode::G_VECREDUCE_UMIN;
1919    case Intrinsic::lround:
1920      return TargetOpcode::G_LROUND;
1921    case Intrinsic::llround:
1922      return TargetOpcode::G_LLROUND;
1923    case Intrinsic::get_fpenv:
1924      return TargetOpcode::G_GET_FPENV;
1925    case Intrinsic::get_fpmode:
1926      return TargetOpcode::G_GET_FPMODE;
1927  }
1928  return Intrinsic::not_intrinsic;
1929}
1930
1931bool IRTranslator::translateSimpleIntrinsic(const CallInst &CI,
1932                                            Intrinsic::ID ID,
1933                                            MachineIRBuilder &MIRBuilder) {
1934
1935  unsigned Op = getSimpleIntrinsicOpcode(ID);
1936
1937  // Is this a simple intrinsic?
1938  if (Op == Intrinsic::not_intrinsic)
1939    return false;
1940
1941  // Yes. Let's translate it.
1942  SmallVector<llvm::SrcOp, 4> VRegs;
1943  for (const auto &Arg : CI.args())
1944    VRegs.push_back(getOrCreateVReg(*Arg));
1945
1946  MIRBuilder.buildInstr(Op, {getOrCreateVReg(CI)}, VRegs,
1947                        MachineInstr::copyFlagsFromInstruction(CI));
1948  return true;
1949}
1950
1951// TODO: Include ConstainedOps.def when all strict instructions are defined.
1952static unsigned getConstrainedOpcode(Intrinsic::ID ID) {
1953  switch (ID) {
1954  case Intrinsic::experimental_constrained_fadd:
1955    return TargetOpcode::G_STRICT_FADD;
1956  case Intrinsic::experimental_constrained_fsub:
1957    return TargetOpcode::G_STRICT_FSUB;
1958  case Intrinsic::experimental_constrained_fmul:
1959    return TargetOpcode::G_STRICT_FMUL;
1960  case Intrinsic::experimental_constrained_fdiv:
1961    return TargetOpcode::G_STRICT_FDIV;
1962  case Intrinsic::experimental_constrained_frem:
1963    return TargetOpcode::G_STRICT_FREM;
1964  case Intrinsic::experimental_constrained_fma:
1965    return TargetOpcode::G_STRICT_FMA;
1966  case Intrinsic::experimental_constrained_sqrt:
1967    return TargetOpcode::G_STRICT_FSQRT;
1968  case Intrinsic::experimental_constrained_ldexp:
1969    return TargetOpcode::G_STRICT_FLDEXP;
1970  default:
1971    return 0;
1972  }
1973}
1974
1975bool IRTranslator::translateConstrainedFPIntrinsic(
1976  const ConstrainedFPIntrinsic &FPI, MachineIRBuilder &MIRBuilder) {
1977  fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
1978
1979  unsigned Opcode = getConstrainedOpcode(FPI.getIntrinsicID());
1980  if (!Opcode)
1981    return false;
1982
1983  uint32_t Flags = MachineInstr::copyFlagsFromInstruction(FPI);
1984  if (EB == fp::ExceptionBehavior::ebIgnore)
1985    Flags |= MachineInstr::NoFPExcept;
1986
1987  SmallVector<llvm::SrcOp, 4> VRegs;
1988  VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(0)));
1989  if (!FPI.isUnaryOp())
1990    VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(1)));
1991  if (FPI.isTernaryOp())
1992    VRegs.push_back(getOrCreateVReg(*FPI.getArgOperand(2)));
1993
1994  MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(FPI)}, VRegs, Flags);
1995  return true;
1996}
1997
1998std::optional<MCRegister> IRTranslator::getArgPhysReg(Argument &Arg) {
1999  auto VRegs = getOrCreateVRegs(Arg);
2000  if (VRegs.size() != 1)
2001    return std::nullopt;
2002
2003  // Arguments are lowered as a copy of a livein physical register.
2004  auto *VRegDef = MF->getRegInfo().getVRegDef(VRegs[0]);
2005  if (!VRegDef || !VRegDef->isCopy())
2006    return std::nullopt;
2007  return VRegDef->getOperand(1).getReg().asMCReg();
2008}
2009
2010bool IRTranslator::translateIfEntryValueArgument(bool isDeclare, Value *Val,
2011                                                 const DILocalVariable *Var,
2012                                                 const DIExpression *Expr,
2013                                                 const DebugLoc &DL,
2014                                                 MachineIRBuilder &MIRBuilder) {
2015  auto *Arg = dyn_cast<Argument>(Val);
2016  if (!Arg)
2017    return false;
2018
2019  if (!Expr->isEntryValue())
2020    return false;
2021
2022  std::optional<MCRegister> PhysReg = getArgPhysReg(*Arg);
2023  if (!PhysReg) {
2024    LLVM_DEBUG(dbgs() << "Dropping dbg." << (isDeclare ? "declare" : "value")
2025                      << ": expression is entry_value but "
2026                      << "couldn't find a physical register\n");
2027    LLVM_DEBUG(dbgs() << *Var << "\n");
2028    return true;
2029  }
2030
2031  if (isDeclare) {
2032    // Append an op deref to account for the fact that this is a dbg_declare.
2033    Expr = DIExpression::append(Expr, dwarf::DW_OP_deref);
2034    MF->setVariableDbgInfo(Var, Expr, *PhysReg, DL);
2035  } else {
2036    MIRBuilder.buildDirectDbgValue(*PhysReg, Var, Expr);
2037  }
2038
2039  return true;
2040}
2041
2042bool IRTranslator::translateKnownIntrinsic(const CallInst &CI, Intrinsic::ID ID,
2043                                           MachineIRBuilder &MIRBuilder) {
2044  if (auto *MI = dyn_cast<AnyMemIntrinsic>(&CI)) {
2045    if (ORE->enabled()) {
2046      if (MemoryOpRemark::canHandle(MI, *LibInfo)) {
2047        MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2048        R.visit(MI);
2049      }
2050    }
2051  }
2052
2053  // If this is a simple intrinsic (that is, we just need to add a def of
2054  // a vreg, and uses for each arg operand, then translate it.
2055  if (translateSimpleIntrinsic(CI, ID, MIRBuilder))
2056    return true;
2057
2058  switch (ID) {
2059  default:
2060    break;
2061  case Intrinsic::lifetime_start:
2062  case Intrinsic::lifetime_end: {
2063    // No stack colouring in O0, discard region information.
2064    if (MF->getTarget().getOptLevel() == CodeGenOptLevel::None)
2065      return true;
2066
2067    unsigned Op = ID == Intrinsic::lifetime_start ? TargetOpcode::LIFETIME_START
2068                                                  : TargetOpcode::LIFETIME_END;
2069
2070    // Get the underlying objects for the location passed on the lifetime
2071    // marker.
2072    SmallVector<const Value *, 4> Allocas;
2073    getUnderlyingObjects(CI.getArgOperand(1), Allocas);
2074
2075    // Iterate over each underlying object, creating lifetime markers for each
2076    // static alloca. Quit if we find a non-static alloca.
2077    for (const Value *V : Allocas) {
2078      const AllocaInst *AI = dyn_cast<AllocaInst>(V);
2079      if (!AI)
2080        continue;
2081
2082      if (!AI->isStaticAlloca())
2083        return true;
2084
2085      MIRBuilder.buildInstr(Op).addFrameIndex(getOrCreateFrameIndex(*AI));
2086    }
2087    return true;
2088  }
2089  case Intrinsic::dbg_declare: {
2090    const DbgDeclareInst &DI = cast<DbgDeclareInst>(CI);
2091    assert(DI.getVariable() && "Missing variable");
2092    translateDbgDeclareRecord(DI.getAddress(), DI.hasArgList(), DI.getVariable(),
2093                       DI.getExpression(), DI.getDebugLoc(), MIRBuilder);
2094    return true;
2095  }
2096  case Intrinsic::dbg_label: {
2097    const DbgLabelInst &DI = cast<DbgLabelInst>(CI);
2098    assert(DI.getLabel() && "Missing label");
2099
2100    assert(DI.getLabel()->isValidLocationForIntrinsic(
2101               MIRBuilder.getDebugLoc()) &&
2102           "Expected inlined-at fields to agree");
2103
2104    MIRBuilder.buildDbgLabel(DI.getLabel());
2105    return true;
2106  }
2107  case Intrinsic::vaend:
2108    // No target I know of cares about va_end. Certainly no in-tree target
2109    // does. Simplest intrinsic ever!
2110    return true;
2111  case Intrinsic::vastart: {
2112    auto &TLI = *MF->getSubtarget().getTargetLowering();
2113    Value *Ptr = CI.getArgOperand(0);
2114    unsigned ListSize = TLI.getVaListSizeInBits(*DL) / 8;
2115    Align Alignment = getKnownAlignment(Ptr, *DL);
2116
2117    MIRBuilder.buildInstr(TargetOpcode::G_VASTART, {}, {getOrCreateVReg(*Ptr)})
2118        .addMemOperand(MF->getMachineMemOperand(MachinePointerInfo(Ptr),
2119                                                MachineMemOperand::MOStore,
2120                                                ListSize, Alignment));
2121    return true;
2122  }
2123  case Intrinsic::dbg_value: {
2124    // This form of DBG_VALUE is target-independent.
2125    const DbgValueInst &DI = cast<DbgValueInst>(CI);
2126    translateDbgValueRecord(DI.getValue(), DI.hasArgList(), DI.getVariable(),
2127                       DI.getExpression(), DI.getDebugLoc(), MIRBuilder);
2128    return true;
2129  }
2130  case Intrinsic::uadd_with_overflow:
2131    return translateOverflowIntrinsic(CI, TargetOpcode::G_UADDO, MIRBuilder);
2132  case Intrinsic::sadd_with_overflow:
2133    return translateOverflowIntrinsic(CI, TargetOpcode::G_SADDO, MIRBuilder);
2134  case Intrinsic::usub_with_overflow:
2135    return translateOverflowIntrinsic(CI, TargetOpcode::G_USUBO, MIRBuilder);
2136  case Intrinsic::ssub_with_overflow:
2137    return translateOverflowIntrinsic(CI, TargetOpcode::G_SSUBO, MIRBuilder);
2138  case Intrinsic::umul_with_overflow:
2139    return translateOverflowIntrinsic(CI, TargetOpcode::G_UMULO, MIRBuilder);
2140  case Intrinsic::smul_with_overflow:
2141    return translateOverflowIntrinsic(CI, TargetOpcode::G_SMULO, MIRBuilder);
2142  case Intrinsic::uadd_sat:
2143    return translateBinaryOp(TargetOpcode::G_UADDSAT, CI, MIRBuilder);
2144  case Intrinsic::sadd_sat:
2145    return translateBinaryOp(TargetOpcode::G_SADDSAT, CI, MIRBuilder);
2146  case Intrinsic::usub_sat:
2147    return translateBinaryOp(TargetOpcode::G_USUBSAT, CI, MIRBuilder);
2148  case Intrinsic::ssub_sat:
2149    return translateBinaryOp(TargetOpcode::G_SSUBSAT, CI, MIRBuilder);
2150  case Intrinsic::ushl_sat:
2151    return translateBinaryOp(TargetOpcode::G_USHLSAT, CI, MIRBuilder);
2152  case Intrinsic::sshl_sat:
2153    return translateBinaryOp(TargetOpcode::G_SSHLSAT, CI, MIRBuilder);
2154  case Intrinsic::umin:
2155    return translateBinaryOp(TargetOpcode::G_UMIN, CI, MIRBuilder);
2156  case Intrinsic::umax:
2157    return translateBinaryOp(TargetOpcode::G_UMAX, CI, MIRBuilder);
2158  case Intrinsic::smin:
2159    return translateBinaryOp(TargetOpcode::G_SMIN, CI, MIRBuilder);
2160  case Intrinsic::smax:
2161    return translateBinaryOp(TargetOpcode::G_SMAX, CI, MIRBuilder);
2162  case Intrinsic::abs:
2163    // TODO: Preserve "int min is poison" arg in GMIR?
2164    return translateUnaryOp(TargetOpcode::G_ABS, CI, MIRBuilder);
2165  case Intrinsic::smul_fix:
2166    return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIX, CI, MIRBuilder);
2167  case Intrinsic::umul_fix:
2168    return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIX, CI, MIRBuilder);
2169  case Intrinsic::smul_fix_sat:
2170    return translateFixedPointIntrinsic(TargetOpcode::G_SMULFIXSAT, CI, MIRBuilder);
2171  case Intrinsic::umul_fix_sat:
2172    return translateFixedPointIntrinsic(TargetOpcode::G_UMULFIXSAT, CI, MIRBuilder);
2173  case Intrinsic::sdiv_fix:
2174    return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIX, CI, MIRBuilder);
2175  case Intrinsic::udiv_fix:
2176    return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIX, CI, MIRBuilder);
2177  case Intrinsic::sdiv_fix_sat:
2178    return translateFixedPointIntrinsic(TargetOpcode::G_SDIVFIXSAT, CI, MIRBuilder);
2179  case Intrinsic::udiv_fix_sat:
2180    return translateFixedPointIntrinsic(TargetOpcode::G_UDIVFIXSAT, CI, MIRBuilder);
2181  case Intrinsic::fmuladd: {
2182    const TargetMachine &TM = MF->getTarget();
2183    const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2184    Register Dst = getOrCreateVReg(CI);
2185    Register Op0 = getOrCreateVReg(*CI.getArgOperand(0));
2186    Register Op1 = getOrCreateVReg(*CI.getArgOperand(1));
2187    Register Op2 = getOrCreateVReg(*CI.getArgOperand(2));
2188    if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
2189        TLI.isFMAFasterThanFMulAndFAdd(*MF,
2190                                       TLI.getValueType(*DL, CI.getType()))) {
2191      // TODO: Revisit this to see if we should move this part of the
2192      // lowering to the combiner.
2193      MIRBuilder.buildFMA(Dst, Op0, Op1, Op2,
2194                          MachineInstr::copyFlagsFromInstruction(CI));
2195    } else {
2196      LLT Ty = getLLTForType(*CI.getType(), *DL);
2197      auto FMul = MIRBuilder.buildFMul(
2198          Ty, Op0, Op1, MachineInstr::copyFlagsFromInstruction(CI));
2199      MIRBuilder.buildFAdd(Dst, FMul, Op2,
2200                           MachineInstr::copyFlagsFromInstruction(CI));
2201    }
2202    return true;
2203  }
2204  case Intrinsic::convert_from_fp16:
2205    // FIXME: This intrinsic should probably be removed from the IR.
2206    MIRBuilder.buildFPExt(getOrCreateVReg(CI),
2207                          getOrCreateVReg(*CI.getArgOperand(0)),
2208                          MachineInstr::copyFlagsFromInstruction(CI));
2209    return true;
2210  case Intrinsic::convert_to_fp16:
2211    // FIXME: This intrinsic should probably be removed from the IR.
2212    MIRBuilder.buildFPTrunc(getOrCreateVReg(CI),
2213                            getOrCreateVReg(*CI.getArgOperand(0)),
2214                            MachineInstr::copyFlagsFromInstruction(CI));
2215    return true;
2216  case Intrinsic::frexp: {
2217    ArrayRef<Register> VRegs = getOrCreateVRegs(CI);
2218    MIRBuilder.buildFFrexp(VRegs[0], VRegs[1],
2219                           getOrCreateVReg(*CI.getArgOperand(0)),
2220                           MachineInstr::copyFlagsFromInstruction(CI));
2221    return true;
2222  }
2223  case Intrinsic::memcpy_inline:
2224    return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY_INLINE);
2225  case Intrinsic::memcpy:
2226    return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMCPY);
2227  case Intrinsic::memmove:
2228    return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMMOVE);
2229  case Intrinsic::memset:
2230    return translateMemFunc(CI, MIRBuilder, TargetOpcode::G_MEMSET);
2231  case Intrinsic::eh_typeid_for: {
2232    GlobalValue *GV = ExtractTypeInfo(CI.getArgOperand(0));
2233    Register Reg = getOrCreateVReg(CI);
2234    unsigned TypeID = MF->getTypeIDFor(GV);
2235    MIRBuilder.buildConstant(Reg, TypeID);
2236    return true;
2237  }
2238  case Intrinsic::objectsize:
2239    llvm_unreachable("llvm.objectsize.* should have been lowered already");
2240
2241  case Intrinsic::is_constant:
2242    llvm_unreachable("llvm.is.constant.* should have been lowered already");
2243
2244  case Intrinsic::stackguard:
2245    getStackGuard(getOrCreateVReg(CI), MIRBuilder);
2246    return true;
2247  case Intrinsic::stackprotector: {
2248    const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2249    LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2250    Register GuardVal;
2251    if (TLI.useLoadStackGuardNode()) {
2252      GuardVal = MRI->createGenericVirtualRegister(PtrTy);
2253      getStackGuard(GuardVal, MIRBuilder);
2254    } else
2255      GuardVal = getOrCreateVReg(*CI.getArgOperand(0)); // The guard's value.
2256
2257    AllocaInst *Slot = cast<AllocaInst>(CI.getArgOperand(1));
2258    int FI = getOrCreateFrameIndex(*Slot);
2259    MF->getFrameInfo().setStackProtectorIndex(FI);
2260
2261    MIRBuilder.buildStore(
2262        GuardVal, getOrCreateVReg(*Slot),
2263        *MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
2264                                  MachineMemOperand::MOStore |
2265                                      MachineMemOperand::MOVolatile,
2266                                  PtrTy, Align(8)));
2267    return true;
2268  }
2269  case Intrinsic::stacksave: {
2270    MIRBuilder.buildInstr(TargetOpcode::G_STACKSAVE, {getOrCreateVReg(CI)}, {});
2271    return true;
2272  }
2273  case Intrinsic::stackrestore: {
2274    MIRBuilder.buildInstr(TargetOpcode::G_STACKRESTORE, {},
2275                          {getOrCreateVReg(*CI.getArgOperand(0))});
2276    return true;
2277  }
2278  case Intrinsic::cttz:
2279  case Intrinsic::ctlz: {
2280    ConstantInt *Cst = cast<ConstantInt>(CI.getArgOperand(1));
2281    bool isTrailing = ID == Intrinsic::cttz;
2282    unsigned Opcode = isTrailing
2283                          ? Cst->isZero() ? TargetOpcode::G_CTTZ
2284                                          : TargetOpcode::G_CTTZ_ZERO_UNDEF
2285                          : Cst->isZero() ? TargetOpcode::G_CTLZ
2286                                          : TargetOpcode::G_CTLZ_ZERO_UNDEF;
2287    MIRBuilder.buildInstr(Opcode, {getOrCreateVReg(CI)},
2288                          {getOrCreateVReg(*CI.getArgOperand(0))});
2289    return true;
2290  }
2291  case Intrinsic::invariant_start: {
2292    LLT PtrTy = getLLTForType(*CI.getArgOperand(0)->getType(), *DL);
2293    Register Undef = MRI->createGenericVirtualRegister(PtrTy);
2294    MIRBuilder.buildUndef(Undef);
2295    return true;
2296  }
2297  case Intrinsic::invariant_end:
2298    return true;
2299  case Intrinsic::expect:
2300  case Intrinsic::annotation:
2301  case Intrinsic::ptr_annotation:
2302  case Intrinsic::launder_invariant_group:
2303  case Intrinsic::strip_invariant_group: {
2304    // Drop the intrinsic, but forward the value.
2305    MIRBuilder.buildCopy(getOrCreateVReg(CI),
2306                         getOrCreateVReg(*CI.getArgOperand(0)));
2307    return true;
2308  }
2309  case Intrinsic::assume:
2310  case Intrinsic::experimental_noalias_scope_decl:
2311  case Intrinsic::var_annotation:
2312  case Intrinsic::sideeffect:
2313    // Discard annotate attributes, assumptions, and artificial side-effects.
2314    return true;
2315  case Intrinsic::read_volatile_register:
2316  case Intrinsic::read_register: {
2317    Value *Arg = CI.getArgOperand(0);
2318    MIRBuilder
2319        .buildInstr(TargetOpcode::G_READ_REGISTER, {getOrCreateVReg(CI)}, {})
2320        .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()));
2321    return true;
2322  }
2323  case Intrinsic::write_register: {
2324    Value *Arg = CI.getArgOperand(0);
2325    MIRBuilder.buildInstr(TargetOpcode::G_WRITE_REGISTER)
2326      .addMetadata(cast<MDNode>(cast<MetadataAsValue>(Arg)->getMetadata()))
2327      .addUse(getOrCreateVReg(*CI.getArgOperand(1)));
2328    return true;
2329  }
2330  case Intrinsic::localescape: {
2331    MachineBasicBlock &EntryMBB = MF->front();
2332    StringRef EscapedName = GlobalValue::dropLLVMManglingEscape(MF->getName());
2333
2334    // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
2335    // is the same on all targets.
2336    for (unsigned Idx = 0, E = CI.arg_size(); Idx < E; ++Idx) {
2337      Value *Arg = CI.getArgOperand(Idx)->stripPointerCasts();
2338      if (isa<ConstantPointerNull>(Arg))
2339        continue; // Skip null pointers. They represent a hole in index space.
2340
2341      int FI = getOrCreateFrameIndex(*cast<AllocaInst>(Arg));
2342      MCSymbol *FrameAllocSym =
2343          MF->getMMI().getContext().getOrCreateFrameAllocSymbol(EscapedName,
2344                                                                Idx);
2345
2346      // This should be inserted at the start of the entry block.
2347      auto LocalEscape =
2348          MIRBuilder.buildInstrNoInsert(TargetOpcode::LOCAL_ESCAPE)
2349              .addSym(FrameAllocSym)
2350              .addFrameIndex(FI);
2351
2352      EntryMBB.insert(EntryMBB.begin(), LocalEscape);
2353    }
2354
2355    return true;
2356  }
2357  case Intrinsic::vector_reduce_fadd:
2358  case Intrinsic::vector_reduce_fmul: {
2359    // Need to check for the reassoc flag to decide whether we want a
2360    // sequential reduction opcode or not.
2361    Register Dst = getOrCreateVReg(CI);
2362    Register ScalarSrc = getOrCreateVReg(*CI.getArgOperand(0));
2363    Register VecSrc = getOrCreateVReg(*CI.getArgOperand(1));
2364    unsigned Opc = 0;
2365    if (!CI.hasAllowReassoc()) {
2366      // The sequential ordering case.
2367      Opc = ID == Intrinsic::vector_reduce_fadd
2368                ? TargetOpcode::G_VECREDUCE_SEQ_FADD
2369                : TargetOpcode::G_VECREDUCE_SEQ_FMUL;
2370      MIRBuilder.buildInstr(Opc, {Dst}, {ScalarSrc, VecSrc},
2371                            MachineInstr::copyFlagsFromInstruction(CI));
2372      return true;
2373    }
2374    // We split the operation into a separate G_FADD/G_FMUL + the reduce,
2375    // since the associativity doesn't matter.
2376    unsigned ScalarOpc;
2377    if (ID == Intrinsic::vector_reduce_fadd) {
2378      Opc = TargetOpcode::G_VECREDUCE_FADD;
2379      ScalarOpc = TargetOpcode::G_FADD;
2380    } else {
2381      Opc = TargetOpcode::G_VECREDUCE_FMUL;
2382      ScalarOpc = TargetOpcode::G_FMUL;
2383    }
2384    LLT DstTy = MRI->getType(Dst);
2385    auto Rdx = MIRBuilder.buildInstr(
2386        Opc, {DstTy}, {VecSrc}, MachineInstr::copyFlagsFromInstruction(CI));
2387    MIRBuilder.buildInstr(ScalarOpc, {Dst}, {ScalarSrc, Rdx},
2388                          MachineInstr::copyFlagsFromInstruction(CI));
2389
2390    return true;
2391  }
2392  case Intrinsic::trap:
2393  case Intrinsic::debugtrap:
2394  case Intrinsic::ubsantrap: {
2395    StringRef TrapFuncName =
2396        CI.getAttributes().getFnAttr("trap-func-name").getValueAsString();
2397    if (TrapFuncName.empty())
2398      break; // Use the default handling.
2399    CallLowering::CallLoweringInfo Info;
2400    if (ID == Intrinsic::ubsantrap) {
2401      Info.OrigArgs.push_back({getOrCreateVRegs(*CI.getArgOperand(0)),
2402                               CI.getArgOperand(0)->getType(), 0});
2403    }
2404    Info.Callee = MachineOperand::CreateES(TrapFuncName.data());
2405    Info.CB = &CI;
2406    Info.OrigRet = {Register(), Type::getVoidTy(CI.getContext()), 0};
2407    return CLI->lowerCall(MIRBuilder, Info);
2408  }
2409  case Intrinsic::amdgcn_cs_chain:
2410    return translateCallBase(CI, MIRBuilder);
2411  case Intrinsic::fptrunc_round: {
2412    uint32_t Flags = MachineInstr::copyFlagsFromInstruction(CI);
2413
2414    // Convert the metadata argument to a constant integer
2415    Metadata *MD = cast<MetadataAsValue>(CI.getArgOperand(1))->getMetadata();
2416    std::optional<RoundingMode> RoundMode =
2417        convertStrToRoundingMode(cast<MDString>(MD)->getString());
2418
2419    // Add the Rounding mode as an integer
2420    MIRBuilder
2421        .buildInstr(TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND,
2422                    {getOrCreateVReg(CI)},
2423                    {getOrCreateVReg(*CI.getArgOperand(0))}, Flags)
2424        .addImm((int)*RoundMode);
2425
2426    return true;
2427  }
2428  case Intrinsic::is_fpclass: {
2429    Value *FpValue = CI.getOperand(0);
2430    ConstantInt *TestMaskValue = cast<ConstantInt>(CI.getOperand(1));
2431
2432    MIRBuilder
2433        .buildInstr(TargetOpcode::G_IS_FPCLASS, {getOrCreateVReg(CI)},
2434                    {getOrCreateVReg(*FpValue)})
2435        .addImm(TestMaskValue->getZExtValue());
2436
2437    return true;
2438  }
2439  case Intrinsic::set_fpenv: {
2440    Value *FPEnv = CI.getOperand(0);
2441    MIRBuilder.buildInstr(TargetOpcode::G_SET_FPENV, {},
2442                          {getOrCreateVReg(*FPEnv)});
2443    return true;
2444  }
2445  case Intrinsic::reset_fpenv: {
2446    MIRBuilder.buildInstr(TargetOpcode::G_RESET_FPENV, {}, {});
2447    return true;
2448  }
2449  case Intrinsic::set_fpmode: {
2450    Value *FPState = CI.getOperand(0);
2451    MIRBuilder.buildInstr(TargetOpcode::G_SET_FPMODE, {},
2452                          { getOrCreateVReg(*FPState) });
2453    return true;
2454  }
2455  case Intrinsic::reset_fpmode: {
2456    MIRBuilder.buildInstr(TargetOpcode::G_RESET_FPMODE, {}, {});
2457    return true;
2458  }
2459  case Intrinsic::prefetch: {
2460    Value *Addr = CI.getOperand(0);
2461    unsigned RW = cast<ConstantInt>(CI.getOperand(1))->getZExtValue();
2462    unsigned Locality = cast<ConstantInt>(CI.getOperand(2))->getZExtValue();
2463    unsigned CacheType = cast<ConstantInt>(CI.getOperand(3))->getZExtValue();
2464
2465    auto Flags = RW ? MachineMemOperand::MOStore : MachineMemOperand::MOLoad;
2466    auto &MMO = *MF->getMachineMemOperand(MachinePointerInfo(Addr), Flags,
2467                                          LLT(), Align());
2468
2469    MIRBuilder.buildPrefetch(getOrCreateVReg(*Addr), RW, Locality, CacheType,
2470                             MMO);
2471
2472    return true;
2473  }
2474#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)  \
2475  case Intrinsic::INTRINSIC:
2476#include "llvm/IR/ConstrainedOps.def"
2477    return translateConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(CI),
2478                                           MIRBuilder);
2479
2480  }
2481  return false;
2482}
2483
2484bool IRTranslator::translateInlineAsm(const CallBase &CB,
2485                                      MachineIRBuilder &MIRBuilder) {
2486
2487  const InlineAsmLowering *ALI = MF->getSubtarget().getInlineAsmLowering();
2488
2489  if (!ALI) {
2490    LLVM_DEBUG(
2491        dbgs() << "Inline asm lowering is not supported for this target yet\n");
2492    return false;
2493  }
2494
2495  return ALI->lowerInlineAsm(
2496      MIRBuilder, CB, [&](const Value &Val) { return getOrCreateVRegs(Val); });
2497}
2498
2499bool IRTranslator::translateCallBase(const CallBase &CB,
2500                                     MachineIRBuilder &MIRBuilder) {
2501  ArrayRef<Register> Res = getOrCreateVRegs(CB);
2502
2503  SmallVector<ArrayRef<Register>, 8> Args;
2504  Register SwiftInVReg = 0;
2505  Register SwiftErrorVReg = 0;
2506  for (const auto &Arg : CB.args()) {
2507    if (CLI->supportSwiftError() && isSwiftError(Arg)) {
2508      assert(SwiftInVReg == 0 && "Expected only one swift error argument");
2509      LLT Ty = getLLTForType(*Arg->getType(), *DL);
2510      SwiftInVReg = MRI->createGenericVirtualRegister(Ty);
2511      MIRBuilder.buildCopy(SwiftInVReg, SwiftError.getOrCreateVRegUseAt(
2512                                            &CB, &MIRBuilder.getMBB(), Arg));
2513      Args.emplace_back(ArrayRef(SwiftInVReg));
2514      SwiftErrorVReg =
2515          SwiftError.getOrCreateVRegDefAt(&CB, &MIRBuilder.getMBB(), Arg);
2516      continue;
2517    }
2518    Args.push_back(getOrCreateVRegs(*Arg));
2519  }
2520
2521  if (auto *CI = dyn_cast<CallInst>(&CB)) {
2522    if (ORE->enabled()) {
2523      if (MemoryOpRemark::canHandle(CI, *LibInfo)) {
2524        MemoryOpRemark R(*ORE, "gisel-irtranslator-memsize", *DL, *LibInfo);
2525        R.visit(CI);
2526      }
2527    }
2528  }
2529
2530  // We don't set HasCalls on MFI here yet because call lowering may decide to
2531  // optimize into tail calls. Instead, we defer that to selection where a final
2532  // scan is done to check if any instructions are calls.
2533  bool Success =
2534      CLI->lowerCall(MIRBuilder, CB, Res, Args, SwiftErrorVReg,
2535                     [&]() { return getOrCreateVReg(*CB.getCalledOperand()); });
2536
2537  // Check if we just inserted a tail call.
2538  if (Success) {
2539    assert(!HasTailCall && "Can't tail call return twice from block?");
2540    const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
2541    HasTailCall = TII->isTailCall(*std::prev(MIRBuilder.getInsertPt()));
2542  }
2543
2544  return Success;
2545}
2546
2547bool IRTranslator::translateCall(const User &U, MachineIRBuilder &MIRBuilder) {
2548  const CallInst &CI = cast<CallInst>(U);
2549  auto TII = MF->getTarget().getIntrinsicInfo();
2550  const Function *F = CI.getCalledFunction();
2551
2552  // FIXME: support Windows dllimport function calls and calls through
2553  // weak symbols.
2554  if (F && (F->hasDLLImportStorageClass() ||
2555            (MF->getTarget().getTargetTriple().isOSWindows() &&
2556             F->hasExternalWeakLinkage())))
2557    return false;
2558
2559  // FIXME: support control flow guard targets.
2560  if (CI.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2561    return false;
2562
2563  // FIXME: support statepoints and related.
2564  if (isa<GCStatepointInst, GCRelocateInst, GCResultInst>(U))
2565    return false;
2566
2567  if (CI.isInlineAsm())
2568    return translateInlineAsm(CI, MIRBuilder);
2569
2570  diagnoseDontCall(CI);
2571
2572  Intrinsic::ID ID = Intrinsic::not_intrinsic;
2573  if (F && F->isIntrinsic()) {
2574    ID = F->getIntrinsicID();
2575    if (TII && ID == Intrinsic::not_intrinsic)
2576      ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
2577  }
2578
2579  if (!F || !F->isIntrinsic() || ID == Intrinsic::not_intrinsic)
2580    return translateCallBase(CI, MIRBuilder);
2581
2582  assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
2583
2584  if (translateKnownIntrinsic(CI, ID, MIRBuilder))
2585    return true;
2586
2587  ArrayRef<Register> ResultRegs;
2588  if (!CI.getType()->isVoidTy())
2589    ResultRegs = getOrCreateVRegs(CI);
2590
2591  // Ignore the callsite attributes. Backend code is most likely not expecting
2592  // an intrinsic to sometimes have side effects and sometimes not.
2593  MachineInstrBuilder MIB = MIRBuilder.buildIntrinsic(ID, ResultRegs);
2594  if (isa<FPMathOperator>(CI))
2595    MIB->copyIRFlags(CI);
2596
2597  for (const auto &Arg : enumerate(CI.args())) {
2598    // If this is required to be an immediate, don't materialize it in a
2599    // register.
2600    if (CI.paramHasAttr(Arg.index(), Attribute::ImmArg)) {
2601      if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg.value())) {
2602        // imm arguments are more convenient than cimm (and realistically
2603        // probably sufficient), so use them.
2604        assert(CI->getBitWidth() <= 64 &&
2605               "large intrinsic immediates not handled");
2606        MIB.addImm(CI->getSExtValue());
2607      } else {
2608        MIB.addFPImm(cast<ConstantFP>(Arg.value()));
2609      }
2610    } else if (auto *MDVal = dyn_cast<MetadataAsValue>(Arg.value())) {
2611      auto *MD = MDVal->getMetadata();
2612      auto *MDN = dyn_cast<MDNode>(MD);
2613      if (!MDN) {
2614        if (auto *ConstMD = dyn_cast<ConstantAsMetadata>(MD))
2615          MDN = MDNode::get(MF->getFunction().getContext(), ConstMD);
2616        else // This was probably an MDString.
2617          return false;
2618      }
2619      MIB.addMetadata(MDN);
2620    } else {
2621      ArrayRef<Register> VRegs = getOrCreateVRegs(*Arg.value());
2622      if (VRegs.size() > 1)
2623        return false;
2624      MIB.addUse(VRegs[0]);
2625    }
2626  }
2627
2628  // Add a MachineMemOperand if it is a target mem intrinsic.
2629  const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
2630  TargetLowering::IntrinsicInfo Info;
2631  // TODO: Add a GlobalISel version of getTgtMemIntrinsic.
2632  if (TLI.getTgtMemIntrinsic(Info, CI, *MF, ID)) {
2633    Align Alignment = Info.align.value_or(
2634        DL->getABITypeAlign(Info.memVT.getTypeForEVT(F->getContext())));
2635    LLT MemTy = Info.memVT.isSimple()
2636                    ? getLLTForMVT(Info.memVT.getSimpleVT())
2637                    : LLT::scalar(Info.memVT.getStoreSizeInBits());
2638
2639    // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
2640    //       didn't yield anything useful.
2641    MachinePointerInfo MPI;
2642    if (Info.ptrVal)
2643      MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
2644    else if (Info.fallbackAddressSpace)
2645      MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
2646    MIB.addMemOperand(
2647        MF->getMachineMemOperand(MPI, Info.flags, MemTy, Alignment, CI.getAAMetadata()));
2648  }
2649
2650  return true;
2651}
2652
2653bool IRTranslator::findUnwindDestinations(
2654    const BasicBlock *EHPadBB,
2655    BranchProbability Prob,
2656    SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
2657        &UnwindDests) {
2658  EHPersonality Personality = classifyEHPersonality(
2659      EHPadBB->getParent()->getFunction().getPersonalityFn());
2660  bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
2661  bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
2662  bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
2663  bool IsSEH = isAsynchronousEHPersonality(Personality);
2664
2665  if (IsWasmCXX) {
2666    // Ignore this for now.
2667    return false;
2668  }
2669
2670  while (EHPadBB) {
2671    const Instruction *Pad = EHPadBB->getFirstNonPHI();
2672    BasicBlock *NewEHPadBB = nullptr;
2673    if (isa<LandingPadInst>(Pad)) {
2674      // Stop on landingpads. They are not funclets.
2675      UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2676      break;
2677    }
2678    if (isa<CleanupPadInst>(Pad)) {
2679      // Stop on cleanup pads. Cleanups are always funclet entries for all known
2680      // personalities.
2681      UnwindDests.emplace_back(&getMBB(*EHPadBB), Prob);
2682      UnwindDests.back().first->setIsEHScopeEntry();
2683      UnwindDests.back().first->setIsEHFuncletEntry();
2684      break;
2685    }
2686    if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
2687      // Add the catchpad handlers to the possible destinations.
2688      for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
2689        UnwindDests.emplace_back(&getMBB(*CatchPadBB), Prob);
2690        // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
2691        if (IsMSVCCXX || IsCoreCLR)
2692          UnwindDests.back().first->setIsEHFuncletEntry();
2693        if (!IsSEH)
2694          UnwindDests.back().first->setIsEHScopeEntry();
2695      }
2696      NewEHPadBB = CatchSwitch->getUnwindDest();
2697    } else {
2698      continue;
2699    }
2700
2701    BranchProbabilityInfo *BPI = FuncInfo.BPI;
2702    if (BPI && NewEHPadBB)
2703      Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
2704    EHPadBB = NewEHPadBB;
2705  }
2706  return true;
2707}
2708
2709bool IRTranslator::translateInvoke(const User &U,
2710                                   MachineIRBuilder &MIRBuilder) {
2711  const InvokeInst &I = cast<InvokeInst>(U);
2712  MCContext &Context = MF->getContext();
2713
2714  const BasicBlock *ReturnBB = I.getSuccessor(0);
2715  const BasicBlock *EHPadBB = I.getSuccessor(1);
2716
2717  const Function *Fn = I.getCalledFunction();
2718
2719  // FIXME: support invoking patchpoint and statepoint intrinsics.
2720  if (Fn && Fn->isIntrinsic())
2721    return false;
2722
2723  // FIXME: support whatever these are.
2724  if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
2725    return false;
2726
2727  // FIXME: support control flow guard targets.
2728  if (I.countOperandBundlesOfType(LLVMContext::OB_cfguardtarget))
2729    return false;
2730
2731  // FIXME: support Windows exception handling.
2732  if (!isa<LandingPadInst>(EHPadBB->getFirstNonPHI()))
2733    return false;
2734
2735  // FIXME: support Windows dllimport function calls and calls through
2736  // weak symbols.
2737  if (Fn && (Fn->hasDLLImportStorageClass() ||
2738            (MF->getTarget().getTargetTriple().isOSWindows() &&
2739             Fn->hasExternalWeakLinkage())))
2740    return false;
2741
2742  bool LowerInlineAsm = I.isInlineAsm();
2743  bool NeedEHLabel = true;
2744
2745  // Emit the actual call, bracketed by EH_LABELs so that the MF knows about
2746  // the region covered by the try.
2747  MCSymbol *BeginSymbol = nullptr;
2748  if (NeedEHLabel) {
2749    MIRBuilder.buildInstr(TargetOpcode::G_INVOKE_REGION_START);
2750    BeginSymbol = Context.createTempSymbol();
2751    MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(BeginSymbol);
2752  }
2753
2754  if (LowerInlineAsm) {
2755    if (!translateInlineAsm(I, MIRBuilder))
2756      return false;
2757  } else if (!translateCallBase(I, MIRBuilder))
2758    return false;
2759
2760  MCSymbol *EndSymbol = nullptr;
2761  if (NeedEHLabel) {
2762    EndSymbol = Context.createTempSymbol();
2763    MIRBuilder.buildInstr(TargetOpcode::EH_LABEL).addSym(EndSymbol);
2764  }
2765
2766  SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2767  BranchProbabilityInfo *BPI = FuncInfo.BPI;
2768  MachineBasicBlock *InvokeMBB = &MIRBuilder.getMBB();
2769  BranchProbability EHPadBBProb =
2770      BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2771          : BranchProbability::getZero();
2772
2773  if (!findUnwindDestinations(EHPadBB, EHPadBBProb, UnwindDests))
2774    return false;
2775
2776  MachineBasicBlock &EHPadMBB = getMBB(*EHPadBB),
2777                    &ReturnMBB = getMBB(*ReturnBB);
2778  // Update successor info.
2779  addSuccessorWithProb(InvokeMBB, &ReturnMBB);
2780  for (auto &UnwindDest : UnwindDests) {
2781    UnwindDest.first->setIsEHPad();
2782    addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2783  }
2784  InvokeMBB->normalizeSuccProbs();
2785
2786  if (NeedEHLabel) {
2787    assert(BeginSymbol && "Expected a begin symbol!");
2788    assert(EndSymbol && "Expected an end symbol!");
2789    MF->addInvoke(&EHPadMBB, BeginSymbol, EndSymbol);
2790  }
2791
2792  MIRBuilder.buildBr(ReturnMBB);
2793  return true;
2794}
2795
2796bool IRTranslator::translateCallBr(const User &U,
2797                                   MachineIRBuilder &MIRBuilder) {
2798  // FIXME: Implement this.
2799  return false;
2800}
2801
2802bool IRTranslator::translateLandingPad(const User &U,
2803                                       MachineIRBuilder &MIRBuilder) {
2804  const LandingPadInst &LP = cast<LandingPadInst>(U);
2805
2806  MachineBasicBlock &MBB = MIRBuilder.getMBB();
2807
2808  MBB.setIsEHPad();
2809
2810  // If there aren't registers to copy the values into (e.g., during SjLj
2811  // exceptions), then don't bother.
2812  auto &TLI = *MF->getSubtarget().getTargetLowering();
2813  const Constant *PersonalityFn = MF->getFunction().getPersonalityFn();
2814  if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2815      TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2816    return true;
2817
2818  // If landingpad's return type is token type, we don't create DAG nodes
2819  // for its exception pointer and selector value. The extraction of exception
2820  // pointer or selector value from token type landingpads is not currently
2821  // supported.
2822  if (LP.getType()->isTokenTy())
2823    return true;
2824
2825  // Add a label to mark the beginning of the landing pad.  Deletion of the
2826  // landing pad can thus be detected via the MachineModuleInfo.
2827  MIRBuilder.buildInstr(TargetOpcode::EH_LABEL)
2828    .addSym(MF->addLandingPad(&MBB));
2829
2830  // If the unwinder does not preserve all registers, ensure that the
2831  // function marks the clobbered registers as used.
2832  const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
2833  if (auto *RegMask = TRI.getCustomEHPadPreservedMask(*MF))
2834    MF->getRegInfo().addPhysRegsUsedFromRegMask(RegMask);
2835
2836  LLT Ty = getLLTForType(*LP.getType(), *DL);
2837  Register Undef = MRI->createGenericVirtualRegister(Ty);
2838  MIRBuilder.buildUndef(Undef);
2839
2840  SmallVector<LLT, 2> Tys;
2841  for (Type *Ty : cast<StructType>(LP.getType())->elements())
2842    Tys.push_back(getLLTForType(*Ty, *DL));
2843  assert(Tys.size() == 2 && "Only two-valued landingpads are supported");
2844
2845  // Mark exception register as live in.
2846  Register ExceptionReg = TLI.getExceptionPointerRegister(PersonalityFn);
2847  if (!ExceptionReg)
2848    return false;
2849
2850  MBB.addLiveIn(ExceptionReg);
2851  ArrayRef<Register> ResRegs = getOrCreateVRegs(LP);
2852  MIRBuilder.buildCopy(ResRegs[0], ExceptionReg);
2853
2854  Register SelectorReg = TLI.getExceptionSelectorRegister(PersonalityFn);
2855  if (!SelectorReg)
2856    return false;
2857
2858  MBB.addLiveIn(SelectorReg);
2859  Register PtrVReg = MRI->createGenericVirtualRegister(Tys[0]);
2860  MIRBuilder.buildCopy(PtrVReg, SelectorReg);
2861  MIRBuilder.buildCast(ResRegs[1], PtrVReg);
2862
2863  return true;
2864}
2865
2866bool IRTranslator::translateAlloca(const User &U,
2867                                   MachineIRBuilder &MIRBuilder) {
2868  auto &AI = cast<AllocaInst>(U);
2869
2870  if (AI.isSwiftError())
2871    return true;
2872
2873  if (AI.isStaticAlloca()) {
2874    Register Res = getOrCreateVReg(AI);
2875    int FI = getOrCreateFrameIndex(AI);
2876    MIRBuilder.buildFrameIndex(Res, FI);
2877    return true;
2878  }
2879
2880  // FIXME: support stack probing for Windows.
2881  if (MF->getTarget().getTargetTriple().isOSWindows())
2882    return false;
2883
2884  // Now we're in the harder dynamic case.
2885  Register NumElts = getOrCreateVReg(*AI.getArraySize());
2886  Type *IntPtrIRTy = DL->getIntPtrType(AI.getType());
2887  LLT IntPtrTy = getLLTForType(*IntPtrIRTy, *DL);
2888  if (MRI->getType(NumElts) != IntPtrTy) {
2889    Register ExtElts = MRI->createGenericVirtualRegister(IntPtrTy);
2890    MIRBuilder.buildZExtOrTrunc(ExtElts, NumElts);
2891    NumElts = ExtElts;
2892  }
2893
2894  Type *Ty = AI.getAllocatedType();
2895
2896  Register AllocSize = MRI->createGenericVirtualRegister(IntPtrTy);
2897  Register TySize =
2898      getOrCreateVReg(*ConstantInt::get(IntPtrIRTy, DL->getTypeAllocSize(Ty)));
2899  MIRBuilder.buildMul(AllocSize, NumElts, TySize);
2900
2901  // Round the size of the allocation up to the stack alignment size
2902  // by add SA-1 to the size. This doesn't overflow because we're computing
2903  // an address inside an alloca.
2904  Align StackAlign = MF->getSubtarget().getFrameLowering()->getStackAlign();
2905  auto SAMinusOne = MIRBuilder.buildConstant(IntPtrTy, StackAlign.value() - 1);
2906  auto AllocAdd = MIRBuilder.buildAdd(IntPtrTy, AllocSize, SAMinusOne,
2907                                      MachineInstr::NoUWrap);
2908  auto AlignCst =
2909      MIRBuilder.buildConstant(IntPtrTy, ~(uint64_t)(StackAlign.value() - 1));
2910  auto AlignedAlloc = MIRBuilder.buildAnd(IntPtrTy, AllocAdd, AlignCst);
2911
2912  Align Alignment = std::max(AI.getAlign(), DL->getPrefTypeAlign(Ty));
2913  if (Alignment <= StackAlign)
2914    Alignment = Align(1);
2915  MIRBuilder.buildDynStackAlloc(getOrCreateVReg(AI), AlignedAlloc, Alignment);
2916
2917  MF->getFrameInfo().CreateVariableSizedObject(Alignment, &AI);
2918  assert(MF->getFrameInfo().hasVarSizedObjects());
2919  return true;
2920}
2921
2922bool IRTranslator::translateVAArg(const User &U, MachineIRBuilder &MIRBuilder) {
2923  // FIXME: We may need more info about the type. Because of how LLT works,
2924  // we're completely discarding the i64/double distinction here (amongst
2925  // others). Fortunately the ABIs I know of where that matters don't use va_arg
2926  // anyway but that's not guaranteed.
2927  MIRBuilder.buildInstr(TargetOpcode::G_VAARG, {getOrCreateVReg(U)},
2928                        {getOrCreateVReg(*U.getOperand(0)),
2929                         DL->getABITypeAlign(U.getType()).value()});
2930  return true;
2931}
2932
2933bool IRTranslator::translateUnreachable(const User &U, MachineIRBuilder &MIRBuilder) {
2934  if (!MF->getTarget().Options.TrapUnreachable)
2935    return true;
2936
2937  auto &UI = cast<UnreachableInst>(U);
2938  // We may be able to ignore unreachable behind a noreturn call.
2939  if (MF->getTarget().Options.NoTrapAfterNoreturn) {
2940    const BasicBlock &BB = *UI.getParent();
2941    if (&UI != &BB.front()) {
2942      BasicBlock::const_iterator PredI =
2943        std::prev(BasicBlock::const_iterator(UI));
2944      if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2945        if (Call->doesNotReturn())
2946          return true;
2947      }
2948    }
2949  }
2950
2951  MIRBuilder.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>());
2952  return true;
2953}
2954
2955bool IRTranslator::translateInsertElement(const User &U,
2956                                          MachineIRBuilder &MIRBuilder) {
2957  // If it is a <1 x Ty> vector, use the scalar as it is
2958  // not a legal vector type in LLT.
2959  if (cast<FixedVectorType>(U.getType())->getNumElements() == 1)
2960    return translateCopy(U, *U.getOperand(1), MIRBuilder);
2961
2962  Register Res = getOrCreateVReg(U);
2963  Register Val = getOrCreateVReg(*U.getOperand(0));
2964  Register Elt = getOrCreateVReg(*U.getOperand(1));
2965  Register Idx = getOrCreateVReg(*U.getOperand(2));
2966  MIRBuilder.buildInsertVectorElement(Res, Val, Elt, Idx);
2967  return true;
2968}
2969
2970bool IRTranslator::translateExtractElement(const User &U,
2971                                           MachineIRBuilder &MIRBuilder) {
2972  // If it is a <1 x Ty> vector, use the scalar as it is
2973  // not a legal vector type in LLT.
2974  if (cast<FixedVectorType>(U.getOperand(0)->getType())->getNumElements() == 1)
2975    return translateCopy(U, *U.getOperand(0), MIRBuilder);
2976
2977  Register Res = getOrCreateVReg(U);
2978  Register Val = getOrCreateVReg(*U.getOperand(0));
2979  const auto &TLI = *MF->getSubtarget().getTargetLowering();
2980  unsigned PreferredVecIdxWidth = TLI.getVectorIdxTy(*DL).getSizeInBits();
2981  Register Idx;
2982  if (auto *CI = dyn_cast<ConstantInt>(U.getOperand(1))) {
2983    if (CI->getBitWidth() != PreferredVecIdxWidth) {
2984      APInt NewIdx = CI->getValue().zextOrTrunc(PreferredVecIdxWidth);
2985      auto *NewIdxCI = ConstantInt::get(CI->getContext(), NewIdx);
2986      Idx = getOrCreateVReg(*NewIdxCI);
2987    }
2988  }
2989  if (!Idx)
2990    Idx = getOrCreateVReg(*U.getOperand(1));
2991  if (MRI->getType(Idx).getSizeInBits() != PreferredVecIdxWidth) {
2992    const LLT VecIdxTy = LLT::scalar(PreferredVecIdxWidth);
2993    Idx = MIRBuilder.buildZExtOrTrunc(VecIdxTy, Idx).getReg(0);
2994  }
2995  MIRBuilder.buildExtractVectorElement(Res, Val, Idx);
2996  return true;
2997}
2998
2999bool IRTranslator::translateShuffleVector(const User &U,
3000                                          MachineIRBuilder &MIRBuilder) {
3001  ArrayRef<int> Mask;
3002  if (auto *SVI = dyn_cast<ShuffleVectorInst>(&U))
3003    Mask = SVI->getShuffleMask();
3004  else
3005    Mask = cast<ConstantExpr>(U).getShuffleMask();
3006  ArrayRef<int> MaskAlloc = MF->allocateShuffleMask(Mask);
3007  MIRBuilder
3008      .buildInstr(TargetOpcode::G_SHUFFLE_VECTOR, {getOrCreateVReg(U)},
3009                  {getOrCreateVReg(*U.getOperand(0)),
3010                   getOrCreateVReg(*U.getOperand(1))})
3011      .addShuffleMask(MaskAlloc);
3012  return true;
3013}
3014
3015bool IRTranslator::translatePHI(const User &U, MachineIRBuilder &MIRBuilder) {
3016  const PHINode &PI = cast<PHINode>(U);
3017
3018  SmallVector<MachineInstr *, 4> Insts;
3019  for (auto Reg : getOrCreateVRegs(PI)) {
3020    auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_PHI, {Reg}, {});
3021    Insts.push_back(MIB.getInstr());
3022  }
3023
3024  PendingPHIs.emplace_back(&PI, std::move(Insts));
3025  return true;
3026}
3027
3028bool IRTranslator::translateAtomicCmpXchg(const User &U,
3029                                          MachineIRBuilder &MIRBuilder) {
3030  const AtomicCmpXchgInst &I = cast<AtomicCmpXchgInst>(U);
3031
3032  auto &TLI = *MF->getSubtarget().getTargetLowering();
3033  auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
3034
3035  auto Res = getOrCreateVRegs(I);
3036  Register OldValRes = Res[0];
3037  Register SuccessRes = Res[1];
3038  Register Addr = getOrCreateVReg(*I.getPointerOperand());
3039  Register Cmp = getOrCreateVReg(*I.getCompareOperand());
3040  Register NewVal = getOrCreateVReg(*I.getNewValOperand());
3041
3042  MIRBuilder.buildAtomicCmpXchgWithSuccess(
3043      OldValRes, SuccessRes, Addr, Cmp, NewVal,
3044      *MF->getMachineMemOperand(
3045          MachinePointerInfo(I.getPointerOperand()), Flags, MRI->getType(Cmp),
3046          getMemOpAlign(I), I.getAAMetadata(), nullptr, I.getSyncScopeID(),
3047          I.getSuccessOrdering(), I.getFailureOrdering()));
3048  return true;
3049}
3050
3051bool IRTranslator::translateAtomicRMW(const User &U,
3052                                      MachineIRBuilder &MIRBuilder) {
3053  const AtomicRMWInst &I = cast<AtomicRMWInst>(U);
3054  auto &TLI = *MF->getSubtarget().getTargetLowering();
3055  auto Flags = TLI.getAtomicMemOperandFlags(I, *DL);
3056
3057  Register Res = getOrCreateVReg(I);
3058  Register Addr = getOrCreateVReg(*I.getPointerOperand());
3059  Register Val = getOrCreateVReg(*I.getValOperand());
3060
3061  unsigned Opcode = 0;
3062  switch (I.getOperation()) {
3063  default:
3064    return false;
3065  case AtomicRMWInst::Xchg:
3066    Opcode = TargetOpcode::G_ATOMICRMW_XCHG;
3067    break;
3068  case AtomicRMWInst::Add:
3069    Opcode = TargetOpcode::G_ATOMICRMW_ADD;
3070    break;
3071  case AtomicRMWInst::Sub:
3072    Opcode = TargetOpcode::G_ATOMICRMW_SUB;
3073    break;
3074  case AtomicRMWInst::And:
3075    Opcode = TargetOpcode::G_ATOMICRMW_AND;
3076    break;
3077  case AtomicRMWInst::Nand:
3078    Opcode = TargetOpcode::G_ATOMICRMW_NAND;
3079    break;
3080  case AtomicRMWInst::Or:
3081    Opcode = TargetOpcode::G_ATOMICRMW_OR;
3082    break;
3083  case AtomicRMWInst::Xor:
3084    Opcode = TargetOpcode::G_ATOMICRMW_XOR;
3085    break;
3086  case AtomicRMWInst::Max:
3087    Opcode = TargetOpcode::G_ATOMICRMW_MAX;
3088    break;
3089  case AtomicRMWInst::Min:
3090    Opcode = TargetOpcode::G_ATOMICRMW_MIN;
3091    break;
3092  case AtomicRMWInst::UMax:
3093    Opcode = TargetOpcode::G_ATOMICRMW_UMAX;
3094    break;
3095  case AtomicRMWInst::UMin:
3096    Opcode = TargetOpcode::G_ATOMICRMW_UMIN;
3097    break;
3098  case AtomicRMWInst::FAdd:
3099    Opcode = TargetOpcode::G_ATOMICRMW_FADD;
3100    break;
3101  case AtomicRMWInst::FSub:
3102    Opcode = TargetOpcode::G_ATOMICRMW_FSUB;
3103    break;
3104  case AtomicRMWInst::FMax:
3105    Opcode = TargetOpcode::G_ATOMICRMW_FMAX;
3106    break;
3107  case AtomicRMWInst::FMin:
3108    Opcode = TargetOpcode::G_ATOMICRMW_FMIN;
3109    break;
3110  case AtomicRMWInst::UIncWrap:
3111    Opcode = TargetOpcode::G_ATOMICRMW_UINC_WRAP;
3112    break;
3113  case AtomicRMWInst::UDecWrap:
3114    Opcode = TargetOpcode::G_ATOMICRMW_UDEC_WRAP;
3115    break;
3116  }
3117
3118  MIRBuilder.buildAtomicRMW(
3119      Opcode, Res, Addr, Val,
3120      *MF->getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3121                                Flags, MRI->getType(Val), getMemOpAlign(I),
3122                                I.getAAMetadata(), nullptr, I.getSyncScopeID(),
3123                                I.getOrdering()));
3124  return true;
3125}
3126
3127bool IRTranslator::translateFence(const User &U,
3128                                  MachineIRBuilder &MIRBuilder) {
3129  const FenceInst &Fence = cast<FenceInst>(U);
3130  MIRBuilder.buildFence(static_cast<unsigned>(Fence.getOrdering()),
3131                        Fence.getSyncScopeID());
3132  return true;
3133}
3134
3135bool IRTranslator::translateFreeze(const User &U,
3136                                   MachineIRBuilder &MIRBuilder) {
3137  const ArrayRef<Register> DstRegs = getOrCreateVRegs(U);
3138  const ArrayRef<Register> SrcRegs = getOrCreateVRegs(*U.getOperand(0));
3139
3140  assert(DstRegs.size() == SrcRegs.size() &&
3141         "Freeze with different source and destination type?");
3142
3143  for (unsigned I = 0; I < DstRegs.size(); ++I) {
3144    MIRBuilder.buildFreeze(DstRegs[I], SrcRegs[I]);
3145  }
3146
3147  return true;
3148}
3149
3150void IRTranslator::finishPendingPhis() {
3151#ifndef NDEBUG
3152  DILocationVerifier Verifier;
3153  GISelObserverWrapper WrapperObserver(&Verifier);
3154  RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3155#endif // ifndef NDEBUG
3156  for (auto &Phi : PendingPHIs) {
3157    const PHINode *PI = Phi.first;
3158    if (PI->getType()->isEmptyTy())
3159      continue;
3160    ArrayRef<MachineInstr *> ComponentPHIs = Phi.second;
3161    MachineBasicBlock *PhiMBB = ComponentPHIs[0]->getParent();
3162    EntryBuilder->setDebugLoc(PI->getDebugLoc());
3163#ifndef NDEBUG
3164    Verifier.setCurrentInst(PI);
3165#endif // ifndef NDEBUG
3166
3167    SmallSet<const MachineBasicBlock *, 16> SeenPreds;
3168    for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
3169      auto IRPred = PI->getIncomingBlock(i);
3170      ArrayRef<Register> ValRegs = getOrCreateVRegs(*PI->getIncomingValue(i));
3171      for (auto *Pred : getMachinePredBBs({IRPred, PI->getParent()})) {
3172        if (SeenPreds.count(Pred) || !PhiMBB->isPredecessor(Pred))
3173          continue;
3174        SeenPreds.insert(Pred);
3175        for (unsigned j = 0; j < ValRegs.size(); ++j) {
3176          MachineInstrBuilder MIB(*MF, ComponentPHIs[j]);
3177          MIB.addUse(ValRegs[j]);
3178          MIB.addMBB(Pred);
3179        }
3180      }
3181    }
3182  }
3183}
3184
3185void IRTranslator::translateDbgValueRecord(Value *V, bool HasArgList,
3186                                     const DILocalVariable *Variable,
3187                                     const DIExpression *Expression,
3188                                     const DebugLoc &DL,
3189                                     MachineIRBuilder &MIRBuilder) {
3190  assert(Variable->isValidLocationForIntrinsic(DL) &&
3191         "Expected inlined-at fields to agree");
3192  // Act as if we're handling a debug intrinsic.
3193  MIRBuilder.setDebugLoc(DL);
3194
3195  if (!V || HasArgList) {
3196    // DI cannot produce a valid DBG_VALUE, so produce an undef DBG_VALUE to
3197    // terminate any prior location.
3198    MIRBuilder.buildIndirectDbgValue(0, Variable, Expression);
3199    return;
3200  }
3201
3202  if (const auto *CI = dyn_cast<Constant>(V)) {
3203    MIRBuilder.buildConstDbgValue(*CI, Variable, Expression);
3204    return;
3205  }
3206
3207  if (auto *AI = dyn_cast<AllocaInst>(V);
3208      AI && AI->isStaticAlloca() && Expression->startsWithDeref()) {
3209    // If the value is an alloca and the expression starts with a
3210    // dereference, track a stack slot instead of a register, as registers
3211    // may be clobbered.
3212    auto ExprOperands = Expression->getElements();
3213    auto *ExprDerefRemoved =
3214        DIExpression::get(AI->getContext(), ExprOperands.drop_front());
3215    MIRBuilder.buildFIDbgValue(getOrCreateFrameIndex(*AI), Variable,
3216                               ExprDerefRemoved);
3217    return;
3218  }
3219  if (translateIfEntryValueArgument(false, V, Variable, Expression, DL,
3220                                    MIRBuilder))
3221    return;
3222  for (Register Reg : getOrCreateVRegs(*V)) {
3223    // FIXME: This does not handle register-indirect values at offset 0. The
3224    // direct/indirect thing shouldn't really be handled by something as
3225    // implicit as reg+noreg vs reg+imm in the first place, but it seems
3226    // pretty baked in right now.
3227    MIRBuilder.buildDirectDbgValue(Reg, Variable, Expression);
3228  }
3229  return;
3230}
3231
3232void IRTranslator::translateDbgDeclareRecord(Value *Address, bool HasArgList,
3233                                     const DILocalVariable *Variable,
3234                                     const DIExpression *Expression,
3235                                     const DebugLoc &DL,
3236                                     MachineIRBuilder &MIRBuilder) {
3237  if (!Address || isa<UndefValue>(Address)) {
3238    LLVM_DEBUG(dbgs() << "Dropping debug info for " << *Variable << "\n");
3239    return;
3240  }
3241
3242  assert(Variable->isValidLocationForIntrinsic(DL) &&
3243         "Expected inlined-at fields to agree");
3244  auto AI = dyn_cast<AllocaInst>(Address);
3245  if (AI && AI->isStaticAlloca()) {
3246    // Static allocas are tracked at the MF level, no need for DBG_VALUE
3247    // instructions (in fact, they get ignored if they *do* exist).
3248    MF->setVariableDbgInfo(Variable, Expression,
3249                           getOrCreateFrameIndex(*AI), DL);
3250    return;
3251  }
3252
3253  if (translateIfEntryValueArgument(true, Address, Variable,
3254                                    Expression, DL,
3255                                    MIRBuilder))
3256    return;
3257
3258  // A dbg.declare describes the address of a source variable, so lower it
3259  // into an indirect DBG_VALUE.
3260  MIRBuilder.setDebugLoc(DL);
3261  MIRBuilder.buildIndirectDbgValue(getOrCreateVReg(*Address),
3262                                   Variable, Expression);
3263  return;
3264}
3265
3266void IRTranslator::translateDbgInfo(const Instruction &Inst,
3267                                      MachineIRBuilder &MIRBuilder) {
3268  for (DPValue &DPV : Inst.getDbgValueRange()) {
3269    const DILocalVariable *Variable = DPV.getVariable();
3270    const DIExpression *Expression = DPV.getExpression();
3271    Value *V = DPV.getVariableLocationOp(0);
3272    if (DPV.isDbgDeclare())
3273      translateDbgDeclareRecord(V, DPV.hasArgList(), Variable,
3274                         Expression, DPV.getDebugLoc(), MIRBuilder);
3275    else
3276      translateDbgValueRecord(V, DPV.hasArgList(), Variable,
3277                         Expression, DPV.getDebugLoc(), MIRBuilder);
3278  }
3279}
3280
3281bool IRTranslator::translate(const Instruction &Inst) {
3282  CurBuilder->setDebugLoc(Inst.getDebugLoc());
3283  CurBuilder->setPCSections(Inst.getMetadata(LLVMContext::MD_pcsections));
3284
3285  auto &TLI = *MF->getSubtarget().getTargetLowering();
3286  if (TLI.fallBackToDAGISel(Inst))
3287    return false;
3288
3289  switch (Inst.getOpcode()) {
3290#define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
3291  case Instruction::OPCODE:                                                    \
3292    return translate##OPCODE(Inst, *CurBuilder.get());
3293#include "llvm/IR/Instruction.def"
3294  default:
3295    return false;
3296  }
3297}
3298
3299bool IRTranslator::translate(const Constant &C, Register Reg) {
3300  // We only emit constants into the entry block from here. To prevent jumpy
3301  // debug behaviour remove debug line.
3302  if (auto CurrInstDL = CurBuilder->getDL())
3303    EntryBuilder->setDebugLoc(DebugLoc());
3304
3305  if (auto CI = dyn_cast<ConstantInt>(&C))
3306    EntryBuilder->buildConstant(Reg, *CI);
3307  else if (auto CF = dyn_cast<ConstantFP>(&C))
3308    EntryBuilder->buildFConstant(Reg, *CF);
3309  else if (isa<UndefValue>(C))
3310    EntryBuilder->buildUndef(Reg);
3311  else if (isa<ConstantPointerNull>(C))
3312    EntryBuilder->buildConstant(Reg, 0);
3313  else if (auto GV = dyn_cast<GlobalValue>(&C))
3314    EntryBuilder->buildGlobalValue(Reg, GV);
3315  else if (auto CAZ = dyn_cast<ConstantAggregateZero>(&C)) {
3316    if (!isa<FixedVectorType>(CAZ->getType()))
3317      return false;
3318    // Return the scalar if it is a <1 x Ty> vector.
3319    unsigned NumElts = CAZ->getElementCount().getFixedValue();
3320    if (NumElts == 1)
3321      return translateCopy(C, *CAZ->getElementValue(0u), *EntryBuilder);
3322    SmallVector<Register, 4> Ops;
3323    for (unsigned I = 0; I < NumElts; ++I) {
3324      Constant &Elt = *CAZ->getElementValue(I);
3325      Ops.push_back(getOrCreateVReg(Elt));
3326    }
3327    EntryBuilder->buildBuildVector(Reg, Ops);
3328  } else if (auto CV = dyn_cast<ConstantDataVector>(&C)) {
3329    // Return the scalar if it is a <1 x Ty> vector.
3330    if (CV->getNumElements() == 1)
3331      return translateCopy(C, *CV->getElementAsConstant(0), *EntryBuilder);
3332    SmallVector<Register, 4> Ops;
3333    for (unsigned i = 0; i < CV->getNumElements(); ++i) {
3334      Constant &Elt = *CV->getElementAsConstant(i);
3335      Ops.push_back(getOrCreateVReg(Elt));
3336    }
3337    EntryBuilder->buildBuildVector(Reg, Ops);
3338  } else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
3339    switch(CE->getOpcode()) {
3340#define HANDLE_INST(NUM, OPCODE, CLASS)                                        \
3341  case Instruction::OPCODE:                                                    \
3342    return translate##OPCODE(*CE, *EntryBuilder.get());
3343#include "llvm/IR/Instruction.def"
3344    default:
3345      return false;
3346    }
3347  } else if (auto CV = dyn_cast<ConstantVector>(&C)) {
3348    if (CV->getNumOperands() == 1)
3349      return translateCopy(C, *CV->getOperand(0), *EntryBuilder);
3350    SmallVector<Register, 4> Ops;
3351    for (unsigned i = 0; i < CV->getNumOperands(); ++i) {
3352      Ops.push_back(getOrCreateVReg(*CV->getOperand(i)));
3353    }
3354    EntryBuilder->buildBuildVector(Reg, Ops);
3355  } else if (auto *BA = dyn_cast<BlockAddress>(&C)) {
3356    EntryBuilder->buildBlockAddress(Reg, BA);
3357  } else
3358    return false;
3359
3360  return true;
3361}
3362
3363bool IRTranslator::finalizeBasicBlock(const BasicBlock &BB,
3364                                      MachineBasicBlock &MBB) {
3365  for (auto &BTB : SL->BitTestCases) {
3366    // Emit header first, if it wasn't already emitted.
3367    if (!BTB.Emitted)
3368      emitBitTestHeader(BTB, BTB.Parent);
3369
3370    BranchProbability UnhandledProb = BTB.Prob;
3371    for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
3372      UnhandledProb -= BTB.Cases[j].ExtraProb;
3373      // Set the current basic block to the mbb we wish to insert the code into
3374      MachineBasicBlock *MBB = BTB.Cases[j].ThisBB;
3375      // If all cases cover a contiguous range, it is not necessary to jump to
3376      // the default block after the last bit test fails. This is because the
3377      // range check during bit test header creation has guaranteed that every
3378      // case here doesn't go outside the range. In this case, there is no need
3379      // to perform the last bit test, as it will always be true. Instead, make
3380      // the second-to-last bit-test fall through to the target of the last bit
3381      // test, and delete the last bit test.
3382
3383      MachineBasicBlock *NextMBB;
3384      if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3385        // Second-to-last bit-test with contiguous range: fall through to the
3386        // target of the final bit test.
3387        NextMBB = BTB.Cases[j + 1].TargetBB;
3388      } else if (j + 1 == ej) {
3389        // For the last bit test, fall through to Default.
3390        NextMBB = BTB.Default;
3391      } else {
3392        // Otherwise, fall through to the next bit test.
3393        NextMBB = BTB.Cases[j + 1].ThisBB;
3394      }
3395
3396      emitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j], MBB);
3397
3398      if ((BTB.ContiguousRange || BTB.FallthroughUnreachable) && j + 2 == ej) {
3399        // We need to record the replacement phi edge here that normally
3400        // happens in emitBitTestCase before we delete the case, otherwise the
3401        // phi edge will be lost.
3402        addMachineCFGPred({BTB.Parent->getBasicBlock(),
3403                           BTB.Cases[ej - 1].TargetBB->getBasicBlock()},
3404                          MBB);
3405        // Since we're not going to use the final bit test, remove it.
3406        BTB.Cases.pop_back();
3407        break;
3408      }
3409    }
3410    // This is "default" BB. We have two jumps to it. From "header" BB and from
3411    // last "case" BB, unless the latter was skipped.
3412    CFGEdge HeaderToDefaultEdge = {BTB.Parent->getBasicBlock(),
3413                                   BTB.Default->getBasicBlock()};
3414    addMachineCFGPred(HeaderToDefaultEdge, BTB.Parent);
3415    if (!BTB.ContiguousRange) {
3416      addMachineCFGPred(HeaderToDefaultEdge, BTB.Cases.back().ThisBB);
3417    }
3418  }
3419  SL->BitTestCases.clear();
3420
3421  for (auto &JTCase : SL->JTCases) {
3422    // Emit header first, if it wasn't already emitted.
3423    if (!JTCase.first.Emitted)
3424      emitJumpTableHeader(JTCase.second, JTCase.first, JTCase.first.HeaderBB);
3425
3426    emitJumpTable(JTCase.second, JTCase.second.MBB);
3427  }
3428  SL->JTCases.clear();
3429
3430  for (auto &SwCase : SL->SwitchCases)
3431    emitSwitchCase(SwCase, &CurBuilder->getMBB(), *CurBuilder);
3432  SL->SwitchCases.clear();
3433
3434  // Check if we need to generate stack-protector guard checks.
3435  StackProtector &SP = getAnalysis<StackProtector>();
3436  if (SP.shouldEmitSDCheck(BB)) {
3437    const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3438    bool FunctionBasedInstrumentation =
3439        TLI.getSSPStackGuardCheck(*MF->getFunction().getParent());
3440    SPDescriptor.initialize(&BB, &MBB, FunctionBasedInstrumentation);
3441  }
3442  // Handle stack protector.
3443  if (SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
3444    LLVM_DEBUG(dbgs() << "Unimplemented stack protector case\n");
3445    return false;
3446  } else if (SPDescriptor.shouldEmitStackProtector()) {
3447    MachineBasicBlock *ParentMBB = SPDescriptor.getParentMBB();
3448    MachineBasicBlock *SuccessMBB = SPDescriptor.getSuccessMBB();
3449
3450    // Find the split point to split the parent mbb. At the same time copy all
3451    // physical registers used in the tail of parent mbb into virtual registers
3452    // before the split point and back into physical registers after the split
3453    // point. This prevents us needing to deal with Live-ins and many other
3454    // register allocation issues caused by us splitting the parent mbb. The
3455    // register allocator will clean up said virtual copies later on.
3456    MachineBasicBlock::iterator SplitPoint = findSplitPointForStackProtector(
3457        ParentMBB, *MF->getSubtarget().getInstrInfo());
3458
3459    // Splice the terminator of ParentMBB into SuccessMBB.
3460    SuccessMBB->splice(SuccessMBB->end(), ParentMBB, SplitPoint,
3461                       ParentMBB->end());
3462
3463    // Add compare/jump on neq/jump to the parent BB.
3464    if (!emitSPDescriptorParent(SPDescriptor, ParentMBB))
3465      return false;
3466
3467    // CodeGen Failure MBB if we have not codegened it yet.
3468    MachineBasicBlock *FailureMBB = SPDescriptor.getFailureMBB();
3469    if (FailureMBB->empty()) {
3470      if (!emitSPDescriptorFailure(SPDescriptor, FailureMBB))
3471        return false;
3472    }
3473
3474    // Clear the Per-BB State.
3475    SPDescriptor.resetPerBBState();
3476  }
3477  return true;
3478}
3479
3480bool IRTranslator::emitSPDescriptorParent(StackProtectorDescriptor &SPD,
3481                                          MachineBasicBlock *ParentBB) {
3482  CurBuilder->setInsertPt(*ParentBB, ParentBB->end());
3483  // First create the loads to the guard/stack slot for the comparison.
3484  const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3485  Type *PtrIRTy = PointerType::getUnqual(MF->getFunction().getContext());
3486  const LLT PtrTy = getLLTForType(*PtrIRTy, *DL);
3487  LLT PtrMemTy = getLLTForMVT(TLI.getPointerMemTy(*DL));
3488
3489  MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
3490  int FI = MFI.getStackProtectorIndex();
3491
3492  Register Guard;
3493  Register StackSlotPtr = CurBuilder->buildFrameIndex(PtrTy, FI).getReg(0);
3494  const Module &M = *ParentBB->getParent()->getFunction().getParent();
3495  Align Align = DL->getPrefTypeAlign(PointerType::getUnqual(M.getContext()));
3496
3497  // Generate code to load the content of the guard slot.
3498  Register GuardVal =
3499      CurBuilder
3500          ->buildLoad(PtrMemTy, StackSlotPtr,
3501                      MachinePointerInfo::getFixedStack(*MF, FI), Align,
3502                      MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile)
3503          .getReg(0);
3504
3505  if (TLI.useStackGuardXorFP()) {
3506    LLVM_DEBUG(dbgs() << "Stack protector xor'ing with FP not yet implemented");
3507    return false;
3508  }
3509
3510  // Retrieve guard check function, nullptr if instrumentation is inlined.
3511  if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
3512    // This path is currently untestable on GlobalISel, since the only platform
3513    // that needs this seems to be Windows, and we fall back on that currently.
3514    // The code still lives here in case that changes.
3515    // Silence warning about unused variable until the code below that uses
3516    // 'GuardCheckFn' is enabled.
3517    (void)GuardCheckFn;
3518    return false;
3519#if 0
3520    // The target provides a guard check function to validate the guard value.
3521    // Generate a call to that function with the content of the guard slot as
3522    // argument.
3523    FunctionType *FnTy = GuardCheckFn->getFunctionType();
3524    assert(FnTy->getNumParams() == 1 && "Invalid function signature");
3525    ISD::ArgFlagsTy Flags;
3526    if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
3527      Flags.setInReg();
3528    CallLowering::ArgInfo GuardArgInfo(
3529        {GuardVal, FnTy->getParamType(0), {Flags}});
3530
3531    CallLowering::CallLoweringInfo Info;
3532    Info.OrigArgs.push_back(GuardArgInfo);
3533    Info.CallConv = GuardCheckFn->getCallingConv();
3534    Info.Callee = MachineOperand::CreateGA(GuardCheckFn, 0);
3535    Info.OrigRet = {Register(), FnTy->getReturnType()};
3536    if (!CLI->lowerCall(MIRBuilder, Info)) {
3537      LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector check\n");
3538      return false;
3539    }
3540    return true;
3541#endif
3542  }
3543
3544  // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
3545  // Otherwise, emit a volatile load to retrieve the stack guard value.
3546  if (TLI.useLoadStackGuardNode()) {
3547    Guard =
3548        MRI->createGenericVirtualRegister(LLT::scalar(PtrTy.getSizeInBits()));
3549    getStackGuard(Guard, *CurBuilder);
3550  } else {
3551    // TODO: test using android subtarget when we support @llvm.thread.pointer.
3552    const Value *IRGuard = TLI.getSDagStackGuard(M);
3553    Register GuardPtr = getOrCreateVReg(*IRGuard);
3554
3555    Guard = CurBuilder
3556                ->buildLoad(PtrMemTy, GuardPtr,
3557                            MachinePointerInfo::getFixedStack(*MF, FI), Align,
3558                            MachineMemOperand::MOLoad |
3559                                MachineMemOperand::MOVolatile)
3560                .getReg(0);
3561  }
3562
3563  // Perform the comparison.
3564  auto Cmp =
3565      CurBuilder->buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Guard, GuardVal);
3566  // If the guard/stackslot do not equal, branch to failure MBB.
3567  CurBuilder->buildBrCond(Cmp, *SPD.getFailureMBB());
3568  // Otherwise branch to success MBB.
3569  CurBuilder->buildBr(*SPD.getSuccessMBB());
3570  return true;
3571}
3572
3573bool IRTranslator::emitSPDescriptorFailure(StackProtectorDescriptor &SPD,
3574                                           MachineBasicBlock *FailureBB) {
3575  CurBuilder->setInsertPt(*FailureBB, FailureBB->end());
3576  const TargetLowering &TLI = *MF->getSubtarget().getTargetLowering();
3577
3578  const RTLIB::Libcall Libcall = RTLIB::STACKPROTECTOR_CHECK_FAIL;
3579  const char *Name = TLI.getLibcallName(Libcall);
3580
3581  CallLowering::CallLoweringInfo Info;
3582  Info.CallConv = TLI.getLibcallCallingConv(Libcall);
3583  Info.Callee = MachineOperand::CreateES(Name);
3584  Info.OrigRet = {Register(), Type::getVoidTy(MF->getFunction().getContext()),
3585                  0};
3586  if (!CLI->lowerCall(*CurBuilder, Info)) {
3587    LLVM_DEBUG(dbgs() << "Failed to lower call to stack protector fail\n");
3588    return false;
3589  }
3590
3591  // On PS4/PS5, the "return address" must still be within the calling
3592  // function, even if it's at the very end, so emit an explicit TRAP here.
3593  // WebAssembly needs an unreachable instruction after a non-returning call,
3594  // because the function return type can be different from __stack_chk_fail's
3595  // return type (void).
3596  const TargetMachine &TM = MF->getTarget();
3597  if (TM.getTargetTriple().isPS() || TM.getTargetTriple().isWasm()) {
3598    LLVM_DEBUG(dbgs() << "Unhandled trap emission for stack protector fail\n");
3599    return false;
3600  }
3601  return true;
3602}
3603
3604void IRTranslator::finalizeFunction() {
3605  // Release the memory used by the different maps we
3606  // needed during the translation.
3607  PendingPHIs.clear();
3608  VMap.reset();
3609  FrameIndices.clear();
3610  MachinePreds.clear();
3611  // MachineIRBuilder::DebugLoc can outlive the DILocation it holds. Clear it
3612  // to avoid accessing free���d memory (in runOnMachineFunction) and to avoid
3613  // destroying it twice (in ~IRTranslator() and ~LLVMContext())
3614  EntryBuilder.reset();
3615  CurBuilder.reset();
3616  FuncInfo.clear();
3617  SPDescriptor.resetPerFunctionState();
3618}
3619
3620/// Returns true if a BasicBlock \p BB within a variadic function contains a
3621/// variadic musttail call.
3622static bool checkForMustTailInVarArgFn(bool IsVarArg, const BasicBlock &BB) {
3623  if (!IsVarArg)
3624    return false;
3625
3626  // Walk the block backwards, because tail calls usually only appear at the end
3627  // of a block.
3628  return llvm::any_of(llvm::reverse(BB), [](const Instruction &I) {
3629    const auto *CI = dyn_cast<CallInst>(&I);
3630    return CI && CI->isMustTailCall();
3631  });
3632}
3633
3634bool IRTranslator::runOnMachineFunction(MachineFunction &CurMF) {
3635  MF = &CurMF;
3636  const Function &F = MF->getFunction();
3637  GISelCSEAnalysisWrapper &Wrapper =
3638      getAnalysis<GISelCSEAnalysisWrapperPass>().getCSEWrapper();
3639  // Set the CSEConfig and run the analysis.
3640  GISelCSEInfo *CSEInfo = nullptr;
3641  TPC = &getAnalysis<TargetPassConfig>();
3642  bool EnableCSE = EnableCSEInIRTranslator.getNumOccurrences()
3643                       ? EnableCSEInIRTranslator
3644                       : TPC->isGISelCSEEnabled();
3645
3646  if (EnableCSE) {
3647    EntryBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3648    CSEInfo = &Wrapper.get(TPC->getCSEConfig());
3649    EntryBuilder->setCSEInfo(CSEInfo);
3650    CurBuilder = std::make_unique<CSEMIRBuilder>(CurMF);
3651    CurBuilder->setCSEInfo(CSEInfo);
3652  } else {
3653    EntryBuilder = std::make_unique<MachineIRBuilder>();
3654    CurBuilder = std::make_unique<MachineIRBuilder>();
3655  }
3656  CLI = MF->getSubtarget().getCallLowering();
3657  CurBuilder->setMF(*MF);
3658  EntryBuilder->setMF(*MF);
3659  MRI = &MF->getRegInfo();
3660  DL = &F.getParent()->getDataLayout();
3661  ORE = std::make_unique<OptimizationRemarkEmitter>(&F);
3662  const TargetMachine &TM = MF->getTarget();
3663  TM.resetTargetOptions(F);
3664  EnableOpts = OptLevel != CodeGenOptLevel::None && !skipFunction(F);
3665  FuncInfo.MF = MF;
3666  if (EnableOpts) {
3667    AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3668    FuncInfo.BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
3669  } else {
3670    AA = nullptr;
3671    FuncInfo.BPI = nullptr;
3672  }
3673
3674  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
3675      MF->getFunction());
3676  LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3677  FuncInfo.CanLowerReturn = CLI->checkReturnTypeForCallConv(*MF);
3678
3679  const auto &TLI = *MF->getSubtarget().getTargetLowering();
3680
3681  SL = std::make_unique<GISelSwitchLowering>(this, FuncInfo);
3682  SL->init(TLI, TM, *DL);
3683
3684
3685
3686  assert(PendingPHIs.empty() && "stale PHIs");
3687
3688  // Targets which want to use big endian can enable it using
3689  // enableBigEndian()
3690  if (!DL->isLittleEndian() && !CLI->enableBigEndian()) {
3691    // Currently we don't properly handle big endian code.
3692    OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3693                               F.getSubprogram(), &F.getEntryBlock());
3694    R << "unable to translate in big endian mode";
3695    reportTranslationError(*MF, *TPC, *ORE, R);
3696  }
3697
3698  // Release the per-function state when we return, whether we succeeded or not.
3699  auto FinalizeOnReturn = make_scope_exit([this]() { finalizeFunction(); });
3700
3701  // Setup a separate basic-block for the arguments and constants
3702  MachineBasicBlock *EntryBB = MF->CreateMachineBasicBlock();
3703  MF->push_back(EntryBB);
3704  EntryBuilder->setMBB(*EntryBB);
3705
3706  DebugLoc DbgLoc = F.getEntryBlock().getFirstNonPHI()->getDebugLoc();
3707  SwiftError.setFunction(CurMF);
3708  SwiftError.createEntriesInEntryBlock(DbgLoc);
3709
3710  bool IsVarArg = F.isVarArg();
3711  bool HasMustTailInVarArgFn = false;
3712
3713  // Create all blocks, in IR order, to preserve the layout.
3714  for (const BasicBlock &BB: F) {
3715    auto *&MBB = BBToMBB[&BB];
3716
3717    MBB = MF->CreateMachineBasicBlock(&BB);
3718    MF->push_back(MBB);
3719
3720    if (BB.hasAddressTaken())
3721      MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB));
3722
3723    if (!HasMustTailInVarArgFn)
3724      HasMustTailInVarArgFn = checkForMustTailInVarArgFn(IsVarArg, BB);
3725  }
3726
3727  MF->getFrameInfo().setHasMustTailInVarArgFunc(HasMustTailInVarArgFn);
3728
3729  // Make our arguments/constants entry block fallthrough to the IR entry block.
3730  EntryBB->addSuccessor(&getMBB(F.front()));
3731
3732  if (CLI->fallBackToDAGISel(*MF)) {
3733    OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3734                               F.getSubprogram(), &F.getEntryBlock());
3735    R << "unable to lower function: " << ore::NV("Prototype", F.getType());
3736    reportTranslationError(*MF, *TPC, *ORE, R);
3737    return false;
3738  }
3739
3740  // Lower the actual args into this basic block.
3741  SmallVector<ArrayRef<Register>, 8> VRegArgs;
3742  for (const Argument &Arg: F.args()) {
3743    if (DL->getTypeStoreSize(Arg.getType()).isZero())
3744      continue; // Don't handle zero sized types.
3745    ArrayRef<Register> VRegs = getOrCreateVRegs(Arg);
3746    VRegArgs.push_back(VRegs);
3747
3748    if (Arg.hasSwiftErrorAttr()) {
3749      assert(VRegs.size() == 1 && "Too many vregs for Swift error");
3750      SwiftError.setCurrentVReg(EntryBB, SwiftError.getFunctionArg(), VRegs[0]);
3751    }
3752  }
3753
3754  if (!CLI->lowerFormalArguments(*EntryBuilder, F, VRegArgs, FuncInfo)) {
3755    OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3756                               F.getSubprogram(), &F.getEntryBlock());
3757    R << "unable to lower arguments: " << ore::NV("Prototype", F.getType());
3758    reportTranslationError(*MF, *TPC, *ORE, R);
3759    return false;
3760  }
3761
3762  // Need to visit defs before uses when translating instructions.
3763  GISelObserverWrapper WrapperObserver;
3764  if (EnableCSE && CSEInfo)
3765    WrapperObserver.addObserver(CSEInfo);
3766  {
3767    ReversePostOrderTraversal<const Function *> RPOT(&F);
3768#ifndef NDEBUG
3769    DILocationVerifier Verifier;
3770    WrapperObserver.addObserver(&Verifier);
3771#endif // ifndef NDEBUG
3772    RAIIDelegateInstaller DelInstall(*MF, &WrapperObserver);
3773    RAIIMFObserverInstaller ObsInstall(*MF, WrapperObserver);
3774    for (const BasicBlock *BB : RPOT) {
3775      MachineBasicBlock &MBB = getMBB(*BB);
3776      // Set the insertion point of all the following translations to
3777      // the end of this basic block.
3778      CurBuilder->setMBB(MBB);
3779      HasTailCall = false;
3780      for (const Instruction &Inst : *BB) {
3781        // If we translated a tail call in the last step, then we know
3782        // everything after the call is either a return, or something that is
3783        // handled by the call itself. (E.g. a lifetime marker or assume
3784        // intrinsic.) In this case, we should stop translating the block and
3785        // move on.
3786        if (HasTailCall)
3787          break;
3788#ifndef NDEBUG
3789        Verifier.setCurrentInst(&Inst);
3790#endif // ifndef NDEBUG
3791
3792        // Translate any debug-info attached to the instruction.
3793        translateDbgInfo(Inst, *CurBuilder.get());
3794
3795        if (translate(Inst))
3796          continue;
3797
3798        OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3799                                   Inst.getDebugLoc(), BB);
3800        R << "unable to translate instruction: " << ore::NV("Opcode", &Inst);
3801
3802        if (ORE->allowExtraAnalysis("gisel-irtranslator")) {
3803          std::string InstStrStorage;
3804          raw_string_ostream InstStr(InstStrStorage);
3805          InstStr << Inst;
3806
3807          R << ": '" << InstStr.str() << "'";
3808        }
3809
3810        reportTranslationError(*MF, *TPC, *ORE, R);
3811        return false;
3812      }
3813
3814      if (!finalizeBasicBlock(*BB, MBB)) {
3815        OptimizationRemarkMissed R("gisel-irtranslator", "GISelFailure",
3816                                   BB->getTerminator()->getDebugLoc(), BB);
3817        R << "unable to translate basic block";
3818        reportTranslationError(*MF, *TPC, *ORE, R);
3819        return false;
3820      }
3821    }
3822#ifndef NDEBUG
3823    WrapperObserver.removeObserver(&Verifier);
3824#endif
3825  }
3826
3827  finishPendingPhis();
3828
3829  SwiftError.propagateVRegs();
3830
3831  // Merge the argument lowering and constants block with its single
3832  // successor, the LLVM-IR entry block.  We want the basic block to
3833  // be maximal.
3834  assert(EntryBB->succ_size() == 1 &&
3835         "Custom BB used for lowering should have only one successor");
3836  // Get the successor of the current entry block.
3837  MachineBasicBlock &NewEntryBB = **EntryBB->succ_begin();
3838  assert(NewEntryBB.pred_size() == 1 &&
3839         "LLVM-IR entry block has a predecessor!?");
3840  // Move all the instruction from the current entry block to the
3841  // new entry block.
3842  NewEntryBB.splice(NewEntryBB.begin(), EntryBB, EntryBB->begin(),
3843                    EntryBB->end());
3844
3845  // Update the live-in information for the new entry block.
3846  for (const MachineBasicBlock::RegisterMaskPair &LiveIn : EntryBB->liveins())
3847    NewEntryBB.addLiveIn(LiveIn);
3848  NewEntryBB.sortUniqueLiveIns();
3849
3850  // Get rid of the now empty basic block.
3851  EntryBB->removeSuccessor(&NewEntryBB);
3852  MF->remove(EntryBB);
3853  MF->deleteMachineBasicBlock(EntryBB);
3854
3855  assert(&MF->front() == &NewEntryBB &&
3856         "New entry wasn't next in the list of basic block!");
3857
3858  // Initialize stack protector information.
3859  StackProtector &SP = getAnalysis<StackProtector>();
3860  SP.copyToMachineFrameInfo(MF->getFrameInfo());
3861
3862  return false;
3863}
3864