1//===-- AssignmentTrackingAnalysis.cpp ------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
10#include "LiveDebugValues/LiveDebugValues.h"
11#include "llvm/ADT/BitVector.h"
12#include "llvm/ADT/DenseMapInfo.h"
13#include "llvm/ADT/IntervalMap.h"
14#include "llvm/ADT/PostOrderIterator.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/ADT/UniqueVector.h"
18#include "llvm/Analysis/Interval.h"
19#include "llvm/BinaryFormat/Dwarf.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/DebugInfo.h"
23#include "llvm/IR/DebugProgramInstruction.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/Instruction.h"
26#include "llvm/IR/IntrinsicInst.h"
27#include "llvm/IR/PassManager.h"
28#include "llvm/IR/PrintPasses.h"
29#include "llvm/InitializePasses.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/Transforms/Utils/BasicBlockUtils.h"
34#include <assert.h>
35#include <cstdint>
36#include <optional>
37#include <queue>
38#include <sstream>
39#include <unordered_map>
40
41using namespace llvm;
42#define DEBUG_TYPE "debug-ata"
43
44STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal");
45STATISTIC(NumDefsRemoved, "Number of dbg locs removed");
46STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned");
47STATISTIC(NumWedgesChanged, "Number of dbg wedges changed");
48
49static cl::opt<unsigned>
50    MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
51                 cl::desc("Maximum num basic blocks before debug info dropped"),
52                 cl::Hidden);
53/// Option for debugging the pass, determines if the memory location fragment
54/// filling happens after generating the variable locations.
55static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
56                                          cl::Hidden);
57/// Print the results of the analysis. Respects -filter-print-funcs.
58static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false),
59                                  cl::Hidden);
60
61/// Coalesce adjacent dbg locs describing memory locations that have contiguous
62/// fragments. This reduces the cost of LiveDebugValues which does SSA
63/// construction for each explicitly stated variable fragment.
64static cl::opt<cl::boolOrDefault>
65    CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags", cl::Hidden);
66
67// Implicit conversions are disabled for enum class types, so unfortunately we
68// need to create a DenseMapInfo wrapper around the specified underlying type.
69template <> struct llvm::DenseMapInfo<VariableID> {
70  using Wrapped = DenseMapInfo<unsigned>;
71  static inline VariableID getEmptyKey() {
72    return static_cast<VariableID>(Wrapped::getEmptyKey());
73  }
74  static inline VariableID getTombstoneKey() {
75    return static_cast<VariableID>(Wrapped::getTombstoneKey());
76  }
77  static unsigned getHashValue(const VariableID &Val) {
78    return Wrapped::getHashValue(static_cast<unsigned>(Val));
79  }
80  static bool isEqual(const VariableID &LHS, const VariableID &RHS) {
81    return LHS == RHS;
82  }
83};
84
85using VarLocInsertPt = PointerUnion<const Instruction *, const DPValue *>;
86
87namespace std {
88template <> struct hash<VarLocInsertPt> {
89  using argument_type = VarLocInsertPt;
90  using result_type = std::size_t;
91
92  result_type operator()(const argument_type &Arg) const {
93    return std::hash<void *>()(Arg.getOpaqueValue());
94  }
95};
96} // namespace std
97
98/// Helper class to build FunctionVarLocs, since that class isn't easy to
99/// modify. TODO: There's not a great deal of value in the split, it could be
100/// worth merging the two classes.
101class FunctionVarLocsBuilder {
102  friend FunctionVarLocs;
103  UniqueVector<DebugVariable> Variables;
104  // Use an unordered_map so we don't invalidate iterators after
105  // insert/modifications.
106  std::unordered_map<VarLocInsertPt, SmallVector<VarLocInfo>> VarLocsBeforeInst;
107
108  SmallVector<VarLocInfo> SingleLocVars;
109
110public:
111  unsigned getNumVariables() const { return Variables.size(); }
112
113  /// Find or insert \p V and return the ID.
114  VariableID insertVariable(DebugVariable V) {
115    return static_cast<VariableID>(Variables.insert(V));
116  }
117
118  /// Get a variable from its \p ID.
119  const DebugVariable &getVariable(VariableID ID) const {
120    return Variables[static_cast<unsigned>(ID)];
121  }
122
123  /// Return ptr to wedge of defs or nullptr if no defs come just before /p
124  /// Before.
125  const SmallVectorImpl<VarLocInfo> *getWedge(VarLocInsertPt Before) const {
126    auto R = VarLocsBeforeInst.find(Before);
127    if (R == VarLocsBeforeInst.end())
128      return nullptr;
129    return &R->second;
130  }
131
132  /// Replace the defs that come just before /p Before with /p Wedge.
133  void setWedge(VarLocInsertPt Before, SmallVector<VarLocInfo> &&Wedge) {
134    VarLocsBeforeInst[Before] = std::move(Wedge);
135  }
136
137  /// Add a def for a variable that is valid for its lifetime.
138  void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL,
139                       RawLocationWrapper R) {
140    VarLocInfo VarLoc;
141    VarLoc.VariableID = insertVariable(Var);
142    VarLoc.Expr = Expr;
143    VarLoc.DL = DL;
144    VarLoc.Values = R;
145    SingleLocVars.emplace_back(VarLoc);
146  }
147
148  /// Add a def to the wedge of defs just before /p Before.
149  void addVarLoc(VarLocInsertPt Before, DebugVariable Var, DIExpression *Expr,
150                 DebugLoc DL, RawLocationWrapper R) {
151    VarLocInfo VarLoc;
152    VarLoc.VariableID = insertVariable(Var);
153    VarLoc.Expr = Expr;
154    VarLoc.DL = DL;
155    VarLoc.Values = R;
156    VarLocsBeforeInst[Before].emplace_back(VarLoc);
157  }
158};
159
160void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const {
161  // Print the variable table first. TODO: Sorting by variable could make the
162  // output more stable?
163  unsigned Counter = -1;
164  OS << "=== Variables ===\n";
165  for (const DebugVariable &V : Variables) {
166    ++Counter;
167    // Skip first entry because it is a dummy entry.
168    if (Counter == 0) {
169      continue;
170    }
171    OS << "[" << Counter << "] " << V.getVariable()->getName();
172    if (auto F = V.getFragment())
173      OS << " bits [" << F->OffsetInBits << ", "
174         << F->OffsetInBits + F->SizeInBits << ")";
175    if (const auto *IA = V.getInlinedAt())
176      OS << " inlined-at " << *IA;
177    OS << "\n";
178  }
179
180  auto PrintLoc = [&OS](const VarLocInfo &Loc) {
181    OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]"
182       << " Expr=" << *Loc.Expr << " Values=(";
183    for (auto *Op : Loc.Values.location_ops()) {
184      errs() << Op->getName() << " ";
185    }
186    errs() << ")\n";
187  };
188
189  // Print the single location variables.
190  OS << "=== Single location vars ===\n";
191  for (auto It = single_locs_begin(), End = single_locs_end(); It != End;
192       ++It) {
193    PrintLoc(*It);
194  }
195
196  // Print the non-single-location defs in line with IR.
197  OS << "=== In-line variable defs ===";
198  for (const BasicBlock &BB : Fn) {
199    OS << "\n" << BB.getName() << ":\n";
200    for (const Instruction &I : BB) {
201      for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) {
202        PrintLoc(*It);
203      }
204      OS << I << "\n";
205    }
206  }
207}
208
209void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) {
210  // Add the single-location variables first.
211  for (const auto &VarLoc : Builder.SingleLocVars)
212    VarLocRecords.emplace_back(VarLoc);
213  // Mark the end of the section.
214  SingleVarLocEnd = VarLocRecords.size();
215
216  // Insert a contiguous block of VarLocInfos for each instruction, mapping it
217  // to the start and end position in the vector with VarLocsBeforeInst. This
218  // block includes VarLocs for any DPValues attached to that instruction.
219  for (auto &P : Builder.VarLocsBeforeInst) {
220    // Process VarLocs attached to a DPValue alongside their marker Instruction.
221    if (isa<const DPValue *>(P.first))
222      continue;
223    const Instruction *I = cast<const Instruction *>(P.first);
224    unsigned BlockStart = VarLocRecords.size();
225    // Any VarLocInfos attached to a DPValue should now be remapped to their
226    // marker Instruction, in order of DPValue appearance and prior to any
227    // VarLocInfos attached directly to that instruction.
228    for (const DPValue &DPV : I->getDbgValueRange()) {
229      // Even though DPV defines a variable location, VarLocsBeforeInst can
230      // still be empty if that VarLoc was redundant.
231      if (!Builder.VarLocsBeforeInst.count(&DPV))
232        continue;
233      for (const VarLocInfo &VarLoc : Builder.VarLocsBeforeInst[&DPV])
234        VarLocRecords.emplace_back(VarLoc);
235    }
236    for (const VarLocInfo &VarLoc : P.second)
237      VarLocRecords.emplace_back(VarLoc);
238    unsigned BlockEnd = VarLocRecords.size();
239    // Record the start and end indices.
240    if (BlockEnd != BlockStart)
241      VarLocsBeforeInst[I] = {BlockStart, BlockEnd};
242  }
243
244  // Copy the Variables vector from the builder's UniqueVector.
245  assert(Variables.empty() && "Expect clear before init");
246  // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
247  // are one-based) so reserve an extra and insert a dummy.
248  Variables.reserve(Builder.Variables.size() + 1);
249  Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr));
250  Variables.append(Builder.Variables.begin(), Builder.Variables.end());
251}
252
253void FunctionVarLocs::clear() {
254  Variables.clear();
255  VarLocRecords.clear();
256  VarLocsBeforeInst.clear();
257  SingleVarLocEnd = 0;
258}
259
260/// Walk backwards along constant GEPs and bitcasts to the base storage from \p
261/// Start as far as possible. Prepend \Expression with the offset and append it
262/// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
263/// value and modified expression.
264static std::pair<Value *, DIExpression *>
265walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start,
266                                  DIExpression *Expression) {
267  APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false);
268  Value *End =
269      Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes);
270  SmallVector<uint64_t, 3> Ops;
271  if (OffsetInBytes.getBoolValue()) {
272    Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()};
273    Expression = DIExpression::prependOpcodes(
274        Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false);
275  }
276  Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref});
277  return {End, Expression};
278}
279
280/// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
281/// doesn't explicitly describe a memory location with DW_OP_deref or if the
282/// expression is too complex to interpret.
283static std::optional<int64_t>
284getDerefOffsetInBytes(const DIExpression *DIExpr) {
285  int64_t Offset = 0;
286  const unsigned NumElements = DIExpr->getNumElements();
287  const auto Elements = DIExpr->getElements();
288  unsigned ExpectedDerefIdx = 0;
289  // Extract the offset.
290  if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
291    Offset = Elements[1];
292    ExpectedDerefIdx = 2;
293  } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) {
294    ExpectedDerefIdx = 3;
295    if (Elements[2] == dwarf::DW_OP_plus)
296      Offset = Elements[1];
297    else if (Elements[2] == dwarf::DW_OP_minus)
298      Offset = -Elements[1];
299    else
300      return std::nullopt;
301  }
302
303  // If that's all there is it means there's no deref.
304  if (ExpectedDerefIdx >= NumElements)
305    return std::nullopt;
306
307  // Check the next element is DW_OP_deref - otherwise this is too complex or
308  // isn't a deref expression.
309  if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref)
310    return std::nullopt;
311
312  // Check the final operation is either the DW_OP_deref or is a fragment.
313  if (NumElements == ExpectedDerefIdx + 1)
314    return Offset; // Ends with deref.
315  unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1;
316  unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2;
317  if (NumElements == ExpectedFragFinalIdx + 1 &&
318      Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment)
319    return Offset; // Ends with deref + fragment.
320
321  // Don't bother trying to interpret anything more complex.
322  return std::nullopt;
323}
324
325/// A whole (unfragmented) source variable.
326using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>;
327static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) {
328  return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt());
329}
330static DebugAggregate getAggregate(const DebugVariable &Var) {
331  return DebugAggregate(Var.getVariable(), Var.getInlinedAt());
332}
333
334static bool shouldCoalesceFragments(Function &F) {
335  // Enabling fragment coalescing reduces compiler run time when instruction
336  // referencing is enabled. However, it may cause LiveDebugVariables to create
337  // incorrect locations. Since instruction-referencing mode effectively
338  // bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag
339  // has not been explicitly set and instruction-referencing is turned on.
340  switch (CoalesceAdjacentFragmentsOpt) {
341  case cl::boolOrDefault::BOU_UNSET:
342    return debuginfoShouldUseDebugInstrRef(
343        Triple(F.getParent()->getTargetTriple()));
344  case cl::boolOrDefault::BOU_TRUE:
345    return true;
346  case cl::boolOrDefault::BOU_FALSE:
347    return false;
348  }
349  llvm_unreachable("Unknown boolOrDefault value");
350}
351
352namespace {
353/// In dwarf emission, the following sequence
354///    1. dbg.value ... Fragment(0, 64)
355///    2. dbg.value ... Fragment(0, 32)
356/// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
357/// the intersection of the fragments to having "no location"). This makes
358/// sense for implicit location values because splitting the computed values
359/// could be troublesome, and is probably quite uncommon.  When we convert
360/// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
361/// a location (memory) rather than a value means we don't need to worry about
362/// splitting any values, so we try to recover the rest of the fragment
363/// location here.
364/// This class performs a(nother) dataflow analysis over the function, adding
365/// variable locations so that any bits of a variable with a memory location
366/// have that location explicitly reinstated at each subsequent variable
367/// location definition that that doesn't overwrite those bits. i.e. after a
368/// variable location def, insert new defs for the memory location with
369/// fragments for the difference of "all bits currently in memory" and "the
370/// fragment of the second def".
371class MemLocFragmentFill {
372  Function &Fn;
373  FunctionVarLocsBuilder *FnVarLocs;
374  const DenseSet<DebugAggregate> *VarsWithStackSlot;
375  bool CoalesceAdjacentFragments;
376
377  // 0 = no memory location.
378  using BaseAddress = unsigned;
379  using OffsetInBitsTy = unsigned;
380  using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>;
381  using FragsInMemMap = IntervalMap<
382      OffsetInBitsTy, BaseAddress,
383      IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize,
384      FragTraits>;
385  FragsInMemMap::Allocator IntervalMapAlloc;
386  using VarFragMap = DenseMap<unsigned, FragsInMemMap>;
387
388  /// IDs for memory location base addresses in maps. Use 0 to indicate that
389  /// there's no memory location.
390  UniqueVector<RawLocationWrapper> Bases;
391  UniqueVector<DebugAggregate> Aggregates;
392  DenseMap<const BasicBlock *, VarFragMap> LiveIn;
393  DenseMap<const BasicBlock *, VarFragMap> LiveOut;
394
395  struct FragMemLoc {
396    unsigned Var;
397    unsigned Base;
398    unsigned OffsetInBits;
399    unsigned SizeInBits;
400    DebugLoc DL;
401  };
402  using InsertMap = MapVector<VarLocInsertPt, SmallVector<FragMemLoc>>;
403
404  /// BBInsertBeforeMap holds a description for the set of location defs to be
405  /// inserted after the analysis is complete. It is updated during the dataflow
406  /// and the entry for a block is CLEARED each time it is (re-)visited. After
407  /// the dataflow is complete, each block entry will contain the set of defs
408  /// calculated during the final (fixed-point) iteration.
409  DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap;
410
411  static bool intervalMapsAreEqual(const FragsInMemMap &A,
412                                   const FragsInMemMap &B) {
413    auto AIt = A.begin(), AEnd = A.end();
414    auto BIt = B.begin(), BEnd = B.end();
415    for (; AIt != AEnd; ++AIt, ++BIt) {
416      if (BIt == BEnd)
417        return false; // B has fewer elements than A.
418      if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop())
419        return false; // Interval is different.
420      if (*AIt != *BIt)
421        return false; // Value at interval is different.
422    }
423    // AIt == AEnd. Check BIt is also now at end.
424    return BIt == BEnd;
425  }
426
427  static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) {
428    if (A.size() != B.size())
429      return false;
430    for (const auto &APair : A) {
431      auto BIt = B.find(APair.first);
432      if (BIt == B.end())
433        return false;
434      if (!intervalMapsAreEqual(APair.second, BIt->second))
435        return false;
436    }
437    return true;
438  }
439
440  /// Return a string for the value that \p BaseID represents.
441  std::string toString(unsigned BaseID) {
442    if (BaseID)
443      return Bases[BaseID].getVariableLocationOp(0)->getName().str();
444    else
445      return "None";
446  }
447
448  /// Format string describing an FragsInMemMap (IntervalMap) interval.
449  std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) {
450    std::string String;
451    std::stringstream S(String);
452    if (It.valid()) {
453      S << "[" << It.start() << ", " << It.stop()
454        << "): " << toString(It.value());
455    } else {
456      S << "invalid iterator (end)";
457    }
458    if (Newline)
459      S << "\n";
460    return S.str();
461  };
462
463  FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) {
464    FragsInMemMap Result(IntervalMapAlloc);
465    for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) {
466      LLVM_DEBUG(dbgs() << "a " << toString(AIt));
467      // This is basically copied from process() and inverted (process is
468      // performing something like a union whereas this is more of an
469      // intersect).
470
471      // There's no work to do if interval `a` overlaps no fragments in map `B`.
472      if (!B.overlaps(AIt.start(), AIt.stop()))
473        continue;
474
475      // Does StartBit intersect an existing fragment?
476      auto FirstOverlap = B.find(AIt.start());
477      assert(FirstOverlap != B.end());
478      bool IntersectStart = FirstOverlap.start() < AIt.start();
479      LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false)
480                        << ", IntersectStart: " << IntersectStart << "\n");
481
482      // Does EndBit intersect an existing fragment?
483      auto LastOverlap = B.find(AIt.stop());
484      bool IntersectEnd =
485          LastOverlap != B.end() && LastOverlap.start() < AIt.stop();
486      LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false)
487                        << ", IntersectEnd: " << IntersectEnd << "\n");
488
489      // Check if both ends of `a` intersect the same interval `b`.
490      if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
491        // Insert `a` (`a` is contained in `b`) if the values match.
492        // [ a ]
493        // [ - b - ]
494        // -
495        // [ r ]
496        LLVM_DEBUG(dbgs() << "- a is contained within "
497                          << toString(FirstOverlap));
498        if (*AIt && *AIt == *FirstOverlap)
499          Result.insert(AIt.start(), AIt.stop(), *AIt);
500      } else {
501        // There's an overlap but `a` is not fully contained within
502        // `b`. Shorten any end-point intersections.
503        //     [ - a - ]
504        // [ - b - ]
505        // -
506        //     [ r ]
507        auto Next = FirstOverlap;
508        if (IntersectStart) {
509          LLVM_DEBUG(dbgs() << "- insert intersection of a and "
510                            << toString(FirstOverlap));
511          if (*AIt && *AIt == *FirstOverlap)
512            Result.insert(AIt.start(), FirstOverlap.stop(), *AIt);
513          ++Next;
514        }
515        // [ - a - ]
516        //     [ - b - ]
517        // -
518        //     [ r ]
519        if (IntersectEnd) {
520          LLVM_DEBUG(dbgs() << "- insert intersection of a and "
521                            << toString(LastOverlap));
522          if (*AIt && *AIt == *LastOverlap)
523            Result.insert(LastOverlap.start(), AIt.stop(), *AIt);
524        }
525
526        // Insert all intervals in map `B` that are contained within interval
527        // `a` where the values match.
528        // [ -  - a -  - ]
529        // [ b1 ]   [ b2 ]
530        // -
531        // [ r1 ]   [ r2 ]
532        while (Next != B.end() && Next.start() < AIt.stop() &&
533               Next.stop() <= AIt.stop()) {
534          LLVM_DEBUG(dbgs()
535                     << "- insert intersection of a and " << toString(Next));
536          if (*AIt && *AIt == *Next)
537            Result.insert(Next.start(), Next.stop(), *Next);
538          ++Next;
539        }
540      }
541    }
542    return Result;
543  }
544
545  /// Meet \p A and \p B, storing the result in \p A.
546  void meetVars(VarFragMap &A, const VarFragMap &B) {
547    // Meet A and B.
548    //
549    // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
550    for (auto It = A.begin(), End = A.end(); It != End; ++It) {
551      unsigned AVar = It->first;
552      FragsInMemMap &AFrags = It->second;
553      auto BIt = B.find(AVar);
554      if (BIt == B.end()) {
555        A.erase(It);
556        continue; // Var has no bits defined in B.
557      }
558      LLVM_DEBUG(dbgs() << "meet fragment maps for "
559                        << Aggregates[AVar].first->getName() << "\n");
560      AFrags = meetFragments(AFrags, BIt->second);
561    }
562  }
563
564  bool meet(const BasicBlock &BB,
565            const SmallPtrSet<BasicBlock *, 16> &Visited) {
566    LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName()
567                      << "\n");
568
569    VarFragMap BBLiveIn;
570    bool FirstMeet = true;
571    // LiveIn locs for BB is the meet of the already-processed preds' LiveOut
572    // locs.
573    for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
574      // Ignore preds that haven't been processed yet. This is essentially the
575      // same as initialising all variables to implicit top value (���) which is
576      // the identity value for the meet operation.
577      const BasicBlock *Pred = *I;
578      if (!Visited.count(Pred))
579        continue;
580
581      auto PredLiveOut = LiveOut.find(Pred);
582      assert(PredLiveOut != LiveOut.end());
583
584      if (FirstMeet) {
585        LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n");
586        BBLiveIn = PredLiveOut->second;
587        FirstMeet = false;
588      } else {
589        LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName()
590                          << "\n");
591        meetVars(BBLiveIn, PredLiveOut->second);
592      }
593
594      // An empty set is ��� for the intersect-like meet operation. If we've
595      // already got ��� there's no need to run the code - we know the result is
596      // ��� since `meet(a, ���) = ���`.
597      if (BBLiveIn.size() == 0)
598        break;
599    }
600
601    auto CurrentLiveInEntry = LiveIn.find(&BB);
602    // If there's no LiveIn entry for the block yet, add it.
603    if (CurrentLiveInEntry == LiveIn.end()) {
604      LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName()
605                        << "\n");
606      LiveIn[&BB] = std::move(BBLiveIn);
607      return /*Changed=*/true;
608    }
609
610    // If the LiveIn set has changed (expensive check) update it and return
611    // true.
612    if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) {
613      LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n");
614      CurrentLiveInEntry->second = std::move(BBLiveIn);
615      return /*Changed=*/true;
616    }
617
618    LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n");
619    return /*Changed=*/false;
620  }
621
622  void insertMemLoc(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
623                    unsigned StartBit, unsigned EndBit, unsigned Base,
624                    DebugLoc DL) {
625    assert(StartBit < EndBit && "Cannot create fragment of size <= 0");
626    if (!Base)
627      return;
628    FragMemLoc Loc;
629    Loc.Var = Var;
630    Loc.OffsetInBits = StartBit;
631    Loc.SizeInBits = EndBit - StartBit;
632    assert(Base && "Expected a non-zero ID for Base address");
633    Loc.Base = Base;
634    Loc.DL = DL;
635    BBInsertBeforeMap[&BB][Before].push_back(Loc);
636    LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName()
637                      << " bits [" << StartBit << ", " << EndBit << ")\n");
638  }
639
640  /// Inserts a new dbg def if the interval found when looking up \p StartBit
641  /// in \p FragMap starts before \p StartBit or ends after \p EndBit (which
642  /// indicates - assuming StartBit->EndBit has just been inserted - that the
643  /// slice has been coalesced in the map).
644  void coalesceFragments(BasicBlock &BB, VarLocInsertPt Before, unsigned Var,
645                         unsigned StartBit, unsigned EndBit, unsigned Base,
646                         DebugLoc DL, const FragsInMemMap &FragMap) {
647    if (!CoalesceAdjacentFragments)
648      return;
649    // We've inserted the location into the map. The map will have coalesced
650    // adjacent intervals (variable fragments) that describe the same memory
651    // location. Use this knowledge to insert a debug location that describes
652    // that coalesced fragment. This may eclipse other locs we've just
653    // inserted. This is okay as redundant locs will be cleaned up later.
654    auto CoalescedFrag = FragMap.find(StartBit);
655    // Bail if no coalescing has taken place.
656    if (CoalescedFrag.start() == StartBit && CoalescedFrag.stop() == EndBit)
657      return;
658
659    LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag.start()
660                      << " to " << CoalescedFrag.stop() << "\n");
661    insertMemLoc(BB, Before, Var, CoalescedFrag.start(), CoalescedFrag.stop(),
662                 Base, DL);
663  }
664
665  void addDef(const VarLocInfo &VarLoc, VarLocInsertPt Before, BasicBlock &BB,
666              VarFragMap &LiveSet) {
667    DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID);
668    if (skipVariable(DbgVar.getVariable()))
669      return;
670    // Don't bother doing anything for this variables if we know it's fully
671    // promoted. We're only interested in variables that (sometimes) live on
672    // the stack here.
673    if (!VarsWithStackSlot->count(getAggregate(DbgVar)))
674      return;
675    unsigned Var = Aggregates.insert(
676        DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt()));
677
678    // [StartBit: EndBit) are the bits affected by this def.
679    const DIExpression *DIExpr = VarLoc.Expr;
680    unsigned StartBit;
681    unsigned EndBit;
682    if (auto Frag = DIExpr->getFragmentInfo()) {
683      StartBit = Frag->OffsetInBits;
684      EndBit = StartBit + Frag->SizeInBits;
685    } else {
686      assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits()));
687      StartBit = 0;
688      EndBit = *DbgVar.getVariable()->getSizeInBits();
689    }
690
691    // We will only fill fragments for simple memory-describing dbg.value
692    // intrinsics. If the fragment offset is the same as the offset from the
693    // base pointer, do The Thing, otherwise fall back to normal dbg.value
694    // behaviour. AssignmentTrackingLowering has generated DIExpressions
695    // written in terms of the base pointer.
696    // TODO: Remove this condition since the fragment offset doesn't always
697    // equal the offset from base pointer (e.g. for a SROA-split variable).
698    const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr);
699    const unsigned Base =
700        DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit
701            ? Bases.insert(VarLoc.Values)
702            : 0;
703    LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " ["
704                      << StartBit << ", " << EndBit << "): " << toString(Base)
705                      << "\n");
706
707    // First of all, any locs that use mem that are disrupted need reinstating.
708    // Unfortunately, IntervalMap doesn't let us insert intervals that overlap
709    // with existing intervals so this code involves a lot of fiddling around
710    // with intervals to do that manually.
711    auto FragIt = LiveSet.find(Var);
712
713    // Check if the variable does not exist in the map.
714    if (FragIt == LiveSet.end()) {
715      // Add this variable to the BB map.
716      auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc));
717      assert(P.second && "Var already in map?");
718      // Add the interval to the fragment map.
719      P.first->second.insert(StartBit, EndBit, Base);
720      return;
721    }
722    // The variable has an entry in the map.
723
724    FragsInMemMap &FragMap = FragIt->second;
725    // First check the easy case: the new fragment `f` doesn't overlap with any
726    // intervals.
727    if (!FragMap.overlaps(StartBit, EndBit)) {
728      LLVM_DEBUG(dbgs() << "- No overlaps\n");
729      FragMap.insert(StartBit, EndBit, Base);
730      coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
731                        FragMap);
732      return;
733    }
734    // There is at least one overlap.
735
736    // Does StartBit intersect an existing fragment?
737    auto FirstOverlap = FragMap.find(StartBit);
738    assert(FirstOverlap != FragMap.end());
739    bool IntersectStart = FirstOverlap.start() < StartBit;
740
741    // Does EndBit intersect an existing fragment?
742    auto LastOverlap = FragMap.find(EndBit);
743    bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit;
744
745    // Check if both ends of `f` intersect the same interval `i`.
746    if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
747      LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
748      // Shorten `i` so that there's space to insert `f`.
749      //      [ f ]
750      // [  -   i   -  ]
751      // +
752      // [ i ][ f ][ i ]
753
754      // Save values for use after inserting a new interval.
755      auto EndBitOfOverlap = FirstOverlap.stop();
756      unsigned OverlapValue = FirstOverlap.value();
757
758      // Shorten the overlapping interval.
759      FirstOverlap.setStop(StartBit);
760      insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
761                   OverlapValue, VarLoc.DL);
762
763      // Insert a new interval to represent the end part.
764      FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue);
765      insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue,
766                   VarLoc.DL);
767
768      // Insert the new (middle) fragment now there is space.
769      FragMap.insert(StartBit, EndBit, Base);
770    } else {
771      // There's an overlap but `f` may not be fully contained within
772      // `i`. Shorten any end-point intersections so that we can then
773      // insert `f`.
774      //      [ - f - ]
775      // [ - i - ]
776      // |   |
777      // [ i ]
778      // Shorten any end-point intersections.
779      if (IntersectStart) {
780        LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
781        // Split off at the intersection.
782        FirstOverlap.setStop(StartBit);
783        insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
784                     *FirstOverlap, VarLoc.DL);
785      }
786      // [ - f - ]
787      //      [ - i - ]
788      //          |   |
789      //          [ i ]
790      if (IntersectEnd) {
791        LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
792        // Split off at the intersection.
793        LastOverlap.setStart(EndBit);
794        insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap,
795                     VarLoc.DL);
796      }
797
798      LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
799      // FirstOverlap and LastOverlap have been shortened such that they're
800      // no longer overlapping with [StartBit, EndBit). Delete any overlaps
801      // that remain (these will be fully contained within `f`).
802      // [ - f - ]       }
803      //      [ - i - ]  } Intersection shortening that has happened above.
804      //          |   |  }
805      //          [ i ]  }
806      // -----------------
807      // [i2 ]           } Intervals fully contained within `f` get erased.
808      // -----------------
809      // [ - f - ][ i ]  } Completed insertion.
810      auto It = FirstOverlap;
811      if (IntersectStart)
812        ++It; // IntersectStart: first overlap has been shortened.
813      while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) {
814        LLVM_DEBUG(dbgs() << "- Erase " << toString(It));
815        It.erase(); // This increments It after removing the interval.
816      }
817      // We've dealt with all the overlaps now!
818      assert(!FragMap.overlaps(StartBit, EndBit));
819      LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
820      FragMap.insert(StartBit, EndBit, Base);
821    }
822
823    coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, VarLoc.DL,
824                      FragMap);
825  }
826
827  bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); }
828
829  void process(BasicBlock &BB, VarFragMap &LiveSet) {
830    BBInsertBeforeMap[&BB].clear();
831    for (auto &I : BB) {
832      for (auto &DPV : I.getDbgValueRange()) {
833        if (const auto *Locs = FnVarLocs->getWedge(&DPV)) {
834          for (const VarLocInfo &Loc : *Locs) {
835            addDef(Loc, &DPV, *I.getParent(), LiveSet);
836          }
837        }
838      }
839      if (const auto *Locs = FnVarLocs->getWedge(&I)) {
840        for (const VarLocInfo &Loc : *Locs) {
841          addDef(Loc, &I, *I.getParent(), LiveSet);
842        }
843      }
844    }
845  }
846
847public:
848  MemLocFragmentFill(Function &Fn,
849                     const DenseSet<DebugAggregate> *VarsWithStackSlot,
850                     bool CoalesceAdjacentFragments)
851      : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot),
852        CoalesceAdjacentFragments(CoalesceAdjacentFragments) {}
853
854  /// Add variable locations to \p FnVarLocs so that any bits of a variable
855  /// with a memory location have that location explicitly reinstated at each
856  /// subsequent variable location definition that that doesn't overwrite those
857  /// bits. i.e. after a variable location def, insert new defs for the memory
858  /// location with fragments for the difference of "all bits currently in
859  /// memory" and "the fragment of the second def". e.g.
860  ///
861  ///     Before:
862  ///
863  ///     var x bits 0 to 63:  value in memory
864  ///     more instructions
865  ///     var x bits 0 to 31:  value is %0
866  ///
867  ///     After:
868  ///
869  ///     var x bits 0 to 63:  value in memory
870  ///     more instructions
871  ///     var x bits 0 to 31:  value is %0
872  ///     var x bits 32 to 61: value in memory ; <-- new loc def
873  ///
874  void run(FunctionVarLocsBuilder *FnVarLocs) {
875    if (!EnableMemLocFragFill)
876      return;
877
878    this->FnVarLocs = FnVarLocs;
879
880    // Prepare for traversal.
881    //
882    ReversePostOrderTraversal<Function *> RPOT(&Fn);
883    std::priority_queue<unsigned int, std::vector<unsigned int>,
884                        std::greater<unsigned int>>
885        Worklist;
886    std::priority_queue<unsigned int, std::vector<unsigned int>,
887                        std::greater<unsigned int>>
888        Pending;
889    DenseMap<unsigned int, BasicBlock *> OrderToBB;
890    DenseMap<BasicBlock *, unsigned int> BBToOrder;
891    { // Init OrderToBB and BBToOrder.
892      unsigned int RPONumber = 0;
893      for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
894        OrderToBB[RPONumber] = *RI;
895        BBToOrder[*RI] = RPONumber;
896        Worklist.push(RPONumber);
897        ++RPONumber;
898      }
899      LiveIn.init(RPONumber);
900      LiveOut.init(RPONumber);
901    }
902
903    // Perform the traversal.
904    //
905    // This is a standard "intersect of predecessor outs" dataflow problem. To
906    // solve it, we perform meet() and process() using the two worklist method
907    // until the LiveIn data for each block becomes unchanging.
908    //
909    // This dataflow is essentially working on maps of sets and at each meet we
910    // intersect the maps and the mapped sets. So, initialized live-in maps
911    // monotonically decrease in value throughout the dataflow.
912    SmallPtrSet<BasicBlock *, 16> Visited;
913    while (!Worklist.empty() || !Pending.empty()) {
914      // We track what is on the pending worklist to avoid inserting the same
915      // thing twice.  We could avoid this with a custom priority queue, but
916      // this is probably not worth it.
917      SmallPtrSet<BasicBlock *, 16> OnPending;
918      LLVM_DEBUG(dbgs() << "Processing Worklist\n");
919      while (!Worklist.empty()) {
920        BasicBlock *BB = OrderToBB[Worklist.top()];
921        LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
922        Worklist.pop();
923        bool InChanged = meet(*BB, Visited);
924        // Always consider LiveIn changed on the first visit.
925        InChanged |= Visited.insert(BB).second;
926        if (InChanged) {
927          LLVM_DEBUG(dbgs()
928                     << BB->getName() << " has new InLocs, process it\n");
929          //  Mutate a copy of LiveIn while processing BB. Once we've processed
930          //  the terminator LiveSet is the LiveOut set for BB.
931          //  This is an expensive copy!
932          VarFragMap LiveSet = LiveIn[BB];
933
934          // Process the instructions in the block.
935          process(*BB, LiveSet);
936
937          // Relatively expensive check: has anything changed in LiveOut for BB?
938          if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) {
939            LLVM_DEBUG(dbgs() << BB->getName()
940                              << " has new OutLocs, add succs to worklist: [ ");
941            LiveOut[BB] = std::move(LiveSet);
942            for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
943              if (OnPending.insert(*I).second) {
944                LLVM_DEBUG(dbgs() << I->getName() << " ");
945                Pending.push(BBToOrder[*I]);
946              }
947            }
948            LLVM_DEBUG(dbgs() << "]\n");
949          }
950        }
951      }
952      Worklist.swap(Pending);
953      // At this point, pending must be empty, since it was just the empty
954      // worklist
955      assert(Pending.empty() && "Pending should be empty");
956    }
957
958    // Insert new location defs.
959    for (auto &Pair : BBInsertBeforeMap) {
960      InsertMap &Map = Pair.second;
961      for (auto &Pair : Map) {
962        auto InsertBefore = Pair.first;
963        assert(InsertBefore && "should never be null");
964        auto FragMemLocs = Pair.second;
965        auto &Ctx = Fn.getContext();
966
967        for (auto &FragMemLoc : FragMemLocs) {
968          DIExpression *Expr = DIExpression::get(Ctx, std::nullopt);
969          if (FragMemLoc.SizeInBits !=
970              *Aggregates[FragMemLoc.Var].first->getSizeInBits())
971            Expr = *DIExpression::createFragmentExpression(
972                Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits);
973          Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter,
974                                       FragMemLoc.OffsetInBits / 8);
975          DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr,
976                            FragMemLoc.DL.getInlinedAt());
977          FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL,
978                               Bases[FragMemLoc.Base]);
979        }
980      }
981    }
982  }
983};
984
985/// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
986/// that interprets assignment tracking debug info metadata and stores in IR to
987/// create a map of variable locations.
988class AssignmentTrackingLowering {
989public:
990  /// The kind of location in use for a variable, where Mem is the stack home,
991  /// Val is an SSA value or const, and None means that there is not one single
992  /// kind (either because there are multiple or because there is none; it may
993  /// prove useful to split this into two values in the future).
994  ///
995  /// LocKind is a join-semilattice with the partial order:
996  /// None > Mem, Val
997  ///
998  /// i.e.
999  /// join(Mem, Mem)   = Mem
1000  /// join(Val, Val)   = Val
1001  /// join(Mem, Val)   = None
1002  /// join(None, Mem)  = None
1003  /// join(None, Val)  = None
1004  /// join(None, None) = None
1005  ///
1006  /// Note: the order is not `None > Val > Mem` because we're using DIAssignID
1007  /// to name assignments and are not tracking the actual stored values.
1008  /// Therefore currently there's no way to ensure that Mem values and Val
1009  /// values are the same. This could be a future extension, though it's not
1010  /// clear that many additional locations would be recovered that way in
1011  /// practice as the likelihood of this sitation arising naturally seems
1012  /// incredibly low.
1013  enum class LocKind { Mem, Val, None };
1014
1015  /// An abstraction of the assignment of a value to a variable or memory
1016  /// location.
1017  ///
1018  /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
1019  /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
1020  /// can't) know the ID of the last assignment that took place.
1021  ///
1022  /// The Status of the Assignment (Known or NoneOrPhi) is another
1023  /// join-semilattice. The partial order is:
1024  /// NoneOrPhi > Known {id_0, id_1, ...id_N}
1025  ///
1026  /// i.e. for all values x and y where x != y:
1027  /// join(x, x) = x
1028  /// join(x, y) = NoneOrPhi
1029  using AssignRecord = PointerUnion<DbgAssignIntrinsic *, DPValue *>;
1030  struct Assignment {
1031    enum S { Known, NoneOrPhi } Status;
1032    /// ID of the assignment. nullptr if Status is not Known.
1033    DIAssignID *ID;
1034    /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
1035    /// May be nullptr.
1036    AssignRecord Source;
1037
1038    bool isSameSourceAssignment(const Assignment &Other) const {
1039      // Don't include Source in the equality check. Assignments are
1040      // defined by their ID, not debug intrinsic(s).
1041      return std::tie(Status, ID) == std::tie(Other.Status, Other.ID);
1042    }
1043    void dump(raw_ostream &OS) {
1044      static const char *LUT[] = {"Known", "NoneOrPhi"};
1045      OS << LUT[Status] << "(id=";
1046      if (ID)
1047        OS << ID;
1048      else
1049        OS << "null";
1050      OS << ", s=";
1051      if (Source.isNull())
1052        OS << "null";
1053      else if (isa<DbgAssignIntrinsic *>(Source))
1054        OS << Source.get<DbgAssignIntrinsic *>();
1055      else
1056        OS << Source.get<DPValue *>();
1057      OS << ")";
1058    }
1059
1060    static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) {
1061      return Assignment(Known, ID, Source);
1062    }
1063    static Assignment make(DIAssignID *ID, DPValue *Source) {
1064      assert(Source->isDbgAssign() &&
1065             "Cannot make an assignment from a non-assign DPValue");
1066      return Assignment(Known, ID, Source);
1067    }
1068    static Assignment make(DIAssignID *ID, AssignRecord Source) {
1069      return Assignment(Known, ID, Source);
1070    }
1071    static Assignment makeFromMemDef(DIAssignID *ID) {
1072      return Assignment(Known, ID);
1073    }
1074    static Assignment makeNoneOrPhi() { return Assignment(NoneOrPhi, nullptr); }
1075    // Again, need a Top value?
1076    Assignment() : Status(NoneOrPhi), ID(nullptr) {} // Can we delete this?
1077    Assignment(S Status, DIAssignID *ID) : Status(Status), ID(ID) {
1078      // If the Status is Known then we expect there to be an assignment ID.
1079      assert(Status == NoneOrPhi || ID);
1080    }
1081    Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source)
1082        : Status(Status), ID(ID), Source(Source) {
1083      // If the Status is Known then we expect there to be an assignment ID.
1084      assert(Status == NoneOrPhi || ID);
1085    }
1086    Assignment(S Status, DIAssignID *ID, DPValue *Source)
1087        : Status(Status), ID(ID), Source(Source) {
1088      // If the Status is Known then we expect there to be an assignment ID.
1089      assert(Status == NoneOrPhi || ID);
1090    }
1091    Assignment(S Status, DIAssignID *ID, AssignRecord Source)
1092        : Status(Status), ID(ID), Source(Source) {
1093      // If the Status is Known then we expect there to be an assignment ID.
1094      assert(Status == NoneOrPhi || ID);
1095    }
1096  };
1097
1098  using AssignmentMap = SmallVector<Assignment>;
1099  using LocMap = SmallVector<LocKind>;
1100  using OverlapMap = DenseMap<VariableID, SmallVector<VariableID>>;
1101  using UntaggedStoreAssignmentMap =
1102      DenseMap<const Instruction *,
1103               SmallVector<std::pair<VariableID, at::AssignmentInfo>>>;
1104
1105private:
1106  /// The highest numbered VariableID for partially promoted variables plus 1,
1107  /// the values for which start at 1.
1108  unsigned TrackedVariablesVectorSize = 0;
1109  /// Map a variable to the set of variables that it fully contains.
1110  OverlapMap VarContains;
1111  /// Map untagged stores to the variable fragments they assign to. Used by
1112  /// processUntaggedInstruction.
1113  UntaggedStoreAssignmentMap UntaggedStoreVars;
1114
1115  // Machinery to defer inserting dbg.values.
1116  using InstInsertMap = MapVector<VarLocInsertPt, SmallVector<VarLocInfo>>;
1117  InstInsertMap InsertBeforeMap;
1118  /// Clear the location definitions currently cached for insertion after /p
1119  /// After.
1120  void resetInsertionPoint(Instruction &After);
1121  void resetInsertionPoint(DPValue &After);
1122
1123  // emitDbgValue can be called with:
1124  //   Source=[AssignRecord|DbgValueInst*|DbgAssignIntrinsic*|DPValue*]
1125  // Since AssignRecord can be cast to one of the latter two types, and all
1126  // other types have a shared interface, we use a template to handle the latter
1127  // three types, and an explicit overload for AssignRecord that forwards to
1128  // the template version with the right type.
1129  void emitDbgValue(LocKind Kind, AssignRecord Source, VarLocInsertPt After);
1130  template <typename T>
1131  void emitDbgValue(LocKind Kind, const T Source, VarLocInsertPt After);
1132
1133  static bool mapsAreEqual(const BitVector &Mask, const AssignmentMap &A,
1134                           const AssignmentMap &B) {
1135    return llvm::all_of(Mask.set_bits(), [&](unsigned VarID) {
1136      return A[VarID].isSameSourceAssignment(B[VarID]);
1137    });
1138  }
1139
1140  /// Represents the stack and debug assignments in a block. Used to describe
1141  /// the live-in and live-out values for blocks, as well as the "current"
1142  /// value as we process each instruction in a block.
1143  struct BlockInfo {
1144    /// The set of variables (VariableID) being tracked in this block.
1145    BitVector VariableIDsInBlock;
1146    /// Dominating assignment to memory for each variable, indexed by
1147    /// VariableID.
1148    AssignmentMap StackHomeValue;
1149    /// Dominating assignemnt to each variable, indexed by VariableID.
1150    AssignmentMap DebugValue;
1151    /// Location kind for each variable. LiveLoc indicates whether the
1152    /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
1153    /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
1154    /// preference. This cannot be derived by inspecting DebugValue and
1155    /// StackHomeValue due to the fact that there's no distinction in
1156    /// Assignment (the class) between whether an assignment is unknown or a
1157    /// merge of multiple assignments (both are Status::NoneOrPhi). In other
1158    /// words, the memory location may well be valid while both DebugValue and
1159    /// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
1160    /// Indexed by VariableID.
1161    LocMap LiveLoc;
1162
1163  public:
1164    enum AssignmentKind { Stack, Debug };
1165    const AssignmentMap &getAssignmentMap(AssignmentKind Kind) const {
1166      switch (Kind) {
1167      case Stack:
1168        return StackHomeValue;
1169      case Debug:
1170        return DebugValue;
1171      }
1172      llvm_unreachable("Unknown AssignmentKind");
1173    }
1174    AssignmentMap &getAssignmentMap(AssignmentKind Kind) {
1175      return const_cast<AssignmentMap &>(
1176          const_cast<const BlockInfo *>(this)->getAssignmentMap(Kind));
1177    }
1178
1179    bool isVariableTracked(VariableID Var) const {
1180      return VariableIDsInBlock[static_cast<unsigned>(Var)];
1181    }
1182
1183    const Assignment &getAssignment(AssignmentKind Kind, VariableID Var) const {
1184      assert(isVariableTracked(Var) && "Var not tracked in block");
1185      return getAssignmentMap(Kind)[static_cast<unsigned>(Var)];
1186    }
1187
1188    LocKind getLocKind(VariableID Var) const {
1189      assert(isVariableTracked(Var) && "Var not tracked in block");
1190      return LiveLoc[static_cast<unsigned>(Var)];
1191    }
1192
1193    /// Set LocKind for \p Var only: does not set LocKind for VariableIDs of
1194    /// fragments contained win \p Var.
1195    void setLocKind(VariableID Var, LocKind K) {
1196      VariableIDsInBlock.set(static_cast<unsigned>(Var));
1197      LiveLoc[static_cast<unsigned>(Var)] = K;
1198    }
1199
1200    /// Set the assignment in the \p Kind assignment map for \p Var only: does
1201    /// not set the assignment for VariableIDs of fragments contained win \p
1202    /// Var.
1203    void setAssignment(AssignmentKind Kind, VariableID Var,
1204                       const Assignment &AV) {
1205      VariableIDsInBlock.set(static_cast<unsigned>(Var));
1206      getAssignmentMap(Kind)[static_cast<unsigned>(Var)] = AV;
1207    }
1208
1209    /// Return true if there is an assignment matching \p AV in the \p Kind
1210    /// assignment map. Does consider assignments for VariableIDs of fragments
1211    /// contained win \p Var.
1212    bool hasAssignment(AssignmentKind Kind, VariableID Var,
1213                       const Assignment &AV) const {
1214      if (!isVariableTracked(Var))
1215        return false;
1216      return AV.isSameSourceAssignment(getAssignment(Kind, Var));
1217    }
1218
1219    /// Compare every element in each map to determine structural equality
1220    /// (slow).
1221    bool operator==(const BlockInfo &Other) const {
1222      return VariableIDsInBlock == Other.VariableIDsInBlock &&
1223             LiveLoc == Other.LiveLoc &&
1224             mapsAreEqual(VariableIDsInBlock, StackHomeValue,
1225                          Other.StackHomeValue) &&
1226             mapsAreEqual(VariableIDsInBlock, DebugValue, Other.DebugValue);
1227    }
1228    bool operator!=(const BlockInfo &Other) const { return !(*this == Other); }
1229    bool isValid() {
1230      return LiveLoc.size() == DebugValue.size() &&
1231             LiveLoc.size() == StackHomeValue.size();
1232    }
1233
1234    /// Clear everything and initialise with ���-values for all variables.
1235    void init(int NumVars) {
1236      StackHomeValue.clear();
1237      DebugValue.clear();
1238      LiveLoc.clear();
1239      VariableIDsInBlock = BitVector(NumVars);
1240      StackHomeValue.insert(StackHomeValue.begin(), NumVars,
1241                            Assignment::makeNoneOrPhi());
1242      DebugValue.insert(DebugValue.begin(), NumVars,
1243                        Assignment::makeNoneOrPhi());
1244      LiveLoc.insert(LiveLoc.begin(), NumVars, LocKind::None);
1245    }
1246
1247    /// Helper for join.
1248    template <typename ElmtType, typename FnInputType>
1249    static void joinElmt(int Index, SmallVector<ElmtType> &Target,
1250                         const SmallVector<ElmtType> &A,
1251                         const SmallVector<ElmtType> &B,
1252                         ElmtType (*Fn)(FnInputType, FnInputType)) {
1253      Target[Index] = Fn(A[Index], B[Index]);
1254    }
1255
1256    /// See comment for AssignmentTrackingLowering::joinBlockInfo.
1257    static BlockInfo join(const BlockInfo &A, const BlockInfo &B, int NumVars) {
1258      // Join A and B.
1259      //
1260      // Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b)
1261      // Difference = join(x, ���) for x where Var(x) is in A xor B
1262      // Join = Intersect ��� Difference
1263      //
1264      // This is achieved by performing a join on elements from A and B with
1265      // variables common to both A and B (join elements indexed by var
1266      // intersect), then adding ���-value elements for vars in A xor B. The
1267      // latter part is equivalent to performing join on elements with variables
1268      // in A xor B with the ���-value for the map element since join(x, ���) = ���.
1269      // BlockInfo::init initializes all variable entries to the ��� value so we
1270      // don't need to explicitly perform that step as Join.VariableIDsInBlock
1271      // is set to the union of the variables in A and B at the end of this
1272      // function.
1273      BlockInfo Join;
1274      Join.init(NumVars);
1275
1276      BitVector Intersect = A.VariableIDsInBlock;
1277      Intersect &= B.VariableIDsInBlock;
1278
1279      for (auto VarID : Intersect.set_bits()) {
1280        joinElmt(VarID, Join.LiveLoc, A.LiveLoc, B.LiveLoc, joinKind);
1281        joinElmt(VarID, Join.DebugValue, A.DebugValue, B.DebugValue,
1282                 joinAssignment);
1283        joinElmt(VarID, Join.StackHomeValue, A.StackHomeValue, B.StackHomeValue,
1284                 joinAssignment);
1285      }
1286
1287      Join.VariableIDsInBlock = A.VariableIDsInBlock;
1288      Join.VariableIDsInBlock |= B.VariableIDsInBlock;
1289      assert(Join.isValid());
1290      return Join;
1291    }
1292  };
1293
1294  Function &Fn;
1295  const DataLayout &Layout;
1296  const DenseSet<DebugAggregate> *VarsWithStackSlot;
1297  FunctionVarLocsBuilder *FnVarLocs;
1298  DenseMap<const BasicBlock *, BlockInfo> LiveIn;
1299  DenseMap<const BasicBlock *, BlockInfo> LiveOut;
1300
1301  /// Helper for process methods to track variables touched each frame.
1302  DenseSet<VariableID> VarsTouchedThisFrame;
1303
1304  /// The set of variables that sometimes are not located in their stack home.
1305  DenseSet<DebugAggregate> NotAlwaysStackHomed;
1306
1307  VariableID getVariableID(const DebugVariable &Var) {
1308    return static_cast<VariableID>(FnVarLocs->insertVariable(Var));
1309  }
1310
1311  /// Join the LiveOut values of preds that are contained in \p Visited into
1312  /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
1313  /// values monotonically increase. See the @link joinMethods join methods
1314  /// @endlink documentation for more info.
1315  bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited);
1316  ///@name joinMethods
1317  /// Functions that implement `join` (the least upper bound) for the
1318  /// join-semilattice types used in the dataflow. There is an explicit bottom
1319  /// value (���) for some types and and explicit top value (���) for all types.
1320  /// By definition:
1321  ///
1322  ///     Join(A, B) >= A && Join(A, B) >= B
1323  ///     Join(A, ���) = A
1324  ///     Join(A, ���) = ���
1325  ///
1326  /// These invariants are important for monotonicity.
1327  ///
1328  /// For the map-type functions, all unmapped keys in an empty map are
1329  /// associated with a bottom value (���). This represents their values being
1330  /// unknown. Unmapped keys in non-empty maps (joining two maps with a key
1331  /// only present in one) represents either a variable going out of scope or
1332  /// dropped debug info. It is assumed the key is associated with a top value
1333  /// (���) in this case (unknown location / assignment).
1334  ///@{
1335  static LocKind joinKind(LocKind A, LocKind B);
1336  static Assignment joinAssignment(const Assignment &A, const Assignment &B);
1337  BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B);
1338  ///@}
1339
1340  /// Process the instructions in \p BB updating \p LiveSet along the way. \p
1341  /// LiveSet must be initialized with the current live-in locations before
1342  /// calling this.
1343  void process(BasicBlock &BB, BlockInfo *LiveSet);
1344  ///@name processMethods
1345  /// Methods to process instructions in order to update the LiveSet (current
1346  /// location information).
1347  ///@{
1348  void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet);
1349  void processDbgInstruction(DbgInfoIntrinsic &I, BlockInfo *LiveSet);
1350  /// Update \p LiveSet after encountering an instruction with a DIAssignID
1351  /// attachment, \p I.
1352  void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1353  /// Update \p LiveSet after encountering an instruciton without a DIAssignID
1354  /// attachment, \p I.
1355  void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet);
1356  void processDbgAssign(AssignRecord Assign, BlockInfo *LiveSet);
1357  void processDPValue(DPValue &DPV, BlockInfo *LiveSet);
1358  void processDbgValue(PointerUnion<DbgValueInst *, DPValue *> DbgValueRecord,
1359                       BlockInfo *LiveSet);
1360  /// Add an assignment to memory for the variable /p Var.
1361  void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1362  /// Add an assignment to the variable /p Var.
1363  void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
1364  ///@}
1365
1366  /// Set the LocKind for \p Var.
1367  void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K);
1368  /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
1369  /// have been called for \p Var first.
1370  LocKind getLocKind(BlockInfo *LiveSet, VariableID Var);
1371  /// Return true if \p Var has an assignment in \p M matching \p AV.
1372  bool hasVarWithAssignment(BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind,
1373                            VariableID Var, const Assignment &AV);
1374  /// Return the set of VariableIDs corresponding the fragments contained fully
1375  /// within the variable/fragment \p Var.
1376  ArrayRef<VariableID> getContainedFragments(VariableID Var) const;
1377
1378  /// Mark \p Var as having been touched this frame. Note, this applies only
1379  /// to the exact fragment \p Var and not to any fragments contained within.
1380  void touchFragment(VariableID Var);
1381
1382  /// Emit info for variables that are fully promoted.
1383  bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs);
1384
1385public:
1386  AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout,
1387                             const DenseSet<DebugAggregate> *VarsWithStackSlot)
1388      : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {}
1389  /// Run the analysis, adding variable location info to \p FnVarLocs. Returns
1390  /// true if any variable locations have been added to FnVarLocs.
1391  bool run(FunctionVarLocsBuilder *FnVarLocs);
1392};
1393} // namespace
1394
1395ArrayRef<VariableID>
1396AssignmentTrackingLowering::getContainedFragments(VariableID Var) const {
1397  auto R = VarContains.find(Var);
1398  if (R == VarContains.end())
1399    return std::nullopt;
1400  return R->second;
1401}
1402
1403void AssignmentTrackingLowering::touchFragment(VariableID Var) {
1404  VarsTouchedThisFrame.insert(Var);
1405}
1406
1407void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var,
1408                                            LocKind K) {
1409  auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) {
1410    LiveSet->setLocKind(Var, K);
1411    touchFragment(Var);
1412  };
1413  SetKind(LiveSet, Var, K);
1414
1415  // Update the LocKind for all fragments contained within Var.
1416  for (VariableID Frag : getContainedFragments(Var))
1417    SetKind(LiveSet, Frag, K);
1418}
1419
1420AssignmentTrackingLowering::LocKind
1421AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) {
1422  return LiveSet->getLocKind(Var);
1423}
1424
1425void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var,
1426                                           const Assignment &AV) {
1427  LiveSet->setAssignment(BlockInfo::Stack, Var, AV);
1428
1429  // Use this assigment for all fragments contained within Var, but do not
1430  // provide a Source because we cannot convert Var's value to a value for the
1431  // fragment.
1432  Assignment FragAV = AV;
1433  FragAV.Source = nullptr;
1434  for (VariableID Frag : getContainedFragments(Var))
1435    LiveSet->setAssignment(BlockInfo::Stack, Frag, FragAV);
1436}
1437
1438void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var,
1439                                           const Assignment &AV) {
1440  LiveSet->setAssignment(BlockInfo::Debug, Var, AV);
1441
1442  // Use this assigment for all fragments contained within Var, but do not
1443  // provide a Source because we cannot convert Var's value to a value for the
1444  // fragment.
1445  Assignment FragAV = AV;
1446  FragAV.Source = nullptr;
1447  for (VariableID Frag : getContainedFragments(Var))
1448    LiveSet->setAssignment(BlockInfo::Debug, Frag, FragAV);
1449}
1450
1451static DIAssignID *getIDFromInst(const Instruction &I) {
1452  return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
1453}
1454
1455static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) {
1456  return cast<DIAssignID>(DAI.getAssignID());
1457}
1458
1459static DIAssignID *getIDFromMarker(const DPValue &DPV) {
1460  assert(DPV.isDbgAssign() &&
1461         "Cannot get a DIAssignID from a non-assign DPValue!");
1462  return DPV.getAssignID();
1463}
1464
1465/// Return true if \p Var has an assignment in \p M matching \p AV.
1466bool AssignmentTrackingLowering::hasVarWithAssignment(
1467    BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, VariableID Var,
1468    const Assignment &AV) {
1469  if (!LiveSet->hasAssignment(Kind, Var, AV))
1470    return false;
1471
1472  // Check all the frags contained within Var as these will have all been
1473  // mapped to AV at the last store to Var.
1474  for (VariableID Frag : getContainedFragments(Var))
1475    if (!LiveSet->hasAssignment(Kind, Frag, AV))
1476      return false;
1477  return true;
1478}
1479
1480#ifndef NDEBUG
1481const char *locStr(AssignmentTrackingLowering::LocKind Loc) {
1482  using LocKind = AssignmentTrackingLowering::LocKind;
1483  switch (Loc) {
1484  case LocKind::Val:
1485    return "Val";
1486  case LocKind::Mem:
1487    return "Mem";
1488  case LocKind::None:
1489    return "None";
1490  };
1491  llvm_unreachable("unknown LocKind");
1492}
1493#endif
1494
1495VarLocInsertPt getNextNode(const DPValue *DPV) {
1496  auto NextIt = ++(DPV->getIterator());
1497  if (NextIt == DPV->getMarker()->getDbgValueRange().end())
1498    return DPV->getMarker()->MarkedInstr;
1499  return &*NextIt;
1500}
1501VarLocInsertPt getNextNode(const Instruction *Inst) {
1502  const Instruction *Next = Inst->getNextNode();
1503  if (!Next->hasDbgValues())
1504    return Next;
1505  return &*Next->getDbgValueRange().begin();
1506}
1507VarLocInsertPt getNextNode(VarLocInsertPt InsertPt) {
1508  if (isa<const Instruction *>(InsertPt))
1509    return getNextNode(cast<const Instruction *>(InsertPt));
1510  return getNextNode(cast<const DPValue *>(InsertPt));
1511}
1512
1513DbgAssignIntrinsic *CastToDbgAssign(DbgVariableIntrinsic *DVI) {
1514  return cast<DbgAssignIntrinsic>(DVI);
1515}
1516
1517DPValue *CastToDbgAssign(DPValue *DPV) {
1518  assert(DPV->isDbgAssign() &&
1519         "Attempted to cast non-assign DPValue to DPVAssign.");
1520  return DPV;
1521}
1522
1523void AssignmentTrackingLowering::emitDbgValue(
1524    AssignmentTrackingLowering::LocKind Kind,
1525    AssignmentTrackingLowering::AssignRecord Source, VarLocInsertPt After) {
1526  if (isa<DbgAssignIntrinsic *>(Source))
1527    emitDbgValue(Kind, cast<DbgAssignIntrinsic *>(Source), After);
1528  else
1529    emitDbgValue(Kind, cast<DPValue *>(Source), After);
1530}
1531template <typename T>
1532void AssignmentTrackingLowering::emitDbgValue(
1533    AssignmentTrackingLowering::LocKind Kind, const T Source,
1534    VarLocInsertPt After) {
1535
1536  DILocation *DL = Source->getDebugLoc();
1537  auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) {
1538    assert(Expr);
1539    if (!Val)
1540      Val = ValueAsMetadata::get(
1541          PoisonValue::get(Type::getInt1Ty(Source->getContext())));
1542
1543    // Find a suitable insert point.
1544    auto InsertBefore = getNextNode(After);
1545    assert(InsertBefore && "Shouldn't be inserting after a terminator");
1546
1547    VariableID Var = getVariableID(DebugVariable(Source));
1548    VarLocInfo VarLoc;
1549    VarLoc.VariableID = static_cast<VariableID>(Var);
1550    VarLoc.Expr = Expr;
1551    VarLoc.Values = RawLocationWrapper(Val);
1552    VarLoc.DL = DL;
1553    // Insert it into the map for later.
1554    InsertBeforeMap[InsertBefore].push_back(VarLoc);
1555  };
1556
1557  // NOTE: This block can mutate Kind.
1558  if (Kind == LocKind::Mem) {
1559    const auto *Assign = CastToDbgAssign(Source);
1560    // Check the address hasn't been dropped (e.g. the debug uses may not have
1561    // been replaced before deleting a Value).
1562    if (Assign->isKillAddress()) {
1563      // The address isn't valid so treat this as a non-memory def.
1564      Kind = LocKind::Val;
1565    } else {
1566      Value *Val = Assign->getAddress();
1567      DIExpression *Expr = Assign->getAddressExpression();
1568      assert(!Expr->getFragmentInfo() &&
1569             "fragment info should be stored in value-expression only");
1570      // Copy the fragment info over from the value-expression to the new
1571      // DIExpression.
1572      if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) {
1573        auto FragInfo = *OptFragInfo;
1574        Expr = *DIExpression::createFragmentExpression(
1575            Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits);
1576      }
1577      // The address-expression has an implicit deref, add it now.
1578      std::tie(Val, Expr) =
1579          walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr);
1580      Emit(ValueAsMetadata::get(Val), Expr);
1581      return;
1582    }
1583  }
1584
1585  if (Kind == LocKind::Val) {
1586    Emit(Source->getRawLocation(), Source->getExpression());
1587    return;
1588  }
1589
1590  if (Kind == LocKind::None) {
1591    Emit(nullptr, Source->getExpression());
1592    return;
1593  }
1594}
1595
1596void AssignmentTrackingLowering::processNonDbgInstruction(
1597    Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1598  if (I.hasMetadata(LLVMContext::MD_DIAssignID))
1599    processTaggedInstruction(I, LiveSet);
1600  else
1601    processUntaggedInstruction(I, LiveSet);
1602}
1603
1604void AssignmentTrackingLowering::processUntaggedInstruction(
1605    Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1606  // Interpret stack stores that are not tagged as an assignment in memory for
1607  // the variables associated with that address. These stores may not be tagged
1608  // because a) the store cannot be represented using dbg.assigns (non-const
1609  // length or offset) or b) the tag was accidentally dropped during
1610  // optimisations. For these stores we fall back to assuming that the stack
1611  // home is a valid location for the variables. The benefit is that this
1612  // prevents us missing an assignment and therefore incorrectly maintaining
1613  // earlier location definitions, and in many cases it should be a reasonable
1614  // assumption. However, this will occasionally lead to slight
1615  // inaccuracies. The value of a hoisted untagged store will be visible
1616  // "early", for example.
1617  assert(!I.hasMetadata(LLVMContext::MD_DIAssignID));
1618  auto It = UntaggedStoreVars.find(&I);
1619  if (It == UntaggedStoreVars.end())
1620    return; // No variables associated with the store destination.
1621
1622  LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
1623                    << "\n");
1624  // Iterate over the variables that this store affects, add a NoneOrPhi dbg
1625  // and mem def, set lockind to Mem, and emit a location def for each.
1626  for (auto [Var, Info] : It->second) {
1627    // This instruction is treated as both a debug and memory assignment,
1628    // meaning the memory location should be used. We don't have an assignment
1629    // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
1630    addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1631    addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi());
1632    setLocKind(LiveSet, Var, LocKind::Mem);
1633    LLVM_DEBUG(dbgs() << "  setting Stack LocKind to: " << locStr(LocKind::Mem)
1634                      << "\n");
1635    // Build the dbg location def to insert.
1636    //
1637    // DIExpression: Add fragment and offset.
1638    DebugVariable V = FnVarLocs->getVariable(Var);
1639    DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt);
1640    if (auto Frag = V.getFragment()) {
1641      auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits,
1642                                                      Frag->SizeInBits);
1643      assert(R && "unexpected createFragmentExpression failure");
1644      DIE = *R;
1645    }
1646    SmallVector<uint64_t, 3> Ops;
1647    if (Info.OffsetInBits)
1648      Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8};
1649    Ops.push_back(dwarf::DW_OP_deref);
1650    DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false,
1651                                       /*EntryValue=*/false);
1652    // Find a suitable insert point, before the next instruction or DPValue
1653    // after I.
1654    auto InsertBefore = getNextNode(&I);
1655    assert(InsertBefore && "Shouldn't be inserting after a terminator");
1656
1657    // Get DILocation for this unrecorded assignment.
1658    DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
1659    const DILocation *DILoc = DILocation::get(
1660        Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
1661
1662    VarLocInfo VarLoc;
1663    VarLoc.VariableID = static_cast<VariableID>(Var);
1664    VarLoc.Expr = DIE;
1665    VarLoc.Values = RawLocationWrapper(
1666        ValueAsMetadata::get(const_cast<AllocaInst *>(Info.Base)));
1667    VarLoc.DL = DILoc;
1668    // 3. Insert it into the map for later.
1669    InsertBeforeMap[InsertBefore].push_back(VarLoc);
1670  }
1671}
1672
1673void AssignmentTrackingLowering::processTaggedInstruction(
1674    Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1675  auto Linked = at::getAssignmentMarkers(&I);
1676  auto LinkedDPAssigns = at::getDPVAssignmentMarkers(&I);
1677  // No dbg.assign intrinsics linked.
1678  // FIXME: All vars that have a stack slot this store modifies that don't have
1679  // a dbg.assign linked to it should probably treat this like an untagged
1680  // store.
1681  if (Linked.empty() && LinkedDPAssigns.empty())
1682    return;
1683
1684  LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n");
1685  auto ProcessLinkedAssign = [&](auto *Assign) {
1686    VariableID Var = getVariableID(DebugVariable(Assign));
1687    // Something has gone wrong if VarsWithStackSlot doesn't contain a variable
1688    // that is linked to a store.
1689    assert(VarsWithStackSlot->count(getAggregate(Assign)) &&
1690           "expected Assign's variable to have stack slot");
1691
1692    Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I));
1693    addMemDef(LiveSet, Var, AV);
1694
1695    LLVM_DEBUG(dbgs() << "   linked to " << *Assign << "\n");
1696    LLVM_DEBUG(dbgs() << "   LiveLoc " << locStr(getLocKind(LiveSet, Var))
1697                      << " -> ");
1698
1699    // The last assignment to the stack is now AV. Check if the last debug
1700    // assignment has a matching Assignment.
1701    if (hasVarWithAssignment(LiveSet, BlockInfo::Debug, Var, AV)) {
1702      // The StackHomeValue and DebugValue for this variable match so we can
1703      // emit a stack home location here.
1704      LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1705      LLVM_DEBUG(dbgs() << "   Stack val: "; AV.dump(dbgs()); dbgs() << "\n");
1706      LLVM_DEBUG(dbgs() << "   Debug val: ";
1707                 LiveSet->DebugValue[static_cast<unsigned>(Var)].dump(dbgs());
1708                 dbgs() << "\n");
1709      setLocKind(LiveSet, Var, LocKind::Mem);
1710      emitDbgValue(LocKind::Mem, Assign, &I);
1711      return;
1712    }
1713
1714    // The StackHomeValue and DebugValue for this variable do not match. I.e.
1715    // The value currently stored in the stack is not what we'd expect to
1716    // see, so we cannot use emit a stack home location here. Now we will
1717    // look at the live LocKind for the variable and determine an appropriate
1718    // dbg.value to emit.
1719    LocKind PrevLoc = getLocKind(LiveSet, Var);
1720    switch (PrevLoc) {
1721    case LocKind::Val: {
1722      // The value in memory in memory has changed but we're not currently
1723      // using the memory location. Do nothing.
1724      LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
1725      setLocKind(LiveSet, Var, LocKind::Val);
1726    } break;
1727    case LocKind::Mem: {
1728      // There's been an assignment to memory that we were using as a
1729      // location for this variable, and the Assignment doesn't match what
1730      // we'd expect to see in memory.
1731      Assignment DbgAV = LiveSet->getAssignment(BlockInfo::Debug, Var);
1732      if (DbgAV.Status == Assignment::NoneOrPhi) {
1733        // We need to terminate any previously open location now.
1734        LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
1735        setLocKind(LiveSet, Var, LocKind::None);
1736        emitDbgValue(LocKind::None, Assign, &I);
1737      } else {
1738        // The previous DebugValue Value can be used here.
1739        LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
1740        setLocKind(LiveSet, Var, LocKind::Val);
1741        if (DbgAV.Source) {
1742          emitDbgValue(LocKind::Val, DbgAV.Source, &I);
1743        } else {
1744          // PrevAV.Source is nullptr so we must emit undef here.
1745          emitDbgValue(LocKind::None, Assign, &I);
1746        }
1747      }
1748    } break;
1749    case LocKind::None: {
1750      // There's been an assignment to memory and we currently are
1751      // not tracking a location for the variable. Do not emit anything.
1752      LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
1753      setLocKind(LiveSet, Var, LocKind::None);
1754    } break;
1755    }
1756  };
1757  for (DbgAssignIntrinsic *DAI : Linked)
1758    ProcessLinkedAssign(DAI);
1759  for (DPValue *DPV : LinkedDPAssigns)
1760    ProcessLinkedAssign(DPV);
1761}
1762
1763void AssignmentTrackingLowering::processDbgAssign(AssignRecord Assign,
1764                                                  BlockInfo *LiveSet) {
1765  auto ProcessDbgAssignImpl = [&](auto *DbgAssign) {
1766    // Only bother tracking variables that are at some point stack homed. Other
1767    // variables can be dealt with trivially later.
1768    if (!VarsWithStackSlot->count(getAggregate(DbgAssign)))
1769      return;
1770
1771    VariableID Var = getVariableID(DebugVariable(DbgAssign));
1772    Assignment AV = Assignment::make(getIDFromMarker(*DbgAssign), DbgAssign);
1773    addDbgDef(LiveSet, Var, AV);
1774
1775    LLVM_DEBUG(dbgs() << "processDbgAssign on " << *DbgAssign << "\n";);
1776    LLVM_DEBUG(dbgs() << "   LiveLoc " << locStr(getLocKind(LiveSet, Var))
1777                      << " -> ");
1778
1779    // Check if the DebugValue and StackHomeValue both hold the same
1780    // Assignment.
1781    if (hasVarWithAssignment(LiveSet, BlockInfo::Stack, Var, AV)) {
1782      // They match. We can use the stack home because the debug intrinsics
1783      // state that an assignment happened here, and we know that specific
1784      // assignment was the last one to take place in memory for this variable.
1785      LocKind Kind;
1786      if (DbgAssign->isKillAddress()) {
1787        LLVM_DEBUG(
1788            dbgs()
1789                << "Val, Stack matches Debug program but address is killed\n";);
1790        Kind = LocKind::Val;
1791      } else {
1792        LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
1793        Kind = LocKind::Mem;
1794      };
1795      setLocKind(LiveSet, Var, Kind);
1796      emitDbgValue(Kind, DbgAssign, DbgAssign);
1797    } else {
1798      // The last assignment to the memory location isn't the one that we want
1799      // to show to the user so emit a dbg.value(Value). Value may be undef.
1800      LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
1801      setLocKind(LiveSet, Var, LocKind::Val);
1802      emitDbgValue(LocKind::Val, DbgAssign, DbgAssign);
1803    }
1804  };
1805  if (isa<DPValue *>(Assign))
1806    return ProcessDbgAssignImpl(cast<DPValue *>(Assign));
1807  return ProcessDbgAssignImpl(cast<DbgAssignIntrinsic *>(Assign));
1808}
1809
1810void AssignmentTrackingLowering::processDbgValue(
1811    PointerUnion<DbgValueInst *, DPValue *> DbgValueRecord,
1812    BlockInfo *LiveSet) {
1813  auto ProcessDbgValueImpl = [&](auto *DbgValue) {
1814    // Only other tracking variables that are at some point stack homed.
1815    // Other variables can be dealt with trivally later.
1816    if (!VarsWithStackSlot->count(getAggregate(DbgValue)))
1817      return;
1818
1819    VariableID Var = getVariableID(DebugVariable(DbgValue));
1820    // We have no ID to create an Assignment with so we mark this assignment as
1821    // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
1822    // the assignment responsible for setting this value.
1823    // This is fine; dbg.values are essentially interchangable with unlinked
1824    // dbg.assigns, and some passes such as mem2reg and instcombine add them to
1825    // PHIs for promoted variables.
1826    Assignment AV = Assignment::makeNoneOrPhi();
1827    addDbgDef(LiveSet, Var, AV);
1828
1829    LLVM_DEBUG(dbgs() << "processDbgValue on " << *DbgValue << "\n";);
1830    LLVM_DEBUG(dbgs() << "   LiveLoc " << locStr(getLocKind(LiveSet, Var))
1831                      << " -> Val, dbg.value override");
1832
1833    setLocKind(LiveSet, Var, LocKind::Val);
1834    emitDbgValue(LocKind::Val, DbgValue, DbgValue);
1835  };
1836  if (isa<DPValue *>(DbgValueRecord))
1837    return ProcessDbgValueImpl(cast<DPValue *>(DbgValueRecord));
1838  return ProcessDbgValueImpl(cast<DbgValueInst *>(DbgValueRecord));
1839}
1840
1841template <typename T> static bool hasZeroSizedFragment(T &DbgValue) {
1842  if (auto F = DbgValue.getExpression()->getFragmentInfo())
1843    return F->SizeInBits == 0;
1844  return false;
1845}
1846
1847void AssignmentTrackingLowering::processDbgInstruction(
1848    DbgInfoIntrinsic &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1849  auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
1850  if (!DVI)
1851    return;
1852
1853  // Ignore assignments to zero bits of the variable.
1854  if (hasZeroSizedFragment(*DVI))
1855    return;
1856
1857  if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
1858    processDbgAssign(DAI, LiveSet);
1859  else if (auto *DVI = dyn_cast<DbgValueInst>(&I))
1860    processDbgValue(DVI, LiveSet);
1861}
1862void AssignmentTrackingLowering::processDPValue(
1863    DPValue &DPV, AssignmentTrackingLowering::BlockInfo *LiveSet) {
1864  // Ignore assignments to zero bits of the variable.
1865  if (hasZeroSizedFragment(DPV))
1866    return;
1867
1868  if (DPV.isDbgAssign())
1869    processDbgAssign(&DPV, LiveSet);
1870  else if (DPV.isDbgValue())
1871    processDbgValue(&DPV, LiveSet);
1872}
1873
1874void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) {
1875  assert(!After.isTerminator() && "Can't insert after a terminator");
1876  auto *R = InsertBeforeMap.find(getNextNode(&After));
1877  if (R == InsertBeforeMap.end())
1878    return;
1879  R->second.clear();
1880}
1881void AssignmentTrackingLowering::resetInsertionPoint(DPValue &After) {
1882  auto *R = InsertBeforeMap.find(getNextNode(&After));
1883  if (R == InsertBeforeMap.end())
1884    return;
1885  R->second.clear();
1886}
1887
1888void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) {
1889  // If the block starts with DPValues, we need to process those DPValues as
1890  // their own frame without processing any instructions first.
1891  bool ProcessedLeadingDPValues = !BB.begin()->hasDbgValues();
1892  for (auto II = BB.begin(), EI = BB.end(); II != EI;) {
1893    assert(VarsTouchedThisFrame.empty());
1894    // Process the instructions in "frames". A "frame" includes a single
1895    // non-debug instruction followed any debug instructions before the
1896    // next non-debug instruction.
1897
1898    // Skip the current instruction if it has unprocessed DPValues attached (see
1899    // comment above `ProcessedLeadingDPValues`).
1900    if (ProcessedLeadingDPValues) {
1901      // II is now either a debug intrinsic, a non-debug instruction with no
1902      // attached DPValues, or a non-debug instruction with attached processed
1903      // DPValues.
1904      // II has not been processed.
1905      if (!isa<DbgInfoIntrinsic>(&*II)) {
1906        if (II->isTerminator())
1907          break;
1908        resetInsertionPoint(*II);
1909        processNonDbgInstruction(*II, LiveSet);
1910        assert(LiveSet->isValid());
1911        ++II;
1912      }
1913    }
1914    // II is now either a debug intrinsic, a non-debug instruction with no
1915    // attached DPValues, or a non-debug instruction with attached unprocessed
1916    // DPValues.
1917    if (II != EI && II->hasDbgValues()) {
1918      for (DPValue &DPV : II->getDbgValueRange()) {
1919        resetInsertionPoint(DPV);
1920        processDPValue(DPV, LiveSet);
1921        assert(LiveSet->isValid());
1922      }
1923    }
1924    ProcessedLeadingDPValues = true;
1925    while (II != EI) {
1926      auto *Dbg = dyn_cast<DbgInfoIntrinsic>(&*II);
1927      if (!Dbg)
1928        break;
1929      resetInsertionPoint(*II);
1930      processDbgInstruction(*Dbg, LiveSet);
1931      assert(LiveSet->isValid());
1932      ++II;
1933    }
1934    // II is now a non-debug instruction either with no attached DPValues, or
1935    // with attached processed DPValues. II has not been processed, and all
1936    // debug instructions or DPValues in the frame preceding II have been
1937    // processed.
1938
1939    // We've processed everything in the "frame". Now determine which variables
1940    // cannot be represented by a dbg.declare.
1941    for (auto Var : VarsTouchedThisFrame) {
1942      LocKind Loc = getLocKind(LiveSet, Var);
1943      // If a variable's LocKind is anything other than LocKind::Mem then we
1944      // must note that it cannot be represented with a dbg.declare.
1945      // Note that this check is enough without having to check the result of
1946      // joins() because for join to produce anything other than Mem after
1947      // we've already seen a Mem we'd be joining None or Val with Mem. In that
1948      // case, we've already hit this codepath when we set the LocKind to Val
1949      // or None in that block.
1950      if (Loc != LocKind::Mem) {
1951        DebugVariable DbgVar = FnVarLocs->getVariable(Var);
1952        DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()};
1953        NotAlwaysStackHomed.insert(Aggr);
1954      }
1955    }
1956    VarsTouchedThisFrame.clear();
1957  }
1958}
1959
1960AssignmentTrackingLowering::LocKind
1961AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) {
1962  // Partial order:
1963  // None > Mem, Val
1964  return A == B ? A : LocKind::None;
1965}
1966
1967AssignmentTrackingLowering::Assignment
1968AssignmentTrackingLowering::joinAssignment(const Assignment &A,
1969                                           const Assignment &B) {
1970  // Partial order:
1971  // NoneOrPhi(null, null) > Known(v, ?s)
1972
1973  // If either are NoneOrPhi the join is NoneOrPhi.
1974  // If either value is different then the result is
1975  // NoneOrPhi (joining two values is a Phi).
1976  if (!A.isSameSourceAssignment(B))
1977    return Assignment::makeNoneOrPhi();
1978  if (A.Status == Assignment::NoneOrPhi)
1979    return Assignment::makeNoneOrPhi();
1980
1981  // Source is used to lookup the value + expression in the debug program if
1982  // the stack slot gets assigned a value earlier than expected. Because
1983  // we're only tracking the one dbg.assign, we can't capture debug PHIs.
1984  // It's unlikely that we're losing out on much coverage by avoiding that
1985  // extra work.
1986  // The Source may differ in this situation:
1987  // Pred.1:
1988  //   dbg.assign i32 0, ..., !1, ...
1989  // Pred.2:
1990  //   dbg.assign i32 1, ..., !1, ...
1991  // Here the same assignment (!1) was performed in both preds in the source,
1992  // but we can't use either one unless they are identical (e.g. .we don't
1993  // want to arbitrarily pick between constant values).
1994  auto JoinSource = [&]() -> AssignRecord {
1995    if (A.Source == B.Source)
1996      return A.Source;
1997    if (!A.Source || !B.Source)
1998      return AssignRecord();
1999    assert(isa<DPValue *>(A.Source) == isa<DPValue *>(B.Source));
2000    if (isa<DPValue *>(A.Source) &&
2001        cast<DPValue *>(A.Source)->isEquivalentTo(*cast<DPValue *>(B.Source)))
2002      return A.Source;
2003    if (isa<DbgAssignIntrinsic *>(A.Source) &&
2004        cast<DbgAssignIntrinsic *>(A.Source)->isIdenticalTo(
2005            cast<DbgAssignIntrinsic *>(B.Source)))
2006      return A.Source;
2007    return AssignRecord();
2008  };
2009  AssignRecord Source = JoinSource();
2010  assert(A.Status == B.Status && A.Status == Assignment::Known);
2011  assert(A.ID == B.ID);
2012  return Assignment::make(A.ID, Source);
2013}
2014
2015AssignmentTrackingLowering::BlockInfo
2016AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A,
2017                                          const BlockInfo &B) {
2018  return BlockInfo::join(A, B, TrackedVariablesVectorSize);
2019}
2020
2021bool AssignmentTrackingLowering::join(
2022    const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) {
2023
2024  SmallVector<const BasicBlock *> VisitedPreds;
2025  // Ignore backedges if we have not visited the predecessor yet. As the
2026  // predecessor hasn't yet had locations propagated into it, most locations
2027  // will not yet be valid, so treat them as all being uninitialized and
2028  // potentially valid. If a location guessed to be correct here is
2029  // invalidated later, we will remove it when we revisit this block. This
2030  // is essentially the same as initialising all LocKinds and Assignments to
2031  // an implicit ��� value which is the identity value for the join operation.
2032  for (const BasicBlock *Pred : predecessors(&BB)) {
2033    if (Visited.count(Pred))
2034      VisitedPreds.push_back(Pred);
2035  }
2036
2037  // No preds visited yet.
2038  if (VisitedPreds.empty()) {
2039    auto It = LiveIn.try_emplace(&BB, BlockInfo());
2040    bool DidInsert = It.second;
2041    if (DidInsert)
2042      It.first->second.init(TrackedVariablesVectorSize);
2043    return /*Changed*/ DidInsert;
2044  }
2045
2046  // Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn.
2047  if (VisitedPreds.size() == 1) {
2048    const BlockInfo &PredLiveOut = LiveOut.find(VisitedPreds[0])->second;
2049    auto CurrentLiveInEntry = LiveIn.find(&BB);
2050
2051    // Check if there isn't an entry, or there is but the LiveIn set has
2052    // changed (expensive check).
2053    if (CurrentLiveInEntry == LiveIn.end())
2054      LiveIn.insert(std::make_pair(&BB, PredLiveOut));
2055    else if (PredLiveOut != CurrentLiveInEntry->second)
2056      CurrentLiveInEntry->second = PredLiveOut;
2057    else
2058      return /*Changed*/ false;
2059    return /*Changed*/ true;
2060  }
2061
2062  // More than one pred. Join LiveOuts of blocks 1 and 2.
2063  assert(VisitedPreds.size() > 1);
2064  const BlockInfo &PredLiveOut0 = LiveOut.find(VisitedPreds[0])->second;
2065  const BlockInfo &PredLiveOut1 = LiveOut.find(VisitedPreds[1])->second;
2066  BlockInfo BBLiveIn = joinBlockInfo(PredLiveOut0, PredLiveOut1);
2067
2068  // Join the LiveOuts of subsequent blocks.
2069  ArrayRef Tail = ArrayRef(VisitedPreds).drop_front(2);
2070  for (const BasicBlock *Pred : Tail) {
2071    const auto &PredLiveOut = LiveOut.find(Pred);
2072    assert(PredLiveOut != LiveOut.end() &&
2073           "block should have been processed already");
2074    BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second);
2075  }
2076
2077  // Save the joined result for BB.
2078  auto CurrentLiveInEntry = LiveIn.find(&BB);
2079  // Check if there isn't an entry, or there is but the LiveIn set has changed
2080  // (expensive check).
2081  if (CurrentLiveInEntry == LiveIn.end())
2082    LiveIn.try_emplace(&BB, std::move(BBLiveIn));
2083  else if (BBLiveIn != CurrentLiveInEntry->second)
2084    CurrentLiveInEntry->second = std::move(BBLiveIn);
2085  else
2086    return /*Changed*/ false;
2087  return /*Changed*/ true;
2088}
2089
2090/// Return true if A fully contains B.
2091static bool fullyContains(DIExpression::FragmentInfo A,
2092                          DIExpression::FragmentInfo B) {
2093  auto ALeft = A.OffsetInBits;
2094  auto BLeft = B.OffsetInBits;
2095  if (BLeft < ALeft)
2096    return false;
2097
2098  auto ARight = ALeft + A.SizeInBits;
2099  auto BRight = BLeft + B.SizeInBits;
2100  if (BRight > ARight)
2101    return false;
2102  return true;
2103}
2104
2105static std::optional<at::AssignmentInfo>
2106getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) {
2107  // Don't bother checking if this is an AllocaInst. We know this
2108  // instruction has no tag which means there are no variables associated
2109  // with it.
2110  if (const auto *SI = dyn_cast<StoreInst>(&I))
2111    return at::getAssignmentInfo(Layout, SI);
2112  if (const auto *MI = dyn_cast<MemIntrinsic>(&I))
2113    return at::getAssignmentInfo(Layout, MI);
2114  // Alloca or non-store-like inst.
2115  return std::nullopt;
2116}
2117
2118DbgDeclareInst *DynCastToDbgDeclare(DbgVariableIntrinsic *DVI) {
2119  return dyn_cast<DbgDeclareInst>(DVI);
2120}
2121
2122DPValue *DynCastToDbgDeclare(DPValue *DPV) {
2123  return DPV->isDbgDeclare() ? DPV : nullptr;
2124}
2125
2126/// Build a map of {Variable x: Variables y} where all variable fragments
2127/// contained within the variable fragment x are in set y. This means that
2128/// y does not contain all overlaps because partial overlaps are excluded.
2129///
2130/// While we're iterating over the function, add single location defs for
2131/// dbg.declares to \p FnVarLocs.
2132///
2133/// Variables that are interesting to this pass in are added to
2134/// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of
2135/// the last interesting variable plus 1, meaning variables with ID 1
2136/// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The
2137/// subsequent variables are either stack homed or fully promoted.
2138///
2139/// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
2140/// the stored-to variable fragments.
2141///
2142/// These tasks are bundled together to reduce the number of times we need
2143/// to iterate over the function as they can be achieved together in one pass.
2144static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares(
2145    Function &Fn, FunctionVarLocsBuilder *FnVarLocs,
2146    const DenseSet<DebugAggregate> &VarsWithStackSlot,
2147    AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars,
2148    unsigned &TrackedVariablesVectorSize) {
2149  DenseSet<DebugVariable> Seen;
2150  // Map of Variable: [Fragments].
2151  DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap;
2152  // Iterate over all instructions:
2153  // - dbg.declare    -> add single location variable record
2154  // - dbg.*          -> Add fragments to FragmentMap
2155  // - untagged store -> Add fragments to FragmentMap and update
2156  //                     UntaggedStoreVars.
2157  // We need to add fragments for untagged stores too so that we can correctly
2158  // clobber overlapped fragment locations later.
2159  SmallVector<DbgDeclareInst *> InstDeclares;
2160  SmallVector<DPValue *> DPDeclares;
2161  auto ProcessDbgRecord = [&](auto *Record, auto &DeclareList) {
2162    if (auto *Declare = DynCastToDbgDeclare(Record)) {
2163      DeclareList.push_back(Declare);
2164      return;
2165    }
2166    DebugVariable DV = DebugVariable(Record);
2167    DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2168    if (!VarsWithStackSlot.contains(DA))
2169      return;
2170    if (Seen.insert(DV).second)
2171      FragmentMap[DA].push_back(DV);
2172  };
2173  for (auto &BB : Fn) {
2174    for (auto &I : BB) {
2175      for (auto &DPV : I.getDbgValueRange())
2176        ProcessDbgRecord(&DPV, DPDeclares);
2177      if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
2178        ProcessDbgRecord(DII, InstDeclares);
2179      } else if (auto Info = getUntaggedStoreAssignmentInfo(
2180                     I, Fn.getParent()->getDataLayout())) {
2181        // Find markers linked to this alloca.
2182        auto HandleDbgAssignForStore = [&](auto *Assign) {
2183          std::optional<DIExpression::FragmentInfo> FragInfo;
2184
2185          // Skip this assignment if the affected bits are outside of the
2186          // variable fragment.
2187          if (!at::calculateFragmentIntersect(
2188                  I.getModule()->getDataLayout(), Info->Base,
2189                  Info->OffsetInBits, Info->SizeInBits, Assign, FragInfo) ||
2190              (FragInfo && FragInfo->SizeInBits == 0))
2191            return;
2192
2193          // FragInfo from calculateFragmentIntersect is nullopt if the
2194          // resultant fragment matches DAI's fragment or entire variable - in
2195          // which case copy the fragment info from DAI. If FragInfo is still
2196          // nullopt after the copy it means "no fragment info" instead, which
2197          // is how it is usually interpreted.
2198          if (!FragInfo)
2199            FragInfo = Assign->getExpression()->getFragmentInfo();
2200
2201          DebugVariable DV =
2202              DebugVariable(Assign->getVariable(), FragInfo,
2203                            Assign->getDebugLoc().getInlinedAt());
2204          DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
2205          if (!VarsWithStackSlot.contains(DA))
2206            return;
2207
2208          // Cache this info for later.
2209          UntaggedStoreVars[&I].push_back(
2210              {FnVarLocs->insertVariable(DV), *Info});
2211
2212          if (Seen.insert(DV).second)
2213            FragmentMap[DA].push_back(DV);
2214        };
2215        for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base))
2216          HandleDbgAssignForStore(DAI);
2217        for (DPValue *DPV : at::getDPVAssignmentMarkers(Info->Base))
2218          HandleDbgAssignForStore(DPV);
2219      }
2220    }
2221  }
2222
2223  // Sort the fragment map for each DebugAggregate in ascending
2224  // order of fragment size - there should be no duplicates.
2225  for (auto &Pair : FragmentMap) {
2226    SmallVector<DebugVariable, 8> &Frags = Pair.second;
2227    std::sort(Frags.begin(), Frags.end(),
2228              [](const DebugVariable &Next, const DebugVariable &Elmt) {
2229                return Elmt.getFragmentOrDefault().SizeInBits >
2230                       Next.getFragmentOrDefault().SizeInBits;
2231              });
2232    // Check for duplicates.
2233    assert(std::adjacent_find(Frags.begin(), Frags.end()) == Frags.end());
2234  }
2235
2236  // Build the map.
2237  AssignmentTrackingLowering::OverlapMap Map;
2238  for (auto &Pair : FragmentMap) {
2239    auto &Frags = Pair.second;
2240    for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) {
2241      DIExpression::FragmentInfo Frag = It->getFragmentOrDefault();
2242      // Find the frags that this is contained within.
2243      //
2244      // Because Frags is sorted by size and none have the same offset and
2245      // size, we know that this frag can only be contained by subsequent
2246      // elements.
2247      SmallVector<DebugVariable, 8>::iterator OtherIt = It;
2248      ++OtherIt;
2249      VariableID ThisVar = FnVarLocs->insertVariable(*It);
2250      for (; OtherIt != IEnd; ++OtherIt) {
2251        DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault();
2252        VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt);
2253        if (fullyContains(OtherFrag, Frag))
2254          Map[OtherVar].push_back(ThisVar);
2255      }
2256    }
2257  }
2258
2259  // VariableIDs are 1-based so the variable-tracking bitvector needs
2260  // NumVariables plus 1 bits.
2261  TrackedVariablesVectorSize = FnVarLocs->getNumVariables() + 1;
2262
2263  // Finally, insert the declares afterwards, so the first IDs are all
2264  // partially stack homed vars.
2265  for (auto *DDI : InstDeclares)
2266    FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(),
2267                               DDI->getDebugLoc(), DDI->getWrappedLocation());
2268  for (auto *DPV : DPDeclares)
2269    FnVarLocs->addSingleLocVar(DebugVariable(DPV), DPV->getExpression(),
2270                               DPV->getDebugLoc(),
2271                               RawLocationWrapper(DPV->getRawLocation()));
2272  return Map;
2273}
2274
2275bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) {
2276  if (Fn.size() > MaxNumBlocks) {
2277    LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName()
2278                      << ": too many blocks (" << Fn.size() << ")\n");
2279    at::deleteAll(&Fn);
2280    return false;
2281  }
2282
2283  FnVarLocs = FnVarLocsBuilder;
2284
2285  // The general structure here is inspired by VarLocBasedImpl.cpp
2286  // (LiveDebugValues).
2287
2288  // Build the variable fragment overlap map.
2289  // Note that this pass doesn't handle partial overlaps correctly (FWIW
2290  // neither does LiveDebugVariables) because that is difficult to do and
2291  // appears to be rare occurance.
2292  VarContains = buildOverlapMapAndRecordDeclares(
2293      Fn, FnVarLocs, *VarsWithStackSlot, UntaggedStoreVars,
2294      TrackedVariablesVectorSize);
2295
2296  // Prepare for traversal.
2297  ReversePostOrderTraversal<Function *> RPOT(&Fn);
2298  std::priority_queue<unsigned int, std::vector<unsigned int>,
2299                      std::greater<unsigned int>>
2300      Worklist;
2301  std::priority_queue<unsigned int, std::vector<unsigned int>,
2302                      std::greater<unsigned int>>
2303      Pending;
2304  DenseMap<unsigned int, BasicBlock *> OrderToBB;
2305  DenseMap<BasicBlock *, unsigned int> BBToOrder;
2306  { // Init OrderToBB and BBToOrder.
2307    unsigned int RPONumber = 0;
2308    for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
2309      OrderToBB[RPONumber] = *RI;
2310      BBToOrder[*RI] = RPONumber;
2311      Worklist.push(RPONumber);
2312      ++RPONumber;
2313    }
2314    LiveIn.init(RPONumber);
2315    LiveOut.init(RPONumber);
2316  }
2317
2318  // Perform the traversal.
2319  //
2320  // This is a standard "union of predecessor outs" dataflow problem. To solve
2321  // it, we perform join() and process() using the two worklist method until
2322  // the LiveIn data for each block becomes unchanging. The "proof" that this
2323  // terminates can be put together by looking at the comments around LocKind,
2324  // Assignment, and the various join methods, which show that all the elements
2325  // involved are made up of join-semilattices; LiveIn(n) can only
2326  // monotonically increase in value throughout the dataflow.
2327  //
2328  SmallPtrSet<BasicBlock *, 16> Visited;
2329  while (!Worklist.empty()) {
2330    // We track what is on the pending worklist to avoid inserting the same
2331    // thing twice.
2332    SmallPtrSet<BasicBlock *, 16> OnPending;
2333    LLVM_DEBUG(dbgs() << "Processing Worklist\n");
2334    while (!Worklist.empty()) {
2335      BasicBlock *BB = OrderToBB[Worklist.top()];
2336      LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
2337      Worklist.pop();
2338      bool InChanged = join(*BB, Visited);
2339      // Always consider LiveIn changed on the first visit.
2340      InChanged |= Visited.insert(BB).second;
2341      if (InChanged) {
2342        LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n");
2343        // Mutate a copy of LiveIn while processing BB. After calling process
2344        // LiveSet is the LiveOut set for BB.
2345        BlockInfo LiveSet = LiveIn[BB];
2346
2347        // Process the instructions in the block.
2348        process(*BB, &LiveSet);
2349
2350        // Relatively expensive check: has anything changed in LiveOut for BB?
2351        if (LiveOut[BB] != LiveSet) {
2352          LLVM_DEBUG(dbgs() << BB->getName()
2353                            << " has new OutLocs, add succs to worklist: [ ");
2354          LiveOut[BB] = std::move(LiveSet);
2355          for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
2356            if (OnPending.insert(*I).second) {
2357              LLVM_DEBUG(dbgs() << I->getName() << " ");
2358              Pending.push(BBToOrder[*I]);
2359            }
2360          }
2361          LLVM_DEBUG(dbgs() << "]\n");
2362        }
2363      }
2364    }
2365    Worklist.swap(Pending);
2366    // At this point, pending must be empty, since it was just the empty
2367    // worklist
2368    assert(Pending.empty() && "Pending should be empty");
2369  }
2370
2371  // That's the hard part over. Now we just have some admin to do.
2372
2373  // Record whether we inserted any intrinsics.
2374  bool InsertedAnyIntrinsics = false;
2375
2376  // Identify and add defs for single location variables.
2377  //
2378  // Go through all of the defs that we plan to add. If the aggregate variable
2379  // it's a part of is not in the NotAlwaysStackHomed set we can emit a single
2380  // location def and omit the rest. Add an entry to AlwaysStackHomed so that
2381  // we can identify those uneeded defs later.
2382  DenseSet<DebugAggregate> AlwaysStackHomed;
2383  for (const auto &Pair : InsertBeforeMap) {
2384    auto &Vec = Pair.second;
2385    for (VarLocInfo VarLoc : Vec) {
2386      DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2387      DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2388
2389      // Skip this Var if it's not always stack homed.
2390      if (NotAlwaysStackHomed.contains(Aggr))
2391        continue;
2392
2393      // Skip complex cases such as when different fragments of a variable have
2394      // been split into different allocas. Skipping in this case means falling
2395      // back to using a list of defs (which could reduce coverage, but is no
2396      // less correct).
2397      bool Simple =
2398          VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref();
2399      if (!Simple) {
2400        NotAlwaysStackHomed.insert(Aggr);
2401        continue;
2402      }
2403
2404      // All source assignments to this variable remain and all stores to any
2405      // part of the variable store to the same address (with varying
2406      // offsets). We can just emit a single location for the whole variable.
2407      //
2408      // Unless we've already done so, create the single location def now.
2409      if (AlwaysStackHomed.insert(Aggr).second) {
2410        assert(!VarLoc.Values.hasArgList());
2411        // TODO: When more complex cases are handled VarLoc.Expr should be
2412        // built appropriately rather than always using an empty DIExpression.
2413        // The assert below is a reminder.
2414        assert(Simple);
2415        VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt);
2416        DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2417        FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.Values);
2418        InsertedAnyIntrinsics = true;
2419      }
2420    }
2421  }
2422
2423  // Insert the other DEFs.
2424  for (const auto &[InsertBefore, Vec] : InsertBeforeMap) {
2425    SmallVector<VarLocInfo> NewDefs;
2426    for (const VarLocInfo &VarLoc : Vec) {
2427      DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
2428      DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
2429      // If this variable is always stack homed then we have already inserted a
2430      // dbg.declare and deleted this dbg.value.
2431      if (AlwaysStackHomed.contains(Aggr))
2432        continue;
2433      NewDefs.push_back(VarLoc);
2434      InsertedAnyIntrinsics = true;
2435    }
2436
2437    FnVarLocs->setWedge(InsertBefore, std::move(NewDefs));
2438  }
2439
2440  InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs);
2441
2442  return InsertedAnyIntrinsics;
2443}
2444
2445bool AssignmentTrackingLowering::emitPromotedVarLocs(
2446    FunctionVarLocsBuilder *FnVarLocs) {
2447  bool InsertedAnyIntrinsics = false;
2448  // Go through every block, translating debug intrinsics for fully promoted
2449  // variables into FnVarLocs location defs. No analysis required for these.
2450  auto TranslateDbgRecord = [&](auto *Record) {
2451    // Skip variables that haven't been promoted - we've dealt with those
2452    // already.
2453    if (VarsWithStackSlot->contains(getAggregate(Record)))
2454      return;
2455    auto InsertBefore = getNextNode(Record);
2456    assert(InsertBefore && "Unexpected: debug intrinsics after a terminator");
2457    FnVarLocs->addVarLoc(InsertBefore, DebugVariable(Record),
2458                         Record->getExpression(), Record->getDebugLoc(),
2459                         RawLocationWrapper(Record->getRawLocation()));
2460    InsertedAnyIntrinsics = true;
2461  };
2462  for (auto &BB : Fn) {
2463    for (auto &I : BB) {
2464      // Skip instructions other than dbg.values and dbg.assigns.
2465      for (DPValue &DPV : I.getDbgValueRange())
2466        if (DPV.isDbgValue() || DPV.isDbgAssign())
2467          TranslateDbgRecord(&DPV);
2468      auto *DVI = dyn_cast<DbgValueInst>(&I);
2469      if (DVI)
2470        TranslateDbgRecord(DVI);
2471    }
2472  }
2473  return InsertedAnyIntrinsics;
2474}
2475
2476/// Remove redundant definitions within sequences of consecutive location defs.
2477/// This is done using a backward scan to keep the last def describing a
2478/// specific variable/fragment.
2479///
2480/// This implements removeRedundantDbgInstrsUsingBackwardScan from
2481/// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2482/// FunctionVarLocsBuilder instead of with intrinsics.
2483static bool
2484removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB,
2485                                        FunctionVarLocsBuilder &FnVarLocs) {
2486  bool Changed = false;
2487  SmallDenseMap<DebugAggregate, BitVector> VariableDefinedBytes;
2488  // Scan over the entire block, not just over the instructions mapped by
2489  // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2490  // instructions.
2491  for (const Instruction &I : reverse(*BB)) {
2492    if (!isa<DbgVariableIntrinsic>(I)) {
2493      // Sequence of consecutive defs ended. Clear map for the next one.
2494      VariableDefinedBytes.clear();
2495    }
2496
2497    auto HandleLocsForWedge = [&](auto *WedgePosition) {
2498      // Get the location defs that start just before this instruction.
2499      const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2500      if (!Locs)
2501        return;
2502
2503      NumWedgesScanned++;
2504      bool ChangedThisWedge = false;
2505      // The new pruned set of defs, reversed because we're scanning backwards.
2506      SmallVector<VarLocInfo> NewDefsReversed;
2507
2508      // Iterate over the existing defs in reverse.
2509      for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) {
2510        NumDefsScanned++;
2511        DebugAggregate Aggr =
2512            getAggregate(FnVarLocs.getVariable(RIt->VariableID));
2513        uint64_t SizeInBits = Aggr.first->getSizeInBits().value_or(0);
2514        uint64_t SizeInBytes = divideCeil(SizeInBits, 8);
2515
2516        // Cutoff for large variables to prevent expensive bitvector operations.
2517        const uint64_t MaxSizeBytes = 2048;
2518
2519        if (SizeInBytes == 0 || SizeInBytes > MaxSizeBytes) {
2520          // If the size is unknown (0) then keep this location def to be safe.
2521          // Do the same for defs of large variables, which would be expensive
2522          // to represent with a BitVector.
2523          NewDefsReversed.push_back(*RIt);
2524          continue;
2525        }
2526
2527        // Only keep this location definition if it is not fully eclipsed by
2528        // other definitions in this wedge that come after it
2529
2530        // Inert the bytes the location definition defines.
2531        auto InsertResult =
2532            VariableDefinedBytes.try_emplace(Aggr, BitVector(SizeInBytes));
2533        bool FirstDefinition = InsertResult.second;
2534        BitVector &DefinedBytes = InsertResult.first->second;
2535
2536        DIExpression::FragmentInfo Fragment =
2537            RIt->Expr->getFragmentInfo().value_or(
2538                DIExpression::FragmentInfo(SizeInBits, 0));
2539        bool InvalidFragment = Fragment.endInBits() > SizeInBits;
2540        uint64_t StartInBytes = Fragment.startInBits() / 8;
2541        uint64_t EndInBytes = divideCeil(Fragment.endInBits(), 8);
2542
2543        // If this defines any previously undefined bytes, keep it.
2544        if (FirstDefinition || InvalidFragment ||
2545            DefinedBytes.find_first_unset_in(StartInBytes, EndInBytes) != -1) {
2546          if (!InvalidFragment)
2547            DefinedBytes.set(StartInBytes, EndInBytes);
2548          NewDefsReversed.push_back(*RIt);
2549          continue;
2550        }
2551
2552        // Redundant def found: throw it away. Since the wedge of defs is being
2553        // rebuilt, doing nothing is the same as deleting an entry.
2554        ChangedThisWedge = true;
2555        NumDefsRemoved++;
2556      }
2557
2558      // Un-reverse the defs and replace the wedge with the pruned version.
2559      if (ChangedThisWedge) {
2560        std::reverse(NewDefsReversed.begin(), NewDefsReversed.end());
2561        FnVarLocs.setWedge(WedgePosition, std::move(NewDefsReversed));
2562        NumWedgesChanged++;
2563        Changed = true;
2564      }
2565    };
2566    HandleLocsForWedge(&I);
2567    for (DPValue &DPV : reverse(I.getDbgValueRange()))
2568      HandleLocsForWedge(&DPV);
2569  }
2570
2571  return Changed;
2572}
2573
2574/// Remove redundant location defs using a forward scan. This can remove a
2575/// location definition that is redundant due to indicating that a variable has
2576/// the same value as is already being indicated by an earlier def.
2577///
2578/// This implements removeRedundantDbgInstrsUsingForwardScan from
2579/// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
2580/// FunctionVarLocsBuilder instead of with intrinsics
2581static bool
2582removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB,
2583                                       FunctionVarLocsBuilder &FnVarLocs) {
2584  bool Changed = false;
2585  DenseMap<DebugVariable, std::pair<RawLocationWrapper, DIExpression *>>
2586      VariableMap;
2587
2588  // Scan over the entire block, not just over the instructions mapped by
2589  // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2590  // instructions.
2591  for (const Instruction &I : *BB) {
2592    // Get the defs that come just before this instruction.
2593    auto HandleLocsForWedge = [&](auto *WedgePosition) {
2594      const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2595      if (!Locs)
2596        return;
2597
2598      NumWedgesScanned++;
2599      bool ChangedThisWedge = false;
2600      // The new pruned set of defs.
2601      SmallVector<VarLocInfo> NewDefs;
2602
2603      // Iterate over the existing defs.
2604      for (const VarLocInfo &Loc : *Locs) {
2605        NumDefsScanned++;
2606        DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2607                          std::nullopt, Loc.DL.getInlinedAt());
2608        auto VMI = VariableMap.find(Key);
2609
2610        // Update the map if we found a new value/expression describing the
2611        // variable, or if the variable wasn't mapped already.
2612        if (VMI == VariableMap.end() || VMI->second.first != Loc.Values ||
2613            VMI->second.second != Loc.Expr) {
2614          VariableMap[Key] = {Loc.Values, Loc.Expr};
2615          NewDefs.push_back(Loc);
2616          continue;
2617        }
2618
2619        // Did not insert this Loc, which is the same as removing it.
2620        ChangedThisWedge = true;
2621        NumDefsRemoved++;
2622      }
2623
2624      // Replace the existing wedge with the pruned version.
2625      if (ChangedThisWedge) {
2626        FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
2627        NumWedgesChanged++;
2628        Changed = true;
2629      }
2630    };
2631
2632    for (DPValue &DPV : I.getDbgValueRange())
2633      HandleLocsForWedge(&DPV);
2634    HandleLocsForWedge(&I);
2635  }
2636
2637  return Changed;
2638}
2639
2640static bool
2641removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB,
2642                                 FunctionVarLocsBuilder &FnVarLocs) {
2643  assert(BB->isEntryBlock());
2644  // Do extra work to ensure that we remove semantically unimportant undefs.
2645  //
2646  // This is to work around the fact that SelectionDAG will hoist dbg.values
2647  // using argument values to the top of the entry block. That can move arg
2648  // dbg.values before undef and constant dbg.values which they previously
2649  // followed. The easiest thing to do is to just try to feed SelectionDAG
2650  // input it's happy with.
2651  //
2652  // Map of {Variable x: Fragments y} where the fragments y of variable x have
2653  // have at least one non-undef location defined already. Don't use directly,
2654  // instead call DefineBits and HasDefinedBits.
2655  SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>>
2656      VarsWithDef;
2657  // Specify that V (a fragment of A) has a non-undef location.
2658  auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2659    VarsWithDef[A].insert(V.getFragmentOrDefault());
2660  };
2661  // Return true if a non-undef location has been defined for V (a fragment of
2662  // A). Doesn't imply that the location is currently non-undef, just that a
2663  // non-undef location has been seen previously.
2664  auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
2665    auto FragsIt = VarsWithDef.find(A);
2666    if (FragsIt == VarsWithDef.end())
2667      return false;
2668    return llvm::any_of(FragsIt->second, [V](auto Frag) {
2669      return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault());
2670    });
2671  };
2672
2673  bool Changed = false;
2674  DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
2675
2676  // Scan over the entire block, not just over the instructions mapped by
2677  // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
2678  // instructions.
2679  for (const Instruction &I : *BB) {
2680    // Get the defs that come just before this instruction.
2681    auto HandleLocsForWedge = [&](auto *WedgePosition) {
2682      const auto *Locs = FnVarLocs.getWedge(WedgePosition);
2683      if (!Locs)
2684        return;
2685
2686      NumWedgesScanned++;
2687      bool ChangedThisWedge = false;
2688      // The new pruned set of defs.
2689      SmallVector<VarLocInfo> NewDefs;
2690
2691      // Iterate over the existing defs.
2692      for (const VarLocInfo &Loc : *Locs) {
2693        NumDefsScanned++;
2694        DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(),
2695                            Loc.DL.getInlinedAt()};
2696        DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID);
2697
2698        // Remove undef entries that are encountered before any non-undef
2699        // intrinsics from the entry block.
2700        if (Loc.Values.isKillLocation(Loc.Expr) && !HasDefinedBits(Aggr, Var)) {
2701          // Did not insert this Loc, which is the same as removing it.
2702          NumDefsRemoved++;
2703          ChangedThisWedge = true;
2704          continue;
2705        }
2706
2707        DefineBits(Aggr, Var);
2708        NewDefs.push_back(Loc);
2709      }
2710
2711      // Replace the existing wedge with the pruned version.
2712      if (ChangedThisWedge) {
2713        FnVarLocs.setWedge(WedgePosition, std::move(NewDefs));
2714        NumWedgesChanged++;
2715        Changed = true;
2716      }
2717    };
2718    for (DPValue &DPV : I.getDbgValueRange())
2719      HandleLocsForWedge(&DPV);
2720    HandleLocsForWedge(&I);
2721  }
2722
2723  return Changed;
2724}
2725
2726static bool removeRedundantDbgLocs(const BasicBlock *BB,
2727                                   FunctionVarLocsBuilder &FnVarLocs) {
2728  bool MadeChanges = false;
2729  MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs);
2730  if (BB->isEntryBlock())
2731    MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs);
2732  MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs);
2733
2734  if (MadeChanges)
2735    LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName()
2736                      << "\n");
2737  return MadeChanges;
2738}
2739
2740static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) {
2741  DenseSet<DebugAggregate> Result;
2742  for (auto &BB : Fn) {
2743    for (auto &I : BB) {
2744      // Any variable linked to an instruction is considered
2745      // interesting. Ideally we only need to check Allocas, however, a
2746      // DIAssignID might get dropped from an alloca but not stores. In that
2747      // case, we need to consider the variable interesting for NFC behaviour
2748      // with this change. TODO: Consider only looking at allocas.
2749      for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) {
2750        Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()});
2751      }
2752      for (DPValue *DPV : at::getDPVAssignmentMarkers(&I)) {
2753        Result.insert({DPV->getVariable(), DPV->getDebugLoc().getInlinedAt()});
2754      }
2755    }
2756  }
2757  return Result;
2758}
2759
2760static void analyzeFunction(Function &Fn, const DataLayout &Layout,
2761                            FunctionVarLocsBuilder *FnVarLocs) {
2762  // The analysis will generate location definitions for all variables, but we
2763  // only need to perform a dataflow on the set of variables which have a stack
2764  // slot. Find those now.
2765  DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn);
2766
2767  bool Changed = false;
2768
2769  // Use a scope block to clean up AssignmentTrackingLowering before running
2770  // MemLocFragmentFill to reduce peak memory consumption.
2771  {
2772    AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot);
2773    Changed = Pass.run(FnVarLocs);
2774  }
2775
2776  if (Changed) {
2777    MemLocFragmentFill Pass(Fn, &VarsWithStackSlot,
2778                            shouldCoalesceFragments(Fn));
2779    Pass.run(FnVarLocs);
2780
2781    // Remove redundant entries. As well as reducing memory consumption and
2782    // avoiding waiting cycles later by burning some now, this has another
2783    // important job. That is to work around some SelectionDAG quirks. See
2784    // removeRedundantDbgLocsUsingForwardScan comments for more info on that.
2785    for (auto &BB : Fn)
2786      removeRedundantDbgLocs(&BB, *FnVarLocs);
2787  }
2788}
2789
2790FunctionVarLocs
2791DebugAssignmentTrackingAnalysis::run(Function &F,
2792                                     FunctionAnalysisManager &FAM) {
2793  if (!isAssignmentTrackingEnabled(*F.getParent()))
2794    return FunctionVarLocs();
2795
2796  auto &DL = F.getParent()->getDataLayout();
2797
2798  FunctionVarLocsBuilder Builder;
2799  analyzeFunction(F, DL, &Builder);
2800
2801  // Save these results.
2802  FunctionVarLocs Results;
2803  Results.init(Builder);
2804  return Results;
2805}
2806
2807AnalysisKey DebugAssignmentTrackingAnalysis::Key;
2808
2809PreservedAnalyses
2810DebugAssignmentTrackingPrinterPass::run(Function &F,
2811                                        FunctionAnalysisManager &FAM) {
2812  FAM.getResult<DebugAssignmentTrackingAnalysis>(F).print(OS, F);
2813  return PreservedAnalyses::all();
2814}
2815
2816bool AssignmentTrackingAnalysis::runOnFunction(Function &F) {
2817  if (!isAssignmentTrackingEnabled(*F.getParent()))
2818    return false;
2819
2820  LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName()
2821                    << "\n");
2822  auto DL = std::make_unique<DataLayout>(F.getParent());
2823
2824  // Clear previous results.
2825  Results->clear();
2826
2827  FunctionVarLocsBuilder Builder;
2828  analyzeFunction(F, *DL.get(), &Builder);
2829
2830  // Save these results.
2831  Results->init(Builder);
2832
2833  if (PrintResults && isFunctionInPrintList(F.getName()))
2834    Results->print(errs(), F);
2835
2836  // Return false because this pass does not modify the function.
2837  return false;
2838}
2839
2840AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
2841    : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {}
2842
2843char AssignmentTrackingAnalysis::ID = 0;
2844
2845INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE,
2846                "Assignment Tracking Analysis", false, true)
2847