1//===- AggressiveAntiDepBreaker.cpp - Anti-dep breaker --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the AggressiveAntiDepBreaker class, which
10// implements register anti-dependence breaking during post-RA
11// scheduling. It attempts to break all anti-dependencies within a
12// block.
13//
14//===----------------------------------------------------------------------===//
15
16#include "AggressiveAntiDepBreaker.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/iterator_range.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstr.h"
24#include "llvm/CodeGen/MachineOperand.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/MachineValueType.h"
27#include "llvm/CodeGen/RegisterClassInfo.h"
28#include "llvm/CodeGen/ScheduleDAG.h"
29#include "llvm/CodeGen/TargetInstrInfo.h"
30#include "llvm/CodeGen/TargetRegisterInfo.h"
31#include "llvm/MC/MCInstrDesc.h"
32#include "llvm/MC/MCRegisterInfo.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/raw_ostream.h"
36#include <cassert>
37#include <utility>
38
39using namespace llvm;
40
41#define DEBUG_TYPE "post-RA-sched"
42
43// If DebugDiv > 0 then only break antidep with (ID % DebugDiv) == DebugMod
44static cl::opt<int>
45DebugDiv("agg-antidep-debugdiv",
46         cl::desc("Debug control for aggressive anti-dep breaker"),
47         cl::init(0), cl::Hidden);
48
49static cl::opt<int>
50DebugMod("agg-antidep-debugmod",
51         cl::desc("Debug control for aggressive anti-dep breaker"),
52         cl::init(0), cl::Hidden);
53
54AggressiveAntiDepState::AggressiveAntiDepState(const unsigned TargetRegs,
55                                               MachineBasicBlock *BB)
56    : NumTargetRegs(TargetRegs), GroupNodes(TargetRegs, 0),
57      GroupNodeIndices(TargetRegs, 0), KillIndices(TargetRegs, 0),
58      DefIndices(TargetRegs, 0) {
59  const unsigned BBSize = BB->size();
60  for (unsigned i = 0; i < NumTargetRegs; ++i) {
61    // Initialize all registers to be in their own group. Initially we
62    // assign the register to the same-indexed GroupNode.
63    GroupNodeIndices[i] = i;
64    // Initialize the indices to indicate that no registers are live.
65    KillIndices[i] = ~0u;
66    DefIndices[i] = BBSize;
67  }
68}
69
70unsigned AggressiveAntiDepState::GetGroup(unsigned Reg) {
71  unsigned Node = GroupNodeIndices[Reg];
72  while (GroupNodes[Node] != Node)
73    Node = GroupNodes[Node];
74
75  return Node;
76}
77
78void AggressiveAntiDepState::GetGroupRegs(
79  unsigned Group,
80  std::vector<unsigned> &Regs,
81  std::multimap<unsigned, AggressiveAntiDepState::RegisterReference> *RegRefs)
82{
83  for (unsigned Reg = 0; Reg != NumTargetRegs; ++Reg) {
84    if ((GetGroup(Reg) == Group) && (RegRefs->count(Reg) > 0))
85      Regs.push_back(Reg);
86  }
87}
88
89unsigned AggressiveAntiDepState::UnionGroups(unsigned Reg1, unsigned Reg2) {
90  assert(GroupNodes[0] == 0 && "GroupNode 0 not parent!");
91  assert(GroupNodeIndices[0] == 0 && "Reg 0 not in Group 0!");
92
93  // find group for each register
94  unsigned Group1 = GetGroup(Reg1);
95  unsigned Group2 = GetGroup(Reg2);
96
97  // if either group is 0, then that must become the parent
98  unsigned Parent = (Group1 == 0) ? Group1 : Group2;
99  unsigned Other = (Parent == Group1) ? Group2 : Group1;
100  GroupNodes.at(Other) = Parent;
101  return Parent;
102}
103
104unsigned AggressiveAntiDepState::LeaveGroup(unsigned Reg) {
105  // Create a new GroupNode for Reg. Reg's existing GroupNode must
106  // stay as is because there could be other GroupNodes referring to
107  // it.
108  unsigned idx = GroupNodes.size();
109  GroupNodes.push_back(idx);
110  GroupNodeIndices[Reg] = idx;
111  return idx;
112}
113
114bool AggressiveAntiDepState::IsLive(unsigned Reg) {
115  // KillIndex must be defined and DefIndex not defined for a register
116  // to be live.
117  return((KillIndices[Reg] != ~0u) && (DefIndices[Reg] == ~0u));
118}
119
120AggressiveAntiDepBreaker::AggressiveAntiDepBreaker(
121    MachineFunction &MFi, const RegisterClassInfo &RCI,
122    TargetSubtargetInfo::RegClassVector &CriticalPathRCs)
123    : MF(MFi), MRI(MF.getRegInfo()), TII(MF.getSubtarget().getInstrInfo()),
124      TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI) {
125  /* Collect a bitset of all registers that are only broken if they
126     are on the critical path. */
127  for (unsigned i = 0, e = CriticalPathRCs.size(); i < e; ++i) {
128    BitVector CPSet = TRI->getAllocatableSet(MF, CriticalPathRCs[i]);
129    if (CriticalPathSet.none())
130      CriticalPathSet = CPSet;
131    else
132      CriticalPathSet |= CPSet;
133   }
134
135   LLVM_DEBUG(dbgs() << "AntiDep Critical-Path Registers:");
136   LLVM_DEBUG(for (unsigned r
137                   : CriticalPathSet.set_bits()) dbgs()
138              << " " << printReg(r, TRI));
139   LLVM_DEBUG(dbgs() << '\n');
140}
141
142AggressiveAntiDepBreaker::~AggressiveAntiDepBreaker() {
143  delete State;
144}
145
146void AggressiveAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
147  assert(!State);
148  State = new AggressiveAntiDepState(TRI->getNumRegs(), BB);
149
150  bool IsReturnBlock = BB->isReturnBlock();
151  std::vector<unsigned> &KillIndices = State->GetKillIndices();
152  std::vector<unsigned> &DefIndices = State->GetDefIndices();
153
154  // Examine the live-in regs of all successors.
155  for (MachineBasicBlock *Succ : BB->successors())
156    for (const auto &LI : Succ->liveins()) {
157      for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) {
158        unsigned Reg = *AI;
159        State->UnionGroups(Reg, 0);
160        KillIndices[Reg] = BB->size();
161        DefIndices[Reg] = ~0u;
162      }
163    }
164
165  // Mark live-out callee-saved registers. In a return block this is
166  // all callee-saved registers. In non-return this is any
167  // callee-saved register that is not saved in the prolog.
168  const MachineFrameInfo &MFI = MF.getFrameInfo();
169  BitVector Pristine = MFI.getPristineRegs(MF);
170  for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I;
171       ++I) {
172    unsigned Reg = *I;
173    if (!IsReturnBlock && !Pristine.test(Reg))
174      continue;
175    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
176      unsigned AliasReg = *AI;
177      State->UnionGroups(AliasReg, 0);
178      KillIndices[AliasReg] = BB->size();
179      DefIndices[AliasReg] = ~0u;
180    }
181  }
182}
183
184void AggressiveAntiDepBreaker::FinishBlock() {
185  delete State;
186  State = nullptr;
187}
188
189void AggressiveAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count,
190                                       unsigned InsertPosIndex) {
191  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
192
193  std::set<unsigned> PassthruRegs;
194  GetPassthruRegs(MI, PassthruRegs);
195  PrescanInstruction(MI, Count, PassthruRegs);
196  ScanInstruction(MI, Count);
197
198  LLVM_DEBUG(dbgs() << "Observe: ");
199  LLVM_DEBUG(MI.dump());
200  LLVM_DEBUG(dbgs() << "\tRegs:");
201
202  std::vector<unsigned> &DefIndices = State->GetDefIndices();
203  for (unsigned Reg = 1; Reg != TRI->getNumRegs(); ++Reg) {
204    // If Reg is current live, then mark that it can't be renamed as
205    // we don't know the extent of its live-range anymore (now that it
206    // has been scheduled). If it is not live but was defined in the
207    // previous schedule region, then set its def index to the most
208    // conservative location (i.e. the beginning of the previous
209    // schedule region).
210    if (State->IsLive(Reg)) {
211      LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs()
212                 << " " << printReg(Reg, TRI) << "=g" << State->GetGroup(Reg)
213                 << "->g0(region live-out)");
214      State->UnionGroups(Reg, 0);
215    } else if ((DefIndices[Reg] < InsertPosIndex)
216               && (DefIndices[Reg] >= Count)) {
217      DefIndices[Reg] = Count;
218    }
219  }
220  LLVM_DEBUG(dbgs() << '\n');
221}
222
223bool AggressiveAntiDepBreaker::IsImplicitDefUse(MachineInstr &MI,
224                                                MachineOperand &MO) {
225  if (!MO.isReg() || !MO.isImplicit())
226    return false;
227
228  Register Reg = MO.getReg();
229  if (Reg == 0)
230    return false;
231
232  MachineOperand *Op = nullptr;
233  if (MO.isDef())
234    Op = MI.findRegisterUseOperand(Reg, true);
235  else
236    Op = MI.findRegisterDefOperand(Reg);
237
238  return(Op && Op->isImplicit());
239}
240
241void AggressiveAntiDepBreaker::GetPassthruRegs(
242    MachineInstr &MI, std::set<unsigned> &PassthruRegs) {
243  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
244    MachineOperand &MO = MI.getOperand(i);
245    if (!MO.isReg()) continue;
246    if ((MO.isDef() && MI.isRegTiedToUseOperand(i)) ||
247        IsImplicitDefUse(MI, MO)) {
248      const Register Reg = MO.getReg();
249      for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg))
250        PassthruRegs.insert(SubReg);
251    }
252  }
253}
254
255/// AntiDepEdges - Return in Edges the anti- and output- dependencies
256/// in SU that we want to consider for breaking.
257static void AntiDepEdges(const SUnit *SU, std::vector<const SDep *> &Edges) {
258  SmallSet<unsigned, 4> RegSet;
259  for (const SDep &Pred : SU->Preds) {
260    if ((Pred.getKind() == SDep::Anti) || (Pred.getKind() == SDep::Output)) {
261      if (RegSet.insert(Pred.getReg()).second)
262        Edges.push_back(&Pred);
263    }
264  }
265}
266
267/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
268/// critical path.
269static const SUnit *CriticalPathStep(const SUnit *SU) {
270  const SDep *Next = nullptr;
271  unsigned NextDepth = 0;
272  // Find the predecessor edge with the greatest depth.
273  if (SU) {
274    for (const SDep &Pred : SU->Preds) {
275      const SUnit *PredSU = Pred.getSUnit();
276      unsigned PredLatency = Pred.getLatency();
277      unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
278      // In the case of a latency tie, prefer an anti-dependency edge over
279      // other types of edges.
280      if (NextDepth < PredTotalLatency ||
281          (NextDepth == PredTotalLatency && Pred.getKind() == SDep::Anti)) {
282        NextDepth = PredTotalLatency;
283        Next = &Pred;
284      }
285    }
286  }
287
288  return (Next) ? Next->getSUnit() : nullptr;
289}
290
291void AggressiveAntiDepBreaker::HandleLastUse(unsigned Reg, unsigned KillIdx,
292                                             const char *tag,
293                                             const char *header,
294                                             const char *footer) {
295  std::vector<unsigned> &KillIndices = State->GetKillIndices();
296  std::vector<unsigned> &DefIndices = State->GetDefIndices();
297  std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
298    RegRefs = State->GetRegRefs();
299
300  // FIXME: We must leave subregisters of live super registers as live, so that
301  // we don't clear out the register tracking information for subregisters of
302  // super registers we're still tracking (and with which we're unioning
303  // subregister definitions).
304  for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
305    if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI)) {
306      LLVM_DEBUG(if (!header && footer) dbgs() << footer);
307      return;
308    }
309
310  if (!State->IsLive(Reg)) {
311    KillIndices[Reg] = KillIdx;
312    DefIndices[Reg] = ~0u;
313    RegRefs.erase(Reg);
314    State->LeaveGroup(Reg);
315    LLVM_DEBUG(if (header) {
316      dbgs() << header << printReg(Reg, TRI);
317      header = nullptr;
318    });
319    LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << tag);
320    // Repeat for subregisters. Note that we only do this if the superregister
321    // was not live because otherwise, regardless whether we have an explicit
322    // use of the subregister, the subregister's contents are needed for the
323    // uses of the superregister.
324    for (MCPhysReg SubregReg : TRI->subregs(Reg)) {
325      if (!State->IsLive(SubregReg)) {
326        KillIndices[SubregReg] = KillIdx;
327        DefIndices[SubregReg] = ~0u;
328        RegRefs.erase(SubregReg);
329        State->LeaveGroup(SubregReg);
330        LLVM_DEBUG(if (header) {
331          dbgs() << header << printReg(Reg, TRI);
332          header = nullptr;
333        });
334        LLVM_DEBUG(dbgs() << " " << printReg(SubregReg, TRI) << "->g"
335                          << State->GetGroup(SubregReg) << tag);
336      }
337    }
338  }
339
340  LLVM_DEBUG(if (!header && footer) dbgs() << footer);
341}
342
343void AggressiveAntiDepBreaker::PrescanInstruction(
344    MachineInstr &MI, unsigned Count, std::set<unsigned> &PassthruRegs) {
345  std::vector<unsigned> &DefIndices = State->GetDefIndices();
346  std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
347    RegRefs = State->GetRegRefs();
348
349  // Handle dead defs by simulating a last-use of the register just
350  // after the def. A dead def can occur because the def is truly
351  // dead, or because only a subregister is live at the def. If we
352  // don't do this the dead def will be incorrectly merged into the
353  // previous def.
354  for (const MachineOperand &MO : MI.all_defs()) {
355    Register Reg = MO.getReg();
356    if (Reg == 0) continue;
357
358    HandleLastUse(Reg, Count + 1, "", "\tDead Def: ", "\n");
359  }
360
361  LLVM_DEBUG(dbgs() << "\tDef Groups:");
362  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
363    MachineOperand &MO = MI.getOperand(i);
364    if (!MO.isReg() || !MO.isDef()) continue;
365    Register Reg = MO.getReg();
366    if (Reg == 0) continue;
367
368    LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g"
369                      << State->GetGroup(Reg));
370
371    // If MI's defs have a special allocation requirement, don't allow
372    // any def registers to be changed. Also assume all registers
373    // defined in a call must not be changed (ABI). Inline assembly may
374    // reference either system calls or the register directly. Skip it until we
375    // can tell user specified registers from compiler-specified.
376    if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI) ||
377        MI.isInlineAsm()) {
378      LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
379      State->UnionGroups(Reg, 0);
380    }
381
382    // Any aliased that are live at this point are completely or
383    // partially defined here, so group those aliases with Reg.
384    for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
385      unsigned AliasReg = *AI;
386      if (State->IsLive(AliasReg)) {
387        State->UnionGroups(Reg, AliasReg);
388        LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(Reg) << "(via "
389                          << printReg(AliasReg, TRI) << ")");
390      }
391    }
392
393    // Note register reference...
394    const TargetRegisterClass *RC = nullptr;
395    if (i < MI.getDesc().getNumOperands())
396      RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
397    AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
398    RegRefs.insert(std::make_pair(Reg, RR));
399  }
400
401  LLVM_DEBUG(dbgs() << '\n');
402
403  // Scan the register defs for this instruction and update
404  // live-ranges.
405  for (const MachineOperand &MO : MI.operands()) {
406    if (!MO.isReg() || !MO.isDef()) continue;
407    Register Reg = MO.getReg();
408    if (Reg == 0) continue;
409    // Ignore KILLs and passthru registers for liveness...
410    if (MI.isKill() || (PassthruRegs.count(Reg) != 0))
411      continue;
412
413    // Update def for Reg and aliases.
414    for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
415      // We need to be careful here not to define already-live super registers.
416      // If the super register is already live, then this definition is not
417      // a definition of the whole super register (just a partial insertion
418      // into it). Earlier subregister definitions (which we've not yet visited
419      // because we're iterating bottom-up) need to be linked to the same group
420      // as this definition.
421      if (TRI->isSuperRegister(Reg, *AI) && State->IsLive(*AI))
422        continue;
423
424      DefIndices[*AI] = Count;
425    }
426  }
427}
428
429void AggressiveAntiDepBreaker::ScanInstruction(MachineInstr &MI,
430                                               unsigned Count) {
431  LLVM_DEBUG(dbgs() << "\tUse Groups:");
432  std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
433    RegRefs = State->GetRegRefs();
434
435  // If MI's uses have special allocation requirement, don't allow
436  // any use registers to be changed. Also assume all registers
437  // used in a call must not be changed (ABI).
438  // Inline Assembly register uses also cannot be safely changed.
439  // FIXME: The issue with predicated instruction is more complex. We are being
440  // conservatively here because the kill markers cannot be trusted after
441  // if-conversion:
442  // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14]
443  // ...
444  // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395]
445  // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12]
446  // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8)
447  //
448  // The first R6 kill is not really a kill since it's killed by a predicated
449  // instruction which may not be executed. The second R6 def may or may not
450  // re-define R6 so it's not safe to change it since the last R6 use cannot be
451  // changed.
452  bool Special = MI.isCall() || MI.hasExtraSrcRegAllocReq() ||
453                 TII->isPredicated(MI) || MI.isInlineAsm();
454
455  // Scan the register uses for this instruction and update
456  // live-ranges, groups and RegRefs.
457  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
458    MachineOperand &MO = MI.getOperand(i);
459    if (!MO.isReg() || !MO.isUse()) continue;
460    Register Reg = MO.getReg();
461    if (Reg == 0) continue;
462
463    LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI) << "=g"
464                      << State->GetGroup(Reg));
465
466    // It wasn't previously live but now it is, this is a kill. Forget
467    // the previous live-range information and start a new live-range
468    // for the register.
469    HandleLastUse(Reg, Count, "(last-use)");
470
471    if (Special) {
472      LLVM_DEBUG(if (State->GetGroup(Reg) != 0) dbgs() << "->g0(alloc-req)");
473      State->UnionGroups(Reg, 0);
474    }
475
476    // Note register reference...
477    const TargetRegisterClass *RC = nullptr;
478    if (i < MI.getDesc().getNumOperands())
479      RC = TII->getRegClass(MI.getDesc(), i, TRI, MF);
480    AggressiveAntiDepState::RegisterReference RR = { &MO, RC };
481    RegRefs.insert(std::make_pair(Reg, RR));
482  }
483
484  LLVM_DEBUG(dbgs() << '\n');
485
486  // Form a group of all defs and uses of a KILL instruction to ensure
487  // that all registers are renamed as a group.
488  if (MI.isKill()) {
489    LLVM_DEBUG(dbgs() << "\tKill Group:");
490
491    unsigned FirstReg = 0;
492    for (const MachineOperand &MO : MI.operands()) {
493      if (!MO.isReg()) continue;
494      Register Reg = MO.getReg();
495      if (Reg == 0) continue;
496
497      if (FirstReg != 0) {
498        LLVM_DEBUG(dbgs() << "=" << printReg(Reg, TRI));
499        State->UnionGroups(FirstReg, Reg);
500      } else {
501        LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
502        FirstReg = Reg;
503      }
504    }
505
506    LLVM_DEBUG(dbgs() << "->g" << State->GetGroup(FirstReg) << '\n');
507  }
508}
509
510BitVector AggressiveAntiDepBreaker::GetRenameRegisters(unsigned Reg) {
511  BitVector BV(TRI->getNumRegs(), false);
512  bool first = true;
513
514  // Check all references that need rewriting for Reg. For each, use
515  // the corresponding register class to narrow the set of registers
516  // that are appropriate for renaming.
517  for (const auto &Q : make_range(State->GetRegRefs().equal_range(Reg))) {
518    const TargetRegisterClass *RC = Q.second.RC;
519    if (!RC) continue;
520
521    BitVector RCBV = TRI->getAllocatableSet(MF, RC);
522    if (first) {
523      BV |= RCBV;
524      first = false;
525    } else {
526      BV &= RCBV;
527    }
528
529    LLVM_DEBUG(dbgs() << " " << TRI->getRegClassName(RC));
530  }
531
532  return BV;
533}
534
535bool AggressiveAntiDepBreaker::FindSuitableFreeRegisters(
536    unsigned SuperReg, unsigned AntiDepGroupIndex, RenameOrderType &RenameOrder,
537    std::map<unsigned, unsigned> &RenameMap) {
538  std::vector<unsigned> &KillIndices = State->GetKillIndices();
539  std::vector<unsigned> &DefIndices = State->GetDefIndices();
540  std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
541    RegRefs = State->GetRegRefs();
542
543  // Collect all referenced registers in the same group as
544  // AntiDepReg. These all need to be renamed together if we are to
545  // break the anti-dependence.
546  std::vector<unsigned> Regs;
547  State->GetGroupRegs(AntiDepGroupIndex, Regs, &RegRefs);
548  assert(!Regs.empty() && "Empty register group!");
549  if (Regs.empty())
550    return false;
551
552  // Collect the BitVector of registers that can be used to rename
553  // each register.
554  LLVM_DEBUG(dbgs() << "\tRename Candidates for Group g" << AntiDepGroupIndex
555                    << ":\n");
556  std::map<unsigned, BitVector> RenameRegisterMap;
557  for (unsigned Reg : Regs) {
558    // If Reg has any references, then collect possible rename regs
559    if (RegRefs.count(Reg) > 0) {
560      LLVM_DEBUG(dbgs() << "\t\t" << printReg(Reg, TRI) << ":");
561
562      BitVector &BV = RenameRegisterMap[Reg];
563      assert(BV.empty());
564      BV = GetRenameRegisters(Reg);
565
566      LLVM_DEBUG({
567        dbgs() << " ::";
568        for (unsigned r : BV.set_bits())
569          dbgs() << " " << printReg(r, TRI);
570        dbgs() << "\n";
571      });
572    }
573  }
574
575  // All group registers should be a subreg of SuperReg.
576  for (unsigned Reg : Regs) {
577    if (Reg == SuperReg) continue;
578    bool IsSub = TRI->isSubRegister(SuperReg, Reg);
579    // FIXME: remove this once PR18663 has been properly fixed. For now,
580    // return a conservative answer:
581    // assert(IsSub && "Expecting group subregister");
582    if (!IsSub)
583      return false;
584  }
585
586#ifndef NDEBUG
587  // If DebugDiv > 0 then only rename (renamecnt % DebugDiv) == DebugMod
588  if (DebugDiv > 0) {
589    static int renamecnt = 0;
590    if (renamecnt++ % DebugDiv != DebugMod)
591      return false;
592
593    dbgs() << "*** Performing rename " << printReg(SuperReg, TRI)
594           << " for debug ***\n";
595  }
596#endif
597
598  // Check each possible rename register for SuperReg in round-robin
599  // order. If that register is available, and the corresponding
600  // registers are available for the other group subregisters, then we
601  // can use those registers to rename.
602
603  // FIXME: Using getMinimalPhysRegClass is very conservative. We should
604  // check every use of the register and find the largest register class
605  // that can be used in all of them.
606  const TargetRegisterClass *SuperRC =
607    TRI->getMinimalPhysRegClass(SuperReg, MVT::Other);
608
609  ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(SuperRC);
610  if (Order.empty()) {
611    LLVM_DEBUG(dbgs() << "\tEmpty Super Regclass!!\n");
612    return false;
613  }
614
615  LLVM_DEBUG(dbgs() << "\tFind Registers:");
616
617  RenameOrder.insert(RenameOrderType::value_type(SuperRC, Order.size()));
618
619  unsigned OrigR = RenameOrder[SuperRC];
620  unsigned EndR = ((OrigR == Order.size()) ? 0 : OrigR);
621  unsigned R = OrigR;
622  do {
623    if (R == 0) R = Order.size();
624    --R;
625    const unsigned NewSuperReg = Order[R];
626    // Don't consider non-allocatable registers
627    if (!MRI.isAllocatable(NewSuperReg)) continue;
628    // Don't replace a register with itself.
629    if (NewSuperReg == SuperReg) continue;
630
631    LLVM_DEBUG(dbgs() << " [" << printReg(NewSuperReg, TRI) << ':');
632    RenameMap.clear();
633
634    // For each referenced group register (which must be a SuperReg or
635    // a subregister of SuperReg), find the corresponding subregister
636    // of NewSuperReg and make sure it is free to be renamed.
637    for (unsigned Reg : Regs) {
638      unsigned NewReg = 0;
639      if (Reg == SuperReg) {
640        NewReg = NewSuperReg;
641      } else {
642        unsigned NewSubRegIdx = TRI->getSubRegIndex(SuperReg, Reg);
643        if (NewSubRegIdx != 0)
644          NewReg = TRI->getSubReg(NewSuperReg, NewSubRegIdx);
645      }
646
647      LLVM_DEBUG(dbgs() << " " << printReg(NewReg, TRI));
648
649      // Check if Reg can be renamed to NewReg.
650      if (!RenameRegisterMap[Reg].test(NewReg)) {
651        LLVM_DEBUG(dbgs() << "(no rename)");
652        goto next_super_reg;
653      }
654
655      // If NewReg is dead and NewReg's most recent def is not before
656      // Regs's kill, it's safe to replace Reg with NewReg. We
657      // must also check all aliases of NewReg, because we can't define a
658      // register when any sub or super is already live.
659      if (State->IsLive(NewReg) || (KillIndices[Reg] > DefIndices[NewReg])) {
660        LLVM_DEBUG(dbgs() << "(live)");
661        goto next_super_reg;
662      } else {
663        bool found = false;
664        for (MCRegAliasIterator AI(NewReg, TRI, false); AI.isValid(); ++AI) {
665          unsigned AliasReg = *AI;
666          if (State->IsLive(AliasReg) ||
667              (KillIndices[Reg] > DefIndices[AliasReg])) {
668            LLVM_DEBUG(dbgs()
669                       << "(alias " << printReg(AliasReg, TRI) << " live)");
670            found = true;
671            break;
672          }
673        }
674        if (found)
675          goto next_super_reg;
676      }
677
678      // We cannot rename 'Reg' to 'NewReg' if one of the uses of 'Reg' also
679      // defines 'NewReg' via an early-clobber operand.
680      for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
681        MachineInstr *UseMI = Q.second.Operand->getParent();
682        int Idx = UseMI->findRegisterDefOperandIdx(NewReg, false, true, TRI);
683        if (Idx == -1)
684          continue;
685
686        if (UseMI->getOperand(Idx).isEarlyClobber()) {
687          LLVM_DEBUG(dbgs() << "(ec)");
688          goto next_super_reg;
689        }
690      }
691
692      // Also, we cannot rename 'Reg' to 'NewReg' if the instruction defining
693      // 'Reg' is an early-clobber define and that instruction also uses
694      // 'NewReg'.
695      for (const auto &Q : make_range(RegRefs.equal_range(Reg))) {
696        if (!Q.second.Operand->isDef() || !Q.second.Operand->isEarlyClobber())
697          continue;
698
699        MachineInstr *DefMI = Q.second.Operand->getParent();
700        if (DefMI->readsRegister(NewReg, TRI)) {
701          LLVM_DEBUG(dbgs() << "(ec)");
702          goto next_super_reg;
703        }
704      }
705
706      // Record that 'Reg' can be renamed to 'NewReg'.
707      RenameMap.insert(std::pair<unsigned, unsigned>(Reg, NewReg));
708    }
709
710    // If we fall-out here, then every register in the group can be
711    // renamed, as recorded in RenameMap.
712    RenameOrder.erase(SuperRC);
713    RenameOrder.insert(RenameOrderType::value_type(SuperRC, R));
714    LLVM_DEBUG(dbgs() << "]\n");
715    return true;
716
717  next_super_reg:
718    LLVM_DEBUG(dbgs() << ']');
719  } while (R != EndR);
720
721  LLVM_DEBUG(dbgs() << '\n');
722
723  // No registers are free and available!
724  return false;
725}
726
727/// BreakAntiDependencies - Identifiy anti-dependencies within the
728/// ScheduleDAG and break them by renaming registers.
729unsigned AggressiveAntiDepBreaker::BreakAntiDependencies(
730                              const std::vector<SUnit> &SUnits,
731                              MachineBasicBlock::iterator Begin,
732                              MachineBasicBlock::iterator End,
733                              unsigned InsertPosIndex,
734                              DbgValueVector &DbgValues) {
735  std::vector<unsigned> &KillIndices = State->GetKillIndices();
736  std::vector<unsigned> &DefIndices = State->GetDefIndices();
737  std::multimap<unsigned, AggressiveAntiDepState::RegisterReference>&
738    RegRefs = State->GetRegRefs();
739
740  // The code below assumes that there is at least one instruction,
741  // so just duck out immediately if the block is empty.
742  if (SUnits.empty()) return 0;
743
744  // For each regclass the next register to use for renaming.
745  RenameOrderType RenameOrder;
746
747  // ...need a map from MI to SUnit.
748  std::map<MachineInstr *, const SUnit *> MISUnitMap;
749  for (const SUnit &SU : SUnits)
750    MISUnitMap.insert(std::make_pair(SU.getInstr(), &SU));
751
752  // Track progress along the critical path through the SUnit graph as
753  // we walk the instructions. This is needed for regclasses that only
754  // break critical-path anti-dependencies.
755  const SUnit *CriticalPathSU = nullptr;
756  MachineInstr *CriticalPathMI = nullptr;
757  if (CriticalPathSet.any()) {
758    for (const SUnit &SU : SUnits) {
759      if (!CriticalPathSU ||
760          ((SU.getDepth() + SU.Latency) >
761           (CriticalPathSU->getDepth() + CriticalPathSU->Latency))) {
762        CriticalPathSU = &SU;
763      }
764    }
765    assert(CriticalPathSU && "Failed to find SUnit critical path");
766    CriticalPathMI = CriticalPathSU->getInstr();
767  }
768
769#ifndef NDEBUG
770  LLVM_DEBUG(dbgs() << "\n===== Aggressive anti-dependency breaking\n");
771  LLVM_DEBUG(dbgs() << "Available regs:");
772  for (unsigned Reg = 1; Reg < TRI->getNumRegs(); ++Reg) {
773    if (!State->IsLive(Reg))
774      LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI));
775  }
776  LLVM_DEBUG(dbgs() << '\n');
777#endif
778
779  BitVector RegAliases(TRI->getNumRegs());
780
781  // Attempt to break anti-dependence edges. Walk the instructions
782  // from the bottom up, tracking information about liveness as we go
783  // to help determine which registers are available.
784  unsigned Broken = 0;
785  unsigned Count = InsertPosIndex - 1;
786  for (MachineBasicBlock::iterator I = End, E = Begin;
787       I != E; --Count) {
788    MachineInstr &MI = *--I;
789
790    if (MI.isDebugInstr())
791      continue;
792
793    LLVM_DEBUG(dbgs() << "Anti: ");
794    LLVM_DEBUG(MI.dump());
795
796    std::set<unsigned> PassthruRegs;
797    GetPassthruRegs(MI, PassthruRegs);
798
799    // Process the defs in MI...
800    PrescanInstruction(MI, Count, PassthruRegs);
801
802    // The dependence edges that represent anti- and output-
803    // dependencies that are candidates for breaking.
804    std::vector<const SDep *> Edges;
805    const SUnit *PathSU = MISUnitMap[&MI];
806    AntiDepEdges(PathSU, Edges);
807
808    // If MI is not on the critical path, then we don't rename
809    // registers in the CriticalPathSet.
810    BitVector *ExcludeRegs = nullptr;
811    if (&MI == CriticalPathMI) {
812      CriticalPathSU = CriticalPathStep(CriticalPathSU);
813      CriticalPathMI = (CriticalPathSU) ? CriticalPathSU->getInstr() : nullptr;
814    } else if (CriticalPathSet.any()) {
815      ExcludeRegs = &CriticalPathSet;
816    }
817
818    // Ignore KILL instructions (they form a group in ScanInstruction
819    // but don't cause any anti-dependence breaking themselves)
820    if (!MI.isKill()) {
821      // Attempt to break each anti-dependency...
822      for (const SDep *Edge : Edges) {
823        SUnit *NextSU = Edge->getSUnit();
824
825        if ((Edge->getKind() != SDep::Anti) &&
826            (Edge->getKind() != SDep::Output)) continue;
827
828        unsigned AntiDepReg = Edge->getReg();
829        LLVM_DEBUG(dbgs() << "\tAntidep reg: " << printReg(AntiDepReg, TRI));
830        assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
831
832        if (!MRI.isAllocatable(AntiDepReg)) {
833          // Don't break anti-dependencies on non-allocatable registers.
834          LLVM_DEBUG(dbgs() << " (non-allocatable)\n");
835          continue;
836        } else if (ExcludeRegs && ExcludeRegs->test(AntiDepReg)) {
837          // Don't break anti-dependencies for critical path registers
838          // if not on the critical path
839          LLVM_DEBUG(dbgs() << " (not critical-path)\n");
840          continue;
841        } else if (PassthruRegs.count(AntiDepReg) != 0) {
842          // If the anti-dep register liveness "passes-thru", then
843          // don't try to change it. It will be changed along with
844          // the use if required to break an earlier antidep.
845          LLVM_DEBUG(dbgs() << " (passthru)\n");
846          continue;
847        } else {
848          // No anti-dep breaking for implicit deps
849          MachineOperand *AntiDepOp = MI.findRegisterDefOperand(AntiDepReg);
850          assert(AntiDepOp && "Can't find index for defined register operand");
851          if (!AntiDepOp || AntiDepOp->isImplicit()) {
852            LLVM_DEBUG(dbgs() << " (implicit)\n");
853            continue;
854          }
855
856          // If the SUnit has other dependencies on the SUnit that
857          // it anti-depends on, don't bother breaking the
858          // anti-dependency since those edges would prevent such
859          // units from being scheduled past each other
860          // regardless.
861          //
862          // Also, if there are dependencies on other SUnits with the
863          // same register as the anti-dependency, don't attempt to
864          // break it.
865          for (const SDep &Pred : PathSU->Preds) {
866            if (Pred.getSUnit() == NextSU ? (Pred.getKind() != SDep::Anti ||
867                                             Pred.getReg() != AntiDepReg)
868                                          : (Pred.getKind() == SDep::Data &&
869                                             Pred.getReg() == AntiDepReg)) {
870              AntiDepReg = 0;
871              break;
872            }
873          }
874          for (const SDep &Pred : PathSU->Preds) {
875            if ((Pred.getSUnit() == NextSU) && (Pred.getKind() != SDep::Anti) &&
876                (Pred.getKind() != SDep::Output)) {
877              LLVM_DEBUG(dbgs() << " (real dependency)\n");
878              AntiDepReg = 0;
879              break;
880            } else if ((Pred.getSUnit() != NextSU) &&
881                       (Pred.getKind() == SDep::Data) &&
882                       (Pred.getReg() == AntiDepReg)) {
883              LLVM_DEBUG(dbgs() << " (other dependency)\n");
884              AntiDepReg = 0;
885              break;
886            }
887          }
888
889          if (AntiDepReg == 0)
890            continue;
891        }
892
893        assert(AntiDepReg != 0);
894
895        // Determine AntiDepReg's register group.
896        const unsigned GroupIndex = State->GetGroup(AntiDepReg);
897        if (GroupIndex == 0) {
898          LLVM_DEBUG(dbgs() << " (zero group)\n");
899          continue;
900        }
901
902        LLVM_DEBUG(dbgs() << '\n');
903
904        // Look for a suitable register to use to break the anti-dependence.
905        std::map<unsigned, unsigned> RenameMap;
906        if (FindSuitableFreeRegisters(AntiDepReg, GroupIndex, RenameOrder,
907                                      RenameMap)) {
908          LLVM_DEBUG(dbgs() << "\tBreaking anti-dependence edge on "
909                            << printReg(AntiDepReg, TRI) << ":");
910
911          // Handle each group register...
912          for (const auto &P : RenameMap) {
913            unsigned CurrReg = P.first;
914            unsigned NewReg = P.second;
915
916            LLVM_DEBUG(dbgs() << " " << printReg(CurrReg, TRI) << "->"
917                              << printReg(NewReg, TRI) << "("
918                              << RegRefs.count(CurrReg) << " refs)");
919
920            // Update the references to the old register CurrReg to
921            // refer to the new register NewReg.
922            for (const auto &Q : make_range(RegRefs.equal_range(CurrReg))) {
923              Q.second.Operand->setReg(NewReg);
924              // If the SU for the instruction being updated has debug
925              // information related to the anti-dependency register, make
926              // sure to update that as well.
927              const SUnit *SU = MISUnitMap[Q.second.Operand->getParent()];
928              if (!SU) continue;
929              UpdateDbgValues(DbgValues, Q.second.Operand->getParent(),
930                              AntiDepReg, NewReg);
931            }
932
933            // We just went back in time and modified history; the
934            // liveness information for CurrReg is now inconsistent. Set
935            // the state as if it were dead.
936            State->UnionGroups(NewReg, 0);
937            RegRefs.erase(NewReg);
938            DefIndices[NewReg] = DefIndices[CurrReg];
939            KillIndices[NewReg] = KillIndices[CurrReg];
940
941            State->UnionGroups(CurrReg, 0);
942            RegRefs.erase(CurrReg);
943            DefIndices[CurrReg] = KillIndices[CurrReg];
944            KillIndices[CurrReg] = ~0u;
945            assert(((KillIndices[CurrReg] == ~0u) !=
946                    (DefIndices[CurrReg] == ~0u)) &&
947                   "Kill and Def maps aren't consistent for AntiDepReg!");
948          }
949
950          ++Broken;
951          LLVM_DEBUG(dbgs() << '\n');
952        }
953      }
954    }
955
956    ScanInstruction(MI, Count);
957  }
958
959  return Broken;
960}
961
962AntiDepBreaker *llvm::createAggressiveAntiDepBreaker(
963    MachineFunction &MFi, const RegisterClassInfo &RCI,
964    TargetSubtargetInfo::RegClassVector &CriticalPathRCs) {
965  return new AggressiveAntiDepBreaker(MFi, RCI, CriticalPathRCs);
966}
967