1//===-- llvm/Support/Threading.h - Control multithreading mode --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares helper functions for running LLVM in a multi-threaded
10// environment.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_THREADING_H
15#define LLVM_SUPPORT_THREADING_H
16
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/Config/llvm-config.h" // for LLVM_ON_UNIX
20#include "llvm/Support/Compiler.h"
21#include <ciso646> // So we can check the C++ standard lib macros.
22#include <optional>
23
24#if defined(_MSC_VER)
25// MSVC's call_once implementation worked since VS 2015, which is the minimum
26// supported version as of this writing.
27#define LLVM_THREADING_USE_STD_CALL_ONCE 1
28#elif defined(LLVM_ON_UNIX) &&                                                 \
29    (defined(_LIBCPP_VERSION) ||                                               \
30     !(defined(__NetBSD__) || defined(__OpenBSD__) || defined(__powerpc__)))
31// std::call_once from libc++ is used on all Unix platforms. Other
32// implementations like libstdc++ are known to have problems on NetBSD,
33// OpenBSD and PowerPC.
34#define LLVM_THREADING_USE_STD_CALL_ONCE 1
35#elif defined(LLVM_ON_UNIX) &&                                                 \
36    (defined(__powerpc__) && defined(__LITTLE_ENDIAN__))
37#define LLVM_THREADING_USE_STD_CALL_ONCE 1
38#else
39#define LLVM_THREADING_USE_STD_CALL_ONCE 0
40#endif
41
42#if LLVM_THREADING_USE_STD_CALL_ONCE
43#include <mutex>
44#else
45#include "llvm/Support/Atomic.h"
46#endif
47
48namespace llvm {
49class Twine;
50
51/// Returns true if LLVM is compiled with support for multi-threading, and
52/// false otherwise.
53constexpr bool llvm_is_multithreaded() { return LLVM_ENABLE_THREADS; }
54
55#if LLVM_THREADING_USE_STD_CALL_ONCE
56
57  typedef std::once_flag once_flag;
58
59#else
60
61  enum InitStatus { Uninitialized = 0, Wait = 1, Done = 2 };
62
63  /// The llvm::once_flag structure
64  ///
65  /// This type is modeled after std::once_flag to use with llvm::call_once.
66  /// This structure must be used as an opaque object. It is a struct to force
67  /// autoinitialization and behave like std::once_flag.
68  struct once_flag {
69    volatile sys::cas_flag status = Uninitialized;
70  };
71
72#endif
73
74  /// Execute the function specified as a parameter once.
75  ///
76  /// Typical usage:
77  /// \code
78  ///   void foo() {...};
79  ///   ...
80  ///   static once_flag flag;
81  ///   call_once(flag, foo);
82  /// \endcode
83  ///
84  /// \param flag Flag used for tracking whether or not this has run.
85  /// \param F Function to call once.
86  template <typename Function, typename... Args>
87  void call_once(once_flag &flag, Function &&F, Args &&... ArgList) {
88#if LLVM_THREADING_USE_STD_CALL_ONCE
89    std::call_once(flag, std::forward<Function>(F),
90                   std::forward<Args>(ArgList)...);
91#else
92    // For other platforms we use a generic (if brittle) version based on our
93    // atomics.
94    sys::cas_flag old_val = sys::CompareAndSwap(&flag.status, Wait, Uninitialized);
95    if (old_val == Uninitialized) {
96      std::forward<Function>(F)(std::forward<Args>(ArgList)...);
97      sys::MemoryFence();
98      TsanIgnoreWritesBegin();
99      TsanHappensBefore(&flag.status);
100      flag.status = Done;
101      TsanIgnoreWritesEnd();
102    } else {
103      // Wait until any thread doing the call has finished.
104      sys::cas_flag tmp = flag.status;
105      sys::MemoryFence();
106      while (tmp != Done) {
107        tmp = flag.status;
108        sys::MemoryFence();
109      }
110    }
111    TsanHappensAfter(&flag.status);
112#endif
113  }
114
115  /// This tells how a thread pool will be used
116  class ThreadPoolStrategy {
117  public:
118    // The default value (0) means all available threads should be used,
119    // taking the affinity mask into account. If set, this value only represents
120    // a suggested high bound, the runtime might choose a lower value (not
121    // higher).
122    unsigned ThreadsRequested = 0;
123
124    // If SMT is active, use hyper threads. If false, there will be only one
125    // std::thread per core.
126    bool UseHyperThreads = true;
127
128    // If set, will constrain 'ThreadsRequested' to the number of hardware
129    // threads, or hardware cores.
130    bool Limit = false;
131
132    /// Retrieves the max available threads for the current strategy. This
133    /// accounts for affinity masks and takes advantage of all CPU sockets.
134    unsigned compute_thread_count() const;
135
136    /// Assign the current thread to an ideal hardware CPU or NUMA node. In a
137    /// multi-socket system, this ensures threads are assigned to all CPU
138    /// sockets. \p ThreadPoolNum represents a number bounded by [0,
139    /// compute_thread_count()).
140    void apply_thread_strategy(unsigned ThreadPoolNum) const;
141
142    /// Finds the CPU socket where a thread should go. Returns 'std::nullopt' if
143    /// the thread shall remain on the actual CPU socket.
144    std::optional<unsigned> compute_cpu_socket(unsigned ThreadPoolNum) const;
145  };
146
147  /// Build a strategy from a number of threads as a string provided in \p Num.
148  /// When Num is above the max number of threads specified by the \p Default
149  /// strategy, we attempt to equally allocate the threads on all CPU sockets.
150  /// "0" or an empty string will return the \p Default strategy.
151  /// "all" for using all hardware threads.
152  std::optional<ThreadPoolStrategy>
153  get_threadpool_strategy(StringRef Num, ThreadPoolStrategy Default = {});
154
155  /// Returns a thread strategy for tasks requiring significant memory or other
156  /// resources. To be used for workloads where hardware_concurrency() proves to
157  /// be less efficient. Avoid this strategy if doing lots of I/O. Currently
158  /// based on physical cores, if available for the host system, otherwise falls
159  /// back to hardware_concurrency(). Returns 1 when LLVM is configured with
160  /// LLVM_ENABLE_THREADS = OFF.
161  inline ThreadPoolStrategy
162  heavyweight_hardware_concurrency(unsigned ThreadCount = 0) {
163    ThreadPoolStrategy S;
164    S.UseHyperThreads = false;
165    S.ThreadsRequested = ThreadCount;
166    return S;
167  }
168
169  /// Like heavyweight_hardware_concurrency() above, but builds a strategy
170  /// based on the rules described for get_threadpool_strategy().
171  /// If \p Num is invalid, returns a default strategy where one thread per
172  /// hardware core is used.
173  inline ThreadPoolStrategy heavyweight_hardware_concurrency(StringRef Num) {
174    std::optional<ThreadPoolStrategy> S =
175        get_threadpool_strategy(Num, heavyweight_hardware_concurrency());
176    if (S)
177      return *S;
178    return heavyweight_hardware_concurrency();
179  }
180
181  /// Returns a default thread strategy where all available hardware resources
182  /// are to be used, except for those initially excluded by an affinity mask.
183  /// This function takes affinity into consideration. Returns 1 when LLVM is
184  /// configured with LLVM_ENABLE_THREADS=OFF.
185  inline ThreadPoolStrategy hardware_concurrency(unsigned ThreadCount = 0) {
186    ThreadPoolStrategy S;
187    S.ThreadsRequested = ThreadCount;
188    return S;
189  }
190
191  /// Returns an optimal thread strategy to execute specified amount of tasks.
192  /// This strategy should prevent us from creating too many threads if we
193  /// occasionaly have an unexpectedly small amount of tasks.
194  inline ThreadPoolStrategy optimal_concurrency(unsigned TaskCount = 0) {
195    ThreadPoolStrategy S;
196    S.Limit = true;
197    S.ThreadsRequested = TaskCount;
198    return S;
199  }
200
201  /// Return the current thread id, as used in various OS system calls.
202  /// Note that not all platforms guarantee that the value returned will be
203  /// unique across the entire system, so portable code should not assume
204  /// this.
205  uint64_t get_threadid();
206
207  /// Get the maximum length of a thread name on this platform.
208  /// A value of 0 means there is no limit.
209  uint32_t get_max_thread_name_length();
210
211  /// Set the name of the current thread.  Setting a thread's name can
212  /// be helpful for enabling useful diagnostics under a debugger or when
213  /// logging.  The level of support for setting a thread's name varies
214  /// wildly across operating systems, and we only make a best effort to
215  /// perform the operation on supported platforms.  No indication of success
216  /// or failure is returned.
217  void set_thread_name(const Twine &Name);
218
219  /// Get the name of the current thread.  The level of support for
220  /// getting a thread's name varies wildly across operating systems, and it
221  /// is not even guaranteed that if you can successfully set a thread's name
222  /// that you can later get it back.  This function is intended for diagnostic
223  /// purposes, and as with setting a thread's name no indication of whether
224  /// the operation succeeded or failed is returned.
225  void get_thread_name(SmallVectorImpl<char> &Name);
226
227  /// Returns a mask that represents on which hardware thread, core, CPU, NUMA
228  /// group, the calling thread can be executed. On Windows, threads cannot
229  /// cross CPU sockets boundaries.
230  llvm::BitVector get_thread_affinity_mask();
231
232  /// Returns how many physical CPUs or NUMA groups the system has.
233  unsigned get_cpus();
234
235  /// Returns how many physical cores (as opposed to logical cores returned from
236  /// thread::hardware_concurrency(), which includes hyperthreads).
237  /// Returns -1 if unknown for the current host system.
238  int get_physical_cores();
239
240  enum class ThreadPriority {
241    /// Lower the current thread's priority as much as possible. Can be used
242    /// for long-running tasks that are not time critical; more energy-
243    /// efficient than Low.
244    Background = 0,
245
246    /// Lower the current thread's priority such that it does not affect
247    /// foreground tasks significantly. This is a good default for long-
248    /// running, latency-insensitive tasks to make sure cpu is not hogged
249    /// by this task.
250    Low = 1,
251
252    /// Restore the current thread's priority to default scheduling priority.
253    Default = 2,
254  };
255  enum class SetThreadPriorityResult { FAILURE, SUCCESS };
256  SetThreadPriorityResult set_thread_priority(ThreadPriority Priority);
257}
258
259#endif
260