1//===--- OnDiskHashTable.h - On-Disk Hash Table Implementation --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Defines facilities for reading and writing on-disk hash tables.
11///
12//===----------------------------------------------------------------------===//
13#ifndef LLVM_SUPPORT_ONDISKHASHTABLE_H
14#define LLVM_SUPPORT_ONDISKHASHTABLE_H
15
16#include "llvm/Support/Alignment.h"
17#include "llvm/Support/Allocator.h"
18#include "llvm/Support/DataTypes.h"
19#include "llvm/Support/EndianStream.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Support/raw_ostream.h"
22#include <cassert>
23#include <cstdlib>
24
25namespace llvm {
26
27/// Generates an on disk hash table.
28///
29/// This needs an \c Info that handles storing values into the hash table's
30/// payload and computes the hash for a given key. This should provide the
31/// following interface:
32///
33/// \code
34/// class ExampleInfo {
35/// public:
36///   typedef ExampleKey key_type;   // Must be copy constructible
37///   typedef ExampleKey &key_type_ref;
38///   typedef ExampleData data_type; // Must be copy constructible
39///   typedef ExampleData &data_type_ref;
40///   typedef uint32_t hash_value_type; // The type the hash function returns.
41///   typedef uint32_t offset_type; // The type for offsets into the table.
42///
43///   /// Calculate the hash for Key
44///   static hash_value_type ComputeHash(key_type_ref Key);
45///   /// Return the lengths, in bytes, of the given Key/Data pair.
46///   static std::pair<offset_type, offset_type>
47///   EmitKeyDataLength(raw_ostream &Out, key_type_ref Key, data_type_ref Data);
48///   /// Write Key to Out.  KeyLen is the length from EmitKeyDataLength.
49///   static void EmitKey(raw_ostream &Out, key_type_ref Key,
50///                       offset_type KeyLen);
51///   /// Write Data to Out.  DataLen is the length from EmitKeyDataLength.
52///   static void EmitData(raw_ostream &Out, key_type_ref Key,
53///                        data_type_ref Data, offset_type DataLen);
54///   /// Determine if two keys are equal. Optional, only needed by contains.
55///   static bool EqualKey(key_type_ref Key1, key_type_ref Key2);
56/// };
57/// \endcode
58template <typename Info> class OnDiskChainedHashTableGenerator {
59  /// A single item in the hash table.
60  class Item {
61  public:
62    typename Info::key_type Key;
63    typename Info::data_type Data;
64    Item *Next;
65    const typename Info::hash_value_type Hash;
66
67    Item(typename Info::key_type_ref Key, typename Info::data_type_ref Data,
68         Info &InfoObj)
69        : Key(Key), Data(Data), Next(nullptr), Hash(InfoObj.ComputeHash(Key)) {}
70  };
71
72  typedef typename Info::offset_type offset_type;
73  offset_type NumBuckets;
74  offset_type NumEntries;
75  llvm::SpecificBumpPtrAllocator<Item> BA;
76
77  /// A linked list of values in a particular hash bucket.
78  struct Bucket {
79    offset_type Off;
80    unsigned Length;
81    Item *Head;
82  };
83
84  Bucket *Buckets;
85
86private:
87  /// Insert an item into the appropriate hash bucket.
88  void insert(Bucket *Buckets, size_t Size, Item *E) {
89    Bucket &B = Buckets[E->Hash & (Size - 1)];
90    E->Next = B.Head;
91    ++B.Length;
92    B.Head = E;
93  }
94
95  /// Resize the hash table, moving the old entries into the new buckets.
96  void resize(size_t NewSize) {
97    Bucket *NewBuckets = static_cast<Bucket *>(
98        safe_calloc(NewSize, sizeof(Bucket)));
99    // Populate NewBuckets with the old entries.
100    for (size_t I = 0; I < NumBuckets; ++I)
101      for (Item *E = Buckets[I].Head; E;) {
102        Item *N = E->Next;
103        E->Next = nullptr;
104        insert(NewBuckets, NewSize, E);
105        E = N;
106      }
107
108    free(Buckets);
109    NumBuckets = NewSize;
110    Buckets = NewBuckets;
111  }
112
113public:
114  /// Insert an entry into the table.
115  void insert(typename Info::key_type_ref Key,
116              typename Info::data_type_ref Data) {
117    Info InfoObj;
118    insert(Key, Data, InfoObj);
119  }
120
121  /// Insert an entry into the table.
122  ///
123  /// Uses the provided Info instead of a stack allocated one.
124  void insert(typename Info::key_type_ref Key,
125              typename Info::data_type_ref Data, Info &InfoObj) {
126    ++NumEntries;
127    if (4 * NumEntries >= 3 * NumBuckets)
128      resize(NumBuckets * 2);
129    insert(Buckets, NumBuckets, new (BA.Allocate()) Item(Key, Data, InfoObj));
130  }
131
132  /// Determine whether an entry has been inserted.
133  bool contains(typename Info::key_type_ref Key, Info &InfoObj) {
134    unsigned Hash = InfoObj.ComputeHash(Key);
135    for (Item *I = Buckets[Hash & (NumBuckets - 1)].Head; I; I = I->Next)
136      if (I->Hash == Hash && InfoObj.EqualKey(I->Key, Key))
137        return true;
138    return false;
139  }
140
141  /// Emit the table to Out, which must not be at offset 0.
142  offset_type Emit(raw_ostream &Out) {
143    Info InfoObj;
144    return Emit(Out, InfoObj);
145  }
146
147  /// Emit the table to Out, which must not be at offset 0.
148  ///
149  /// Uses the provided Info instead of a stack allocated one.
150  offset_type Emit(raw_ostream &Out, Info &InfoObj) {
151    using namespace llvm::support;
152    endian::Writer LE(Out, llvm::endianness::little);
153
154    // Now we're done adding entries, resize the bucket list if it's
155    // significantly too large. (This only happens if the number of
156    // entries is small and we're within our initial allocation of
157    // 64 buckets.) We aim for an occupancy ratio in [3/8, 3/4).
158    //
159    // As a special case, if there are two or fewer entries, just
160    // form a single bucket. A linear scan is fine in that case, and
161    // this is very common in C++ class lookup tables. This also
162    // guarantees we produce at least one bucket for an empty table.
163    //
164    // FIXME: Try computing a perfect hash function at this point.
165    unsigned TargetNumBuckets =
166        NumEntries <= 2 ? 1 : llvm::bit_ceil(NumEntries * 4 / 3 + 1);
167    if (TargetNumBuckets != NumBuckets)
168      resize(TargetNumBuckets);
169
170    // Emit the payload of the table.
171    for (offset_type I = 0; I < NumBuckets; ++I) {
172      Bucket &B = Buckets[I];
173      if (!B.Head)
174        continue;
175
176      // Store the offset for the data of this bucket.
177      B.Off = Out.tell();
178      assert(B.Off && "Cannot write a bucket at offset 0. Please add padding.");
179
180      // Write out the number of items in the bucket.
181      LE.write<uint16_t>(B.Length);
182      assert(B.Length != 0 && "Bucket has a head but zero length?");
183
184      // Write out the entries in the bucket.
185      for (Item *I = B.Head; I; I = I->Next) {
186        LE.write<typename Info::hash_value_type>(I->Hash);
187        const std::pair<offset_type, offset_type> &Len =
188            InfoObj.EmitKeyDataLength(Out, I->Key, I->Data);
189#ifdef NDEBUG
190        InfoObj.EmitKey(Out, I->Key, Len.first);
191        InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
192#else
193        // In asserts mode, check that the users length matches the data they
194        // wrote.
195        uint64_t KeyStart = Out.tell();
196        InfoObj.EmitKey(Out, I->Key, Len.first);
197        uint64_t DataStart = Out.tell();
198        InfoObj.EmitData(Out, I->Key, I->Data, Len.second);
199        uint64_t End = Out.tell();
200        assert(offset_type(DataStart - KeyStart) == Len.first &&
201               "key length does not match bytes written");
202        assert(offset_type(End - DataStart) == Len.second &&
203               "data length does not match bytes written");
204#endif
205      }
206    }
207
208    // Pad with zeros so that we can start the hashtable at an aligned address.
209    offset_type TableOff = Out.tell();
210    uint64_t N = offsetToAlignment(TableOff, Align(alignof(offset_type)));
211    TableOff += N;
212    while (N--)
213      LE.write<uint8_t>(0);
214
215    // Emit the hashtable itself.
216    LE.write<offset_type>(NumBuckets);
217    LE.write<offset_type>(NumEntries);
218    for (offset_type I = 0; I < NumBuckets; ++I)
219      LE.write<offset_type>(Buckets[I].Off);
220
221    return TableOff;
222  }
223
224  OnDiskChainedHashTableGenerator() {
225    NumEntries = 0;
226    NumBuckets = 64;
227    // Note that we do not need to run the constructors of the individual
228    // Bucket objects since 'calloc' returns bytes that are all 0.
229    Buckets = static_cast<Bucket *>(safe_calloc(NumBuckets, sizeof(Bucket)));
230  }
231
232  ~OnDiskChainedHashTableGenerator() { std::free(Buckets); }
233};
234
235/// Provides lookup on an on disk hash table.
236///
237/// This needs an \c Info that handles reading values from the hash table's
238/// payload and computes the hash for a given key. This should provide the
239/// following interface:
240///
241/// \code
242/// class ExampleLookupInfo {
243/// public:
244///   typedef ExampleData data_type;
245///   typedef ExampleInternalKey internal_key_type; // The stored key type.
246///   typedef ExampleKey external_key_type; // The type to pass to find().
247///   typedef uint32_t hash_value_type; // The type the hash function returns.
248///   typedef uint32_t offset_type; // The type for offsets into the table.
249///
250///   /// Compare two keys for equality.
251///   static bool EqualKey(internal_key_type &Key1, internal_key_type &Key2);
252///   /// Calculate the hash for the given key.
253///   static hash_value_type ComputeHash(internal_key_type &IKey);
254///   /// Translate from the semantic type of a key in the hash table to the
255///   /// type that is actually stored and used for hashing and comparisons.
256///   /// The internal and external types are often the same, in which case this
257///   /// can simply return the passed in value.
258///   static const internal_key_type &GetInternalKey(external_key_type &EKey);
259///   /// Read the key and data length from Buffer, leaving it pointing at the
260///   /// following byte.
261///   static std::pair<offset_type, offset_type>
262///   ReadKeyDataLength(const unsigned char *&Buffer);
263///   /// Read the key from Buffer, given the KeyLen as reported from
264///   /// ReadKeyDataLength.
265///   const internal_key_type &ReadKey(const unsigned char *Buffer,
266///                                    offset_type KeyLen);
267///   /// Read the data for Key from Buffer, given the DataLen as reported from
268///   /// ReadKeyDataLength.
269///   data_type ReadData(StringRef Key, const unsigned char *Buffer,
270///                      offset_type DataLen);
271/// };
272/// \endcode
273template <typename Info> class OnDiskChainedHashTable {
274  const typename Info::offset_type NumBuckets;
275  const typename Info::offset_type NumEntries;
276  const unsigned char *const Buckets;
277  const unsigned char *const Base;
278  Info InfoObj;
279
280public:
281  typedef Info InfoType;
282  typedef typename Info::internal_key_type internal_key_type;
283  typedef typename Info::external_key_type external_key_type;
284  typedef typename Info::data_type data_type;
285  typedef typename Info::hash_value_type hash_value_type;
286  typedef typename Info::offset_type offset_type;
287
288  OnDiskChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
289                         const unsigned char *Buckets,
290                         const unsigned char *Base,
291                         const Info &InfoObj = Info())
292      : NumBuckets(NumBuckets), NumEntries(NumEntries), Buckets(Buckets),
293        Base(Base), InfoObj(InfoObj) {
294    assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
295           "'buckets' must have a 4-byte alignment");
296  }
297
298  /// Read the number of buckets and the number of entries from a hash table
299  /// produced by OnDiskHashTableGenerator::Emit, and advance the Buckets
300  /// pointer past them.
301  static std::pair<offset_type, offset_type>
302  readNumBucketsAndEntries(const unsigned char *&Buckets) {
303    assert((reinterpret_cast<uintptr_t>(Buckets) & 0x3) == 0 &&
304           "buckets should be 4-byte aligned.");
305    using namespace llvm::support;
306    offset_type NumBuckets =
307        endian::readNext<offset_type, llvm::endianness::little, aligned>(
308            Buckets);
309    offset_type NumEntries =
310        endian::readNext<offset_type, llvm::endianness::little, aligned>(
311            Buckets);
312    return std::make_pair(NumBuckets, NumEntries);
313  }
314
315  offset_type getNumBuckets() const { return NumBuckets; }
316  offset_type getNumEntries() const { return NumEntries; }
317  const unsigned char *getBase() const { return Base; }
318  const unsigned char *getBuckets() const { return Buckets; }
319
320  bool isEmpty() const { return NumEntries == 0; }
321
322  class iterator {
323    internal_key_type Key;
324    const unsigned char *const Data;
325    const offset_type Len;
326    Info *InfoObj;
327
328  public:
329    iterator() : Key(), Data(nullptr), Len(0), InfoObj(nullptr) {}
330    iterator(const internal_key_type K, const unsigned char *D, offset_type L,
331             Info *InfoObj)
332        : Key(K), Data(D), Len(L), InfoObj(InfoObj) {}
333
334    data_type operator*() const { return InfoObj->ReadData(Key, Data, Len); }
335
336    const unsigned char *getDataPtr() const { return Data; }
337    offset_type getDataLen() const { return Len; }
338
339    bool operator==(const iterator &X) const { return X.Data == Data; }
340    bool operator!=(const iterator &X) const { return X.Data != Data; }
341  };
342
343  /// Look up the stored data for a particular key.
344  iterator find(const external_key_type &EKey, Info *InfoPtr = nullptr) {
345    const internal_key_type &IKey = InfoObj.GetInternalKey(EKey);
346    hash_value_type KeyHash = InfoObj.ComputeHash(IKey);
347    return find_hashed(IKey, KeyHash, InfoPtr);
348  }
349
350  /// Look up the stored data for a particular key with a known hash.
351  iterator find_hashed(const internal_key_type &IKey, hash_value_type KeyHash,
352                       Info *InfoPtr = nullptr) {
353    using namespace llvm::support;
354
355    if (!InfoPtr)
356      InfoPtr = &InfoObj;
357
358    // Each bucket is just an offset into the hash table file.
359    offset_type Idx = KeyHash & (NumBuckets - 1);
360    const unsigned char *Bucket = Buckets + sizeof(offset_type) * Idx;
361
362    offset_type Offset =
363        endian::readNext<offset_type, llvm::endianness::little, aligned>(
364            Bucket);
365    if (Offset == 0)
366      return iterator(); // Empty bucket.
367    const unsigned char *Items = Base + Offset;
368
369    // 'Items' starts with a 16-bit unsigned integer representing the
370    // number of items in this bucket.
371    unsigned Len =
372        endian::readNext<uint16_t, llvm::endianness::little, unaligned>(Items);
373
374    for (unsigned i = 0; i < Len; ++i) {
375      // Read the hash.
376      hash_value_type ItemHash =
377          endian::readNext<hash_value_type, llvm::endianness::little,
378                           unaligned>(Items);
379
380      // Determine the length of the key and the data.
381      const std::pair<offset_type, offset_type> &L =
382          Info::ReadKeyDataLength(Items);
383      offset_type ItemLen = L.first + L.second;
384
385      // Compare the hashes.  If they are not the same, skip the entry entirely.
386      if (ItemHash != KeyHash) {
387        Items += ItemLen;
388        continue;
389      }
390
391      // Read the key.
392      const internal_key_type &X =
393          InfoPtr->ReadKey((const unsigned char *const)Items, L.first);
394
395      // If the key doesn't match just skip reading the value.
396      if (!InfoPtr->EqualKey(X, IKey)) {
397        Items += ItemLen;
398        continue;
399      }
400
401      // The key matches!
402      return iterator(X, Items + L.first, L.second, InfoPtr);
403    }
404
405    return iterator();
406  }
407
408  iterator end() const { return iterator(); }
409
410  Info &getInfoObj() { return InfoObj; }
411
412  /// Create the hash table.
413  ///
414  /// \param Buckets is the beginning of the hash table itself, which follows
415  /// the payload of entire structure. This is the value returned by
416  /// OnDiskHashTableGenerator::Emit.
417  ///
418  /// \param Base is the point from which all offsets into the structure are
419  /// based. This is offset 0 in the stream that was used when Emitting the
420  /// table.
421  static OnDiskChainedHashTable *Create(const unsigned char *Buckets,
422                                        const unsigned char *const Base,
423                                        const Info &InfoObj = Info()) {
424    assert(Buckets > Base);
425    auto NumBucketsAndEntries = readNumBucketsAndEntries(Buckets);
426    return new OnDiskChainedHashTable<Info>(NumBucketsAndEntries.first,
427                                            NumBucketsAndEntries.second,
428                                            Buckets, Base, InfoObj);
429  }
430};
431
432/// Provides lookup and iteration over an on disk hash table.
433///
434/// \copydetails llvm::OnDiskChainedHashTable
435template <typename Info>
436class OnDiskIterableChainedHashTable : public OnDiskChainedHashTable<Info> {
437  const unsigned char *Payload;
438
439public:
440  typedef OnDiskChainedHashTable<Info>          base_type;
441  typedef typename base_type::internal_key_type internal_key_type;
442  typedef typename base_type::external_key_type external_key_type;
443  typedef typename base_type::data_type         data_type;
444  typedef typename base_type::hash_value_type   hash_value_type;
445  typedef typename base_type::offset_type       offset_type;
446
447private:
448  /// Iterates over all of the keys in the table.
449  class iterator_base {
450    const unsigned char *Ptr;
451    offset_type NumItemsInBucketLeft;
452    offset_type NumEntriesLeft;
453
454  public:
455    typedef external_key_type value_type;
456
457    iterator_base(const unsigned char *const Ptr, offset_type NumEntries)
458        : Ptr(Ptr), NumItemsInBucketLeft(0), NumEntriesLeft(NumEntries) {}
459    iterator_base()
460        : Ptr(nullptr), NumItemsInBucketLeft(0), NumEntriesLeft(0) {}
461
462    friend bool operator==(const iterator_base &X, const iterator_base &Y) {
463      return X.NumEntriesLeft == Y.NumEntriesLeft;
464    }
465    friend bool operator!=(const iterator_base &X, const iterator_base &Y) {
466      return X.NumEntriesLeft != Y.NumEntriesLeft;
467    }
468
469    /// Move to the next item.
470    void advance() {
471      using namespace llvm::support;
472      if (!NumItemsInBucketLeft) {
473        // 'Items' starts with a 16-bit unsigned integer representing the
474        // number of items in this bucket.
475        NumItemsInBucketLeft =
476            endian::readNext<uint16_t, llvm::endianness::little, unaligned>(
477                Ptr);
478      }
479      Ptr += sizeof(hash_value_type); // Skip the hash.
480      // Determine the length of the key and the data.
481      const std::pair<offset_type, offset_type> &L =
482          Info::ReadKeyDataLength(Ptr);
483      Ptr += L.first + L.second;
484      assert(NumItemsInBucketLeft);
485      --NumItemsInBucketLeft;
486      assert(NumEntriesLeft);
487      --NumEntriesLeft;
488    }
489
490    /// Get the start of the item as written by the trait (after the hash and
491    /// immediately before the key and value length).
492    const unsigned char *getItem() const {
493      return Ptr + (NumItemsInBucketLeft ? 0 : 2) + sizeof(hash_value_type);
494    }
495  };
496
497public:
498  OnDiskIterableChainedHashTable(offset_type NumBuckets, offset_type NumEntries,
499                                 const unsigned char *Buckets,
500                                 const unsigned char *Payload,
501                                 const unsigned char *Base,
502                                 const Info &InfoObj = Info())
503      : base_type(NumBuckets, NumEntries, Buckets, Base, InfoObj),
504        Payload(Payload) {}
505
506  /// Iterates over all of the keys in the table.
507  class key_iterator : public iterator_base {
508    Info *InfoObj;
509
510  public:
511    typedef external_key_type value_type;
512
513    key_iterator(const unsigned char *const Ptr, offset_type NumEntries,
514                 Info *InfoObj)
515        : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
516    key_iterator() : iterator_base(), InfoObj() {}
517
518    key_iterator &operator++() {
519      this->advance();
520      return *this;
521    }
522    key_iterator operator++(int) { // Postincrement
523      key_iterator tmp = *this;
524      ++*this;
525      return tmp;
526    }
527
528    internal_key_type getInternalKey() const {
529      auto *LocalPtr = this->getItem();
530
531      // Determine the length of the key and the data.
532      auto L = Info::ReadKeyDataLength(LocalPtr);
533
534      // Read the key.
535      return InfoObj->ReadKey(LocalPtr, L.first);
536    }
537
538    value_type operator*() const {
539      return InfoObj->GetExternalKey(getInternalKey());
540    }
541  };
542
543  key_iterator key_begin() {
544    return key_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
545  }
546  key_iterator key_end() { return key_iterator(); }
547
548  iterator_range<key_iterator> keys() {
549    return make_range(key_begin(), key_end());
550  }
551
552  /// Iterates over all the entries in the table, returning the data.
553  class data_iterator : public iterator_base {
554    Info *InfoObj;
555
556  public:
557    typedef data_type value_type;
558
559    data_iterator(const unsigned char *const Ptr, offset_type NumEntries,
560                  Info *InfoObj)
561        : iterator_base(Ptr, NumEntries), InfoObj(InfoObj) {}
562    data_iterator() : iterator_base(), InfoObj() {}
563
564    data_iterator &operator++() { // Preincrement
565      this->advance();
566      return *this;
567    }
568    data_iterator operator++(int) { // Postincrement
569      data_iterator tmp = *this;
570      ++*this;
571      return tmp;
572    }
573
574    value_type operator*() const {
575      auto *LocalPtr = this->getItem();
576
577      // Determine the length of the key and the data.
578      auto L = Info::ReadKeyDataLength(LocalPtr);
579
580      // Read the key.
581      const internal_key_type &Key = InfoObj->ReadKey(LocalPtr, L.first);
582      return InfoObj->ReadData(Key, LocalPtr + L.first, L.second);
583    }
584  };
585
586  data_iterator data_begin() {
587    return data_iterator(Payload, this->getNumEntries(), &this->getInfoObj());
588  }
589  data_iterator data_end() { return data_iterator(); }
590
591  iterator_range<data_iterator> data() {
592    return make_range(data_begin(), data_end());
593  }
594
595  /// Create the hash table.
596  ///
597  /// \param Buckets is the beginning of the hash table itself, which follows
598  /// the payload of entire structure. This is the value returned by
599  /// OnDiskHashTableGenerator::Emit.
600  ///
601  /// \param Payload is the beginning of the data contained in the table.  This
602  /// is Base plus any padding or header data that was stored, ie, the offset
603  /// that the stream was at when calling Emit.
604  ///
605  /// \param Base is the point from which all offsets into the structure are
606  /// based. This is offset 0 in the stream that was used when Emitting the
607  /// table.
608  static OnDiskIterableChainedHashTable *
609  Create(const unsigned char *Buckets, const unsigned char *const Payload,
610         const unsigned char *const Base, const Info &InfoObj = Info()) {
611    assert(Buckets > Base);
612    auto NumBucketsAndEntries =
613        OnDiskIterableChainedHashTable<Info>::readNumBucketsAndEntries(Buckets);
614    return new OnDiskIterableChainedHashTable<Info>(
615        NumBucketsAndEntries.first, NumBucketsAndEntries.second,
616        Buckets, Payload, Base, InfoObj);
617  }
618};
619
620} // end namespace llvm
621
622#endif
623