1//===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Collect native machine code for a function.  This class contains a list of
10// MachineBasicBlock instances that make up the current compiled function.
11//
12// This class also contains pointers to various classes which hold
13// target-specific information about the generated code.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CODEGEN_MACHINEFUNCTION_H
18#define LLVM_CODEGEN_MACHINEFUNCTION_H
19
20#include "llvm/ADT/ArrayRef.h"
21#include "llvm/ADT/BitVector.h"
22#include "llvm/ADT/DenseMap.h"
23#include "llvm/ADT/GraphTraits.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/ilist.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineInstr.h"
29#include "llvm/CodeGen/MachineMemOperand.h"
30#include "llvm/IR/EHPersonalities.h"
31#include "llvm/Support/Allocator.h"
32#include "llvm/Support/ArrayRecycler.h"
33#include "llvm/Support/AtomicOrdering.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/Recycler.h"
36#include "llvm/Target/TargetOptions.h"
37#include <cassert>
38#include <cstdint>
39#include <memory>
40#include <utility>
41#include <variant>
42#include <vector>
43
44namespace llvm {
45
46class BasicBlock;
47class BlockAddress;
48class DataLayout;
49class DebugLoc;
50struct DenormalMode;
51class DIExpression;
52class DILocalVariable;
53class DILocation;
54class Function;
55class GISelChangeObserver;
56class GlobalValue;
57class LLVMTargetMachine;
58class MachineConstantPool;
59class MachineFrameInfo;
60class MachineFunction;
61class MachineJumpTableInfo;
62class MachineModuleInfo;
63class MachineRegisterInfo;
64class MCContext;
65class MCInstrDesc;
66class MCSymbol;
67class MCSection;
68class Pass;
69class PseudoSourceValueManager;
70class raw_ostream;
71class SlotIndexes;
72class StringRef;
73class TargetRegisterClass;
74class TargetSubtargetInfo;
75struct WasmEHFuncInfo;
76struct WinEHFuncInfo;
77
78template <> struct ilist_alloc_traits<MachineBasicBlock> {
79  void deleteNode(MachineBasicBlock *MBB);
80};
81
82template <> struct ilist_callback_traits<MachineBasicBlock> {
83  void addNodeToList(MachineBasicBlock* N);
84  void removeNodeFromList(MachineBasicBlock* N);
85
86  template <class Iterator>
87  void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) {
88    assert(this == &OldList && "never transfer MBBs between functions");
89  }
90};
91
92/// MachineFunctionInfo - This class can be derived from and used by targets to
93/// hold private target-specific information for each MachineFunction.  Objects
94/// of type are accessed/created with MF::getInfo and destroyed when the
95/// MachineFunction is destroyed.
96struct MachineFunctionInfo {
97  virtual ~MachineFunctionInfo();
98
99  /// Factory function: default behavior is to call new using the
100  /// supplied allocator.
101  ///
102  /// This function can be overridden in a derive class.
103  template <typename FuncInfoTy, typename SubtargetTy = TargetSubtargetInfo>
104  static FuncInfoTy *create(BumpPtrAllocator &Allocator, const Function &F,
105                            const SubtargetTy *STI) {
106    return new (Allocator.Allocate<FuncInfoTy>()) FuncInfoTy(F, STI);
107  }
108
109  template <typename Ty>
110  static Ty *create(BumpPtrAllocator &Allocator, const Ty &MFI) {
111    return new (Allocator.Allocate<Ty>()) Ty(MFI);
112  }
113
114  /// Make a functionally equivalent copy of this MachineFunctionInfo in \p MF.
115  /// This requires remapping MachineBasicBlock references from the original
116  /// parent to values in the new function. Targets may assume that virtual
117  /// register and frame index values are preserved in the new function.
118  virtual MachineFunctionInfo *
119  clone(BumpPtrAllocator &Allocator, MachineFunction &DestMF,
120        const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB)
121      const {
122    return nullptr;
123  }
124};
125
126/// Properties which a MachineFunction may have at a given point in time.
127/// Each of these has checking code in the MachineVerifier, and passes can
128/// require that a property be set.
129class MachineFunctionProperties {
130  // Possible TODO: Allow targets to extend this (perhaps by allowing the
131  // constructor to specify the size of the bit vector)
132  // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be
133  // stated as the negative of "has vregs"
134
135public:
136  // The properties are stated in "positive" form; i.e. a pass could require
137  // that the property hold, but not that it does not hold.
138
139  // Property descriptions:
140  // IsSSA: True when the machine function is in SSA form and virtual registers
141  //  have a single def.
142  // NoPHIs: The machine function does not contain any PHI instruction.
143  // TracksLiveness: True when tracking register liveness accurately.
144  //  While this property is set, register liveness information in basic block
145  //  live-in lists and machine instruction operands (e.g. implicit defs) is
146  //  accurate, kill flags are conservatively accurate (kill flag correctly
147  //  indicates the last use of a register, an operand without kill flag may or
148  //  may not be the last use of a register). This means it can be used to
149  //  change the code in ways that affect the values in registers, for example
150  //  by the register scavenger.
151  //  When this property is cleared at a very late time, liveness is no longer
152  //  reliable.
153  // NoVRegs: The machine function does not use any virtual registers.
154  // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic
155  //  instructions have been legalized; i.e., all instructions are now one of:
156  //   - generic and always legal (e.g., COPY)
157  //   - target-specific
158  //   - legal pre-isel generic instructions.
159  // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic
160  //  virtual registers have been assigned to a register bank.
161  // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel
162  //  generic instructions have been eliminated; i.e., all instructions are now
163  //  target-specific or non-pre-isel generic instructions (e.g., COPY).
164  //  Since only pre-isel generic instructions can have generic virtual register
165  //  operands, this also means that all generic virtual registers have been
166  //  constrained to virtual registers (assigned to register classes) and that
167  //  all sizes attached to them have been eliminated.
168  // TiedOpsRewritten: The twoaddressinstruction pass will set this flag, it
169  //  means that tied-def have been rewritten to meet the RegConstraint.
170  // FailsVerification: Means that the function is not expected to pass machine
171  //  verification. This can be set by passes that introduce known problems that
172  //  have not been fixed yet.
173  // TracksDebugUserValues: Without this property enabled, debug instructions
174  // such as DBG_VALUE are allowed to reference virtual registers even if those
175  // registers do not have a definition. With the property enabled virtual
176  // registers must only be used if they have a definition. This property
177  // allows earlier passes in the pipeline to skip updates of `DBG_VALUE`
178  // instructions to save compile time.
179  enum class Property : unsigned {
180    IsSSA,
181    NoPHIs,
182    TracksLiveness,
183    NoVRegs,
184    FailedISel,
185    Legalized,
186    RegBankSelected,
187    Selected,
188    TiedOpsRewritten,
189    FailsVerification,
190    TracksDebugUserValues,
191    LastProperty = TracksDebugUserValues,
192  };
193
194  bool hasProperty(Property P) const {
195    return Properties[static_cast<unsigned>(P)];
196  }
197
198  MachineFunctionProperties &set(Property P) {
199    Properties.set(static_cast<unsigned>(P));
200    return *this;
201  }
202
203  MachineFunctionProperties &reset(Property P) {
204    Properties.reset(static_cast<unsigned>(P));
205    return *this;
206  }
207
208  /// Reset all the properties.
209  MachineFunctionProperties &reset() {
210    Properties.reset();
211    return *this;
212  }
213
214  MachineFunctionProperties &set(const MachineFunctionProperties &MFP) {
215    Properties |= MFP.Properties;
216    return *this;
217  }
218
219  MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) {
220    Properties.reset(MFP.Properties);
221    return *this;
222  }
223
224  // Returns true if all properties set in V (i.e. required by a pass) are set
225  // in this.
226  bool verifyRequiredProperties(const MachineFunctionProperties &V) const {
227    return !V.Properties.test(Properties);
228  }
229
230  /// Print the MachineFunctionProperties in human-readable form.
231  void print(raw_ostream &OS) const;
232
233private:
234  BitVector Properties =
235      BitVector(static_cast<unsigned>(Property::LastProperty)+1);
236};
237
238struct SEHHandler {
239  /// Filter or finally function. Null indicates a catch-all.
240  const Function *FilterOrFinally;
241
242  /// Address of block to recover at. Null for a finally handler.
243  const BlockAddress *RecoverBA;
244};
245
246/// This structure is used to retain landing pad info for the current function.
247struct LandingPadInfo {
248  MachineBasicBlock *LandingPadBlock;      // Landing pad block.
249  SmallVector<MCSymbol *, 1> BeginLabels;  // Labels prior to invoke.
250  SmallVector<MCSymbol *, 1> EndLabels;    // Labels after invoke.
251  SmallVector<SEHHandler, 1> SEHHandlers;  // SEH handlers active at this lpad.
252  MCSymbol *LandingPadLabel = nullptr;     // Label at beginning of landing pad.
253  std::vector<int> TypeIds;                // List of type ids (filters negative).
254
255  explicit LandingPadInfo(MachineBasicBlock *MBB)
256      : LandingPadBlock(MBB) {}
257};
258
259class LLVM_EXTERNAL_VISIBILITY MachineFunction {
260  Function &F;
261  const LLVMTargetMachine &Target;
262  const TargetSubtargetInfo *STI;
263  MCContext &Ctx;
264  MachineModuleInfo &MMI;
265
266  // RegInfo - Information about each register in use in the function.
267  MachineRegisterInfo *RegInfo;
268
269  // Used to keep track of target-specific per-machine-function information for
270  // the target implementation.
271  MachineFunctionInfo *MFInfo;
272
273  // Keep track of objects allocated on the stack.
274  MachineFrameInfo *FrameInfo;
275
276  // Keep track of constants which are spilled to memory
277  MachineConstantPool *ConstantPool;
278
279  // Keep track of jump tables for switch instructions
280  MachineJumpTableInfo *JumpTableInfo;
281
282  // Keep track of the function section.
283  MCSection *Section = nullptr;
284
285  // Catchpad unwind destination info for wasm EH.
286  // Keeps track of Wasm exception handling related data. This will be null for
287  // functions that aren't using a wasm EH personality.
288  WasmEHFuncInfo *WasmEHInfo = nullptr;
289
290  // Keeps track of Windows exception handling related data. This will be null
291  // for functions that aren't using a funclet-based EH personality.
292  WinEHFuncInfo *WinEHInfo = nullptr;
293
294  // Function-level unique numbering for MachineBasicBlocks.  When a
295  // MachineBasicBlock is inserted into a MachineFunction is it automatically
296  // numbered and this vector keeps track of the mapping from ID's to MBB's.
297  std::vector<MachineBasicBlock*> MBBNumbering;
298
299  // Pool-allocate MachineFunction-lifetime and IR objects.
300  BumpPtrAllocator Allocator;
301
302  // Allocation management for instructions in function.
303  Recycler<MachineInstr> InstructionRecycler;
304
305  // Allocation management for operand arrays on instructions.
306  ArrayRecycler<MachineOperand> OperandRecycler;
307
308  // Allocation management for basic blocks in function.
309  Recycler<MachineBasicBlock> BasicBlockRecycler;
310
311  // List of machine basic blocks in function
312  using BasicBlockListType = ilist<MachineBasicBlock>;
313  BasicBlockListType BasicBlocks;
314
315  /// FunctionNumber - This provides a unique ID for each function emitted in
316  /// this translation unit.
317  ///
318  unsigned FunctionNumber;
319
320  /// Alignment - The alignment of the function.
321  Align Alignment;
322
323  /// ExposesReturnsTwice - True if the function calls setjmp or related
324  /// functions with attribute "returns twice", but doesn't have
325  /// the attribute itself.
326  /// This is used to limit optimizations which cannot reason
327  /// about the control flow of such functions.
328  bool ExposesReturnsTwice = false;
329
330  /// True if the function includes any inline assembly.
331  bool HasInlineAsm = false;
332
333  /// True if any WinCFI instruction have been emitted in this function.
334  bool HasWinCFI = false;
335
336  /// Current high-level properties of the IR of the function (e.g. is in SSA
337  /// form or whether registers have been allocated)
338  MachineFunctionProperties Properties;
339
340  // Allocation management for pseudo source values.
341  std::unique_ptr<PseudoSourceValueManager> PSVManager;
342
343  /// List of moves done by a function's prolog.  Used to construct frame maps
344  /// by debug and exception handling consumers.
345  std::vector<MCCFIInstruction> FrameInstructions;
346
347  /// List of basic blocks immediately following calls to _setjmp. Used to
348  /// construct a table of valid longjmp targets for Windows Control Flow Guard.
349  std::vector<MCSymbol *> LongjmpTargets;
350
351  /// List of basic blocks that are the target of catchrets. Used to construct
352  /// a table of valid targets for Windows EHCont Guard.
353  std::vector<MCSymbol *> CatchretTargets;
354
355  /// \name Exception Handling
356  /// \{
357
358  /// List of LandingPadInfo describing the landing pad information.
359  std::vector<LandingPadInfo> LandingPads;
360
361  /// Map a landing pad's EH symbol to the call site indexes.
362  DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap;
363
364  /// Map a landing pad to its index.
365  DenseMap<const MachineBasicBlock *, unsigned> WasmLPadToIndexMap;
366
367  /// Map of invoke call site index values to associated begin EH_LABEL.
368  DenseMap<MCSymbol*, unsigned> CallSiteMap;
369
370  /// CodeView label annotations.
371  std::vector<std::pair<MCSymbol *, MDNode *>> CodeViewAnnotations;
372
373  bool CallsEHReturn = false;
374  bool CallsUnwindInit = false;
375  bool HasEHCatchret = false;
376  bool HasEHScopes = false;
377  bool HasEHFunclets = false;
378  bool IsOutlined = false;
379
380  /// BBID to assign to the next basic block of this function.
381  unsigned NextBBID = 0;
382
383  /// Section Type for basic blocks, only relevant with basic block sections.
384  BasicBlockSection BBSectionsType = BasicBlockSection::None;
385
386  /// List of C++ TypeInfo used.
387  std::vector<const GlobalValue *> TypeInfos;
388
389  /// List of typeids encoding filters used.
390  std::vector<unsigned> FilterIds;
391
392  /// List of the indices in FilterIds corresponding to filter terminators.
393  std::vector<unsigned> FilterEnds;
394
395  EHPersonality PersonalityTypeCache = EHPersonality::Unknown;
396
397  /// \}
398
399  /// Clear all the members of this MachineFunction, but the ones used
400  /// to initialize again the MachineFunction.
401  /// More specifically, this deallocates all the dynamically allocated
402  /// objects and get rid of all the XXXInfo data structure, but keep
403  /// unchanged the references to Fn, Target, MMI, and FunctionNumber.
404  void clear();
405  /// Allocate and initialize the different members.
406  /// In particular, the XXXInfo data structure.
407  /// \pre Fn, Target, MMI, and FunctionNumber are properly set.
408  void init();
409
410public:
411  /// Description of the location of a variable whose Address is valid and
412  /// unchanging during function execution. The Address may be:
413  /// * A stack index, which can be negative for fixed stack objects.
414  /// * A MCRegister, whose entry value contains the address of the variable.
415  class VariableDbgInfo {
416    std::variant<int, MCRegister> Address;
417
418  public:
419    const DILocalVariable *Var;
420    const DIExpression *Expr;
421    const DILocation *Loc;
422
423    VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
424                    int Slot, const DILocation *Loc)
425        : Address(Slot), Var(Var), Expr(Expr), Loc(Loc) {}
426
427    VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
428                    MCRegister EntryValReg, const DILocation *Loc)
429        : Address(EntryValReg), Var(Var), Expr(Expr), Loc(Loc) {}
430
431    /// Return true if this variable is in a stack slot.
432    bool inStackSlot() const { return std::holds_alternative<int>(Address); }
433
434    /// Return true if this variable is in the entry value of a register.
435    bool inEntryValueRegister() const {
436      return std::holds_alternative<MCRegister>(Address);
437    }
438
439    /// Returns the stack slot of this variable, assuming `inStackSlot()` is
440    /// true.
441    int getStackSlot() const { return std::get<int>(Address); }
442
443    /// Returns the MCRegister of this variable, assuming
444    /// `inEntryValueRegister()` is true.
445    MCRegister getEntryValueRegister() const {
446      return std::get<MCRegister>(Address);
447    }
448
449    /// Updates the stack slot of this variable, assuming `inStackSlot()` is
450    /// true.
451    void updateStackSlot(int NewSlot) {
452      assert(inStackSlot());
453      Address = NewSlot;
454    }
455  };
456
457  class Delegate {
458    virtual void anchor();
459
460  public:
461    virtual ~Delegate() = default;
462    /// Callback after an insertion. This should not modify the MI directly.
463    virtual void MF_HandleInsertion(MachineInstr &MI) = 0;
464    /// Callback before a removal. This should not modify the MI directly.
465    virtual void MF_HandleRemoval(MachineInstr &MI) = 0;
466    /// Callback before changing MCInstrDesc. This should not modify the MI
467    /// directly.
468    virtual void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID) {
469      return;
470    }
471  };
472
473  /// Structure used to represent pair of argument number after call lowering
474  /// and register used to transfer that argument.
475  /// For now we support only cases when argument is transferred through one
476  /// register.
477  struct ArgRegPair {
478    Register Reg;
479    uint16_t ArgNo;
480    ArgRegPair(Register R, unsigned Arg) : Reg(R), ArgNo(Arg) {
481      assert(Arg < (1 << 16) && "Arg out of range");
482    }
483  };
484  /// Vector of call argument and its forwarding register.
485  using CallSiteInfo = SmallVector<ArgRegPair, 1>;
486  using CallSiteInfoImpl = SmallVectorImpl<ArgRegPair>;
487
488private:
489  Delegate *TheDelegate = nullptr;
490  GISelChangeObserver *Observer = nullptr;
491
492  using CallSiteInfoMap = DenseMap<const MachineInstr *, CallSiteInfo>;
493  /// Map a call instruction to call site arguments forwarding info.
494  CallSiteInfoMap CallSitesInfo;
495
496  /// A helper function that returns call site info for a give call
497  /// instruction if debug entry value support is enabled.
498  CallSiteInfoMap::iterator getCallSiteInfo(const MachineInstr *MI);
499
500  // Callbacks for insertion and removal.
501  void handleInsertion(MachineInstr &MI);
502  void handleRemoval(MachineInstr &MI);
503  friend struct ilist_traits<MachineInstr>;
504
505public:
506  // Need to be accessed from MachineInstr::setDesc.
507  void handleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID);
508
509  using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>;
510  VariableDbgInfoMapTy VariableDbgInfos;
511
512  /// A count of how many instructions in the function have had numbers
513  /// assigned to them. Used for debug value tracking, to determine the
514  /// next instruction number.
515  unsigned DebugInstrNumberingCount = 0;
516
517  /// Set value of DebugInstrNumberingCount field. Avoid using this unless
518  /// you're deserializing this data.
519  void setDebugInstrNumberingCount(unsigned Num);
520
521  /// Pair of instruction number and operand number.
522  using DebugInstrOperandPair = std::pair<unsigned, unsigned>;
523
524  /// Replacement definition for a debug instruction reference. Made up of a
525  /// source instruction / operand pair, destination pair, and a qualifying
526  /// subregister indicating what bits in the operand make up the substitution.
527  // For example, a debug user
528  /// of %1:
529  ///    %0:gr32 = someinst, debug-instr-number 1
530  ///    %1:gr16 = %0.some_16_bit_subreg, debug-instr-number 2
531  /// Would receive the substitution {{2, 0}, {1, 0}, $subreg}, where $subreg is
532  /// the subregister number for some_16_bit_subreg.
533  class DebugSubstitution {
534  public:
535    DebugInstrOperandPair Src;  ///< Source instruction / operand pair.
536    DebugInstrOperandPair Dest; ///< Replacement instruction / operand pair.
537    unsigned Subreg;            ///< Qualifier for which part of Dest is read.
538
539    DebugSubstitution(const DebugInstrOperandPair &Src,
540                      const DebugInstrOperandPair &Dest, unsigned Subreg)
541        : Src(Src), Dest(Dest), Subreg(Subreg) {}
542
543    /// Order only by source instruction / operand pair: there should never
544    /// be duplicate entries for the same source in any collection.
545    bool operator<(const DebugSubstitution &Other) const {
546      return Src < Other.Src;
547    }
548  };
549
550  /// Debug value substitutions: a collection of DebugSubstitution objects,
551  /// recording changes in where a value is defined. For example, when one
552  /// instruction is substituted for another. Keeping a record allows recovery
553  /// of variable locations after compilation finishes.
554  SmallVector<DebugSubstitution, 8> DebugValueSubstitutions;
555
556  /// Location of a PHI instruction that is also a debug-info variable value,
557  /// for the duration of register allocation. Loaded by the PHI-elimination
558  /// pass, and emitted as DBG_PHI instructions during VirtRegRewriter, with
559  /// maintenance applied by intermediate passes that edit registers (such as
560  /// coalescing and the allocator passes).
561  class DebugPHIRegallocPos {
562  public:
563    MachineBasicBlock *MBB; ///< Block where this PHI was originally located.
564    Register Reg;           ///< VReg where the control-flow-merge happens.
565    unsigned SubReg;        ///< Optional subreg qualifier within Reg.
566    DebugPHIRegallocPos(MachineBasicBlock *MBB, Register Reg, unsigned SubReg)
567        : MBB(MBB), Reg(Reg), SubReg(SubReg) {}
568  };
569
570  /// Map of debug instruction numbers to the position of their PHI instructions
571  /// during register allocation. See DebugPHIRegallocPos.
572  DenseMap<unsigned, DebugPHIRegallocPos> DebugPHIPositions;
573
574  /// Flag for whether this function contains DBG_VALUEs (false) or
575  /// DBG_INSTR_REF (true).
576  bool UseDebugInstrRef = false;
577
578  /// Create a substitution between one <instr,operand> value to a different,
579  /// new value.
580  void makeDebugValueSubstitution(DebugInstrOperandPair, DebugInstrOperandPair,
581                                  unsigned SubReg = 0);
582
583  /// Create substitutions for any tracked values in \p Old, to point at
584  /// \p New. Needed when we re-create an instruction during optimization,
585  /// which has the same signature (i.e., def operands in the same place) but
586  /// a modified instruction type, flags, or otherwise. An example: X86 moves
587  /// are sometimes transformed into equivalent LEAs.
588  /// If the two instructions are not the same opcode, limit which operands to
589  /// examine for substitutions to the first N operands by setting
590  /// \p MaxOperand.
591  void substituteDebugValuesForInst(const MachineInstr &Old, MachineInstr &New,
592                                    unsigned MaxOperand = UINT_MAX);
593
594  /// Find the underlying  defining instruction / operand for a COPY instruction
595  /// while in SSA form. Copies do not actually define values -- they move them
596  /// between registers. Labelling a COPY-like instruction with an instruction
597  /// number is to be avoided as it makes value numbers non-unique later in
598  /// compilation. This method follows the definition chain for any sequence of
599  /// COPY-like instructions to find whatever non-COPY-like instruction defines
600  /// the copied value; or for parameters, creates a DBG_PHI on entry.
601  /// May insert instructions into the entry block!
602  /// \p MI The copy-like instruction to salvage.
603  /// \p DbgPHICache A container to cache already-solved COPYs.
604  /// \returns An instruction/operand pair identifying the defining value.
605  DebugInstrOperandPair
606  salvageCopySSA(MachineInstr &MI,
607                 DenseMap<Register, DebugInstrOperandPair> &DbgPHICache);
608
609  DebugInstrOperandPair salvageCopySSAImpl(MachineInstr &MI);
610
611  /// Finalise any partially emitted debug instructions. These are DBG_INSTR_REF
612  /// instructions where we only knew the vreg of the value they use, not the
613  /// instruction that defines that vreg. Once isel finishes, we should have
614  /// enough information for every DBG_INSTR_REF to point at an instruction
615  /// (or DBG_PHI).
616  void finalizeDebugInstrRefs();
617
618  /// Determine whether, in the current machine configuration, we should use
619  /// instruction referencing or not.
620  bool shouldUseDebugInstrRef() const;
621
622  /// Returns true if the function's variable locations are tracked with
623  /// instruction referencing.
624  bool useDebugInstrRef() const;
625
626  /// Set whether this function will use instruction referencing or not.
627  void setUseDebugInstrRef(bool UseInstrRef);
628
629  /// A reserved operand number representing the instructions memory operand,
630  /// for instructions that have a stack spill fused into them.
631  const static unsigned int DebugOperandMemNumber;
632
633  MachineFunction(Function &F, const LLVMTargetMachine &Target,
634                  const TargetSubtargetInfo &STI, unsigned FunctionNum,
635                  MachineModuleInfo &MMI);
636  MachineFunction(const MachineFunction &) = delete;
637  MachineFunction &operator=(const MachineFunction &) = delete;
638  ~MachineFunction();
639
640  /// Reset the instance as if it was just created.
641  void reset() {
642    clear();
643    init();
644  }
645
646  /// Reset the currently registered delegate - otherwise assert.
647  void resetDelegate(Delegate *delegate) {
648    assert(TheDelegate == delegate &&
649           "Only the current delegate can perform reset!");
650    TheDelegate = nullptr;
651  }
652
653  /// Set the delegate. resetDelegate must be called before attempting
654  /// to set.
655  void setDelegate(Delegate *delegate) {
656    assert(delegate && !TheDelegate &&
657           "Attempted to set delegate to null, or to change it without "
658           "first resetting it!");
659
660    TheDelegate = delegate;
661  }
662
663  void setObserver(GISelChangeObserver *O) { Observer = O; }
664
665  GISelChangeObserver *getObserver() const { return Observer; }
666
667  MachineModuleInfo &getMMI() const { return MMI; }
668  MCContext &getContext() const { return Ctx; }
669
670  /// Returns the Section this function belongs to.
671  MCSection *getSection() const { return Section; }
672
673  /// Indicates the Section this function belongs to.
674  void setSection(MCSection *S) { Section = S; }
675
676  PseudoSourceValueManager &getPSVManager() const { return *PSVManager; }
677
678  /// Return the DataLayout attached to the Module associated to this MF.
679  const DataLayout &getDataLayout() const;
680
681  /// Return the LLVM function that this machine code represents
682  Function &getFunction() { return F; }
683
684  /// Return the LLVM function that this machine code represents
685  const Function &getFunction() const { return F; }
686
687  /// getName - Return the name of the corresponding LLVM function.
688  StringRef getName() const;
689
690  /// getFunctionNumber - Return a unique ID for the current function.
691  unsigned getFunctionNumber() const { return FunctionNumber; }
692
693  /// Returns true if this function has basic block sections enabled.
694  bool hasBBSections() const {
695    return (BBSectionsType == BasicBlockSection::All ||
696            BBSectionsType == BasicBlockSection::List ||
697            BBSectionsType == BasicBlockSection::Preset);
698  }
699
700  /// Returns true if basic block labels are to be generated for this function.
701  bool hasBBLabels() const {
702    return BBSectionsType == BasicBlockSection::Labels;
703  }
704
705  void setBBSectionsType(BasicBlockSection V) { BBSectionsType = V; }
706
707  /// Assign IsBeginSection IsEndSection fields for basic blocks in this
708  /// function.
709  void assignBeginEndSections();
710
711  /// getTarget - Return the target machine this machine code is compiled with
712  const LLVMTargetMachine &getTarget() const { return Target; }
713
714  /// getSubtarget - Return the subtarget for which this machine code is being
715  /// compiled.
716  const TargetSubtargetInfo &getSubtarget() const { return *STI; }
717
718  /// getSubtarget - This method returns a pointer to the specified type of
719  /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
720  /// returned is of the correct type.
721  template<typename STC> const STC &getSubtarget() const {
722    return *static_cast<const STC *>(STI);
723  }
724
725  /// getRegInfo - Return information about the registers currently in use.
726  MachineRegisterInfo &getRegInfo() { return *RegInfo; }
727  const MachineRegisterInfo &getRegInfo() const { return *RegInfo; }
728
729  /// getFrameInfo - Return the frame info object for the current function.
730  /// This object contains information about objects allocated on the stack
731  /// frame of the current function in an abstract way.
732  MachineFrameInfo &getFrameInfo() { return *FrameInfo; }
733  const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; }
734
735  /// getJumpTableInfo - Return the jump table info object for the current
736  /// function.  This object contains information about jump tables in the
737  /// current function.  If the current function has no jump tables, this will
738  /// return null.
739  const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; }
740  MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; }
741
742  /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it
743  /// does already exist, allocate one.
744  MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind);
745
746  /// getConstantPool - Return the constant pool object for the current
747  /// function.
748  MachineConstantPool *getConstantPool() { return ConstantPool; }
749  const MachineConstantPool *getConstantPool() const { return ConstantPool; }
750
751  /// getWasmEHFuncInfo - Return information about how the current function uses
752  /// Wasm exception handling. Returns null for functions that don't use wasm
753  /// exception handling.
754  const WasmEHFuncInfo *getWasmEHFuncInfo() const { return WasmEHInfo; }
755  WasmEHFuncInfo *getWasmEHFuncInfo() { return WasmEHInfo; }
756
757  /// getWinEHFuncInfo - Return information about how the current function uses
758  /// Windows exception handling. Returns null for functions that don't use
759  /// funclets for exception handling.
760  const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; }
761  WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; }
762
763  /// getAlignment - Return the alignment of the function.
764  Align getAlignment() const { return Alignment; }
765
766  /// setAlignment - Set the alignment of the function.
767  void setAlignment(Align A) { Alignment = A; }
768
769  /// ensureAlignment - Make sure the function is at least A bytes aligned.
770  void ensureAlignment(Align A) {
771    if (Alignment < A)
772      Alignment = A;
773  }
774
775  /// exposesReturnsTwice - Returns true if the function calls setjmp or
776  /// any other similar functions with attribute "returns twice" without
777  /// having the attribute itself.
778  bool exposesReturnsTwice() const {
779    return ExposesReturnsTwice;
780  }
781
782  /// setCallsSetJmp - Set a flag that indicates if there's a call to
783  /// a "returns twice" function.
784  void setExposesReturnsTwice(bool B) {
785    ExposesReturnsTwice = B;
786  }
787
788  /// Returns true if the function contains any inline assembly.
789  bool hasInlineAsm() const {
790    return HasInlineAsm;
791  }
792
793  /// Set a flag that indicates that the function contains inline assembly.
794  void setHasInlineAsm(bool B) {
795    HasInlineAsm = B;
796  }
797
798  bool hasWinCFI() const {
799    return HasWinCFI;
800  }
801  void setHasWinCFI(bool v) { HasWinCFI = v; }
802
803  /// True if this function needs frame moves for debug or exceptions.
804  bool needsFrameMoves() const;
805
806  /// Get the function properties
807  const MachineFunctionProperties &getProperties() const { return Properties; }
808  MachineFunctionProperties &getProperties() { return Properties; }
809
810  /// getInfo - Keep track of various per-function pieces of information for
811  /// backends that would like to do so.
812  ///
813  template<typename Ty>
814  Ty *getInfo() {
815    return static_cast<Ty*>(MFInfo);
816  }
817
818  template<typename Ty>
819  const Ty *getInfo() const {
820    return static_cast<const Ty *>(MFInfo);
821  }
822
823  template <typename Ty> Ty *cloneInfo(const Ty &Old) {
824    assert(!MFInfo);
825    MFInfo = Ty::template create<Ty>(Allocator, Old);
826    return static_cast<Ty *>(MFInfo);
827  }
828
829  /// Initialize the target specific MachineFunctionInfo
830  void initTargetMachineFunctionInfo(const TargetSubtargetInfo &STI);
831
832  MachineFunctionInfo *cloneInfoFrom(
833      const MachineFunction &OrigMF,
834      const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB) {
835    assert(!MFInfo && "new function already has MachineFunctionInfo");
836    if (!OrigMF.MFInfo)
837      return nullptr;
838    return OrigMF.MFInfo->clone(Allocator, *this, Src2DstMBB);
839  }
840
841  /// Returns the denormal handling type for the default rounding mode of the
842  /// function.
843  DenormalMode getDenormalMode(const fltSemantics &FPType) const;
844
845  /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they
846  /// are inserted into the machine function.  The block number for a machine
847  /// basic block can be found by using the MBB::getNumber method, this method
848  /// provides the inverse mapping.
849  MachineBasicBlock *getBlockNumbered(unsigned N) const {
850    assert(N < MBBNumbering.size() && "Illegal block number");
851    assert(MBBNumbering[N] && "Block was removed from the machine function!");
852    return MBBNumbering[N];
853  }
854
855  /// Should we be emitting segmented stack stuff for the function
856  bool shouldSplitStack() const;
857
858  /// getNumBlockIDs - Return the number of MBB ID's allocated.
859  unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); }
860
861  /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
862  /// recomputes them.  This guarantees that the MBB numbers are sequential,
863  /// dense, and match the ordering of the blocks within the function.  If a
864  /// specific MachineBasicBlock is specified, only that block and those after
865  /// it are renumbered.
866  void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr);
867
868  /// print - Print out the MachineFunction in a format suitable for debugging
869  /// to the specified stream.
870  void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
871
872  /// viewCFG - This function is meant for use from the debugger.  You can just
873  /// say 'call F->viewCFG()' and a ghostview window should pop up from the
874  /// program, displaying the CFG of the current function with the code for each
875  /// basic block inside.  This depends on there being a 'dot' and 'gv' program
876  /// in your path.
877  void viewCFG() const;
878
879  /// viewCFGOnly - This function is meant for use from the debugger.  It works
880  /// just like viewCFG, but it does not include the contents of basic blocks
881  /// into the nodes, just the label.  If you are only interested in the CFG
882  /// this can make the graph smaller.
883  ///
884  void viewCFGOnly() const;
885
886  /// dump - Print the current MachineFunction to cerr, useful for debugger use.
887  void dump() const;
888
889  /// Run the current MachineFunction through the machine code verifier, useful
890  /// for debugger use.
891  /// \returns true if no problems were found.
892  bool verify(Pass *p = nullptr, const char *Banner = nullptr,
893              bool AbortOnError = true) const;
894
895  /// Run the current MachineFunction through the machine code verifier, useful
896  /// for debugger use.
897  /// \returns true if no problems were found.
898  bool verify(LiveIntervals *LiveInts, SlotIndexes *Indexes,
899              const char *Banner = nullptr, bool AbortOnError = true) const;
900
901  // Provide accessors for the MachineBasicBlock list...
902  using iterator = BasicBlockListType::iterator;
903  using const_iterator = BasicBlockListType::const_iterator;
904  using const_reverse_iterator = BasicBlockListType::const_reverse_iterator;
905  using reverse_iterator = BasicBlockListType::reverse_iterator;
906
907  /// Support for MachineBasicBlock::getNextNode().
908  static BasicBlockListType MachineFunction::*
909  getSublistAccess(MachineBasicBlock *) {
910    return &MachineFunction::BasicBlocks;
911  }
912
913  /// addLiveIn - Add the specified physical register as a live-in value and
914  /// create a corresponding virtual register for it.
915  Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC);
916
917  //===--------------------------------------------------------------------===//
918  // BasicBlock accessor functions.
919  //
920  iterator                 begin()       { return BasicBlocks.begin(); }
921  const_iterator           begin() const { return BasicBlocks.begin(); }
922  iterator                 end  ()       { return BasicBlocks.end();   }
923  const_iterator           end  () const { return BasicBlocks.end();   }
924
925  reverse_iterator        rbegin()       { return BasicBlocks.rbegin(); }
926  const_reverse_iterator  rbegin() const { return BasicBlocks.rbegin(); }
927  reverse_iterator        rend  ()       { return BasicBlocks.rend();   }
928  const_reverse_iterator  rend  () const { return BasicBlocks.rend();   }
929
930  unsigned                  size() const { return (unsigned)BasicBlocks.size();}
931  bool                     empty() const { return BasicBlocks.empty(); }
932  const MachineBasicBlock &front() const { return BasicBlocks.front(); }
933        MachineBasicBlock &front()       { return BasicBlocks.front(); }
934  const MachineBasicBlock & back() const { return BasicBlocks.back(); }
935        MachineBasicBlock & back()       { return BasicBlocks.back(); }
936
937  void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); }
938  void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); }
939  void insert(iterator MBBI, MachineBasicBlock *MBB) {
940    BasicBlocks.insert(MBBI, MBB);
941  }
942  void splice(iterator InsertPt, iterator MBBI) {
943    BasicBlocks.splice(InsertPt, BasicBlocks, MBBI);
944  }
945  void splice(iterator InsertPt, MachineBasicBlock *MBB) {
946    BasicBlocks.splice(InsertPt, BasicBlocks, MBB);
947  }
948  void splice(iterator InsertPt, iterator MBBI, iterator MBBE) {
949    BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE);
950  }
951
952  void remove(iterator MBBI) { BasicBlocks.remove(MBBI); }
953  void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); }
954  void erase(iterator MBBI) { BasicBlocks.erase(MBBI); }
955  void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); }
956
957  template <typename Comp>
958  void sort(Comp comp) {
959    BasicBlocks.sort(comp);
960  }
961
962  /// Return the number of \p MachineInstrs in this \p MachineFunction.
963  unsigned getInstructionCount() const {
964    unsigned InstrCount = 0;
965    for (const MachineBasicBlock &MBB : BasicBlocks)
966      InstrCount += MBB.size();
967    return InstrCount;
968  }
969
970  //===--------------------------------------------------------------------===//
971  // Internal functions used to automatically number MachineBasicBlocks
972
973  /// Adds the MBB to the internal numbering. Returns the unique number
974  /// assigned to the MBB.
975  unsigned addToMBBNumbering(MachineBasicBlock *MBB) {
976    MBBNumbering.push_back(MBB);
977    return (unsigned)MBBNumbering.size()-1;
978  }
979
980  /// removeFromMBBNumbering - Remove the specific machine basic block from our
981  /// tracker, this is only really to be used by the MachineBasicBlock
982  /// implementation.
983  void removeFromMBBNumbering(unsigned N) {
984    assert(N < MBBNumbering.size() && "Illegal basic block #");
985    MBBNumbering[N] = nullptr;
986  }
987
988  /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
989  /// of `new MachineInstr'.
990  MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL,
991                                   bool NoImplicit = false);
992
993  /// Create a new MachineInstr which is a copy of \p Orig, identical in all
994  /// ways except the instruction has no parent, prev, or next. Bundling flags
995  /// are reset.
996  ///
997  /// Note: Clones a single instruction, not whole instruction bundles.
998  /// Does not perform target specific adjustments; consider using
999  /// TargetInstrInfo::duplicate() instead.
1000  MachineInstr *CloneMachineInstr(const MachineInstr *Orig);
1001
1002  /// Clones instruction or the whole instruction bundle \p Orig and insert
1003  /// into \p MBB before \p InsertBefore.
1004  ///
1005  /// Note: Does not perform target specific adjustments; consider using
1006  /// TargetInstrInfo::duplicate() intead.
1007  MachineInstr &
1008  cloneMachineInstrBundle(MachineBasicBlock &MBB,
1009                          MachineBasicBlock::iterator InsertBefore,
1010                          const MachineInstr &Orig);
1011
1012  /// DeleteMachineInstr - Delete the given MachineInstr.
1013  void deleteMachineInstr(MachineInstr *MI);
1014
1015  /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
1016  /// instead of `new MachineBasicBlock'. Sets `MachineBasicBlock::BBID` if
1017  /// basic-block-sections is enabled for the function.
1018  MachineBasicBlock *
1019  CreateMachineBasicBlock(const BasicBlock *BB = nullptr,
1020                          std::optional<UniqueBBID> BBID = std::nullopt);
1021
1022  /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
1023  void deleteMachineBasicBlock(MachineBasicBlock *MBB);
1024
1025  /// getMachineMemOperand - Allocate a new MachineMemOperand.
1026  /// MachineMemOperands are owned by the MachineFunction and need not be
1027  /// explicitly deallocated.
1028  MachineMemOperand *getMachineMemOperand(
1029      MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
1030      Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(),
1031      const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System,
1032      AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
1033      AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
1034
1035  MachineMemOperand *getMachineMemOperand(
1036      MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
1037      Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(),
1038      const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System,
1039      AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
1040      AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
1041
1042  /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
1043  /// an existing one, adjusting by an offset and using the given size.
1044  /// MachineMemOperands are owned by the MachineFunction and need not be
1045  /// explicitly deallocated.
1046  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1047                                          int64_t Offset, LLT Ty);
1048  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1049                                          int64_t Offset, uint64_t Size) {
1050    return getMachineMemOperand(
1051        MMO, Offset, Size == ~UINT64_C(0) ? LLT() : LLT::scalar(8 * Size));
1052  }
1053
1054  /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
1055  /// an existing one, replacing only the MachinePointerInfo and size.
1056  /// MachineMemOperands are owned by the MachineFunction and need not be
1057  /// explicitly deallocated.
1058  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1059                                          const MachinePointerInfo &PtrInfo,
1060                                          uint64_t Size);
1061  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1062                                          const MachinePointerInfo &PtrInfo,
1063                                          LLT Ty);
1064
1065  /// Allocate a new MachineMemOperand by copying an existing one,
1066  /// replacing only AliasAnalysis information. MachineMemOperands are owned
1067  /// by the MachineFunction and need not be explicitly deallocated.
1068  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1069                                          const AAMDNodes &AAInfo);
1070
1071  /// Allocate a new MachineMemOperand by copying an existing one,
1072  /// replacing the flags. MachineMemOperands are owned
1073  /// by the MachineFunction and need not be explicitly deallocated.
1074  MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1075                                          MachineMemOperand::Flags Flags);
1076
1077  using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
1078
1079  /// Allocate an array of MachineOperands. This is only intended for use by
1080  /// internal MachineInstr functions.
1081  MachineOperand *allocateOperandArray(OperandCapacity Cap) {
1082    return OperandRecycler.allocate(Cap, Allocator);
1083  }
1084
1085  /// Dellocate an array of MachineOperands and recycle the memory. This is
1086  /// only intended for use by internal MachineInstr functions.
1087  /// Cap must be the same capacity that was used to allocate the array.
1088  void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) {
1089    OperandRecycler.deallocate(Cap, Array);
1090  }
1091
1092  /// Allocate and initialize a register mask with @p NumRegister bits.
1093  uint32_t *allocateRegMask();
1094
1095  ArrayRef<int> allocateShuffleMask(ArrayRef<int> Mask);
1096
1097  /// Allocate and construct an extra info structure for a `MachineInstr`.
1098  ///
1099  /// This is allocated on the function's allocator and so lives the life of
1100  /// the function.
1101  MachineInstr::ExtraInfo *createMIExtraInfo(
1102      ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol = nullptr,
1103      MCSymbol *PostInstrSymbol = nullptr, MDNode *HeapAllocMarker = nullptr,
1104      MDNode *PCSections = nullptr, uint32_t CFIType = 0);
1105
1106  /// Allocate a string and populate it with the given external symbol name.
1107  const char *createExternalSymbolName(StringRef Name);
1108
1109  //===--------------------------------------------------------------------===//
1110  // Label Manipulation.
1111
1112  /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
1113  /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
1114  /// normal 'L' label is returned.
1115  MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx,
1116                         bool isLinkerPrivate = false) const;
1117
1118  /// getPICBaseSymbol - Return a function-local symbol to represent the PIC
1119  /// base.
1120  MCSymbol *getPICBaseSymbol() const;
1121
1122  /// Returns a reference to a list of cfi instructions in the function's
1123  /// prologue.  Used to construct frame maps for debug and exception handling
1124  /// comsumers.
1125  const std::vector<MCCFIInstruction> &getFrameInstructions() const {
1126    return FrameInstructions;
1127  }
1128
1129  [[nodiscard]] unsigned addFrameInst(const MCCFIInstruction &Inst);
1130
1131  /// Returns a reference to a list of symbols immediately following calls to
1132  /// _setjmp in the function. Used to construct the longjmp target table used
1133  /// by Windows Control Flow Guard.
1134  const std::vector<MCSymbol *> &getLongjmpTargets() const {
1135    return LongjmpTargets;
1136  }
1137
1138  /// Add the specified symbol to the list of valid longjmp targets for Windows
1139  /// Control Flow Guard.
1140  void addLongjmpTarget(MCSymbol *Target) { LongjmpTargets.push_back(Target); }
1141
1142  /// Returns a reference to a list of symbols that we have catchrets.
1143  /// Used to construct the catchret target table used by Windows EHCont Guard.
1144  const std::vector<MCSymbol *> &getCatchretTargets() const {
1145    return CatchretTargets;
1146  }
1147
1148  /// Add the specified symbol to the list of valid catchret targets for Windows
1149  /// EHCont Guard.
1150  void addCatchretTarget(MCSymbol *Target) {
1151    CatchretTargets.push_back(Target);
1152  }
1153
1154  /// \name Exception Handling
1155  /// \{
1156
1157  bool callsEHReturn() const { return CallsEHReturn; }
1158  void setCallsEHReturn(bool b) { CallsEHReturn = b; }
1159
1160  bool callsUnwindInit() const { return CallsUnwindInit; }
1161  void setCallsUnwindInit(bool b) { CallsUnwindInit = b; }
1162
1163  bool hasEHCatchret() const { return HasEHCatchret; }
1164  void setHasEHCatchret(bool V) { HasEHCatchret = V; }
1165
1166  bool hasEHScopes() const { return HasEHScopes; }
1167  void setHasEHScopes(bool V) { HasEHScopes = V; }
1168
1169  bool hasEHFunclets() const { return HasEHFunclets; }
1170  void setHasEHFunclets(bool V) { HasEHFunclets = V; }
1171
1172  bool isOutlined() const { return IsOutlined; }
1173  void setIsOutlined(bool V) { IsOutlined = V; }
1174
1175  /// Find or create an LandingPadInfo for the specified MachineBasicBlock.
1176  LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad);
1177
1178  /// Return a reference to the landing pad info for the current function.
1179  const std::vector<LandingPadInfo> &getLandingPads() const {
1180    return LandingPads;
1181  }
1182
1183  /// Provide the begin and end labels of an invoke style call and associate it
1184  /// with a try landing pad block.
1185  void addInvoke(MachineBasicBlock *LandingPad,
1186                 MCSymbol *BeginLabel, MCSymbol *EndLabel);
1187
1188  /// Add a new panding pad, and extract the exception handling information from
1189  /// the landingpad instruction. Returns the label ID for the landing pad
1190  /// entry.
1191  MCSymbol *addLandingPad(MachineBasicBlock *LandingPad);
1192
1193  /// Return the type id for the specified typeinfo.  This is function wide.
1194  unsigned getTypeIDFor(const GlobalValue *TI);
1195
1196  /// Return the id of the filter encoded by TyIds.  This is function wide.
1197  int getFilterIDFor(ArrayRef<unsigned> TyIds);
1198
1199  /// Map the landing pad's EH symbol to the call site indexes.
1200  void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites);
1201
1202  /// Return if there is any wasm exception handling.
1203  bool hasAnyWasmLandingPadIndex() const {
1204    return !WasmLPadToIndexMap.empty();
1205  }
1206
1207  /// Map the landing pad to its index. Used for Wasm exception handling.
1208  void setWasmLandingPadIndex(const MachineBasicBlock *LPad, unsigned Index) {
1209    WasmLPadToIndexMap[LPad] = Index;
1210  }
1211
1212  /// Returns true if the landing pad has an associate index in wasm EH.
1213  bool hasWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
1214    return WasmLPadToIndexMap.count(LPad);
1215  }
1216
1217  /// Get the index in wasm EH for a given landing pad.
1218  unsigned getWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
1219    assert(hasWasmLandingPadIndex(LPad));
1220    return WasmLPadToIndexMap.lookup(LPad);
1221  }
1222
1223  bool hasAnyCallSiteLandingPad() const {
1224    return !LPadToCallSiteMap.empty();
1225  }
1226
1227  /// Get the call site indexes for a landing pad EH symbol.
1228  SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) {
1229    assert(hasCallSiteLandingPad(Sym) &&
1230           "missing call site number for landing pad!");
1231    return LPadToCallSiteMap[Sym];
1232  }
1233
1234  /// Return true if the landing pad Eh symbol has an associated call site.
1235  bool hasCallSiteLandingPad(MCSymbol *Sym) {
1236    return !LPadToCallSiteMap[Sym].empty();
1237  }
1238
1239  bool hasAnyCallSiteLabel() const {
1240    return !CallSiteMap.empty();
1241  }
1242
1243  /// Map the begin label for a call site.
1244  void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) {
1245    CallSiteMap[BeginLabel] = Site;
1246  }
1247
1248  /// Get the call site number for a begin label.
1249  unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const {
1250    assert(hasCallSiteBeginLabel(BeginLabel) &&
1251           "Missing call site number for EH_LABEL!");
1252    return CallSiteMap.lookup(BeginLabel);
1253  }
1254
1255  /// Return true if the begin label has a call site number associated with it.
1256  bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const {
1257    return CallSiteMap.count(BeginLabel);
1258  }
1259
1260  /// Record annotations associated with a particular label.
1261  void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD) {
1262    CodeViewAnnotations.push_back({Label, MD});
1263  }
1264
1265  ArrayRef<std::pair<MCSymbol *, MDNode *>> getCodeViewAnnotations() const {
1266    return CodeViewAnnotations;
1267  }
1268
1269  /// Return a reference to the C++ typeinfo for the current function.
1270  const std::vector<const GlobalValue *> &getTypeInfos() const {
1271    return TypeInfos;
1272  }
1273
1274  /// Return a reference to the typeids encoding filters used in the current
1275  /// function.
1276  const std::vector<unsigned> &getFilterIds() const {
1277    return FilterIds;
1278  }
1279
1280  /// \}
1281
1282  /// Collect information used to emit debugging information of a variable in a
1283  /// stack slot.
1284  void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
1285                          int Slot, const DILocation *Loc) {
1286    VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc);
1287  }
1288
1289  /// Collect information used to emit debugging information of a variable in
1290  /// the entry value of a register.
1291  void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
1292                          MCRegister Reg, const DILocation *Loc) {
1293    VariableDbgInfos.emplace_back(Var, Expr, Reg, Loc);
1294  }
1295
1296  VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; }
1297  const VariableDbgInfoMapTy &getVariableDbgInfo() const {
1298    return VariableDbgInfos;
1299  }
1300
1301  /// Returns the collection of variables for which we have debug info and that
1302  /// have been assigned a stack slot.
1303  auto getInStackSlotVariableDbgInfo() {
1304    return make_filter_range(getVariableDbgInfo(), [](auto &VarInfo) {
1305      return VarInfo.inStackSlot();
1306    });
1307  }
1308
1309  /// Returns the collection of variables for which we have debug info and that
1310  /// have been assigned a stack slot.
1311  auto getInStackSlotVariableDbgInfo() const {
1312    return make_filter_range(getVariableDbgInfo(), [](const auto &VarInfo) {
1313      return VarInfo.inStackSlot();
1314    });
1315  }
1316
1317  /// Returns the collection of variables for which we have debug info and that
1318  /// have been assigned an entry value register.
1319  auto getEntryValueVariableDbgInfo() const {
1320    return make_filter_range(getVariableDbgInfo(), [](const auto &VarInfo) {
1321      return VarInfo.inEntryValueRegister();
1322    });
1323  }
1324
1325  /// Start tracking the arguments passed to the call \p CallI.
1326  void addCallArgsForwardingRegs(const MachineInstr *CallI,
1327                                 CallSiteInfoImpl &&CallInfo) {
1328    assert(CallI->isCandidateForCallSiteEntry());
1329    bool Inserted =
1330        CallSitesInfo.try_emplace(CallI, std::move(CallInfo)).second;
1331    (void)Inserted;
1332    assert(Inserted && "Call site info not unique");
1333  }
1334
1335  const CallSiteInfoMap &getCallSitesInfo() const {
1336    return CallSitesInfo;
1337  }
1338
1339  /// Following functions update call site info. They should be called before
1340  /// removing, replacing or copying call instruction.
1341
1342  /// Erase the call site info for \p MI. It is used to remove a call
1343  /// instruction from the instruction stream.
1344  void eraseCallSiteInfo(const MachineInstr *MI);
1345  /// Copy the call site info from \p Old to \ New. Its usage is when we are
1346  /// making a copy of the instruction that will be inserted at different point
1347  /// of the instruction stream.
1348  void copyCallSiteInfo(const MachineInstr *Old,
1349                        const MachineInstr *New);
1350
1351  /// Move the call site info from \p Old to \New call site info. This function
1352  /// is used when we are replacing one call instruction with another one to
1353  /// the same callee.
1354  void moveCallSiteInfo(const MachineInstr *Old,
1355                        const MachineInstr *New);
1356
1357  unsigned getNewDebugInstrNum() {
1358    return ++DebugInstrNumberingCount;
1359  }
1360};
1361
1362//===--------------------------------------------------------------------===//
1363// GraphTraits specializations for function basic block graphs (CFGs)
1364//===--------------------------------------------------------------------===//
1365
1366// Provide specializations of GraphTraits to be able to treat a
1367// machine function as a graph of machine basic blocks... these are
1368// the same as the machine basic block iterators, except that the root
1369// node is implicitly the first node of the function.
1370//
1371template <> struct GraphTraits<MachineFunction*> :
1372  public GraphTraits<MachineBasicBlock*> {
1373  static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); }
1374
1375  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
1376  using nodes_iterator = pointer_iterator<MachineFunction::iterator>;
1377
1378  static nodes_iterator nodes_begin(MachineFunction *F) {
1379    return nodes_iterator(F->begin());
1380  }
1381
1382  static nodes_iterator nodes_end(MachineFunction *F) {
1383    return nodes_iterator(F->end());
1384  }
1385
1386  static unsigned       size       (MachineFunction *F) { return F->size(); }
1387};
1388template <> struct GraphTraits<const MachineFunction*> :
1389  public GraphTraits<const MachineBasicBlock*> {
1390  static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); }
1391
1392  // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
1393  using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>;
1394
1395  static nodes_iterator nodes_begin(const MachineFunction *F) {
1396    return nodes_iterator(F->begin());
1397  }
1398
1399  static nodes_iterator nodes_end  (const MachineFunction *F) {
1400    return nodes_iterator(F->end());
1401  }
1402
1403  static unsigned       size       (const MachineFunction *F)  {
1404    return F->size();
1405  }
1406};
1407
1408// Provide specializations of GraphTraits to be able to treat a function as a
1409// graph of basic blocks... and to walk it in inverse order.  Inverse order for
1410// a function is considered to be when traversing the predecessor edges of a BB
1411// instead of the successor edges.
1412//
1413template <> struct GraphTraits<Inverse<MachineFunction*>> :
1414  public GraphTraits<Inverse<MachineBasicBlock*>> {
1415  static NodeRef getEntryNode(Inverse<MachineFunction *> G) {
1416    return &G.Graph->front();
1417  }
1418};
1419template <> struct GraphTraits<Inverse<const MachineFunction*>> :
1420  public GraphTraits<Inverse<const MachineBasicBlock*>> {
1421  static NodeRef getEntryNode(Inverse<const MachineFunction *> G) {
1422    return &G.Graph->front();
1423  }
1424};
1425
1426class MachineFunctionAnalysisManager;
1427void verifyMachineFunction(MachineFunctionAnalysisManager *,
1428                           const std::string &Banner,
1429                           const MachineFunction &MF);
1430
1431} // end namespace llvm
1432
1433#endif // LLVM_CODEGEN_MACHINEFUNCTION_H
1434