1//===- llvm/Analysis/MemoryDependenceAnalysis.h - Memory Deps ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the MemoryDependenceAnalysis analysis pass.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ANALYSIS_MEMORYDEPENDENCEANALYSIS_H
14#define LLVM_ANALYSIS_MEMORYDEPENDENCEANALYSIS_H
15
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/PointerEmbeddedInt.h"
18#include "llvm/ADT/PointerIntPair.h"
19#include "llvm/ADT/PointerSumType.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/MemoryLocation.h"
23#include "llvm/IR/PassManager.h"
24#include "llvm/IR/PredIteratorCache.h"
25#include "llvm/IR/ValueHandle.h"
26#include "llvm/Pass.h"
27#include <optional>
28
29namespace llvm {
30
31class AssumptionCache;
32class BatchAAResults;
33class DominatorTree;
34class PHITransAddr;
35
36/// A memory dependence query can return one of three different answers.
37class MemDepResult {
38  enum DepType {
39    /// Clients of MemDep never see this.
40    ///
41    /// Entries with this marker occur in a LocalDeps map or NonLocalDeps map
42    /// when the instruction they previously referenced was removed from
43    /// MemDep.  In either case, the entry may include an instruction pointer.
44    /// If so, the pointer is an instruction in the block where scanning can
45    /// start from, saving some work.
46    ///
47    /// In a default-constructed MemDepResult object, the type will be Invalid
48    /// and the instruction pointer will be null.
49    Invalid = 0,
50
51    /// This is a dependence on the specified instruction which clobbers the
52    /// desired value.  The pointer member of the MemDepResult pair holds the
53    /// instruction that clobbers the memory.  For example, this occurs when we
54    /// see a may-aliased store to the memory location we care about.
55    ///
56    /// There are several cases that may be interesting here:
57    ///   1. Loads are clobbered by may-alias stores.
58    ///   2. Loads are considered clobbered by partially-aliased loads.  The
59    ///      client may choose to analyze deeper into these cases.
60    Clobber,
61
62    /// This is a dependence on the specified instruction which defines or
63    /// produces the desired memory location.  The pointer member of the
64    /// MemDepResult pair holds the instruction that defines the memory.
65    ///
66    /// Cases of interest:
67    ///   1. This could be a load or store for dependence queries on
68    ///      load/store.  The value loaded or stored is the produced value.
69    ///      Note that the pointer operand may be different than that of the
70    ///      queried pointer due to must aliases and phi translation. Note
71    ///      that the def may not be the same type as the query, the pointers
72    ///      may just be must aliases.
73    ///   2. For loads and stores, this could be an allocation instruction. In
74    ///      this case, the load is loading an undef value or a store is the
75    ///      first store to (that part of) the allocation.
76    ///   3. Dependence queries on calls return Def only when they are readonly
77    ///      calls or memory use intrinsics with identical callees and no
78    ///      intervening clobbers.  No validation is done that the operands to
79    ///      the calls are the same.
80    ///   4. For loads and stores, this could be a select instruction that
81    ///      defines pointer to this memory location. In this case, users can
82    ///      find non-clobbered Defs for both select values that are reaching
83    //       the desired memory location (there is still a guarantee that there
84    //       are no clobbers between analyzed memory location and select).
85    Def,
86
87    /// This marker indicates that the query has no known dependency in the
88    /// specified block.
89    ///
90    /// More detailed state info is encoded in the upper part of the pair (i.e.
91    /// the Instruction*)
92    Other
93  };
94
95  /// If DepType is "Other", the upper part of the sum type is an encoding of
96  /// the following more detailed type information.
97  enum OtherType {
98    /// This marker indicates that the query has no dependency in the specified
99    /// block.
100    ///
101    /// To find out more, the client should query other predecessor blocks.
102    NonLocal = 1,
103    /// This marker indicates that the query has no dependency in the specified
104    /// function.
105    NonFuncLocal,
106    /// This marker indicates that the query dependency is unknown.
107    Unknown
108  };
109
110  using ValueTy = PointerSumType<
111      DepType, PointerSumTypeMember<Invalid, Instruction *>,
112      PointerSumTypeMember<Clobber, Instruction *>,
113      PointerSumTypeMember<Def, Instruction *>,
114      PointerSumTypeMember<Other, PointerEmbeddedInt<OtherType, 3>>>;
115  ValueTy Value;
116
117  explicit MemDepResult(ValueTy V) : Value(V) {}
118
119public:
120  MemDepResult() = default;
121
122  /// get methods: These are static ctor methods for creating various
123  /// MemDepResult kinds.
124  static MemDepResult getDef(Instruction *Inst) {
125    assert(Inst && "Def requires inst");
126    return MemDepResult(ValueTy::create<Def>(Inst));
127  }
128  static MemDepResult getClobber(Instruction *Inst) {
129    assert(Inst && "Clobber requires inst");
130    return MemDepResult(ValueTy::create<Clobber>(Inst));
131  }
132  static MemDepResult getNonLocal() {
133    return MemDepResult(ValueTy::create<Other>(NonLocal));
134  }
135  static MemDepResult getNonFuncLocal() {
136    return MemDepResult(ValueTy::create<Other>(NonFuncLocal));
137  }
138  static MemDepResult getUnknown() {
139    return MemDepResult(ValueTy::create<Other>(Unknown));
140  }
141
142  /// Tests if this MemDepResult represents a query that is an instruction
143  /// clobber dependency.
144  bool isClobber() const { return Value.is<Clobber>(); }
145
146  /// Tests if this MemDepResult represents a query that is an instruction
147  /// definition dependency.
148  bool isDef() const { return Value.is<Def>(); }
149
150  /// Tests if this MemDepResult represents a valid local query (Clobber/Def).
151  bool isLocal() const { return isClobber() || isDef(); }
152
153  /// Tests if this MemDepResult represents a query that is transparent to the
154  /// start of the block, but where a non-local hasn't been done.
155  bool isNonLocal() const {
156    return Value.is<Other>() && Value.cast<Other>() == NonLocal;
157  }
158
159  /// Tests if this MemDepResult represents a query that is transparent to the
160  /// start of the function.
161  bool isNonFuncLocal() const {
162    return Value.is<Other>() && Value.cast<Other>() == NonFuncLocal;
163  }
164
165  /// Tests if this MemDepResult represents a query which cannot and/or will
166  /// not be computed.
167  bool isUnknown() const {
168    return Value.is<Other>() && Value.cast<Other>() == Unknown;
169  }
170
171  /// If this is a normal dependency, returns the instruction that is depended
172  /// on.  Otherwise, returns null.
173  Instruction *getInst() const {
174    switch (Value.getTag()) {
175    case Invalid:
176      return Value.cast<Invalid>();
177    case Clobber:
178      return Value.cast<Clobber>();
179    case Def:
180      return Value.cast<Def>();
181    case Other:
182      return nullptr;
183    }
184    llvm_unreachable("Unknown discriminant!");
185  }
186
187  bool operator==(const MemDepResult &M) const { return Value == M.Value; }
188  bool operator!=(const MemDepResult &M) const { return Value != M.Value; }
189  bool operator<(const MemDepResult &M) const { return Value < M.Value; }
190  bool operator>(const MemDepResult &M) const { return Value > M.Value; }
191
192private:
193  friend class MemoryDependenceResults;
194
195  /// Tests if this is a MemDepResult in its dirty/invalid. state.
196  bool isDirty() const { return Value.is<Invalid>(); }
197
198  static MemDepResult getDirty(Instruction *Inst) {
199    return MemDepResult(ValueTy::create<Invalid>(Inst));
200  }
201};
202
203/// This is an entry in the NonLocalDepInfo cache.
204///
205/// For each BasicBlock (the BB entry) it keeps a MemDepResult.
206class NonLocalDepEntry {
207  BasicBlock *BB;
208  MemDepResult Result;
209
210public:
211  NonLocalDepEntry(BasicBlock *BB, MemDepResult Result)
212      : BB(BB), Result(Result) {}
213
214  // This is used for searches.
215  NonLocalDepEntry(BasicBlock *BB) : BB(BB) {}
216
217  // BB is the sort key, it can't be changed.
218  BasicBlock *getBB() const { return BB; }
219
220  void setResult(const MemDepResult &R) { Result = R; }
221
222  const MemDepResult &getResult() const { return Result; }
223
224  bool operator<(const NonLocalDepEntry &RHS) const { return BB < RHS.BB; }
225};
226
227/// This is a result from a NonLocal dependence query.
228///
229/// For each BasicBlock (the BB entry) it keeps a MemDepResult and the
230/// (potentially phi translated) address that was live in the block.
231class NonLocalDepResult {
232  NonLocalDepEntry Entry;
233  Value *Address;
234
235public:
236  NonLocalDepResult(BasicBlock *BB, MemDepResult Result, Value *Address)
237      : Entry(BB, Result), Address(Address) {}
238
239  // BB is the sort key, it can't be changed.
240  BasicBlock *getBB() const { return Entry.getBB(); }
241
242  void setResult(const MemDepResult &R, Value *Addr) {
243    Entry.setResult(R);
244    Address = Addr;
245  }
246
247  const MemDepResult &getResult() const { return Entry.getResult(); }
248
249  /// Returns the address of this pointer in this block.
250  ///
251  /// This can be different than the address queried for the non-local result
252  /// because of phi translation.  This returns null if the address was not
253  /// available in a block (i.e. because phi translation failed) or if this is
254  /// a cached result and that address was deleted.
255  ///
256  /// The address is always null for a non-local 'call' dependence.
257  Value *getAddress() const { return Address; }
258};
259
260/// Provides a lazy, caching interface for making common memory aliasing
261/// information queries, backed by LLVM's alias analysis passes.
262///
263/// The dependency information returned is somewhat unusual, but is pragmatic.
264/// If queried about a store or call that might modify memory, the analysis
265/// will return the instruction[s] that may either load from that memory or
266/// store to it.  If queried with a load or call that can never modify memory,
267/// the analysis will return calls and stores that might modify the pointer,
268/// but generally does not return loads unless a) they are volatile, or
269/// b) they load from *must-aliased* pointers.  Returning a dependence on
270/// must-alias'd pointers instead of all pointers interacts well with the
271/// internal caching mechanism.
272class MemoryDependenceResults {
273  // A map from instructions to their dependency.
274  using LocalDepMapType = DenseMap<Instruction *, MemDepResult>;
275  LocalDepMapType LocalDeps;
276
277public:
278  using NonLocalDepInfo = std::vector<NonLocalDepEntry>;
279
280private:
281  /// A pair<Value*, bool> where the bool is true if the dependence is a read
282  /// only dependence, false if read/write.
283  using ValueIsLoadPair = PointerIntPair<const Value *, 1, bool>;
284
285  /// This pair is used when caching information for a block.
286  ///
287  /// If the pointer is null, the cache value is not a full query that starts
288  /// at the specified block.  If non-null, the bool indicates whether or not
289  /// the contents of the block was skipped.
290  using BBSkipFirstBlockPair = PointerIntPair<BasicBlock *, 1, bool>;
291
292  /// This record is the information kept for each (value, is load) pair.
293  struct NonLocalPointerInfo {
294    /// The pair of the block and the skip-first-block flag.
295    BBSkipFirstBlockPair Pair;
296    /// The results of the query for each relevant block.
297    NonLocalDepInfo NonLocalDeps;
298    /// The maximum size of the dereferences of the pointer.
299    ///
300    /// May be UnknownSize if the sizes are unknown.
301    LocationSize Size = LocationSize::afterPointer();
302    /// The AA tags associated with dereferences of the pointer.
303    ///
304    /// The members may be null if there are no tags or conflicting tags.
305    AAMDNodes AATags;
306
307    NonLocalPointerInfo() = default;
308  };
309
310  /// Cache storing single nonlocal def for the instruction.
311  /// It is set when nonlocal def would be found in function returning only
312  /// local dependencies.
313  DenseMap<AssertingVH<const Value>, NonLocalDepResult> NonLocalDefsCache;
314  using ReverseNonLocalDefsCacheTy =
315    DenseMap<Instruction *, SmallPtrSet<const Value*, 4>>;
316  ReverseNonLocalDefsCacheTy ReverseNonLocalDefsCache;
317
318  /// This map stores the cached results of doing a pointer lookup at the
319  /// bottom of a block.
320  ///
321  /// The key of this map is the pointer+isload bit, the value is a list of
322  /// <bb->result> mappings.
323  using CachedNonLocalPointerInfo =
324      DenseMap<ValueIsLoadPair, NonLocalPointerInfo>;
325  CachedNonLocalPointerInfo NonLocalPointerDeps;
326
327  // A map from instructions to their non-local pointer dependencies.
328  using ReverseNonLocalPtrDepTy =
329      DenseMap<Instruction *, SmallPtrSet<ValueIsLoadPair, 4>>;
330  ReverseNonLocalPtrDepTy ReverseNonLocalPtrDeps;
331
332  /// This is the instruction we keep for each cached access that we have for
333  /// an instruction.
334  ///
335  /// The pointer is an owning pointer and the bool indicates whether we have
336  /// any dirty bits in the set.
337  using PerInstNLInfo = std::pair<NonLocalDepInfo, bool>;
338
339  // A map from instructions to their non-local dependencies.
340  using NonLocalDepMapType = DenseMap<Instruction *, PerInstNLInfo>;
341
342  NonLocalDepMapType NonLocalDepsMap;
343
344  // A reverse mapping from dependencies to the dependees.  This is
345  // used when removing instructions to keep the cache coherent.
346  using ReverseDepMapType =
347      DenseMap<Instruction *, SmallPtrSet<Instruction *, 4>>;
348  ReverseDepMapType ReverseLocalDeps;
349
350  // A reverse mapping from dependencies to the non-local dependees.
351  ReverseDepMapType ReverseNonLocalDeps;
352
353  /// Current AA implementation, just a cache.
354  AAResults &AA;
355  AssumptionCache &AC;
356  const TargetLibraryInfo &TLI;
357  DominatorTree &DT;
358  PredIteratorCache PredCache;
359  EarliestEscapeInfo EII;
360
361  unsigned DefaultBlockScanLimit;
362
363  /// Offsets to dependant clobber loads.
364  using ClobberOffsetsMapType = DenseMap<LoadInst *, int32_t>;
365  ClobberOffsetsMapType ClobberOffsets;
366
367public:
368  MemoryDependenceResults(AAResults &AA, AssumptionCache &AC,
369                          const TargetLibraryInfo &TLI, DominatorTree &DT,
370                          unsigned DefaultBlockScanLimit)
371      : AA(AA), AC(AC), TLI(TLI), DT(DT), EII(DT),
372        DefaultBlockScanLimit(DefaultBlockScanLimit) {}
373
374  /// Handle invalidation in the new PM.
375  bool invalidate(Function &F, const PreservedAnalyses &PA,
376                  FunctionAnalysisManager::Invalidator &Inv);
377
378  /// Some methods limit the number of instructions they will examine.
379  /// The return value of this method is the default limit that will be
380  /// used if no limit is explicitly passed in.
381  unsigned getDefaultBlockScanLimit() const;
382
383  /// Returns the instruction on which a memory operation depends.
384  ///
385  /// See the class comment for more details. It is illegal to call this on
386  /// non-memory instructions.
387  MemDepResult getDependency(Instruction *QueryInst);
388
389  /// Perform a full dependency query for the specified call, returning the set
390  /// of blocks that the value is potentially live across.
391  ///
392  /// The returned set of results will include a "NonLocal" result for all
393  /// blocks where the value is live across.
394  ///
395  /// This method assumes the instruction returns a "NonLocal" dependency
396  /// within its own block.
397  ///
398  /// This returns a reference to an internal data structure that may be
399  /// invalidated on the next non-local query or when an instruction is
400  /// removed.  Clients must copy this data if they want it around longer than
401  /// that.
402  const NonLocalDepInfo &getNonLocalCallDependency(CallBase *QueryCall);
403
404  /// Perform a full dependency query for an access to the QueryInst's
405  /// specified memory location, returning the set of instructions that either
406  /// define or clobber the value.
407  ///
408  /// Warning: For a volatile query instruction, the dependencies will be
409  /// accurate, and thus usable for reordering, but it is never legal to
410  /// remove the query instruction.
411  ///
412  /// This method assumes the pointer has a "NonLocal" dependency within
413  /// QueryInst's parent basic block.
414  void getNonLocalPointerDependency(Instruction *QueryInst,
415                                    SmallVectorImpl<NonLocalDepResult> &Result);
416
417  /// Removes an instruction from the dependence analysis, updating the
418  /// dependence of instructions that previously depended on it.
419  void removeInstruction(Instruction *InstToRemove);
420
421  /// Invalidates cached information about the specified pointer, because it
422  /// may be too conservative in memdep.
423  ///
424  /// This is an optional call that can be used when the client detects an
425  /// equivalence between the pointer and some other value and replaces the
426  /// other value with ptr. This can make Ptr available in more places that
427  /// cached info does not necessarily keep.
428  void invalidateCachedPointerInfo(Value *Ptr);
429
430  /// Clears the PredIteratorCache info.
431  ///
432  /// This needs to be done when the CFG changes, e.g., due to splitting
433  /// critical edges.
434  void invalidateCachedPredecessors();
435
436  /// Returns the instruction on which a memory location depends.
437  ///
438  /// If isLoad is true, this routine ignores may-aliases with read-only
439  /// operations.  If isLoad is false, this routine ignores may-aliases
440  /// with reads from read-only locations. If possible, pass the query
441  /// instruction as well; this function may take advantage of the metadata
442  /// annotated to the query instruction to refine the result. \p Limit
443  /// can be used to set the maximum number of instructions that will be
444  /// examined to find the pointer dependency. On return, it will be set to
445  /// the number of instructions left to examine. If a null pointer is passed
446  /// in, the limit will default to the value of -memdep-block-scan-limit.
447  ///
448  /// Note that this is an uncached query, and thus may be inefficient.
449  MemDepResult getPointerDependencyFrom(const MemoryLocation &Loc, bool isLoad,
450                                        BasicBlock::iterator ScanIt,
451                                        BasicBlock *BB,
452                                        Instruction *QueryInst = nullptr,
453                                        unsigned *Limit = nullptr);
454
455  MemDepResult getPointerDependencyFrom(const MemoryLocation &Loc, bool isLoad,
456                                        BasicBlock::iterator ScanIt,
457                                        BasicBlock *BB,
458                                        Instruction *QueryInst,
459                                        unsigned *Limit,
460                                        BatchAAResults &BatchAA);
461
462  MemDepResult
463  getSimplePointerDependencyFrom(const MemoryLocation &MemLoc, bool isLoad,
464                                 BasicBlock::iterator ScanIt, BasicBlock *BB,
465                                 Instruction *QueryInst, unsigned *Limit,
466                                 BatchAAResults &BatchAA);
467
468  /// This analysis looks for other loads and stores with invariant.group
469  /// metadata and the same pointer operand. Returns Unknown if it does not
470  /// find anything, and Def if it can be assumed that 2 instructions load or
471  /// store the same value and NonLocal which indicate that non-local Def was
472  /// found, which can be retrieved by calling getNonLocalPointerDependency
473  /// with the same queried instruction.
474  MemDepResult getInvariantGroupPointerDependency(LoadInst *LI, BasicBlock *BB);
475
476  /// Release memory in caches.
477  void releaseMemory();
478
479  /// Return the clobber offset to dependent instruction.
480  std::optional<int32_t> getClobberOffset(LoadInst *DepInst) const {
481    const auto Off = ClobberOffsets.find(DepInst);
482    if (Off != ClobberOffsets.end())
483      return Off->getSecond();
484    return std::nullopt;
485  }
486
487private:
488  MemDepResult getCallDependencyFrom(CallBase *Call, bool isReadOnlyCall,
489                                     BasicBlock::iterator ScanIt,
490                                     BasicBlock *BB);
491  bool getNonLocalPointerDepFromBB(Instruction *QueryInst,
492                                   const PHITransAddr &Pointer,
493                                   const MemoryLocation &Loc, bool isLoad,
494                                   BasicBlock *BB,
495                                   SmallVectorImpl<NonLocalDepResult> &Result,
496                                   DenseMap<BasicBlock *, Value *> &Visited,
497                                   bool SkipFirstBlock = false,
498                                   bool IsIncomplete = false);
499  MemDepResult getNonLocalInfoForBlock(Instruction *QueryInst,
500                                       const MemoryLocation &Loc, bool isLoad,
501                                       BasicBlock *BB, NonLocalDepInfo *Cache,
502                                       unsigned NumSortedEntries,
503                                       BatchAAResults &BatchAA);
504
505  void removeCachedNonLocalPointerDependencies(ValueIsLoadPair P);
506
507  void verifyRemoved(Instruction *Inst) const;
508};
509
510/// An analysis that produces \c MemoryDependenceResults for a function.
511///
512/// This is essentially a no-op because the results are computed entirely
513/// lazily.
514class MemoryDependenceAnalysis
515    : public AnalysisInfoMixin<MemoryDependenceAnalysis> {
516  friend AnalysisInfoMixin<MemoryDependenceAnalysis>;
517
518  static AnalysisKey Key;
519
520  unsigned DefaultBlockScanLimit;
521
522public:
523  using Result = MemoryDependenceResults;
524
525  MemoryDependenceAnalysis();
526  MemoryDependenceAnalysis(unsigned DefaultBlockScanLimit) : DefaultBlockScanLimit(DefaultBlockScanLimit) { }
527
528  MemoryDependenceResults run(Function &F, FunctionAnalysisManager &AM);
529};
530
531/// A wrapper analysis pass for the legacy pass manager that exposes a \c
532/// MemoryDepnedenceResults instance.
533class MemoryDependenceWrapperPass : public FunctionPass {
534  std::optional<MemoryDependenceResults> MemDep;
535
536public:
537  static char ID;
538
539  MemoryDependenceWrapperPass();
540  ~MemoryDependenceWrapperPass() override;
541
542  /// Pass Implementation stuff.  This doesn't do any analysis eagerly.
543  bool runOnFunction(Function &) override;
544
545  /// Clean up memory in between runs
546  void releaseMemory() override;
547
548  /// Does not modify anything.  It uses Value Numbering and Alias Analysis.
549  void getAnalysisUsage(AnalysisUsage &AU) const override;
550
551  MemoryDependenceResults &getMemDep() { return *MemDep; }
552};
553
554} // end namespace llvm
555
556#endif // LLVM_ANALYSIS_MEMORYDEPENDENCEANALYSIS_H
557