1//===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interface for the loop memory dependence framework that
10// was originally developed for the Loop Vectorizer.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
15#define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
16
17#include "llvm/ADT/EquivalenceClasses.h"
18#include "llvm/Analysis/LoopAnalysisManager.h"
19#include "llvm/Analysis/ScalarEvolutionExpressions.h"
20#include "llvm/IR/DiagnosticInfo.h"
21#include <optional>
22
23namespace llvm {
24
25class AAResults;
26class DataLayout;
27class Loop;
28class LoopAccessInfo;
29class raw_ostream;
30class SCEV;
31class SCEVUnionPredicate;
32class Value;
33
34/// Collection of parameters shared beetween the Loop Vectorizer and the
35/// Loop Access Analysis.
36struct VectorizerParams {
37  /// Maximum SIMD width.
38  static const unsigned MaxVectorWidth;
39
40  /// VF as overridden by the user.
41  static unsigned VectorizationFactor;
42  /// Interleave factor as overridden by the user.
43  static unsigned VectorizationInterleave;
44  /// True if force-vector-interleave was specified by the user.
45  static bool isInterleaveForced();
46
47  /// \When performing memory disambiguation checks at runtime do not
48  /// make more than this number of comparisons.
49  static unsigned RuntimeMemoryCheckThreshold;
50
51  // When creating runtime checks for nested loops, where possible try to
52  // write the checks in a form that allows them to be easily hoisted out of
53  // the outermost loop. For example, we can do this by expanding the range of
54  // addresses considered to include the entire nested loop so that they are
55  // loop invariant.
56  static bool HoistRuntimeChecks;
57};
58
59/// Checks memory dependences among accesses to the same underlying
60/// object to determine whether there vectorization is legal or not (and at
61/// which vectorization factor).
62///
63/// Note: This class will compute a conservative dependence for access to
64/// different underlying pointers. Clients, such as the loop vectorizer, will
65/// sometimes deal these potential dependencies by emitting runtime checks.
66///
67/// We use the ScalarEvolution framework to symbolically evalutate access
68/// functions pairs. Since we currently don't restructure the loop we can rely
69/// on the program order of memory accesses to determine their safety.
70/// At the moment we will only deem accesses as safe for:
71///  * A negative constant distance assuming program order.
72///
73///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
74///            a[i] = tmp;                y = a[i];
75///
76///   The latter case is safe because later checks guarantuee that there can't
77///   be a cycle through a phi node (that is, we check that "x" and "y" is not
78///   the same variable: a header phi can only be an induction or a reduction, a
79///   reduction can't have a memory sink, an induction can't have a memory
80///   source). This is important and must not be violated (or we have to
81///   resort to checking for cycles through memory).
82///
83///  * A positive constant distance assuming program order that is bigger
84///    than the biggest memory access.
85///
86///     tmp = a[i]        OR              b[i] = x
87///     a[i+2] = tmp                      y = b[i+2];
88///
89///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
90///
91///  * Zero distances and all accesses have the same size.
92///
93class MemoryDepChecker {
94public:
95  typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
96  typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
97  /// Set of potential dependent memory accesses.
98  typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
99
100  /// Type to keep track of the status of the dependence check. The order of
101  /// the elements is important and has to be from most permissive to least
102  /// permissive.
103  enum class VectorizationSafetyStatus {
104    // Can vectorize safely without RT checks. All dependences are known to be
105    // safe.
106    Safe,
107    // Can possibly vectorize with RT checks to overcome unknown dependencies.
108    PossiblySafeWithRtChecks,
109    // Cannot vectorize due to known unsafe dependencies.
110    Unsafe,
111  };
112
113  /// Dependece between memory access instructions.
114  struct Dependence {
115    /// The type of the dependence.
116    enum DepType {
117      // No dependence.
118      NoDep,
119      // We couldn't determine the direction or the distance.
120      Unknown,
121      // At least one of the memory access instructions may access a loop
122      // varying object, e.g. the address of underlying object is loaded inside
123      // the loop, like A[B[i]]. We cannot determine direction or distance in
124      // those cases, and also are unable to generate any runtime checks.
125      IndirectUnsafe,
126
127      // Lexically forward.
128      //
129      // FIXME: If we only have loop-independent forward dependences (e.g. a
130      // read and write of A[i]), LAA will locally deem the dependence "safe"
131      // without querying the MemoryDepChecker.  Therefore we can miss
132      // enumerating loop-independent forward dependences in
133      // getDependences.  Note that as soon as there are different
134      // indices used to access the same array, the MemoryDepChecker *is*
135      // queried and the dependence list is complete.
136      Forward,
137      // Forward, but if vectorized, is likely to prevent store-to-load
138      // forwarding.
139      ForwardButPreventsForwarding,
140      // Lexically backward.
141      Backward,
142      // Backward, but the distance allows a vectorization factor of dependent
143      // on MinDepDistBytes.
144      BackwardVectorizable,
145      // Same, but may prevent store-to-load forwarding.
146      BackwardVectorizableButPreventsForwarding
147    };
148
149    /// String version of the types.
150    static const char *DepName[];
151
152    /// Index of the source of the dependence in the InstMap vector.
153    unsigned Source;
154    /// Index of the destination of the dependence in the InstMap vector.
155    unsigned Destination;
156    /// The type of the dependence.
157    DepType Type;
158
159    Dependence(unsigned Source, unsigned Destination, DepType Type)
160        : Source(Source), Destination(Destination), Type(Type) {}
161
162    /// Return the source instruction of the dependence.
163    Instruction *getSource(const LoopAccessInfo &LAI) const;
164    /// Return the destination instruction of the dependence.
165    Instruction *getDestination(const LoopAccessInfo &LAI) const;
166
167    /// Dependence types that don't prevent vectorization.
168    static VectorizationSafetyStatus isSafeForVectorization(DepType Type);
169
170    /// Lexically forward dependence.
171    bool isForward() const;
172    /// Lexically backward dependence.
173    bool isBackward() const;
174
175    /// May be a lexically backward dependence type (includes Unknown).
176    bool isPossiblyBackward() const;
177
178    /// Print the dependence.  \p Instr is used to map the instruction
179    /// indices to instructions.
180    void print(raw_ostream &OS, unsigned Depth,
181               const SmallVectorImpl<Instruction *> &Instrs) const;
182  };
183
184  MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
185      : PSE(PSE), InnermostLoop(L) {}
186
187  /// Register the location (instructions are given increasing numbers)
188  /// of a write access.
189  void addAccess(StoreInst *SI);
190
191  /// Register the location (instructions are given increasing numbers)
192  /// of a write access.
193  void addAccess(LoadInst *LI);
194
195  /// Check whether the dependencies between the accesses are safe.
196  ///
197  /// Only checks sets with elements in \p CheckDeps.
198  bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
199                   const DenseMap<Value *, const SCEV *> &Strides,
200                   const DenseMap<Value *, SmallVector<const Value *, 16>>
201                       &UnderlyingObjects);
202
203  /// No memory dependence was encountered that would inhibit
204  /// vectorization.
205  bool isSafeForVectorization() const {
206    return Status == VectorizationSafetyStatus::Safe;
207  }
208
209  /// Return true if the number of elements that are safe to operate on
210  /// simultaneously is not bounded.
211  bool isSafeForAnyVectorWidth() const {
212    return MaxSafeVectorWidthInBits == UINT_MAX;
213  }
214
215  /// Return the number of elements that are safe to operate on
216  /// simultaneously, multiplied by the size of the element in bits.
217  uint64_t getMaxSafeVectorWidthInBits() const {
218    return MaxSafeVectorWidthInBits;
219  }
220
221  /// In same cases when the dependency check fails we can still
222  /// vectorize the loop with a dynamic array access check.
223  bool shouldRetryWithRuntimeCheck() const {
224    return FoundNonConstantDistanceDependence &&
225           Status == VectorizationSafetyStatus::PossiblySafeWithRtChecks;
226  }
227
228  /// Returns the memory dependences.  If null is returned we exceeded
229  /// the MaxDependences threshold and this information is not
230  /// available.
231  const SmallVectorImpl<Dependence> *getDependences() const {
232    return RecordDependences ? &Dependences : nullptr;
233  }
234
235  void clearDependences() { Dependences.clear(); }
236
237  /// The vector of memory access instructions.  The indices are used as
238  /// instruction identifiers in the Dependence class.
239  const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
240    return InstMap;
241  }
242
243  /// Generate a mapping between the memory instructions and their
244  /// indices according to program order.
245  DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
246    DenseMap<Instruction *, unsigned> OrderMap;
247
248    for (unsigned I = 0; I < InstMap.size(); ++I)
249      OrderMap[InstMap[I]] = I;
250
251    return OrderMap;
252  }
253
254  /// Find the set of instructions that read or write via \p Ptr.
255  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
256                                                         bool isWrite) const;
257
258  /// Return the program order indices for the access location (Ptr, IsWrite).
259  /// Returns an empty ArrayRef if there are no accesses for the location.
260  ArrayRef<unsigned> getOrderForAccess(Value *Ptr, bool IsWrite) const {
261    auto I = Accesses.find({Ptr, IsWrite});
262    if (I != Accesses.end())
263      return I->second;
264    return {};
265  }
266
267  const Loop *getInnermostLoop() const { return InnermostLoop; }
268
269private:
270  /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
271  /// applies dynamic knowledge to simplify SCEV expressions and convert them
272  /// to a more usable form. We need this in case assumptions about SCEV
273  /// expressions need to be made in order to avoid unknown dependences. For
274  /// example we might assume a unit stride for a pointer in order to prove
275  /// that a memory access is strided and doesn't wrap.
276  PredicatedScalarEvolution &PSE;
277  const Loop *InnermostLoop;
278
279  /// Maps access locations (ptr, read/write) to program order.
280  DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
281
282  /// Memory access instructions in program order.
283  SmallVector<Instruction *, 16> InstMap;
284
285  /// The program order index to be used for the next instruction.
286  unsigned AccessIdx = 0;
287
288  /// The smallest dependence distance in bytes in the loop. This may not be
289  /// the same as the maximum number of bytes that are safe to operate on
290  /// simultaneously.
291  uint64_t MinDepDistBytes = 0;
292
293  /// Number of elements (from consecutive iterations) that are safe to
294  /// operate on simultaneously, multiplied by the size of the element in bits.
295  /// The size of the element is taken from the memory access that is most
296  /// restrictive.
297  uint64_t MaxSafeVectorWidthInBits = -1U;
298
299  /// If we see a non-constant dependence distance we can still try to
300  /// vectorize this loop with runtime checks.
301  bool FoundNonConstantDistanceDependence = false;
302
303  /// Result of the dependence checks, indicating whether the checked
304  /// dependences are safe for vectorization, require RT checks or are known to
305  /// be unsafe.
306  VectorizationSafetyStatus Status = VectorizationSafetyStatus::Safe;
307
308  //// True if Dependences reflects the dependences in the
309  //// loop.  If false we exceeded MaxDependences and
310  //// Dependences is invalid.
311  bool RecordDependences = true;
312
313  /// Memory dependences collected during the analysis.  Only valid if
314  /// RecordDependences is true.
315  SmallVector<Dependence, 8> Dependences;
316
317  /// Check whether there is a plausible dependence between the two
318  /// accesses.
319  ///
320  /// Access \p A must happen before \p B in program order. The two indices
321  /// identify the index into the program order map.
322  ///
323  /// This function checks  whether there is a plausible dependence (or the
324  /// absence of such can't be proved) between the two accesses. If there is a
325  /// plausible dependence but the dependence distance is bigger than one
326  /// element access it records this distance in \p MinDepDistBytes (if this
327  /// distance is smaller than any other distance encountered so far).
328  /// Otherwise, this function returns true signaling a possible dependence.
329  Dependence::DepType
330  isDependent(const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B,
331              unsigned BIdx, const DenseMap<Value *, const SCEV *> &Strides,
332              const DenseMap<Value *, SmallVector<const Value *, 16>>
333                  &UnderlyingObjects);
334
335  /// Check whether the data dependence could prevent store-load
336  /// forwarding.
337  ///
338  /// \return false if we shouldn't vectorize at all or avoid larger
339  /// vectorization factors by limiting MinDepDistBytes.
340  bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
341
342  /// Updates the current safety status with \p S. We can go from Safe to
343  /// either PossiblySafeWithRtChecks or Unsafe and from
344  /// PossiblySafeWithRtChecks to Unsafe.
345  void mergeInStatus(VectorizationSafetyStatus S);
346};
347
348class RuntimePointerChecking;
349/// A grouping of pointers. A single memcheck is required between
350/// two groups.
351struct RuntimeCheckingPtrGroup {
352  /// Create a new pointer checking group containing a single
353  /// pointer, with index \p Index in RtCheck.
354  RuntimeCheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck);
355
356  /// Tries to add the pointer recorded in RtCheck at index
357  /// \p Index to this pointer checking group. We can only add a pointer
358  /// to a checking group if we will still be able to get
359  /// the upper and lower bounds of the check. Returns true in case
360  /// of success, false otherwise.
361  bool addPointer(unsigned Index, RuntimePointerChecking &RtCheck);
362  bool addPointer(unsigned Index, const SCEV *Start, const SCEV *End,
363                  unsigned AS, bool NeedsFreeze, ScalarEvolution &SE);
364
365  /// The SCEV expression which represents the upper bound of all the
366  /// pointers in this group.
367  const SCEV *High;
368  /// The SCEV expression which represents the lower bound of all the
369  /// pointers in this group.
370  const SCEV *Low;
371  /// Indices of all the pointers that constitute this grouping.
372  SmallVector<unsigned, 2> Members;
373  /// Address space of the involved pointers.
374  unsigned AddressSpace;
375  /// Whether the pointer needs to be frozen after expansion, e.g. because it
376  /// may be poison outside the loop.
377  bool NeedsFreeze = false;
378};
379
380/// A memcheck which made up of a pair of grouped pointers.
381typedef std::pair<const RuntimeCheckingPtrGroup *,
382                  const RuntimeCheckingPtrGroup *>
383    RuntimePointerCheck;
384
385struct PointerDiffInfo {
386  const SCEV *SrcStart;
387  const SCEV *SinkStart;
388  unsigned AccessSize;
389  bool NeedsFreeze;
390
391  PointerDiffInfo(const SCEV *SrcStart, const SCEV *SinkStart,
392                  unsigned AccessSize, bool NeedsFreeze)
393      : SrcStart(SrcStart), SinkStart(SinkStart), AccessSize(AccessSize),
394        NeedsFreeze(NeedsFreeze) {}
395};
396
397/// Holds information about the memory runtime legality checks to verify
398/// that a group of pointers do not overlap.
399class RuntimePointerChecking {
400  friend struct RuntimeCheckingPtrGroup;
401
402public:
403  struct PointerInfo {
404    /// Holds the pointer value that we need to check.
405    TrackingVH<Value> PointerValue;
406    /// Holds the smallest byte address accessed by the pointer throughout all
407    /// iterations of the loop.
408    const SCEV *Start;
409    /// Holds the largest byte address accessed by the pointer throughout all
410    /// iterations of the loop, plus 1.
411    const SCEV *End;
412    /// Holds the information if this pointer is used for writing to memory.
413    bool IsWritePtr;
414    /// Holds the id of the set of pointers that could be dependent because of a
415    /// shared underlying object.
416    unsigned DependencySetId;
417    /// Holds the id of the disjoint alias set to which this pointer belongs.
418    unsigned AliasSetId;
419    /// SCEV for the access.
420    const SCEV *Expr;
421    /// True if the pointer expressions needs to be frozen after expansion.
422    bool NeedsFreeze;
423
424    PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
425                bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
426                const SCEV *Expr, bool NeedsFreeze)
427        : PointerValue(PointerValue), Start(Start), End(End),
428          IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
429          AliasSetId(AliasSetId), Expr(Expr), NeedsFreeze(NeedsFreeze) {}
430  };
431
432  RuntimePointerChecking(MemoryDepChecker &DC, ScalarEvolution *SE)
433      : DC(DC), SE(SE) {}
434
435  /// Reset the state of the pointer runtime information.
436  void reset() {
437    Need = false;
438    Pointers.clear();
439    Checks.clear();
440  }
441
442  /// Insert a pointer and calculate the start and end SCEVs.
443  /// We need \p PSE in order to compute the SCEV expression of the pointer
444  /// according to the assumptions that we've made during the analysis.
445  /// The method might also version the pointer stride according to \p Strides,
446  /// and add new predicates to \p PSE.
447  void insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, Type *AccessTy,
448              bool WritePtr, unsigned DepSetId, unsigned ASId,
449              PredicatedScalarEvolution &PSE, bool NeedsFreeze);
450
451  /// No run-time memory checking is necessary.
452  bool empty() const { return Pointers.empty(); }
453
454  /// Generate the checks and store it.  This also performs the grouping
455  /// of pointers to reduce the number of memchecks necessary.
456  void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
457                      bool UseDependencies);
458
459  /// Returns the checks that generateChecks created. They can be used to ensure
460  /// no read/write accesses overlap across all loop iterations.
461  const SmallVectorImpl<RuntimePointerCheck> &getChecks() const {
462    return Checks;
463  }
464
465  // Returns an optional list of (pointer-difference expressions, access size)
466  // pairs that can be used to prove that there are no vectorization-preventing
467  // dependencies at runtime. There are is a vectorization-preventing dependency
468  // if any pointer-difference is <u VF * InterleaveCount * access size. Returns
469  // std::nullopt if pointer-difference checks cannot be used.
470  std::optional<ArrayRef<PointerDiffInfo>> getDiffChecks() const {
471    if (!CanUseDiffCheck)
472      return std::nullopt;
473    return {DiffChecks};
474  }
475
476  /// Decide if we need to add a check between two groups of pointers,
477  /// according to needsChecking.
478  bool needsChecking(const RuntimeCheckingPtrGroup &M,
479                     const RuntimeCheckingPtrGroup &N) const;
480
481  /// Returns the number of run-time checks required according to
482  /// needsChecking.
483  unsigned getNumberOfChecks() const { return Checks.size(); }
484
485  /// Print the list run-time memory checks necessary.
486  void print(raw_ostream &OS, unsigned Depth = 0) const;
487
488  /// Print \p Checks.
489  void printChecks(raw_ostream &OS,
490                   const SmallVectorImpl<RuntimePointerCheck> &Checks,
491                   unsigned Depth = 0) const;
492
493  /// This flag indicates if we need to add the runtime check.
494  bool Need = false;
495
496  /// Information about the pointers that may require checking.
497  SmallVector<PointerInfo, 2> Pointers;
498
499  /// Holds a partitioning of pointers into "check groups".
500  SmallVector<RuntimeCheckingPtrGroup, 2> CheckingGroups;
501
502  /// Check if pointers are in the same partition
503  ///
504  /// \p PtrToPartition contains the partition number for pointers (-1 if the
505  /// pointer belongs to multiple partitions).
506  static bool
507  arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
508                             unsigned PtrIdx1, unsigned PtrIdx2);
509
510  /// Decide whether we need to issue a run-time check for pointer at
511  /// index \p I and \p J to prove their independence.
512  bool needsChecking(unsigned I, unsigned J) const;
513
514  /// Return PointerInfo for pointer at index \p PtrIdx.
515  const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
516    return Pointers[PtrIdx];
517  }
518
519  ScalarEvolution *getSE() const { return SE; }
520
521private:
522  /// Groups pointers such that a single memcheck is required
523  /// between two different groups. This will clear the CheckingGroups vector
524  /// and re-compute it. We will only group dependecies if \p UseDependencies
525  /// is true, otherwise we will create a separate group for each pointer.
526  void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
527                   bool UseDependencies);
528
529  /// Generate the checks and return them.
530  SmallVector<RuntimePointerCheck, 4> generateChecks();
531
532  /// Try to create add a new (pointer-difference, access size) pair to
533  /// DiffCheck for checking groups \p CGI and \p CGJ. If pointer-difference
534  /// checks cannot be used for the groups, set CanUseDiffCheck to false.
535  void tryToCreateDiffCheck(const RuntimeCheckingPtrGroup &CGI,
536                            const RuntimeCheckingPtrGroup &CGJ);
537
538  MemoryDepChecker &DC;
539
540  /// Holds a pointer to the ScalarEvolution analysis.
541  ScalarEvolution *SE;
542
543  /// Set of run-time checks required to establish independence of
544  /// otherwise may-aliasing pointers in the loop.
545  SmallVector<RuntimePointerCheck, 4> Checks;
546
547  /// Flag indicating if pointer-difference checks can be used
548  bool CanUseDiffCheck = true;
549
550  /// A list of (pointer-difference, access size) pairs that can be used to
551  /// prove that there are no vectorization-preventing dependencies.
552  SmallVector<PointerDiffInfo> DiffChecks;
553};
554
555/// Drive the analysis of memory accesses in the loop
556///
557/// This class is responsible for analyzing the memory accesses of a loop.  It
558/// collects the accesses and then its main helper the AccessAnalysis class
559/// finds and categorizes the dependences in buildDependenceSets.
560///
561/// For memory dependences that can be analyzed at compile time, it determines
562/// whether the dependence is part of cycle inhibiting vectorization.  This work
563/// is delegated to the MemoryDepChecker class.
564///
565/// For memory dependences that cannot be determined at compile time, it
566/// generates run-time checks to prove independence.  This is done by
567/// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
568/// RuntimePointerCheck class.
569///
570/// If pointers can wrap or can't be expressed as affine AddRec expressions by
571/// ScalarEvolution, we will generate run-time checks by emitting a
572/// SCEVUnionPredicate.
573///
574/// Checks for both memory dependences and the SCEV predicates contained in the
575/// PSE must be emitted in order for the results of this analysis to be valid.
576class LoopAccessInfo {
577public:
578  LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
579                 AAResults *AA, DominatorTree *DT, LoopInfo *LI);
580
581  /// Return true we can analyze the memory accesses in the loop and there are
582  /// no memory dependence cycles.
583  bool canVectorizeMemory() const { return CanVecMem; }
584
585  /// Return true if there is a convergent operation in the loop. There may
586  /// still be reported runtime pointer checks that would be required, but it is
587  /// not legal to insert them.
588  bool hasConvergentOp() const { return HasConvergentOp; }
589
590  const RuntimePointerChecking *getRuntimePointerChecking() const {
591    return PtrRtChecking.get();
592  }
593
594  /// Number of memchecks required to prove independence of otherwise
595  /// may-alias pointers.
596  unsigned getNumRuntimePointerChecks() const {
597    return PtrRtChecking->getNumberOfChecks();
598  }
599
600  /// Return true if the block BB needs to be predicated in order for the loop
601  /// to be vectorized.
602  static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
603                                    DominatorTree *DT);
604
605  /// Returns true if value \p V is loop invariant.
606  bool isInvariant(Value *V) const;
607
608  unsigned getNumStores() const { return NumStores; }
609  unsigned getNumLoads() const { return NumLoads;}
610
611  /// The diagnostics report generated for the analysis.  E.g. why we
612  /// couldn't analyze the loop.
613  const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
614
615  /// the Memory Dependence Checker which can determine the
616  /// loop-independent and loop-carried dependences between memory accesses.
617  const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
618
619  /// Return the list of instructions that use \p Ptr to read or write
620  /// memory.
621  SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
622                                                         bool isWrite) const {
623    return DepChecker->getInstructionsForAccess(Ptr, isWrite);
624  }
625
626  /// If an access has a symbolic strides, this maps the pointer value to
627  /// the stride symbol.
628  const DenseMap<Value *, const SCEV *> &getSymbolicStrides() const {
629    return SymbolicStrides;
630  }
631
632  /// Print the information about the memory accesses in the loop.
633  void print(raw_ostream &OS, unsigned Depth = 0) const;
634
635  /// If the loop has memory dependence involving an invariant address, i.e. two
636  /// stores or a store and a load, then return true, else return false.
637  bool hasDependenceInvolvingLoopInvariantAddress() const {
638    return HasDependenceInvolvingLoopInvariantAddress;
639  }
640
641  /// Return the list of stores to invariant addresses.
642  ArrayRef<StoreInst *> getStoresToInvariantAddresses() const {
643    return StoresToInvariantAddresses;
644  }
645
646  /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
647  /// them to a more usable form.  All SCEV expressions during the analysis
648  /// should be re-written (and therefore simplified) according to PSE.
649  /// A user of LoopAccessAnalysis will need to emit the runtime checks
650  /// associated with this predicate.
651  const PredicatedScalarEvolution &getPSE() const { return *PSE; }
652
653private:
654  /// Analyze the loop.
655  void analyzeLoop(AAResults *AA, LoopInfo *LI,
656                   const TargetLibraryInfo *TLI, DominatorTree *DT);
657
658  /// Check if the structure of the loop allows it to be analyzed by this
659  /// pass.
660  bool canAnalyzeLoop();
661
662  /// Save the analysis remark.
663  ///
664  /// LAA does not directly emits the remarks.  Instead it stores it which the
665  /// client can retrieve and presents as its own analysis
666  /// (e.g. -Rpass-analysis=loop-vectorize).
667  OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
668                                             Instruction *Instr = nullptr);
669
670  /// Collect memory access with loop invariant strides.
671  ///
672  /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
673  /// invariant.
674  void collectStridedAccess(Value *LoadOrStoreInst);
675
676  // Emits the first unsafe memory dependence in a loop.
677  // Emits nothing if there are no unsafe dependences
678  // or if the dependences were not recorded.
679  void emitUnsafeDependenceRemark();
680
681  std::unique_ptr<PredicatedScalarEvolution> PSE;
682
683  /// We need to check that all of the pointers in this list are disjoint
684  /// at runtime. Using std::unique_ptr to make using move ctor simpler.
685  std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
686
687  /// the Memory Dependence Checker which can determine the
688  /// loop-independent and loop-carried dependences between memory accesses.
689  std::unique_ptr<MemoryDepChecker> DepChecker;
690
691  Loop *TheLoop;
692
693  unsigned NumLoads = 0;
694  unsigned NumStores = 0;
695
696  /// Cache the result of analyzeLoop.
697  bool CanVecMem = false;
698  bool HasConvergentOp = false;
699
700  /// Indicator that there are non vectorizable stores to a uniform address.
701  bool HasDependenceInvolvingLoopInvariantAddress = false;
702
703  /// List of stores to invariant addresses.
704  SmallVector<StoreInst *> StoresToInvariantAddresses;
705
706  /// The diagnostics report generated for the analysis.  E.g. why we
707  /// couldn't analyze the loop.
708  std::unique_ptr<OptimizationRemarkAnalysis> Report;
709
710  /// If an access has a symbolic strides, this maps the pointer value to
711  /// the stride symbol.
712  DenseMap<Value *, const SCEV *> SymbolicStrides;
713};
714
715/// Return the SCEV corresponding to a pointer with the symbolic stride
716/// replaced with constant one, assuming the SCEV predicate associated with
717/// \p PSE is true.
718///
719/// If necessary this method will version the stride of the pointer according
720/// to \p PtrToStride and therefore add further predicates to \p PSE.
721///
722/// \p PtrToStride provides the mapping between the pointer value and its
723/// stride as collected by LoopVectorizationLegality::collectStridedAccess.
724const SCEV *
725replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
726                          const DenseMap<Value *, const SCEV *> &PtrToStride,
727                          Value *Ptr);
728
729/// If the pointer has a constant stride return it in units of the access type
730/// size.  Otherwise return std::nullopt.
731///
732/// Ensure that it does not wrap in the address space, assuming the predicate
733/// associated with \p PSE is true.
734///
735/// If necessary this method will version the stride of the pointer according
736/// to \p PtrToStride and therefore add further predicates to \p PSE.
737/// The \p Assume parameter indicates if we are allowed to make additional
738/// run-time assumptions.
739///
740/// Note that the analysis results are defined if-and-only-if the original
741/// memory access was defined.  If that access was dead, or UB, then the
742/// result of this function is undefined.
743std::optional<int64_t>
744getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr,
745             const Loop *Lp,
746             const DenseMap<Value *, const SCEV *> &StridesMap = DenseMap<Value *, const SCEV *>(),
747             bool Assume = false, bool ShouldCheckWrap = true);
748
749/// Returns the distance between the pointers \p PtrA and \p PtrB iff they are
750/// compatible and it is possible to calculate the distance between them. This
751/// is a simple API that does not depend on the analysis pass.
752/// \param StrictCheck Ensure that the calculated distance matches the
753/// type-based one after all the bitcasts removal in the provided pointers.
754std::optional<int> getPointersDiff(Type *ElemTyA, Value *PtrA, Type *ElemTyB,
755                                   Value *PtrB, const DataLayout &DL,
756                                   ScalarEvolution &SE,
757                                   bool StrictCheck = false,
758                                   bool CheckType = true);
759
760/// Attempt to sort the pointers in \p VL and return the sorted indices
761/// in \p SortedIndices, if reordering is required.
762///
763/// Returns 'true' if sorting is legal, otherwise returns 'false'.
764///
765/// For example, for a given \p VL of memory accesses in program order, a[i+4],
766/// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
767/// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
768/// saves the mask for actual memory accesses in program order in
769/// \p SortedIndices as <1,2,0,3>
770bool sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, const DataLayout &DL,
771                     ScalarEvolution &SE,
772                     SmallVectorImpl<unsigned> &SortedIndices);
773
774/// Returns true if the memory operations \p A and \p B are consecutive.
775/// This is a simple API that does not depend on the analysis pass.
776bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
777                         ScalarEvolution &SE, bool CheckType = true);
778
779class LoopAccessInfoManager {
780  /// The cache.
781  DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
782
783  // The used analysis passes.
784  ScalarEvolution &SE;
785  AAResults &AA;
786  DominatorTree &DT;
787  LoopInfo &LI;
788  const TargetLibraryInfo *TLI = nullptr;
789
790public:
791  LoopAccessInfoManager(ScalarEvolution &SE, AAResults &AA, DominatorTree &DT,
792                        LoopInfo &LI, const TargetLibraryInfo *TLI)
793      : SE(SE), AA(AA), DT(DT), LI(LI), TLI(TLI) {}
794
795  const LoopAccessInfo &getInfo(Loop &L);
796
797  void clear() { LoopAccessInfoMap.clear(); }
798
799  bool invalidate(Function &F, const PreservedAnalyses &PA,
800                  FunctionAnalysisManager::Invalidator &Inv);
801};
802
803/// This analysis provides dependence information for the memory
804/// accesses of a loop.
805///
806/// It runs the analysis for a loop on demand.  This can be initiated by
807/// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
808/// getResult return a LoopAccessInfo object.  See this class for the
809/// specifics of what information is provided.
810class LoopAccessAnalysis
811    : public AnalysisInfoMixin<LoopAccessAnalysis> {
812  friend AnalysisInfoMixin<LoopAccessAnalysis>;
813  static AnalysisKey Key;
814
815public:
816  typedef LoopAccessInfoManager Result;
817
818  Result run(Function &F, FunctionAnalysisManager &AM);
819};
820
821inline Instruction *MemoryDepChecker::Dependence::getSource(
822    const LoopAccessInfo &LAI) const {
823  return LAI.getDepChecker().getMemoryInstructions()[Source];
824}
825
826inline Instruction *MemoryDepChecker::Dependence::getDestination(
827    const LoopAccessInfo &LAI) const {
828  return LAI.getDepChecker().getMemoryInstructions()[Destination];
829}
830
831} // End llvm namespace
832
833#endif
834