1//===- IntervalIterator.h - Interval Iterator Declaration -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an iterator that enumerates the intervals in a control flow
10// graph of some sort.  This iterator is parametric, allowing iterator over the
11// following types of graphs:
12//
13//  1. A Function* object, composed of BasicBlock nodes.
14//  2. An IntervalPartition& object, composed of Interval nodes.
15//
16// This iterator is defined to walk the control flow graph, returning intervals
17// in depth first order.  These intervals are completely filled in except for
18// the predecessor fields (the successor information is filled in however).
19//
20// By default, the intervals created by this iterator are deleted after they
21// are no longer any use to the iterator.  This behavior can be changed by
22// passing a false value into the intervals_begin() function. This causes the
23// IOwnMem member to be set, and the intervals to not be deleted.
24//
25// It is only safe to use this if all of the intervals are deleted by the caller
26// and all of the intervals are processed.  However, the user of the iterator is
27// not allowed to modify or delete the intervals until after the iterator has
28// been used completely.  The IntervalPartition class uses this functionality.
29//
30//===----------------------------------------------------------------------===//
31
32#ifndef LLVM_ANALYSIS_INTERVALITERATOR_H
33#define LLVM_ANALYSIS_INTERVALITERATOR_H
34
35#include "llvm/ADT/GraphTraits.h"
36#include "llvm/Analysis/Interval.h"
37#include "llvm/Analysis/IntervalPartition.h"
38#include "llvm/IR/CFG.h"
39#include <algorithm>
40#include <cassert>
41#include <iterator>
42#include <set>
43#include <utility>
44#include <vector>
45
46namespace llvm {
47
48class BasicBlock;
49class Function;
50
51// getNodeHeader - Given a source graph node and the source graph, return the
52// BasicBlock that is the header node.  This is the opposite of
53// getSourceGraphNode.
54inline BasicBlock *getNodeHeader(BasicBlock *BB) { return BB; }
55inline BasicBlock *getNodeHeader(Interval *I) { return I->getHeaderNode(); }
56
57// getSourceGraphNode - Given a BasicBlock and the source graph, return the
58// source graph node that corresponds to the BasicBlock.  This is the opposite
59// of getNodeHeader.
60inline BasicBlock *getSourceGraphNode(Function *, BasicBlock *BB) {
61  return BB;
62}
63inline Interval *getSourceGraphNode(IntervalPartition *IP, BasicBlock *BB) {
64  return IP->getBlockInterval(BB);
65}
66
67// addNodeToInterval - This method exists to assist the generic ProcessNode
68// with the task of adding a node to the new interval, depending on the
69// type of the source node.  In the case of a CFG source graph (BasicBlock
70// case), the BasicBlock itself is added to the interval.
71inline void addNodeToInterval(Interval *Int, BasicBlock *BB) {
72  Int->Nodes.push_back(BB);
73}
74
75// addNodeToInterval - This method exists to assist the generic ProcessNode
76// with the task of adding a node to the new interval, depending on the
77// type of the source node.  In the case of a CFG source graph (BasicBlock
78// case), the BasicBlock itself is added to the interval.  In the case of
79// an IntervalPartition source graph (Interval case), all of the member
80// BasicBlocks are added to the interval.
81inline void addNodeToInterval(Interval *Int, Interval *I) {
82  // Add all of the nodes in I as new nodes in Int.
83  llvm::append_range(Int->Nodes, I->Nodes);
84}
85
86template<class NodeTy, class OrigContainer_t, class GT = GraphTraits<NodeTy *>,
87         class IGT = GraphTraits<Inverse<NodeTy *>>>
88class IntervalIterator {
89  std::vector<std::pair<Interval *, typename Interval::succ_iterator>> IntStack;
90  std::set<BasicBlock *> Visited;
91  OrigContainer_t *OrigContainer;
92  bool IOwnMem;     // If True, delete intervals when done with them
93                    // See file header for conditions of use
94
95public:
96  using iterator_category = std::forward_iterator_tag;
97
98  IntervalIterator() = default; // End iterator, empty stack
99
100  IntervalIterator(Function *M, bool OwnMemory) : IOwnMem(OwnMemory) {
101    OrigContainer = M;
102    if (!ProcessInterval(&M->front())) {
103      llvm_unreachable("ProcessInterval should never fail for first interval!");
104    }
105  }
106
107  IntervalIterator(IntervalIterator &&x)
108      : IntStack(std::move(x.IntStack)), Visited(std::move(x.Visited)),
109        OrigContainer(x.OrigContainer), IOwnMem(x.IOwnMem) {
110    x.IOwnMem = false;
111  }
112
113  IntervalIterator(IntervalPartition &IP, bool OwnMemory) : IOwnMem(OwnMemory) {
114    OrigContainer = &IP;
115    if (!ProcessInterval(IP.getRootInterval())) {
116      llvm_unreachable("ProcessInterval should never fail for first interval!");
117    }
118  }
119
120  ~IntervalIterator() {
121    if (IOwnMem)
122      while (!IntStack.empty()) {
123        delete operator*();
124        IntStack.pop_back();
125      }
126  }
127
128  bool operator==(const IntervalIterator &x) const {
129    return IntStack == x.IntStack;
130  }
131  bool operator!=(const IntervalIterator &x) const { return !(*this == x); }
132
133  const Interval *operator*() const { return IntStack.back().first; }
134  Interval *operator*() { return IntStack.back().first; }
135  const Interval *operator->() const { return operator*(); }
136  Interval *operator->() { return operator*(); }
137
138  IntervalIterator &operator++() { // Preincrement
139    assert(!IntStack.empty() && "Attempting to use interval iterator at end!");
140    do {
141      // All of the intervals on the stack have been visited.  Try visiting
142      // their successors now.
143      Interval::succ_iterator &SuccIt = IntStack.back().second,
144                                EndIt = succ_end(IntStack.back().first);
145      while (SuccIt != EndIt) {                 // Loop over all interval succs
146        bool Done = ProcessInterval(getSourceGraphNode(OrigContainer, *SuccIt));
147        ++SuccIt;                               // Increment iterator
148        if (Done) return *this;                 // Found a new interval! Use it!
149      }
150
151      // Free interval memory... if necessary
152      if (IOwnMem) delete IntStack.back().first;
153
154      // We ran out of successors for this interval... pop off the stack
155      IntStack.pop_back();
156    } while (!IntStack.empty());
157
158    return *this;
159  }
160
161  IntervalIterator operator++(int) { // Postincrement
162    IntervalIterator tmp = *this;
163    ++*this;
164    return tmp;
165  }
166
167private:
168  // ProcessInterval - This method is used during the construction of the
169  // interval graph.  It walks through the source graph, recursively creating
170  // an interval per invocation until the entire graph is covered.  This uses
171  // the ProcessNode method to add all of the nodes to the interval.
172  //
173  // This method is templated because it may operate on two different source
174  // graphs: a basic block graph, or a preexisting interval graph.
175  bool ProcessInterval(NodeTy *Node) {
176    BasicBlock *Header = getNodeHeader(Node);
177    if (!Visited.insert(Header).second)
178      return false;
179
180    Interval *Int = new Interval(Header);
181
182    // Check all of our successors to see if they are in the interval...
183    for (typename GT::ChildIteratorType I = GT::child_begin(Node),
184           E = GT::child_end(Node); I != E; ++I)
185      ProcessNode(Int, getSourceGraphNode(OrigContainer, *I));
186
187    IntStack.push_back(std::make_pair(Int, succ_begin(Int)));
188    return true;
189  }
190
191  // ProcessNode - This method is called by ProcessInterval to add nodes to the
192  // interval being constructed, and it is also called recursively as it walks
193  // the source graph.  A node is added to the current interval only if all of
194  // its predecessors are already in the graph.  This also takes care of keeping
195  // the successor set of an interval up to date.
196  //
197  // This method is templated because it may operate on two different source
198  // graphs: a basic block graph, or a preexisting interval graph.
199  void ProcessNode(Interval *Int, NodeTy *Node) {
200    assert(Int && "Null interval == bad!");
201    assert(Node && "Null Node == bad!");
202
203    BasicBlock *NodeHeader = getNodeHeader(Node);
204
205    if (Visited.count(NodeHeader)) {     // Node already been visited?
206      if (Int->contains(NodeHeader)) {   // Already in this interval...
207        return;
208      } else {                           // In other interval, add as successor
209        if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
210          Int->Successors.push_back(NodeHeader);
211      }
212    } else {                             // Otherwise, not in interval yet
213      for (typename IGT::ChildIteratorType I = IGT::child_begin(Node),
214             E = IGT::child_end(Node); I != E; ++I) {
215        if (!Int->contains(*I)) {        // If pred not in interval, we can't be
216          if (!Int->isSuccessor(NodeHeader)) // Add only if not already in set
217            Int->Successors.push_back(NodeHeader);
218          return;                        // See you later
219        }
220      }
221
222      // If we get here, then all of the predecessors of BB are in the interval
223      // already.  In this case, we must add BB to the interval!
224      addNodeToInterval(Int, Node);
225      Visited.insert(NodeHeader);     // The node has now been visited!
226
227      if (Int->isSuccessor(NodeHeader)) {
228        // If we were in the successor list from before... remove from succ list
229        llvm::erase(Int->Successors, NodeHeader);
230      }
231
232      // Now that we have discovered that Node is in the interval, perhaps some
233      // of its successors are as well?
234      for (typename GT::ChildIteratorType It = GT::child_begin(Node),
235             End = GT::child_end(Node); It != End; ++It)
236        ProcessNode(Int, getSourceGraphNode(OrigContainer, *It));
237    }
238  }
239};
240
241using function_interval_iterator = IntervalIterator<BasicBlock, Function>;
242using interval_part_interval_iterator =
243    IntervalIterator<Interval, IntervalPartition>;
244
245inline function_interval_iterator intervals_begin(Function *F,
246                                                  bool DeleteInts = true) {
247  return function_interval_iterator(F, DeleteInts);
248}
249inline function_interval_iterator intervals_end(Function *) {
250  return function_interval_iterator();
251}
252
253inline interval_part_interval_iterator
254   intervals_begin(IntervalPartition &IP, bool DeleteIntervals = true) {
255  return interval_part_interval_iterator(IP, DeleteIntervals);
256}
257
258inline interval_part_interval_iterator intervals_end(IntervalPartition &IP) {
259  return interval_part_interval_iterator();
260}
261
262} // end namespace llvm
263
264#endif // LLVM_ANALYSIS_INTERVALITERATOR_H
265