1//==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Shared implementation of BlockFrequency for IR and Machine Instructions.
10// See the documentation below for BlockFrequencyInfoImpl for details.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
15#define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
16
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/DenseSet.h"
20#include "llvm/ADT/GraphTraits.h"
21#include "llvm/ADT/PostOrderIterator.h"
22#include "llvm/ADT/SmallPtrSet.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/SparseBitVector.h"
25#include "llvm/ADT/Twine.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/ValueHandle.h"
30#include "llvm/Support/BlockFrequency.h"
31#include "llvm/Support/BranchProbability.h"
32#include "llvm/Support/CommandLine.h"
33#include "llvm/Support/DOTGraphTraits.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/Format.h"
36#include "llvm/Support/ScaledNumber.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <cassert>
40#include <cstddef>
41#include <cstdint>
42#include <deque>
43#include <iterator>
44#include <limits>
45#include <list>
46#include <optional>
47#include <queue>
48#include <string>
49#include <utility>
50#include <vector>
51
52#define DEBUG_TYPE "block-freq"
53
54namespace llvm {
55extern llvm::cl::opt<bool> CheckBFIUnknownBlockQueries;
56
57extern llvm::cl::opt<bool> UseIterativeBFIInference;
58extern llvm::cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock;
59extern llvm::cl::opt<double> IterativeBFIPrecision;
60
61class BranchProbabilityInfo;
62class Function;
63class Loop;
64class LoopInfo;
65class MachineBasicBlock;
66class MachineBranchProbabilityInfo;
67class MachineFunction;
68class MachineLoop;
69class MachineLoopInfo;
70
71namespace bfi_detail {
72
73struct IrreducibleGraph;
74
75// This is part of a workaround for a GCC 4.7 crash on lambdas.
76template <class BT> struct BlockEdgesAdder;
77
78/// Mass of a block.
79///
80/// This class implements a sort of fixed-point fraction always between 0.0 and
81/// 1.0.  getMass() == std::numeric_limits<uint64_t>::max() indicates a value of
82/// 1.0.
83///
84/// Masses can be added and subtracted.  Simple saturation arithmetic is used,
85/// so arithmetic operations never overflow or underflow.
86///
87/// Masses can be multiplied.  Multiplication treats full mass as 1.0 and uses
88/// an inexpensive floating-point algorithm that's off-by-one (almost, but not
89/// quite, maximum precision).
90///
91/// Masses can be scaled by \a BranchProbability at maximum precision.
92class BlockMass {
93  uint64_t Mass = 0;
94
95public:
96  BlockMass() = default;
97  explicit BlockMass(uint64_t Mass) : Mass(Mass) {}
98
99  static BlockMass getEmpty() { return BlockMass(); }
100
101  static BlockMass getFull() {
102    return BlockMass(std::numeric_limits<uint64_t>::max());
103  }
104
105  uint64_t getMass() const { return Mass; }
106
107  bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); }
108  bool isEmpty() const { return !Mass; }
109
110  bool operator!() const { return isEmpty(); }
111
112  /// Add another mass.
113  ///
114  /// Adds another mass, saturating at \a isFull() rather than overflowing.
115  BlockMass &operator+=(BlockMass X) {
116    uint64_t Sum = Mass + X.Mass;
117    Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum;
118    return *this;
119  }
120
121  /// Subtract another mass.
122  ///
123  /// Subtracts another mass, saturating at \a isEmpty() rather than
124  /// undeflowing.
125  BlockMass &operator-=(BlockMass X) {
126    uint64_t Diff = Mass - X.Mass;
127    Mass = Diff > Mass ? 0 : Diff;
128    return *this;
129  }
130
131  BlockMass &operator*=(BranchProbability P) {
132    Mass = P.scale(Mass);
133    return *this;
134  }
135
136  bool operator==(BlockMass X) const { return Mass == X.Mass; }
137  bool operator!=(BlockMass X) const { return Mass != X.Mass; }
138  bool operator<=(BlockMass X) const { return Mass <= X.Mass; }
139  bool operator>=(BlockMass X) const { return Mass >= X.Mass; }
140  bool operator<(BlockMass X) const { return Mass < X.Mass; }
141  bool operator>(BlockMass X) const { return Mass > X.Mass; }
142
143  /// Convert to scaled number.
144  ///
145  /// Convert to \a ScaledNumber.  \a isFull() gives 1.0, while \a isEmpty()
146  /// gives slightly above 0.0.
147  ScaledNumber<uint64_t> toScaled() const;
148
149  void dump() const;
150  raw_ostream &print(raw_ostream &OS) const;
151};
152
153inline BlockMass operator+(BlockMass L, BlockMass R) {
154  return BlockMass(L) += R;
155}
156inline BlockMass operator-(BlockMass L, BlockMass R) {
157  return BlockMass(L) -= R;
158}
159inline BlockMass operator*(BlockMass L, BranchProbability R) {
160  return BlockMass(L) *= R;
161}
162inline BlockMass operator*(BranchProbability L, BlockMass R) {
163  return BlockMass(R) *= L;
164}
165
166inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) {
167  return X.print(OS);
168}
169
170} // end namespace bfi_detail
171
172/// Base class for BlockFrequencyInfoImpl
173///
174/// BlockFrequencyInfoImplBase has supporting data structures and some
175/// algorithms for BlockFrequencyInfoImplBase.  Only algorithms that depend on
176/// the block type (or that call such algorithms) are skipped here.
177///
178/// Nevertheless, the majority of the overall algorithm documentation lives with
179/// BlockFrequencyInfoImpl.  See there for details.
180class BlockFrequencyInfoImplBase {
181public:
182  using Scaled64 = ScaledNumber<uint64_t>;
183  using BlockMass = bfi_detail::BlockMass;
184
185  /// Representative of a block.
186  ///
187  /// This is a simple wrapper around an index into the reverse-post-order
188  /// traversal of the blocks.
189  ///
190  /// Unlike a block pointer, its order has meaning (location in the
191  /// topological sort) and it's class is the same regardless of block type.
192  struct BlockNode {
193    using IndexType = uint32_t;
194
195    IndexType Index;
196
197    BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {}
198    BlockNode(IndexType Index) : Index(Index) {}
199
200    bool operator==(const BlockNode &X) const { return Index == X.Index; }
201    bool operator!=(const BlockNode &X) const { return Index != X.Index; }
202    bool operator<=(const BlockNode &X) const { return Index <= X.Index; }
203    bool operator>=(const BlockNode &X) const { return Index >= X.Index; }
204    bool operator<(const BlockNode &X) const { return Index < X.Index; }
205    bool operator>(const BlockNode &X) const { return Index > X.Index; }
206
207    bool isValid() const { return Index <= getMaxIndex(); }
208
209    static size_t getMaxIndex() {
210       return std::numeric_limits<uint32_t>::max() - 1;
211    }
212  };
213
214  /// Stats about a block itself.
215  struct FrequencyData {
216    Scaled64 Scaled;
217    uint64_t Integer;
218  };
219
220  /// Data about a loop.
221  ///
222  /// Contains the data necessary to represent a loop as a pseudo-node once it's
223  /// packaged.
224  struct LoopData {
225    using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>;
226    using NodeList = SmallVector<BlockNode, 4>;
227    using HeaderMassList = SmallVector<BlockMass, 1>;
228
229    LoopData *Parent;            ///< The parent loop.
230    bool IsPackaged = false;     ///< Whether this has been packaged.
231    uint32_t NumHeaders = 1;     ///< Number of headers.
232    ExitMap Exits;               ///< Successor edges (and weights).
233    NodeList Nodes;              ///< Header and the members of the loop.
234    HeaderMassList BackedgeMass; ///< Mass returned to each loop header.
235    BlockMass Mass;
236    Scaled64 Scale;
237
238    LoopData(LoopData *Parent, const BlockNode &Header)
239      : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {}
240
241    template <class It1, class It2>
242    LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther,
243             It2 LastOther)
244        : Parent(Parent), Nodes(FirstHeader, LastHeader) {
245      NumHeaders = Nodes.size();
246      Nodes.insert(Nodes.end(), FirstOther, LastOther);
247      BackedgeMass.resize(NumHeaders);
248    }
249
250    bool isHeader(const BlockNode &Node) const {
251      if (isIrreducible())
252        return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders,
253                                  Node);
254      return Node == Nodes[0];
255    }
256
257    BlockNode getHeader() const { return Nodes[0]; }
258    bool isIrreducible() const { return NumHeaders > 1; }
259
260    HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) {
261      assert(isHeader(B) && "this is only valid on loop header blocks");
262      if (isIrreducible())
263        return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) -
264               Nodes.begin();
265      return 0;
266    }
267
268    NodeList::const_iterator members_begin() const {
269      return Nodes.begin() + NumHeaders;
270    }
271
272    NodeList::const_iterator members_end() const { return Nodes.end(); }
273    iterator_range<NodeList::const_iterator> members() const {
274      return make_range(members_begin(), members_end());
275    }
276  };
277
278  /// Index of loop information.
279  struct WorkingData {
280    BlockNode Node;           ///< This node.
281    LoopData *Loop = nullptr; ///< The loop this block is inside.
282    BlockMass Mass;           ///< Mass distribution from the entry block.
283
284    WorkingData(const BlockNode &Node) : Node(Node) {}
285
286    bool isLoopHeader() const { return Loop && Loop->isHeader(Node); }
287
288    bool isDoubleLoopHeader() const {
289      return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() &&
290             Loop->Parent->isHeader(Node);
291    }
292
293    LoopData *getContainingLoop() const {
294      if (!isLoopHeader())
295        return Loop;
296      if (!isDoubleLoopHeader())
297        return Loop->Parent;
298      return Loop->Parent->Parent;
299    }
300
301    /// Resolve a node to its representative.
302    ///
303    /// Get the node currently representing Node, which could be a containing
304    /// loop.
305    ///
306    /// This function should only be called when distributing mass.  As long as
307    /// there are no irreducible edges to Node, then it will have complexity
308    /// O(1) in this context.
309    ///
310    /// In general, the complexity is O(L), where L is the number of loop
311    /// headers Node has been packaged into.  Since this method is called in
312    /// the context of distributing mass, L will be the number of loop headers
313    /// an early exit edge jumps out of.
314    BlockNode getResolvedNode() const {
315      auto *L = getPackagedLoop();
316      return L ? L->getHeader() : Node;
317    }
318
319    LoopData *getPackagedLoop() const {
320      if (!Loop || !Loop->IsPackaged)
321        return nullptr;
322      auto *L = Loop;
323      while (L->Parent && L->Parent->IsPackaged)
324        L = L->Parent;
325      return L;
326    }
327
328    /// Get the appropriate mass for a node.
329    ///
330    /// Get appropriate mass for Node.  If Node is a loop-header (whose loop
331    /// has been packaged), returns the mass of its pseudo-node.  If it's a
332    /// node inside a packaged loop, it returns the loop's mass.
333    BlockMass &getMass() {
334      if (!isAPackage())
335        return Mass;
336      if (!isADoublePackage())
337        return Loop->Mass;
338      return Loop->Parent->Mass;
339    }
340
341    /// Has ContainingLoop been packaged up?
342    bool isPackaged() const { return getResolvedNode() != Node; }
343
344    /// Has Loop been packaged up?
345    bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; }
346
347    /// Has Loop been packaged up twice?
348    bool isADoublePackage() const {
349      return isDoubleLoopHeader() && Loop->Parent->IsPackaged;
350    }
351  };
352
353  /// Unscaled probability weight.
354  ///
355  /// Probability weight for an edge in the graph (including the
356  /// successor/target node).
357  ///
358  /// All edges in the original function are 32-bit.  However, exit edges from
359  /// loop packages are taken from 64-bit exit masses, so we need 64-bits of
360  /// space in general.
361  ///
362  /// In addition to the raw weight amount, Weight stores the type of the edge
363  /// in the current context (i.e., the context of the loop being processed).
364  /// Is this a local edge within the loop, an exit from the loop, or a
365  /// backedge to the loop header?
366  struct Weight {
367    enum DistType { Local, Exit, Backedge };
368    DistType Type = Local;
369    BlockNode TargetNode;
370    uint64_t Amount = 0;
371
372    Weight() = default;
373    Weight(DistType Type, BlockNode TargetNode, uint64_t Amount)
374        : Type(Type), TargetNode(TargetNode), Amount(Amount) {}
375  };
376
377  /// Distribution of unscaled probability weight.
378  ///
379  /// Distribution of unscaled probability weight to a set of successors.
380  ///
381  /// This class collates the successor edge weights for later processing.
382  ///
383  /// \a DidOverflow indicates whether \a Total did overflow while adding to
384  /// the distribution.  It should never overflow twice.
385  struct Distribution {
386    using WeightList = SmallVector<Weight, 4>;
387
388    WeightList Weights;       ///< Individual successor weights.
389    uint64_t Total = 0;       ///< Sum of all weights.
390    bool DidOverflow = false; ///< Whether \a Total did overflow.
391
392    Distribution() = default;
393
394    void addLocal(const BlockNode &Node, uint64_t Amount) {
395      add(Node, Amount, Weight::Local);
396    }
397
398    void addExit(const BlockNode &Node, uint64_t Amount) {
399      add(Node, Amount, Weight::Exit);
400    }
401
402    void addBackedge(const BlockNode &Node, uint64_t Amount) {
403      add(Node, Amount, Weight::Backedge);
404    }
405
406    /// Normalize the distribution.
407    ///
408    /// Combines multiple edges to the same \a Weight::TargetNode and scales
409    /// down so that \a Total fits into 32-bits.
410    ///
411    /// This is linear in the size of \a Weights.  For the vast majority of
412    /// cases, adjacent edge weights are combined by sorting WeightList and
413    /// combining adjacent weights.  However, for very large edge lists an
414    /// auxiliary hash table is used.
415    void normalize();
416
417  private:
418    void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type);
419  };
420
421  /// Data about each block.  This is used downstream.
422  std::vector<FrequencyData> Freqs;
423
424  /// Whether each block is an irreducible loop header.
425  /// This is used downstream.
426  SparseBitVector<> IsIrrLoopHeader;
427
428  /// Loop data: see initializeLoops().
429  std::vector<WorkingData> Working;
430
431  /// Indexed information about loops.
432  std::list<LoopData> Loops;
433
434  /// Virtual destructor.
435  ///
436  /// Need a virtual destructor to mask the compiler warning about
437  /// getBlockName().
438  virtual ~BlockFrequencyInfoImplBase() = default;
439
440  /// Add all edges out of a packaged loop to the distribution.
441  ///
442  /// Adds all edges from LocalLoopHead to Dist.  Calls addToDist() to add each
443  /// successor edge.
444  ///
445  /// \return \c true unless there's an irreducible backedge.
446  bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop,
447                               Distribution &Dist);
448
449  /// Add an edge to the distribution.
450  ///
451  /// Adds an edge to Succ to Dist.  If \c LoopHead.isValid(), then whether the
452  /// edge is local/exit/backedge is in the context of LoopHead.  Otherwise,
453  /// every edge should be a local edge (since all the loops are packaged up).
454  ///
455  /// \return \c true unless aborted due to an irreducible backedge.
456  bool addToDist(Distribution &Dist, const LoopData *OuterLoop,
457                 const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight);
458
459  /// Analyze irreducible SCCs.
460  ///
461  /// Separate irreducible SCCs from \c G, which is an explicit graph of \c
462  /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr).
463  /// Insert them into \a Loops before \c Insert.
464  ///
465  /// \return the \c LoopData nodes representing the irreducible SCCs.
466  iterator_range<std::list<LoopData>::iterator>
467  analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop,
468                     std::list<LoopData>::iterator Insert);
469
470  /// Update a loop after packaging irreducible SCCs inside of it.
471  ///
472  /// Update \c OuterLoop.  Before finding irreducible control flow, it was
473  /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a
474  /// LoopData::BackedgeMass need to be reset.  Also, nodes that were packaged
475  /// up need to be removed from \a OuterLoop::Nodes.
476  void updateLoopWithIrreducible(LoopData &OuterLoop);
477
478  /// Distribute mass according to a distribution.
479  ///
480  /// Distributes the mass in Source according to Dist.  If LoopHead.isValid(),
481  /// backedges and exits are stored in its entry in Loops.
482  ///
483  /// Mass is distributed in parallel from two copies of the source mass.
484  void distributeMass(const BlockNode &Source, LoopData *OuterLoop,
485                      Distribution &Dist);
486
487  /// Compute the loop scale for a loop.
488  void computeLoopScale(LoopData &Loop);
489
490  /// Adjust the mass of all headers in an irreducible loop.
491  ///
492  /// Initially, irreducible loops are assumed to distribute their mass
493  /// equally among its headers. This can lead to wrong frequency estimates
494  /// since some headers may be executed more frequently than others.
495  ///
496  /// This adjusts header mass distribution so it matches the weights of
497  /// the backedges going into each of the loop headers.
498  void adjustLoopHeaderMass(LoopData &Loop);
499
500  void distributeIrrLoopHeaderMass(Distribution &Dist);
501
502  /// Package up a loop.
503  void packageLoop(LoopData &Loop);
504
505  /// Unwrap loops.
506  void unwrapLoops();
507
508  /// Finalize frequency metrics.
509  ///
510  /// Calculates final frequencies and cleans up no-longer-needed data
511  /// structures.
512  void finalizeMetrics();
513
514  /// Clear all memory.
515  void clear();
516
517  virtual std::string getBlockName(const BlockNode &Node) const;
518  std::string getLoopName(const LoopData &Loop) const;
519
520  virtual raw_ostream &print(raw_ostream &OS) const { return OS; }
521  void dump() const { print(dbgs()); }
522
523  Scaled64 getFloatingBlockFreq(const BlockNode &Node) const;
524
525  BlockFrequency getBlockFreq(const BlockNode &Node) const;
526  std::optional<uint64_t>
527  getBlockProfileCount(const Function &F, const BlockNode &Node,
528                       bool AllowSynthetic = false) const;
529  std::optional<uint64_t>
530  getProfileCountFromFreq(const Function &F, BlockFrequency Freq,
531                          bool AllowSynthetic = false) const;
532  bool isIrrLoopHeader(const BlockNode &Node);
533
534  void setBlockFreq(const BlockNode &Node, BlockFrequency Freq);
535
536  BlockFrequency getEntryFreq() const {
537    assert(!Freqs.empty());
538    return BlockFrequency(Freqs[0].Integer);
539  }
540};
541
542void printBlockFreqImpl(raw_ostream &OS, BlockFrequency EntryFreq,
543                        BlockFrequency Freq);
544
545namespace bfi_detail {
546
547template <class BlockT> struct TypeMap {};
548template <> struct TypeMap<BasicBlock> {
549  using BlockT = BasicBlock;
550  using BlockKeyT = AssertingVH<const BasicBlock>;
551  using FunctionT = Function;
552  using BranchProbabilityInfoT = BranchProbabilityInfo;
553  using LoopT = Loop;
554  using LoopInfoT = LoopInfo;
555};
556template <> struct TypeMap<MachineBasicBlock> {
557  using BlockT = MachineBasicBlock;
558  using BlockKeyT = const MachineBasicBlock *;
559  using FunctionT = MachineFunction;
560  using BranchProbabilityInfoT = MachineBranchProbabilityInfo;
561  using LoopT = MachineLoop;
562  using LoopInfoT = MachineLoopInfo;
563};
564
565template <class BlockT, class BFIImplT>
566class BFICallbackVH;
567
568/// Get the name of a MachineBasicBlock.
569///
570/// Get the name of a MachineBasicBlock.  It's templated so that including from
571/// CodeGen is unnecessary (that would be a layering issue).
572///
573/// This is used mainly for debug output.  The name is similar to
574/// MachineBasicBlock::getFullName(), but skips the name of the function.
575template <class BlockT> std::string getBlockName(const BlockT *BB) {
576  assert(BB && "Unexpected nullptr");
577  auto MachineName = "BB" + Twine(BB->getNumber());
578  if (BB->getBasicBlock())
579    return (MachineName + "[" + BB->getName() + "]").str();
580  return MachineName.str();
581}
582/// Get the name of a BasicBlock.
583template <> inline std::string getBlockName(const BasicBlock *BB) {
584  assert(BB && "Unexpected nullptr");
585  return BB->getName().str();
586}
587
588/// Graph of irreducible control flow.
589///
590/// This graph is used for determining the SCCs in a loop (or top-level
591/// function) that has irreducible control flow.
592///
593/// During the block frequency algorithm, the local graphs are defined in a
594/// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock
595/// graphs for most edges, but getting others from \a LoopData::ExitMap.  The
596/// latter only has successor information.
597///
598/// \a IrreducibleGraph makes this graph explicit.  It's in a form that can use
599/// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator),
600/// and it explicitly lists predecessors and successors.  The initialization
601/// that relies on \c MachineBasicBlock is defined in the header.
602struct IrreducibleGraph {
603  using BFIBase = BlockFrequencyInfoImplBase;
604
605  BFIBase &BFI;
606
607  using BlockNode = BFIBase::BlockNode;
608  struct IrrNode {
609    BlockNode Node;
610    unsigned NumIn = 0;
611    std::deque<const IrrNode *> Edges;
612
613    IrrNode(const BlockNode &Node) : Node(Node) {}
614
615    using iterator = std::deque<const IrrNode *>::const_iterator;
616
617    iterator pred_begin() const { return Edges.begin(); }
618    iterator succ_begin() const { return Edges.begin() + NumIn; }
619    iterator pred_end() const { return succ_begin(); }
620    iterator succ_end() const { return Edges.end(); }
621  };
622  BlockNode Start;
623  const IrrNode *StartIrr = nullptr;
624  std::vector<IrrNode> Nodes;
625  SmallDenseMap<uint32_t, IrrNode *, 4> Lookup;
626
627  /// Construct an explicit graph containing irreducible control flow.
628  ///
629  /// Construct an explicit graph of the control flow in \c OuterLoop (or the
630  /// top-level function, if \c OuterLoop is \c nullptr).  Uses \c
631  /// addBlockEdges to add block successors that have not been packaged into
632  /// loops.
633  ///
634  /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected
635  /// user of this.
636  template <class BlockEdgesAdder>
637  IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop,
638                   BlockEdgesAdder addBlockEdges) : BFI(BFI) {
639    initialize(OuterLoop, addBlockEdges);
640  }
641
642  template <class BlockEdgesAdder>
643  void initialize(const BFIBase::LoopData *OuterLoop,
644                  BlockEdgesAdder addBlockEdges);
645  void addNodesInLoop(const BFIBase::LoopData &OuterLoop);
646  void addNodesInFunction();
647
648  void addNode(const BlockNode &Node) {
649    Nodes.emplace_back(Node);
650    BFI.Working[Node.Index].getMass() = BlockMass::getEmpty();
651  }
652
653  void indexNodes();
654  template <class BlockEdgesAdder>
655  void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop,
656                BlockEdgesAdder addBlockEdges);
657  void addEdge(IrrNode &Irr, const BlockNode &Succ,
658               const BFIBase::LoopData *OuterLoop);
659};
660
661template <class BlockEdgesAdder>
662void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop,
663                                  BlockEdgesAdder addBlockEdges) {
664  if (OuterLoop) {
665    addNodesInLoop(*OuterLoop);
666    for (auto N : OuterLoop->Nodes)
667      addEdges(N, OuterLoop, addBlockEdges);
668  } else {
669    addNodesInFunction();
670    for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index)
671      addEdges(Index, OuterLoop, addBlockEdges);
672  }
673  StartIrr = Lookup[Start.Index];
674}
675
676template <class BlockEdgesAdder>
677void IrreducibleGraph::addEdges(const BlockNode &Node,
678                                const BFIBase::LoopData *OuterLoop,
679                                BlockEdgesAdder addBlockEdges) {
680  auto L = Lookup.find(Node.Index);
681  if (L == Lookup.end())
682    return;
683  IrrNode &Irr = *L->second;
684  const auto &Working = BFI.Working[Node.Index];
685
686  if (Working.isAPackage())
687    for (const auto &I : Working.Loop->Exits)
688      addEdge(Irr, I.first, OuterLoop);
689  else
690    addBlockEdges(*this, Irr, OuterLoop);
691}
692
693} // end namespace bfi_detail
694
695/// Shared implementation for block frequency analysis.
696///
697/// This is a shared implementation of BlockFrequencyInfo and
698/// MachineBlockFrequencyInfo, and calculates the relative frequencies of
699/// blocks.
700///
701/// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block,
702/// which is called the header.  A given loop, L, can have sub-loops, which are
703/// loops within the subgraph of L that exclude its header.  (A "trivial" SCC
704/// consists of a single block that does not have a self-edge.)
705///
706/// In addition to loops, this algorithm has limited support for irreducible
707/// SCCs, which are SCCs with multiple entry blocks.  Irreducible SCCs are
708/// discovered on the fly, and modelled as loops with multiple headers.
709///
710/// The headers of irreducible sub-SCCs consist of its entry blocks and all
711/// nodes that are targets of a backedge within it (excluding backedges within
712/// true sub-loops).  Block frequency calculations act as if a block is
713/// inserted that intercepts all the edges to the headers.  All backedges and
714/// entries point to this block.  Its successors are the headers, which split
715/// the frequency evenly.
716///
717/// This algorithm leverages BlockMass and ScaledNumber to maintain precision,
718/// separates mass distribution from loop scaling, and dithers to eliminate
719/// probability mass loss.
720///
721/// The implementation is split between BlockFrequencyInfoImpl, which knows the
722/// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and
723/// BlockFrequencyInfoImplBase, which doesn't.  The base class uses \a
724/// BlockNode, a wrapper around a uint32_t.  BlockNode is numbered from 0 in
725/// reverse-post order.  This gives two advantages:  it's easy to compare the
726/// relative ordering of two nodes, and maps keyed on BlockT can be represented
727/// by vectors.
728///
729/// This algorithm is O(V+E), unless there is irreducible control flow, in
730/// which case it's O(V*E) in the worst case.
731///
732/// These are the main stages:
733///
734///  0. Reverse post-order traversal (\a initializeRPOT()).
735///
736///     Run a single post-order traversal and save it (in reverse) in RPOT.
737///     All other stages make use of this ordering.  Save a lookup from BlockT
738///     to BlockNode (the index into RPOT) in Nodes.
739///
740///  1. Loop initialization (\a initializeLoops()).
741///
742///     Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of
743///     the algorithm.  In particular, store the immediate members of each loop
744///     in reverse post-order.
745///
746///  2. Calculate mass and scale in loops (\a computeMassInLoops()).
747///
748///     For each loop (bottom-up), distribute mass through the DAG resulting
749///     from ignoring backedges and treating sub-loops as a single pseudo-node.
750///     Track the backedge mass distributed to the loop header, and use it to
751///     calculate the loop scale (number of loop iterations).  Immediate
752///     members that represent sub-loops will already have been visited and
753///     packaged into a pseudo-node.
754///
755///     Distributing mass in a loop is a reverse-post-order traversal through
756///     the loop.  Start by assigning full mass to the Loop header.  For each
757///     node in the loop:
758///
759///         - Fetch and categorize the weight distribution for its successors.
760///           If this is a packaged-subloop, the weight distribution is stored
761///           in \a LoopData::Exits.  Otherwise, fetch it from
762///           BranchProbabilityInfo.
763///
764///         - Each successor is categorized as \a Weight::Local, a local edge
765///           within the current loop, \a Weight::Backedge, a backedge to the
766///           loop header, or \a Weight::Exit, any successor outside the loop.
767///           The weight, the successor, and its category are stored in \a
768///           Distribution.  There can be multiple edges to each successor.
769///
770///         - If there's a backedge to a non-header, there's an irreducible SCC.
771///           The usual flow is temporarily aborted.  \a
772///           computeIrreducibleMass() finds the irreducible SCCs within the
773///           loop, packages them up, and restarts the flow.
774///
775///         - Normalize the distribution:  scale weights down so that their sum
776///           is 32-bits, and coalesce multiple edges to the same node.
777///
778///         - Distribute the mass accordingly, dithering to minimize mass loss,
779///           as described in \a distributeMass().
780///
781///     In the case of irreducible loops, instead of a single loop header,
782///     there will be several. The computation of backedge masses is similar
783///     but instead of having a single backedge mass, there will be one
784///     backedge per loop header. In these cases, each backedge will carry
785///     a mass proportional to the edge weights along the corresponding
786///     path.
787///
788///     At the end of propagation, the full mass assigned to the loop will be
789///     distributed among the loop headers proportionally according to the
790///     mass flowing through their backedges.
791///
792///     Finally, calculate the loop scale from the accumulated backedge mass.
793///
794///  3. Distribute mass in the function (\a computeMassInFunction()).
795///
796///     Finally, distribute mass through the DAG resulting from packaging all
797///     loops in the function.  This uses the same algorithm as distributing
798///     mass in a loop, except that there are no exit or backedge edges.
799///
800///  4. Unpackage loops (\a unwrapLoops()).
801///
802///     Initialize each block's frequency to a floating point representation of
803///     its mass.
804///
805///     Visit loops top-down, scaling the frequencies of its immediate members
806///     by the loop's pseudo-node's frequency.
807///
808///  5. Convert frequencies to a 64-bit range (\a finalizeMetrics()).
809///
810///     Using the min and max frequencies as a guide, translate floating point
811///     frequencies to an appropriate range in uint64_t.
812///
813/// It has some known flaws.
814///
815///   - The model of irreducible control flow is a rough approximation.
816///
817///     Modelling irreducible control flow exactly involves setting up and
818///     solving a group of infinite geometric series.  Such precision is
819///     unlikely to be worthwhile, since most of our algorithms give up on
820///     irreducible control flow anyway.
821///
822///     Nevertheless, we might find that we need to get closer.  Here's a sort
823///     of TODO list for the model with diminishing returns, to be completed as
824///     necessary.
825///
826///       - The headers for the \a LoopData representing an irreducible SCC
827///         include non-entry blocks.  When these extra blocks exist, they
828///         indicate a self-contained irreducible sub-SCC.  We could treat them
829///         as sub-loops, rather than arbitrarily shoving the problematic
830///         blocks into the headers of the main irreducible SCC.
831///
832///       - Entry frequencies are assumed to be evenly split between the
833///         headers of a given irreducible SCC, which is the only option if we
834///         need to compute mass in the SCC before its parent loop.  Instead,
835///         we could partially compute mass in the parent loop, and stop when
836///         we get to the SCC.  Here, we have the correct ratio of entry
837///         masses, which we can use to adjust their relative frequencies.
838///         Compute mass in the SCC, and then continue propagation in the
839///         parent.
840///
841///       - We can propagate mass iteratively through the SCC, for some fixed
842///         number of iterations.  Each iteration starts by assigning the entry
843///         blocks their backedge mass from the prior iteration.  The final
844///         mass for each block (and each exit, and the total backedge mass
845///         used for computing loop scale) is the sum of all iterations.
846///         (Running this until fixed point would "solve" the geometric
847///         series by simulation.)
848template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase {
849  // This is part of a workaround for a GCC 4.7 crash on lambdas.
850  friend struct bfi_detail::BlockEdgesAdder<BT>;
851
852  using BlockT = typename bfi_detail::TypeMap<BT>::BlockT;
853  using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT;
854  using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT;
855  using BranchProbabilityInfoT =
856      typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT;
857  using LoopT = typename bfi_detail::TypeMap<BT>::LoopT;
858  using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT;
859  using Successor = GraphTraits<const BlockT *>;
860  using Predecessor = GraphTraits<Inverse<const BlockT *>>;
861  using BFICallbackVH =
862      bfi_detail::BFICallbackVH<BlockT, BlockFrequencyInfoImpl>;
863
864  const BranchProbabilityInfoT *BPI = nullptr;
865  const LoopInfoT *LI = nullptr;
866  const FunctionT *F = nullptr;
867
868  // All blocks in reverse postorder.
869  std::vector<const BlockT *> RPOT;
870  DenseMap<BlockKeyT, std::pair<BlockNode, BFICallbackVH>> Nodes;
871
872  using rpot_iterator = typename std::vector<const BlockT *>::const_iterator;
873
874  rpot_iterator rpot_begin() const { return RPOT.begin(); }
875  rpot_iterator rpot_end() const { return RPOT.end(); }
876
877  size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); }
878
879  BlockNode getNode(const rpot_iterator &I) const {
880    return BlockNode(getIndex(I));
881  }
882
883  BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; }
884
885  const BlockT *getBlock(const BlockNode &Node) const {
886    assert(Node.Index < RPOT.size());
887    return RPOT[Node.Index];
888  }
889
890  /// Run (and save) a post-order traversal.
891  ///
892  /// Saves a reverse post-order traversal of all the nodes in \a F.
893  void initializeRPOT();
894
895  /// Initialize loop data.
896  ///
897  /// Build up \a Loops using \a LoopInfo.  \a LoopInfo gives us a mapping from
898  /// each block to the deepest loop it's in, but we need the inverse.  For each
899  /// loop, we store in reverse post-order its "immediate" members, defined as
900  /// the header, the headers of immediate sub-loops, and all other blocks in
901  /// the loop that are not in sub-loops.
902  void initializeLoops();
903
904  /// Propagate to a block's successors.
905  ///
906  /// In the context of distributing mass through \c OuterLoop, divide the mass
907  /// currently assigned to \c Node between its successors.
908  ///
909  /// \return \c true unless there's an irreducible backedge.
910  bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node);
911
912  /// Compute mass in a particular loop.
913  ///
914  /// Assign mass to \c Loop's header, and then for each block in \c Loop in
915  /// reverse post-order, distribute mass to its successors.  Only visits nodes
916  /// that have not been packaged into sub-loops.
917  ///
918  /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop.
919  /// \return \c true unless there's an irreducible backedge.
920  bool computeMassInLoop(LoopData &Loop);
921
922  /// Try to compute mass in the top-level function.
923  ///
924  /// Assign mass to the entry block, and then for each block in reverse
925  /// post-order, distribute mass to its successors.  Skips nodes that have
926  /// been packaged into loops.
927  ///
928  /// \pre \a computeMassInLoops() has been called.
929  /// \return \c true unless there's an irreducible backedge.
930  bool tryToComputeMassInFunction();
931
932  /// Compute mass in (and package up) irreducible SCCs.
933  ///
934  /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front
935  /// of \c Insert), and call \a computeMassInLoop() on each of them.
936  ///
937  /// If \c OuterLoop is \c nullptr, it refers to the top-level function.
938  ///
939  /// \pre \a computeMassInLoop() has been called for each subloop of \c
940  /// OuterLoop.
941  /// \pre \c Insert points at the last loop successfully processed by \a
942  /// computeMassInLoop().
943  /// \pre \c OuterLoop has irreducible SCCs.
944  void computeIrreducibleMass(LoopData *OuterLoop,
945                              std::list<LoopData>::iterator Insert);
946
947  /// Compute mass in all loops.
948  ///
949  /// For each loop bottom-up, call \a computeMassInLoop().
950  ///
951  /// \a computeMassInLoop() aborts (and returns \c false) on loops that
952  /// contain a irreducible sub-SCCs.  Use \a computeIrreducibleMass() and then
953  /// re-enter \a computeMassInLoop().
954  ///
955  /// \post \a computeMassInLoop() has returned \c true for every loop.
956  void computeMassInLoops();
957
958  /// Compute mass in the top-level function.
959  ///
960  /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to
961  /// compute mass in the top-level function.
962  ///
963  /// \post \a tryToComputeMassInFunction() has returned \c true.
964  void computeMassInFunction();
965
966  std::string getBlockName(const BlockNode &Node) const override {
967    return bfi_detail::getBlockName(getBlock(Node));
968  }
969
970  /// The current implementation for computing relative block frequencies does
971  /// not handle correctly control-flow graphs containing irreducible loops. To
972  /// resolve the problem, we apply a post-processing step, which iteratively
973  /// updates block frequencies based on the frequencies of their predesessors.
974  /// This corresponds to finding the stationary point of the Markov chain by
975  /// an iterative method aka "PageRank computation".
976  /// The algorithm takes at most O(|E| * IterativeBFIMaxIterations) steps but
977  /// typically converges faster.
978  ///
979  /// Decide whether we want to apply iterative inference for a given function.
980  bool needIterativeInference() const;
981
982  /// Apply an iterative post-processing to infer correct counts for irr loops.
983  void applyIterativeInference();
984
985  using ProbMatrixType = std::vector<std::vector<std::pair<size_t, Scaled64>>>;
986
987  /// Run iterative inference for a probability matrix and initial frequencies.
988  void iterativeInference(const ProbMatrixType &ProbMatrix,
989                          std::vector<Scaled64> &Freq) const;
990
991  /// Find all blocks to apply inference on, that is, reachable from the entry
992  /// and backward reachable from exists along edges with positive probability.
993  void findReachableBlocks(std::vector<const BlockT *> &Blocks) const;
994
995  /// Build a matrix of probabilities with transitions (edges) between the
996  /// blocks: ProbMatrix[I] holds pairs (J, P), where Pr[J -> I | J] = P
997  void initTransitionProbabilities(
998      const std::vector<const BlockT *> &Blocks,
999      const DenseMap<const BlockT *, size_t> &BlockIndex,
1000      ProbMatrixType &ProbMatrix) const;
1001
1002#ifndef NDEBUG
1003  /// Compute the discrepancy between current block frequencies and the
1004  /// probability matrix.
1005  Scaled64 discrepancy(const ProbMatrixType &ProbMatrix,
1006                       const std::vector<Scaled64> &Freq) const;
1007#endif
1008
1009public:
1010  BlockFrequencyInfoImpl() = default;
1011
1012  const FunctionT *getFunction() const { return F; }
1013
1014  void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI,
1015                 const LoopInfoT &LI);
1016
1017  using BlockFrequencyInfoImplBase::getEntryFreq;
1018
1019  BlockFrequency getBlockFreq(const BlockT *BB) const {
1020    return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB));
1021  }
1022
1023  std::optional<uint64_t>
1024  getBlockProfileCount(const Function &F, const BlockT *BB,
1025                       bool AllowSynthetic = false) const {
1026    return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB),
1027                                                            AllowSynthetic);
1028  }
1029
1030  std::optional<uint64_t>
1031  getProfileCountFromFreq(const Function &F, BlockFrequency Freq,
1032                          bool AllowSynthetic = false) const {
1033    return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq,
1034                                                               AllowSynthetic);
1035  }
1036
1037  bool isIrrLoopHeader(const BlockT *BB) {
1038    return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB));
1039  }
1040
1041  void setBlockFreq(const BlockT *BB, BlockFrequency Freq);
1042
1043  void forgetBlock(const BlockT *BB) {
1044    // We don't erase corresponding items from `Freqs`, `RPOT` and other to
1045    // avoid invalidating indices. Doing so would have saved some memory, but
1046    // it's not worth it.
1047    Nodes.erase(BB);
1048  }
1049
1050  Scaled64 getFloatingBlockFreq(const BlockT *BB) const {
1051    return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB));
1052  }
1053
1054  const BranchProbabilityInfoT &getBPI() const { return *BPI; }
1055
1056  /// Print the frequencies for the current function.
1057  ///
1058  /// Prints the frequencies for the blocks in the current function.
1059  ///
1060  /// Blocks are printed in the natural iteration order of the function, rather
1061  /// than reverse post-order.  This provides two advantages:  writing -analyze
1062  /// tests is easier (since blocks come out in source order), and even
1063  /// unreachable blocks are printed.
1064  ///
1065  /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so
1066  /// we need to override it here.
1067  raw_ostream &print(raw_ostream &OS) const override;
1068
1069  using BlockFrequencyInfoImplBase::dump;
1070
1071  void verifyMatch(BlockFrequencyInfoImpl<BT> &Other) const;
1072};
1073
1074namespace bfi_detail {
1075
1076template <class BFIImplT>
1077class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH {
1078  BFIImplT *BFIImpl;
1079
1080public:
1081  BFICallbackVH() = default;
1082
1083  BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl)
1084      : CallbackVH(BB), BFIImpl(BFIImpl) {}
1085
1086  virtual ~BFICallbackVH() = default;
1087
1088  void deleted() override {
1089    BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr()));
1090  }
1091};
1092
1093/// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles
1094/// don't apply to them.
1095template <class BFIImplT>
1096class BFICallbackVH<MachineBasicBlock, BFIImplT> {
1097public:
1098  BFICallbackVH() = default;
1099  BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {}
1100};
1101
1102} // end namespace bfi_detail
1103
1104template <class BT>
1105void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F,
1106                                           const BranchProbabilityInfoT &BPI,
1107                                           const LoopInfoT &LI) {
1108  // Save the parameters.
1109  this->BPI = &BPI;
1110  this->LI = &LI;
1111  this->F = &F;
1112
1113  // Clean up left-over data structures.
1114  BlockFrequencyInfoImplBase::clear();
1115  RPOT.clear();
1116  Nodes.clear();
1117
1118  // Initialize.
1119  LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName()
1120                    << "\n================="
1121                    << std::string(F.getName().size(), '=') << "\n");
1122  initializeRPOT();
1123  initializeLoops();
1124
1125  // Visit loops in post-order to find the local mass distribution, and then do
1126  // the full function.
1127  computeMassInLoops();
1128  computeMassInFunction();
1129  unwrapLoops();
1130  // Apply a post-processing step improving computed frequencies for functions
1131  // with irreducible loops.
1132  if (needIterativeInference())
1133    applyIterativeInference();
1134  finalizeMetrics();
1135
1136  if (CheckBFIUnknownBlockQueries) {
1137    // To detect BFI queries for unknown blocks, add entries for unreachable
1138    // blocks, if any. This is to distinguish between known/existing unreachable
1139    // blocks and unknown blocks.
1140    for (const BlockT &BB : F)
1141      if (!Nodes.count(&BB))
1142        setBlockFreq(&BB, BlockFrequency());
1143  }
1144}
1145
1146template <class BT>
1147void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB,
1148                                              BlockFrequency Freq) {
1149  if (Nodes.count(BB))
1150    BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq);
1151  else {
1152    // If BB is a newly added block after BFI is done, we need to create a new
1153    // BlockNode for it assigned with a new index. The index can be determined
1154    // by the size of Freqs.
1155    BlockNode NewNode(Freqs.size());
1156    Nodes[BB] = {NewNode, BFICallbackVH(BB, this)};
1157    Freqs.emplace_back();
1158    BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq);
1159  }
1160}
1161
1162template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() {
1163  const BlockT *Entry = &F->front();
1164  RPOT.reserve(F->size());
1165  std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT));
1166  std::reverse(RPOT.begin(), RPOT.end());
1167
1168  assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() &&
1169         "More nodes in function than Block Frequency Info supports");
1170
1171  LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n");
1172  for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) {
1173    BlockNode Node = getNode(I);
1174    LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node)
1175                      << "\n");
1176    Nodes[*I] = {Node, BFICallbackVH(*I, this)};
1177  }
1178
1179  Working.reserve(RPOT.size());
1180  for (size_t Index = 0; Index < RPOT.size(); ++Index)
1181    Working.emplace_back(Index);
1182  Freqs.resize(RPOT.size());
1183}
1184
1185template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() {
1186  LLVM_DEBUG(dbgs() << "loop-detection\n");
1187  if (LI->empty())
1188    return;
1189
1190  // Visit loops top down and assign them an index.
1191  std::deque<std::pair<const LoopT *, LoopData *>> Q;
1192  for (const LoopT *L : *LI)
1193    Q.emplace_back(L, nullptr);
1194  while (!Q.empty()) {
1195    const LoopT *Loop = Q.front().first;
1196    LoopData *Parent = Q.front().second;
1197    Q.pop_front();
1198
1199    BlockNode Header = getNode(Loop->getHeader());
1200    assert(Header.isValid());
1201
1202    Loops.emplace_back(Parent, Header);
1203    Working[Header.Index].Loop = &Loops.back();
1204    LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n");
1205
1206    for (const LoopT *L : *Loop)
1207      Q.emplace_back(L, &Loops.back());
1208  }
1209
1210  // Visit nodes in reverse post-order and add them to their deepest containing
1211  // loop.
1212  for (size_t Index = 0; Index < RPOT.size(); ++Index) {
1213    // Loop headers have already been mostly mapped.
1214    if (Working[Index].isLoopHeader()) {
1215      LoopData *ContainingLoop = Working[Index].getContainingLoop();
1216      if (ContainingLoop)
1217        ContainingLoop->Nodes.push_back(Index);
1218      continue;
1219    }
1220
1221    const LoopT *Loop = LI->getLoopFor(RPOT[Index]);
1222    if (!Loop)
1223      continue;
1224
1225    // Add this node to its containing loop's member list.
1226    BlockNode Header = getNode(Loop->getHeader());
1227    assert(Header.isValid());
1228    const auto &HeaderData = Working[Header.Index];
1229    assert(HeaderData.isLoopHeader());
1230
1231    Working[Index].Loop = HeaderData.Loop;
1232    HeaderData.Loop->Nodes.push_back(Index);
1233    LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header)
1234                      << ": member = " << getBlockName(Index) << "\n");
1235  }
1236}
1237
1238template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() {
1239  // Visit loops with the deepest first, and the top-level loops last.
1240  for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1241    if (computeMassInLoop(*L))
1242      continue;
1243    auto Next = std::next(L);
1244    computeIrreducibleMass(&*L, L.base());
1245    L = std::prev(Next);
1246    if (computeMassInLoop(*L))
1247      continue;
1248    llvm_unreachable("unhandled irreducible control flow");
1249  }
1250}
1251
1252template <class BT>
1253bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) {
1254  // Compute mass in loop.
1255  LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n");
1256
1257  if (Loop.isIrreducible()) {
1258    LLVM_DEBUG(dbgs() << "isIrreducible = true\n");
1259    Distribution Dist;
1260    unsigned NumHeadersWithWeight = 0;
1261    std::optional<uint64_t> MinHeaderWeight;
1262    DenseSet<uint32_t> HeadersWithoutWeight;
1263    HeadersWithoutWeight.reserve(Loop.NumHeaders);
1264    for (uint32_t H = 0; H < Loop.NumHeaders; ++H) {
1265      auto &HeaderNode = Loop.Nodes[H];
1266      const BlockT *Block = getBlock(HeaderNode);
1267      IsIrrLoopHeader.set(Loop.Nodes[H].Index);
1268      std::optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight();
1269      if (!HeaderWeight) {
1270        LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on "
1271                          << getBlockName(HeaderNode) << "\n");
1272        HeadersWithoutWeight.insert(H);
1273        continue;
1274      }
1275      LLVM_DEBUG(dbgs() << getBlockName(HeaderNode)
1276                        << " has irr loop header weight " << *HeaderWeight
1277                        << "\n");
1278      NumHeadersWithWeight++;
1279      uint64_t HeaderWeightValue = *HeaderWeight;
1280      if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight)
1281        MinHeaderWeight = HeaderWeightValue;
1282      if (HeaderWeightValue) {
1283        Dist.addLocal(HeaderNode, HeaderWeightValue);
1284      }
1285    }
1286    // As a heuristic, if some headers don't have a weight, give them the
1287    // minimum weight seen (not to disrupt the existing trends too much by
1288    // using a weight that's in the general range of the other headers' weights,
1289    // and the minimum seems to perform better than the average.)
1290    // FIXME: better update in the passes that drop the header weight.
1291    // If no headers have a weight, give them even weight (use weight 1).
1292    if (!MinHeaderWeight)
1293      MinHeaderWeight = 1;
1294    for (uint32_t H : HeadersWithoutWeight) {
1295      auto &HeaderNode = Loop.Nodes[H];
1296      assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() &&
1297             "Shouldn't have a weight metadata");
1298      uint64_t MinWeight = *MinHeaderWeight;
1299      LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to "
1300                        << getBlockName(HeaderNode) << "\n");
1301      if (MinWeight)
1302        Dist.addLocal(HeaderNode, MinWeight);
1303    }
1304    distributeIrrLoopHeaderMass(Dist);
1305    for (const BlockNode &M : Loop.Nodes)
1306      if (!propagateMassToSuccessors(&Loop, M))
1307        llvm_unreachable("unhandled irreducible control flow");
1308    if (NumHeadersWithWeight == 0)
1309      // No headers have a metadata. Adjust header mass.
1310      adjustLoopHeaderMass(Loop);
1311  } else {
1312    Working[Loop.getHeader().Index].getMass() = BlockMass::getFull();
1313    if (!propagateMassToSuccessors(&Loop, Loop.getHeader()))
1314      llvm_unreachable("irreducible control flow to loop header!?");
1315    for (const BlockNode &M : Loop.members())
1316      if (!propagateMassToSuccessors(&Loop, M))
1317        // Irreducible backedge.
1318        return false;
1319  }
1320
1321  computeLoopScale(Loop);
1322  packageLoop(Loop);
1323  return true;
1324}
1325
1326template <class BT>
1327bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() {
1328  // Compute mass in function.
1329  LLVM_DEBUG(dbgs() << "compute-mass-in-function\n");
1330  assert(!Working.empty() && "no blocks in function");
1331  assert(!Working[0].isLoopHeader() && "entry block is a loop header");
1332
1333  Working[0].getMass() = BlockMass::getFull();
1334  for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) {
1335    // Check for nodes that have been packaged.
1336    BlockNode Node = getNode(I);
1337    if (Working[Node.Index].isPackaged())
1338      continue;
1339
1340    if (!propagateMassToSuccessors(nullptr, Node))
1341      return false;
1342  }
1343  return true;
1344}
1345
1346template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() {
1347  if (tryToComputeMassInFunction())
1348    return;
1349  computeIrreducibleMass(nullptr, Loops.begin());
1350  if (tryToComputeMassInFunction())
1351    return;
1352  llvm_unreachable("unhandled irreducible control flow");
1353}
1354
1355template <class BT>
1356bool BlockFrequencyInfoImpl<BT>::needIterativeInference() const {
1357  if (!UseIterativeBFIInference)
1358    return false;
1359  if (!F->getFunction().hasProfileData())
1360    return false;
1361  // Apply iterative inference only if the function contains irreducible loops;
1362  // otherwise, computed block frequencies are reasonably correct.
1363  for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) {
1364    if (L->isIrreducible())
1365      return true;
1366  }
1367  return false;
1368}
1369
1370template <class BT> void BlockFrequencyInfoImpl<BT>::applyIterativeInference() {
1371  // Extract blocks for processing: a block is considered for inference iff it
1372  // can be reached from the entry by edges with a positive probability.
1373  // Non-processed blocks are assigned with the zero frequency and are ignored
1374  // in the computation
1375  std::vector<const BlockT *> ReachableBlocks;
1376  findReachableBlocks(ReachableBlocks);
1377  if (ReachableBlocks.empty())
1378    return;
1379
1380  // The map is used to index successors/predecessors of reachable blocks in
1381  // the ReachableBlocks vector
1382  DenseMap<const BlockT *, size_t> BlockIndex;
1383  // Extract initial frequencies for the reachable blocks
1384  auto Freq = std::vector<Scaled64>(ReachableBlocks.size());
1385  Scaled64 SumFreq;
1386  for (size_t I = 0; I < ReachableBlocks.size(); I++) {
1387    const BlockT *BB = ReachableBlocks[I];
1388    BlockIndex[BB] = I;
1389    Freq[I] = getFloatingBlockFreq(BB);
1390    SumFreq += Freq[I];
1391  }
1392  assert(!SumFreq.isZero() && "empty initial block frequencies");
1393
1394  LLVM_DEBUG(dbgs() << "Applying iterative inference for " << F->getName()
1395                    << " with " << ReachableBlocks.size() << " blocks\n");
1396
1397  // Normalizing frequencies so they sum up to 1.0
1398  for (auto &Value : Freq) {
1399    Value /= SumFreq;
1400  }
1401
1402  // Setting up edge probabilities using sparse matrix representation:
1403  // ProbMatrix[I] holds a vector of pairs (J, P) where Pr[J -> I | J] = P
1404  ProbMatrixType ProbMatrix;
1405  initTransitionProbabilities(ReachableBlocks, BlockIndex, ProbMatrix);
1406
1407  // Run the propagation
1408  iterativeInference(ProbMatrix, Freq);
1409
1410  // Assign computed frequency values
1411  for (const BlockT &BB : *F) {
1412    auto Node = getNode(&BB);
1413    if (!Node.isValid())
1414      continue;
1415    if (BlockIndex.count(&BB)) {
1416      Freqs[Node.Index].Scaled = Freq[BlockIndex[&BB]];
1417    } else {
1418      Freqs[Node.Index].Scaled = Scaled64::getZero();
1419    }
1420  }
1421}
1422
1423template <class BT>
1424void BlockFrequencyInfoImpl<BT>::iterativeInference(
1425    const ProbMatrixType &ProbMatrix, std::vector<Scaled64> &Freq) const {
1426  assert(0.0 < IterativeBFIPrecision && IterativeBFIPrecision < 1.0 &&
1427         "incorrectly specified precision");
1428  // Convert double precision to Scaled64
1429  const auto Precision =
1430      Scaled64::getInverse(static_cast<uint64_t>(1.0 / IterativeBFIPrecision));
1431  const size_t MaxIterations = IterativeBFIMaxIterationsPerBlock * Freq.size();
1432
1433#ifndef NDEBUG
1434  LLVM_DEBUG(dbgs() << "  Initial discrepancy = "
1435                    << discrepancy(ProbMatrix, Freq).toString() << "\n");
1436#endif
1437
1438  // Successors[I] holds unique sucessors of the I-th block
1439  auto Successors = std::vector<std::vector<size_t>>(Freq.size());
1440  for (size_t I = 0; I < Freq.size(); I++) {
1441    for (const auto &Jump : ProbMatrix[I]) {
1442      Successors[Jump.first].push_back(I);
1443    }
1444  }
1445
1446  // To speedup computation, we maintain a set of "active" blocks whose
1447  // frequencies need to be updated based on the incoming edges.
1448  // The set is dynamic and changes after every update. Initially all blocks
1449  // with a positive frequency are active
1450  auto IsActive = BitVector(Freq.size(), false);
1451  std::queue<size_t> ActiveSet;
1452  for (size_t I = 0; I < Freq.size(); I++) {
1453    if (Freq[I] > 0) {
1454      ActiveSet.push(I);
1455      IsActive[I] = true;
1456    }
1457  }
1458
1459  // Iterate over the blocks propagating frequencies
1460  size_t It = 0;
1461  while (It++ < MaxIterations && !ActiveSet.empty()) {
1462    size_t I = ActiveSet.front();
1463    ActiveSet.pop();
1464    IsActive[I] = false;
1465
1466    // Compute a new frequency for the block: NewFreq := Freq \times ProbMatrix.
1467    // A special care is taken for self-edges that needs to be scaled by
1468    // (1.0 - SelfProb), where SelfProb is the sum of probabilities on the edges
1469    Scaled64 NewFreq;
1470    Scaled64 OneMinusSelfProb = Scaled64::getOne();
1471    for (const auto &Jump : ProbMatrix[I]) {
1472      if (Jump.first == I) {
1473        OneMinusSelfProb -= Jump.second;
1474      } else {
1475        NewFreq += Freq[Jump.first] * Jump.second;
1476      }
1477    }
1478    if (OneMinusSelfProb != Scaled64::getOne())
1479      NewFreq /= OneMinusSelfProb;
1480
1481    // If the block's frequency has changed enough, then
1482    // make sure the block and its successors are in the active set
1483    auto Change = Freq[I] >= NewFreq ? Freq[I] - NewFreq : NewFreq - Freq[I];
1484    if (Change > Precision) {
1485      ActiveSet.push(I);
1486      IsActive[I] = true;
1487      for (size_t Succ : Successors[I]) {
1488        if (!IsActive[Succ]) {
1489          ActiveSet.push(Succ);
1490          IsActive[Succ] = true;
1491        }
1492      }
1493    }
1494
1495    // Update the frequency for the block
1496    Freq[I] = NewFreq;
1497  }
1498
1499  LLVM_DEBUG(dbgs() << "  Completed " << It << " inference iterations"
1500                    << format(" (%0.0f per block)", double(It) / Freq.size())
1501                    << "\n");
1502#ifndef NDEBUG
1503  LLVM_DEBUG(dbgs() << "  Final   discrepancy = "
1504                    << discrepancy(ProbMatrix, Freq).toString() << "\n");
1505#endif
1506}
1507
1508template <class BT>
1509void BlockFrequencyInfoImpl<BT>::findReachableBlocks(
1510    std::vector<const BlockT *> &Blocks) const {
1511  // Find all blocks to apply inference on, that is, reachable from the entry
1512  // along edges with non-zero probablities
1513  std::queue<const BlockT *> Queue;
1514  SmallPtrSet<const BlockT *, 8> Reachable;
1515  const BlockT *Entry = &F->front();
1516  Queue.push(Entry);
1517  Reachable.insert(Entry);
1518  while (!Queue.empty()) {
1519    const BlockT *SrcBB = Queue.front();
1520    Queue.pop();
1521    for (const BlockT *DstBB : children<const BlockT *>(SrcBB)) {
1522      auto EP = BPI->getEdgeProbability(SrcBB, DstBB);
1523      if (EP.isZero())
1524        continue;
1525      if (Reachable.insert(DstBB).second)
1526        Queue.push(DstBB);
1527    }
1528  }
1529
1530  // Find all blocks to apply inference on, that is, backward reachable from
1531  // the entry along (backward) edges with non-zero probablities
1532  SmallPtrSet<const BlockT *, 8> InverseReachable;
1533  for (const BlockT &BB : *F) {
1534    // An exit block is a block without any successors
1535    bool HasSucc = !llvm::children<const BlockT *>(&BB).empty();
1536    if (!HasSucc && Reachable.count(&BB)) {
1537      Queue.push(&BB);
1538      InverseReachable.insert(&BB);
1539    }
1540  }
1541  while (!Queue.empty()) {
1542    const BlockT *SrcBB = Queue.front();
1543    Queue.pop();
1544    for (const BlockT *DstBB : inverse_children<const BlockT *>(SrcBB)) {
1545      auto EP = BPI->getEdgeProbability(DstBB, SrcBB);
1546      if (EP.isZero())
1547        continue;
1548      if (InverseReachable.insert(DstBB).second)
1549        Queue.push(DstBB);
1550    }
1551  }
1552
1553  // Collect the result
1554  Blocks.reserve(F->size());
1555  for (const BlockT &BB : *F) {
1556    if (Reachable.count(&BB) && InverseReachable.count(&BB)) {
1557      Blocks.push_back(&BB);
1558    }
1559  }
1560}
1561
1562template <class BT>
1563void BlockFrequencyInfoImpl<BT>::initTransitionProbabilities(
1564    const std::vector<const BlockT *> &Blocks,
1565    const DenseMap<const BlockT *, size_t> &BlockIndex,
1566    ProbMatrixType &ProbMatrix) const {
1567  const size_t NumBlocks = Blocks.size();
1568  auto Succs = std::vector<std::vector<std::pair<size_t, Scaled64>>>(NumBlocks);
1569  auto SumProb = std::vector<Scaled64>(NumBlocks);
1570
1571  // Find unique successors and corresponding probabilities for every block
1572  for (size_t Src = 0; Src < NumBlocks; Src++) {
1573    const BlockT *BB = Blocks[Src];
1574    SmallPtrSet<const BlockT *, 2> UniqueSuccs;
1575    for (const auto SI : children<const BlockT *>(BB)) {
1576      // Ignore cold blocks
1577      if (!BlockIndex.contains(SI))
1578        continue;
1579      // Ignore parallel edges between BB and SI blocks
1580      if (!UniqueSuccs.insert(SI).second)
1581        continue;
1582      // Ignore jumps with zero probability
1583      auto EP = BPI->getEdgeProbability(BB, SI);
1584      if (EP.isZero())
1585        continue;
1586
1587      auto EdgeProb =
1588          Scaled64::getFraction(EP.getNumerator(), EP.getDenominator());
1589      size_t Dst = BlockIndex.find(SI)->second;
1590      Succs[Src].push_back(std::make_pair(Dst, EdgeProb));
1591      SumProb[Src] += EdgeProb;
1592    }
1593  }
1594
1595  // Add transitions for every jump with positive branch probability
1596  ProbMatrix = ProbMatrixType(NumBlocks);
1597  for (size_t Src = 0; Src < NumBlocks; Src++) {
1598    // Ignore blocks w/o successors
1599    if (Succs[Src].empty())
1600      continue;
1601
1602    assert(!SumProb[Src].isZero() && "Zero sum probability of non-exit block");
1603    for (auto &Jump : Succs[Src]) {
1604      size_t Dst = Jump.first;
1605      Scaled64 Prob = Jump.second;
1606      ProbMatrix[Dst].push_back(std::make_pair(Src, Prob / SumProb[Src]));
1607    }
1608  }
1609
1610  // Add transitions from sinks to the source
1611  size_t EntryIdx = BlockIndex.find(&F->front())->second;
1612  for (size_t Src = 0; Src < NumBlocks; Src++) {
1613    if (Succs[Src].empty()) {
1614      ProbMatrix[EntryIdx].push_back(std::make_pair(Src, Scaled64::getOne()));
1615    }
1616  }
1617}
1618
1619#ifndef NDEBUG
1620template <class BT>
1621BlockFrequencyInfoImplBase::Scaled64 BlockFrequencyInfoImpl<BT>::discrepancy(
1622    const ProbMatrixType &ProbMatrix, const std::vector<Scaled64> &Freq) const {
1623  assert(Freq[0] > 0 && "Incorrectly computed frequency of the entry block");
1624  Scaled64 Discrepancy;
1625  for (size_t I = 0; I < ProbMatrix.size(); I++) {
1626    Scaled64 Sum;
1627    for (const auto &Jump : ProbMatrix[I]) {
1628      Sum += Freq[Jump.first] * Jump.second;
1629    }
1630    Discrepancy += Freq[I] >= Sum ? Freq[I] - Sum : Sum - Freq[I];
1631  }
1632  // Normalizing by the frequency of the entry block
1633  return Discrepancy / Freq[0];
1634}
1635#endif
1636
1637/// \note This should be a lambda, but that crashes GCC 4.7.
1638namespace bfi_detail {
1639
1640template <class BT> struct BlockEdgesAdder {
1641  using BlockT = BT;
1642  using LoopData = BlockFrequencyInfoImplBase::LoopData;
1643  using Successor = GraphTraits<const BlockT *>;
1644
1645  const BlockFrequencyInfoImpl<BT> &BFI;
1646
1647  explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI)
1648      : BFI(BFI) {}
1649
1650  void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr,
1651                  const LoopData *OuterLoop) {
1652    const BlockT *BB = BFI.RPOT[Irr.Node.Index];
1653    for (const auto *Succ : children<const BlockT *>(BB))
1654      G.addEdge(Irr, BFI.getNode(Succ), OuterLoop);
1655  }
1656};
1657
1658} // end namespace bfi_detail
1659
1660template <class BT>
1661void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass(
1662    LoopData *OuterLoop, std::list<LoopData>::iterator Insert) {
1663  LLVM_DEBUG(dbgs() << "analyze-irreducible-in-";
1664             if (OuterLoop) dbgs()
1665             << "loop: " << getLoopName(*OuterLoop) << "\n";
1666             else dbgs() << "function\n");
1667
1668  using namespace bfi_detail;
1669
1670  // Ideally, addBlockEdges() would be declared here as a lambda, but that
1671  // crashes GCC 4.7.
1672  BlockEdgesAdder<BT> addBlockEdges(*this);
1673  IrreducibleGraph G(*this, OuterLoop, addBlockEdges);
1674
1675  for (auto &L : analyzeIrreducible(G, OuterLoop, Insert))
1676    computeMassInLoop(L);
1677
1678  if (!OuterLoop)
1679    return;
1680  updateLoopWithIrreducible(*OuterLoop);
1681}
1682
1683// A helper function that converts a branch probability into weight.
1684inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) {
1685  return Prob.getNumerator();
1686}
1687
1688template <class BT>
1689bool
1690BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop,
1691                                                      const BlockNode &Node) {
1692  LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n");
1693  // Calculate probability for successors.
1694  Distribution Dist;
1695  if (auto *Loop = Working[Node.Index].getPackagedLoop()) {
1696    assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop");
1697    if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist))
1698      // Irreducible backedge.
1699      return false;
1700  } else {
1701    const BlockT *BB = getBlock(Node);
1702    for (auto SI = GraphTraits<const BlockT *>::child_begin(BB),
1703              SE = GraphTraits<const BlockT *>::child_end(BB);
1704         SI != SE; ++SI)
1705      if (!addToDist(
1706              Dist, OuterLoop, Node, getNode(*SI),
1707              getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI))))
1708        // Irreducible backedge.
1709        return false;
1710  }
1711
1712  // Distribute mass to successors, saving exit and backedge data in the
1713  // loop header.
1714  distributeMass(Node, OuterLoop, Dist);
1715  return true;
1716}
1717
1718template <class BT>
1719raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const {
1720  if (!F)
1721    return OS;
1722  OS << "block-frequency-info: " << F->getName() << "\n";
1723  for (const BlockT &BB : *F) {
1724    OS << " - " << bfi_detail::getBlockName(&BB) << ": float = ";
1725    getFloatingBlockFreq(&BB).print(OS, 5)
1726        << ", int = " << getBlockFreq(&BB).getFrequency();
1727    if (std::optional<uint64_t> ProfileCount =
1728        BlockFrequencyInfoImplBase::getBlockProfileCount(
1729            F->getFunction(), getNode(&BB)))
1730      OS << ", count = " << *ProfileCount;
1731    if (std::optional<uint64_t> IrrLoopHeaderWeight =
1732            BB.getIrrLoopHeaderWeight())
1733      OS << ", irr_loop_header_weight = " << *IrrLoopHeaderWeight;
1734    OS << "\n";
1735  }
1736
1737  // Add an extra newline for readability.
1738  OS << "\n";
1739  return OS;
1740}
1741
1742template <class BT>
1743void BlockFrequencyInfoImpl<BT>::verifyMatch(
1744    BlockFrequencyInfoImpl<BT> &Other) const {
1745  bool Match = true;
1746  DenseMap<const BlockT *, BlockNode> ValidNodes;
1747  DenseMap<const BlockT *, BlockNode> OtherValidNodes;
1748  for (auto &Entry : Nodes) {
1749    const BlockT *BB = Entry.first;
1750    if (BB) {
1751      ValidNodes[BB] = Entry.second.first;
1752    }
1753  }
1754  for (auto &Entry : Other.Nodes) {
1755    const BlockT *BB = Entry.first;
1756    if (BB) {
1757      OtherValidNodes[BB] = Entry.second.first;
1758    }
1759  }
1760  unsigned NumValidNodes = ValidNodes.size();
1761  unsigned NumOtherValidNodes = OtherValidNodes.size();
1762  if (NumValidNodes != NumOtherValidNodes) {
1763    Match = false;
1764    dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs "
1765           << NumOtherValidNodes << "\n";
1766  } else {
1767    for (auto &Entry : ValidNodes) {
1768      const BlockT *BB = Entry.first;
1769      BlockNode Node = Entry.second;
1770      if (OtherValidNodes.count(BB)) {
1771        BlockNode OtherNode = OtherValidNodes[BB];
1772        const auto &Freq = Freqs[Node.Index];
1773        const auto &OtherFreq = Other.Freqs[OtherNode.Index];
1774        if (Freq.Integer != OtherFreq.Integer) {
1775          Match = false;
1776          dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " "
1777                 << Freq.Integer << " vs " << OtherFreq.Integer << "\n";
1778        }
1779      } else {
1780        Match = false;
1781        dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index "
1782               << Node.Index << " does not exist in Other.\n";
1783      }
1784    }
1785    // If there's a valid node in OtherValidNodes that's not in ValidNodes,
1786    // either the above num check or the check on OtherValidNodes will fail.
1787  }
1788  if (!Match) {
1789    dbgs() << "This\n";
1790    print(dbgs());
1791    dbgs() << "Other\n";
1792    Other.print(dbgs());
1793  }
1794  assert(Match && "BFI mismatch");
1795}
1796
1797// Graph trait base class for block frequency information graph
1798// viewer.
1799
1800enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count };
1801
1802template <class BlockFrequencyInfoT, class BranchProbabilityInfoT>
1803struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits {
1804  using GTraits = GraphTraits<BlockFrequencyInfoT *>;
1805  using NodeRef = typename GTraits::NodeRef;
1806  using EdgeIter = typename GTraits::ChildIteratorType;
1807  using NodeIter = typename GTraits::nodes_iterator;
1808
1809  uint64_t MaxFrequency = 0;
1810
1811  explicit BFIDOTGraphTraitsBase(bool isSimple = false)
1812      : DefaultDOTGraphTraits(isSimple) {}
1813
1814  static StringRef getGraphName(const BlockFrequencyInfoT *G) {
1815    return G->getFunction()->getName();
1816  }
1817
1818  std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph,
1819                                unsigned HotPercentThreshold = 0) {
1820    std::string Result;
1821    if (!HotPercentThreshold)
1822      return Result;
1823
1824    // Compute MaxFrequency on the fly:
1825    if (!MaxFrequency) {
1826      for (NodeIter I = GTraits::nodes_begin(Graph),
1827                    E = GTraits::nodes_end(Graph);
1828           I != E; ++I) {
1829        NodeRef N = *I;
1830        MaxFrequency =
1831            std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency());
1832      }
1833    }
1834    BlockFrequency Freq = Graph->getBlockFreq(Node);
1835    BlockFrequency HotFreq =
1836        (BlockFrequency(MaxFrequency) *
1837         BranchProbability::getBranchProbability(HotPercentThreshold, 100));
1838
1839    if (Freq < HotFreq)
1840      return Result;
1841
1842    raw_string_ostream OS(Result);
1843    OS << "color=\"red\"";
1844    OS.flush();
1845    return Result;
1846  }
1847
1848  std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph,
1849                           GVDAGType GType, int layout_order = -1) {
1850    std::string Result;
1851    raw_string_ostream OS(Result);
1852
1853    if (layout_order != -1)
1854      OS << Node->getName() << "[" << layout_order << "] : ";
1855    else
1856      OS << Node->getName() << " : ";
1857    switch (GType) {
1858    case GVDT_Fraction:
1859      OS << printBlockFreq(*Graph, *Node);
1860      break;
1861    case GVDT_Integer:
1862      OS << Graph->getBlockFreq(Node).getFrequency();
1863      break;
1864    case GVDT_Count: {
1865      auto Count = Graph->getBlockProfileCount(Node);
1866      if (Count)
1867        OS << *Count;
1868      else
1869        OS << "Unknown";
1870      break;
1871    }
1872    case GVDT_None:
1873      llvm_unreachable("If we are not supposed to render a graph we should "
1874                       "never reach this point.");
1875    }
1876    return Result;
1877  }
1878
1879  std::string getEdgeAttributes(NodeRef Node, EdgeIter EI,
1880                                const BlockFrequencyInfoT *BFI,
1881                                const BranchProbabilityInfoT *BPI,
1882                                unsigned HotPercentThreshold = 0) {
1883    std::string Str;
1884    if (!BPI)
1885      return Str;
1886
1887    BranchProbability BP = BPI->getEdgeProbability(Node, EI);
1888    uint32_t N = BP.getNumerator();
1889    uint32_t D = BP.getDenominator();
1890    double Percent = 100.0 * N / D;
1891    raw_string_ostream OS(Str);
1892    OS << format("label=\"%.1f%%\"", Percent);
1893
1894    if (HotPercentThreshold) {
1895      BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP;
1896      BlockFrequency HotFreq = BlockFrequency(MaxFrequency) *
1897                               BranchProbability(HotPercentThreshold, 100);
1898
1899      if (EFreq >= HotFreq) {
1900        OS << ",color=\"red\"";
1901      }
1902    }
1903
1904    OS.flush();
1905    return Str;
1906  }
1907};
1908
1909} // end namespace llvm
1910
1911#undef DEBUG_TYPE
1912
1913#endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H
1914