1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file contains some templates that are useful if you are working with
11/// the STL at all.
12///
13/// No library is required when using these functions.
14///
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/ADL.h"
21#include "llvm/ADT/Hashing.h"
22#include "llvm/ADT/STLForwardCompat.h"
23#include "llvm/ADT/STLFunctionalExtras.h"
24#include "llvm/ADT/iterator.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/Config/abi-breaking.h"
27#include "llvm/Support/ErrorHandling.h"
28#include <algorithm>
29#include <cassert>
30#include <cstddef>
31#include <cstdint>
32#include <cstdlib>
33#include <functional>
34#include <initializer_list>
35#include <iterator>
36#include <limits>
37#include <memory>
38#include <optional>
39#include <tuple>
40#include <type_traits>
41#include <utility>
42
43#ifdef EXPENSIVE_CHECKS
44#include <random> // for std::mt19937
45#endif
46
47namespace llvm {
48
49//===----------------------------------------------------------------------===//
50//     Extra additions to <type_traits>
51//===----------------------------------------------------------------------===//
52
53template <typename T> struct make_const_ptr {
54  using type = std::add_pointer_t<std::add_const_t<T>>;
55};
56
57template <typename T> struct make_const_ref {
58  using type = std::add_lvalue_reference_t<std::add_const_t<T>>;
59};
60
61namespace detail {
62template <class, template <class...> class Op, class... Args> struct detector {
63  using value_t = std::false_type;
64};
65template <template <class...> class Op, class... Args>
66struct detector<std::void_t<Op<Args...>>, Op, Args...> {
67  using value_t = std::true_type;
68};
69} // end namespace detail
70
71/// Detects if a given trait holds for some set of arguments 'Args'.
72/// For example, the given trait could be used to detect if a given type
73/// has a copy assignment operator:
74///   template<class T>
75///   using has_copy_assign_t = decltype(std::declval<T&>()
76///                                                 = std::declval<const T&>());
77///   bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
78template <template <class...> class Op, class... Args>
79using is_detected = typename detail::detector<void, Op, Args...>::value_t;
80
81/// This class provides various trait information about a callable object.
82///   * To access the number of arguments: Traits::num_args
83///   * To access the type of an argument: Traits::arg_t<Index>
84///   * To access the type of the result:  Traits::result_t
85template <typename T, bool isClass = std::is_class<T>::value>
86struct function_traits : public function_traits<decltype(&T::operator())> {};
87
88/// Overload for class function types.
89template <typename ClassType, typename ReturnType, typename... Args>
90struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
91  /// The number of arguments to this function.
92  enum { num_args = sizeof...(Args) };
93
94  /// The result type of this function.
95  using result_t = ReturnType;
96
97  /// The type of an argument to this function.
98  template <size_t Index>
99  using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>;
100};
101/// Overload for class function types.
102template <typename ClassType, typename ReturnType, typename... Args>
103struct function_traits<ReturnType (ClassType::*)(Args...), false>
104    : public function_traits<ReturnType (ClassType::*)(Args...) const> {};
105/// Overload for non-class function types.
106template <typename ReturnType, typename... Args>
107struct function_traits<ReturnType (*)(Args...), false> {
108  /// The number of arguments to this function.
109  enum { num_args = sizeof...(Args) };
110
111  /// The result type of this function.
112  using result_t = ReturnType;
113
114  /// The type of an argument to this function.
115  template <size_t i>
116  using arg_t = std::tuple_element_t<i, std::tuple<Args...>>;
117};
118template <typename ReturnType, typename... Args>
119struct function_traits<ReturnType (*const)(Args...), false>
120    : public function_traits<ReturnType (*)(Args...)> {};
121/// Overload for non-class function type references.
122template <typename ReturnType, typename... Args>
123struct function_traits<ReturnType (&)(Args...), false>
124    : public function_traits<ReturnType (*)(Args...)> {};
125
126/// traits class for checking whether type T is one of any of the given
127/// types in the variadic list.
128template <typename T, typename... Ts>
129using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
130
131/// traits class for checking whether type T is a base class for all
132///  the given types in the variadic list.
133template <typename T, typename... Ts>
134using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
135
136namespace detail {
137template <typename T, typename... Us> struct TypesAreDistinct;
138template <typename T, typename... Us>
139struct TypesAreDistinct
140    : std::integral_constant<bool, !is_one_of<T, Us...>::value &&
141                                       TypesAreDistinct<Us...>::value> {};
142template <typename T> struct TypesAreDistinct<T> : std::true_type {};
143} // namespace detail
144
145/// Determine if all types in Ts are distinct.
146///
147/// Useful to statically assert when Ts is intended to describe a non-multi set
148/// of types.
149///
150/// Expensive (currently quadratic in sizeof(Ts...)), and so should only be
151/// asserted once per instantiation of a type which requires it.
152template <typename... Ts> struct TypesAreDistinct;
153template <> struct TypesAreDistinct<> : std::true_type {};
154template <typename... Ts>
155struct TypesAreDistinct
156    : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {};
157
158/// Find the first index where a type appears in a list of types.
159///
160/// FirstIndexOfType<T, Us...>::value is the first index of T in Us.
161///
162/// Typically only meaningful when it is otherwise statically known that the
163/// type pack has no duplicate types. This should be guaranteed explicitly with
164/// static_assert(TypesAreDistinct<Us...>::value).
165///
166/// It is a compile-time error to instantiate when T is not present in Us, i.e.
167/// if is_one_of<T, Us...>::value is false.
168template <typename T, typename... Us> struct FirstIndexOfType;
169template <typename T, typename U, typename... Us>
170struct FirstIndexOfType<T, U, Us...>
171    : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {};
172template <typename T, typename... Us>
173struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {};
174
175/// Find the type at a given index in a list of types.
176///
177/// TypeAtIndex<I, Ts...> is the type at index I in Ts.
178template <size_t I, typename... Ts>
179using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>;
180
181/// Helper which adds two underlying types of enumeration type.
182/// Implicit conversion to a common type is accepted.
183template <typename EnumTy1, typename EnumTy2,
184          typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value,
185                                          std::underlying_type_t<EnumTy1>>,
186          typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value,
187                                          std::underlying_type_t<EnumTy2>>>
188constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) {
189  return static_cast<UT1>(LHS) + static_cast<UT2>(RHS);
190}
191
192//===----------------------------------------------------------------------===//
193//     Extra additions to <iterator>
194//===----------------------------------------------------------------------===//
195
196namespace callable_detail {
197
198/// Templated storage wrapper for a callable.
199///
200/// This class is consistently default constructible, copy / move
201/// constructible / assignable.
202///
203/// Supported callable types:
204///  - Function pointer
205///  - Function reference
206///  - Lambda
207///  - Function object
208template <typename T,
209          bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>>
210class Callable {
211  using value_type = std::remove_reference_t<T>;
212  using reference = value_type &;
213  using const_reference = value_type const &;
214
215  std::optional<value_type> Obj;
216
217  static_assert(!std::is_pointer_v<value_type>,
218                "Pointers to non-functions are not callable.");
219
220public:
221  Callable() = default;
222  Callable(T const &O) : Obj(std::in_place, O) {}
223
224  Callable(Callable const &Other) = default;
225  Callable(Callable &&Other) = default;
226
227  Callable &operator=(Callable const &Other) {
228    Obj = std::nullopt;
229    if (Other.Obj)
230      Obj.emplace(*Other.Obj);
231    return *this;
232  }
233
234  Callable &operator=(Callable &&Other) {
235    Obj = std::nullopt;
236    if (Other.Obj)
237      Obj.emplace(std::move(*Other.Obj));
238    return *this;
239  }
240
241  template <typename... Pn,
242            std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
243  decltype(auto) operator()(Pn &&...Params) {
244    return (*Obj)(std::forward<Pn>(Params)...);
245  }
246
247  template <typename... Pn,
248            std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0>
249  decltype(auto) operator()(Pn &&...Params) const {
250    return (*Obj)(std::forward<Pn>(Params)...);
251  }
252
253  bool valid() const { return Obj != std::nullopt; }
254  bool reset() { return Obj = std::nullopt; }
255
256  operator reference() { return *Obj; }
257  operator const_reference() const { return *Obj; }
258};
259
260// Function specialization.  No need to waste extra space wrapping with a
261// std::optional.
262template <typename T> class Callable<T, true> {
263  static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>;
264
265  using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>;
266  using CastT = std::conditional_t<IsPtr, T, T &>;
267
268private:
269  StorageT Func = nullptr;
270
271private:
272  template <typename In> static constexpr auto convertIn(In &&I) {
273    if constexpr (IsPtr) {
274      // Pointer... just echo it back.
275      return I;
276    } else {
277      // Must be a function reference.  Return its address.
278      return &I;
279    }
280  }
281
282public:
283  Callable() = default;
284
285  // Construct from a function pointer or reference.
286  //
287  // Disable this constructor for references to 'Callable' so we don't violate
288  // the rule of 0.
289  template < // clang-format off
290    typename FnPtrOrRef,
291    std::enable_if_t<
292      !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int
293    > = 0
294  > // clang-format on
295  Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {}
296
297  template <typename... Pn,
298            std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
299  decltype(auto) operator()(Pn &&...Params) const {
300    return Func(std::forward<Pn>(Params)...);
301  }
302
303  bool valid() const { return Func != nullptr; }
304  void reset() { Func = nullptr; }
305
306  operator T const &() const {
307    if constexpr (IsPtr) {
308      // T is a pointer... just echo it back.
309      return Func;
310    } else {
311      static_assert(std::is_reference_v<T>,
312                    "Expected a reference to a function.");
313      // T is a function reference... dereference the stored pointer.
314      return *Func;
315    }
316  }
317};
318
319} // namespace callable_detail
320
321/// Returns true if the given container only contains a single element.
322template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
323  auto B = std::begin(C), E = std::end(C);
324  return B != E && std::next(B) == E;
325}
326
327/// Return a range covering \p RangeOrContainer with the first N elements
328/// excluded.
329template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
330  return make_range(std::next(adl_begin(RangeOrContainer), N),
331                    adl_end(RangeOrContainer));
332}
333
334/// Return a range covering \p RangeOrContainer with the last N elements
335/// excluded.
336template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) {
337  return make_range(adl_begin(RangeOrContainer),
338                    std::prev(adl_end(RangeOrContainer), N));
339}
340
341// mapped_iterator - This is a simple iterator adapter that causes a function to
342// be applied whenever operator* is invoked on the iterator.
343
344template <typename ItTy, typename FuncTy,
345          typename ReferenceTy =
346              decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
347class mapped_iterator
348    : public iterator_adaptor_base<
349          mapped_iterator<ItTy, FuncTy>, ItTy,
350          typename std::iterator_traits<ItTy>::iterator_category,
351          std::remove_reference_t<ReferenceTy>,
352          typename std::iterator_traits<ItTy>::difference_type,
353          std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
354public:
355  mapped_iterator() = default;
356  mapped_iterator(ItTy U, FuncTy F)
357    : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
358
359  ItTy getCurrent() { return this->I; }
360
361  const FuncTy &getFunction() const { return F; }
362
363  ReferenceTy operator*() const { return F(*this->I); }
364
365private:
366  callable_detail::Callable<FuncTy> F{};
367};
368
369// map_iterator - Provide a convenient way to create mapped_iterators, just like
370// make_pair is useful for creating pairs...
371template <class ItTy, class FuncTy>
372inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
373  return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
374}
375
376template <class ContainerTy, class FuncTy>
377auto map_range(ContainerTy &&C, FuncTy F) {
378  return make_range(map_iterator(std::begin(C), F),
379                    map_iterator(std::end(C), F));
380}
381
382/// A base type of mapped iterator, that is useful for building derived
383/// iterators that do not need/want to store the map function (as in
384/// mapped_iterator). These iterators must simply provide a `mapElement` method
385/// that defines how to map a value of the iterator to the provided reference
386/// type.
387template <typename DerivedT, typename ItTy, typename ReferenceTy>
388class mapped_iterator_base
389    : public iterator_adaptor_base<
390          DerivedT, ItTy,
391          typename std::iterator_traits<ItTy>::iterator_category,
392          std::remove_reference_t<ReferenceTy>,
393          typename std::iterator_traits<ItTy>::difference_type,
394          std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
395public:
396  using BaseT = mapped_iterator_base;
397
398  mapped_iterator_base(ItTy U)
399      : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {}
400
401  ItTy getCurrent() { return this->I; }
402
403  ReferenceTy operator*() const {
404    return static_cast<const DerivedT &>(*this).mapElement(*this->I);
405  }
406};
407
408/// Helper to determine if type T has a member called rbegin().
409template <typename Ty> class has_rbegin_impl {
410  using yes = char[1];
411  using no = char[2];
412
413  template <typename Inner>
414  static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
415
416  template <typename>
417  static no& test(...);
418
419public:
420  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
421};
422
423/// Metafunction to determine if T& or T has a member called rbegin().
424template <typename Ty>
425struct has_rbegin : has_rbegin_impl<std::remove_reference_t<Ty>> {};
426
427// Returns an iterator_range over the given container which iterates in reverse.
428template <typename ContainerTy> auto reverse(ContainerTy &&C) {
429  if constexpr (has_rbegin<ContainerTy>::value)
430    return make_range(C.rbegin(), C.rend());
431  else
432    return make_range(std::make_reverse_iterator(std::end(C)),
433                      std::make_reverse_iterator(std::begin(C)));
434}
435
436/// An iterator adaptor that filters the elements of given inner iterators.
437///
438/// The predicate parameter should be a callable object that accepts the wrapped
439/// iterator's reference type and returns a bool. When incrementing or
440/// decrementing the iterator, it will call the predicate on each element and
441/// skip any where it returns false.
442///
443/// \code
444///   int A[] = { 1, 2, 3, 4 };
445///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
446///   // R contains { 1, 3 }.
447/// \endcode
448///
449/// Note: filter_iterator_base implements support for forward iteration.
450/// filter_iterator_impl exists to provide support for bidirectional iteration,
451/// conditional on whether the wrapped iterator supports it.
452template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
453class filter_iterator_base
454    : public iterator_adaptor_base<
455          filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
456          WrappedIteratorT,
457          std::common_type_t<IterTag,
458                             typename std::iterator_traits<
459                                 WrappedIteratorT>::iterator_category>> {
460  using BaseT = typename filter_iterator_base::iterator_adaptor_base;
461
462protected:
463  WrappedIteratorT End;
464  PredicateT Pred;
465
466  void findNextValid() {
467    while (this->I != End && !Pred(*this->I))
468      BaseT::operator++();
469  }
470
471  filter_iterator_base() = default;
472
473  // Construct the iterator. The begin iterator needs to know where the end
474  // is, so that it can properly stop when it gets there. The end iterator only
475  // needs the predicate to support bidirectional iteration.
476  filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
477                       PredicateT Pred)
478      : BaseT(Begin), End(End), Pred(Pred) {
479    findNextValid();
480  }
481
482public:
483  using BaseT::operator++;
484
485  filter_iterator_base &operator++() {
486    BaseT::operator++();
487    findNextValid();
488    return *this;
489  }
490
491  decltype(auto) operator*() const {
492    assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
493    return BaseT::operator*();
494  }
495
496  decltype(auto) operator->() const {
497    assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
498    return BaseT::operator->();
499  }
500};
501
502/// Specialization of filter_iterator_base for forward iteration only.
503template <typename WrappedIteratorT, typename PredicateT,
504          typename IterTag = std::forward_iterator_tag>
505class filter_iterator_impl
506    : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
507public:
508  filter_iterator_impl() = default;
509
510  filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
511                       PredicateT Pred)
512      : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {}
513};
514
515/// Specialization of filter_iterator_base for bidirectional iteration.
516template <typename WrappedIteratorT, typename PredicateT>
517class filter_iterator_impl<WrappedIteratorT, PredicateT,
518                           std::bidirectional_iterator_tag>
519    : public filter_iterator_base<WrappedIteratorT, PredicateT,
520                                  std::bidirectional_iterator_tag> {
521  using BaseT = typename filter_iterator_impl::filter_iterator_base;
522
523  void findPrevValid() {
524    while (!this->Pred(*this->I))
525      BaseT::operator--();
526  }
527
528public:
529  using BaseT::operator--;
530
531  filter_iterator_impl() = default;
532
533  filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
534                       PredicateT Pred)
535      : BaseT(Begin, End, Pred) {}
536
537  filter_iterator_impl &operator--() {
538    BaseT::operator--();
539    findPrevValid();
540    return *this;
541  }
542};
543
544namespace detail {
545
546template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
547  using type = std::forward_iterator_tag;
548};
549
550template <> struct fwd_or_bidi_tag_impl<true> {
551  using type = std::bidirectional_iterator_tag;
552};
553
554/// Helper which sets its type member to forward_iterator_tag if the category
555/// of \p IterT does not derive from bidirectional_iterator_tag, and to
556/// bidirectional_iterator_tag otherwise.
557template <typename IterT> struct fwd_or_bidi_tag {
558  using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
559      std::bidirectional_iterator_tag,
560      typename std::iterator_traits<IterT>::iterator_category>::value>::type;
561};
562
563} // namespace detail
564
565/// Defines filter_iterator to a suitable specialization of
566/// filter_iterator_impl, based on the underlying iterator's category.
567template <typename WrappedIteratorT, typename PredicateT>
568using filter_iterator = filter_iterator_impl<
569    WrappedIteratorT, PredicateT,
570    typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
571
572/// Convenience function that takes a range of elements and a predicate,
573/// and return a new filter_iterator range.
574///
575/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
576/// lifetime of that temporary is not kept by the returned range object, and the
577/// temporary is going to be dropped on the floor after the make_iterator_range
578/// full expression that contains this function call.
579template <typename RangeT, typename PredicateT>
580iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
581make_filter_range(RangeT &&Range, PredicateT Pred) {
582  using FilterIteratorT =
583      filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
584  return make_range(
585      FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
586                      std::end(std::forward<RangeT>(Range)), Pred),
587      FilterIteratorT(std::end(std::forward<RangeT>(Range)),
588                      std::end(std::forward<RangeT>(Range)), Pred));
589}
590
591/// A pseudo-iterator adaptor that is designed to implement "early increment"
592/// style loops.
593///
594/// This is *not a normal iterator* and should almost never be used directly. It
595/// is intended primarily to be used with range based for loops and some range
596/// algorithms.
597///
598/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
599/// somewhere between them. The constraints of these iterators are:
600///
601/// - On construction or after being incremented, it is comparable and
602///   dereferencable. It is *not* incrementable.
603/// - After being dereferenced, it is neither comparable nor dereferencable, it
604///   is only incrementable.
605///
606/// This means you can only dereference the iterator once, and you can only
607/// increment it once between dereferences.
608template <typename WrappedIteratorT>
609class early_inc_iterator_impl
610    : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
611                                   WrappedIteratorT, std::input_iterator_tag> {
612  using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base;
613
614  using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
615
616protected:
617#if LLVM_ENABLE_ABI_BREAKING_CHECKS
618  bool IsEarlyIncremented = false;
619#endif
620
621public:
622  early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
623
624  using BaseT::operator*;
625  decltype(*std::declval<WrappedIteratorT>()) operator*() {
626#if LLVM_ENABLE_ABI_BREAKING_CHECKS
627    assert(!IsEarlyIncremented && "Cannot dereference twice!");
628    IsEarlyIncremented = true;
629#endif
630    return *(this->I)++;
631  }
632
633  using BaseT::operator++;
634  early_inc_iterator_impl &operator++() {
635#if LLVM_ENABLE_ABI_BREAKING_CHECKS
636    assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
637    IsEarlyIncremented = false;
638#endif
639    return *this;
640  }
641
642  friend bool operator==(const early_inc_iterator_impl &LHS,
643                         const early_inc_iterator_impl &RHS) {
644#if LLVM_ENABLE_ABI_BREAKING_CHECKS
645    assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
646#endif
647    return (const BaseT &)LHS == (const BaseT &)RHS;
648  }
649};
650
651/// Make a range that does early increment to allow mutation of the underlying
652/// range without disrupting iteration.
653///
654/// The underlying iterator will be incremented immediately after it is
655/// dereferenced, allowing deletion of the current node or insertion of nodes to
656/// not disrupt iteration provided they do not invalidate the *next* iterator --
657/// the current iterator can be invalidated.
658///
659/// This requires a very exact pattern of use that is only really suitable to
660/// range based for loops and other range algorithms that explicitly guarantee
661/// to dereference exactly once each element, and to increment exactly once each
662/// element.
663template <typename RangeT>
664iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
665make_early_inc_range(RangeT &&Range) {
666  using EarlyIncIteratorT =
667      early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
668  return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
669                    EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
670}
671
672// Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest
673template <typename R, typename UnaryPredicate>
674bool all_of(R &&range, UnaryPredicate P);
675
676template <typename R, typename UnaryPredicate>
677bool any_of(R &&range, UnaryPredicate P);
678
679template <typename T> bool all_equal(std::initializer_list<T> Values);
680
681template <typename R> constexpr size_t range_size(R &&Range);
682
683namespace detail {
684
685using std::declval;
686
687// We have to alias this since inlining the actual type at the usage site
688// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
689template<typename... Iters> struct ZipTupleType {
690  using type = std::tuple<decltype(*declval<Iters>())...>;
691};
692
693template <typename ZipType, typename ReferenceTupleType, typename... Iters>
694using zip_traits = iterator_facade_base<
695    ZipType,
696    std::common_type_t<
697        std::bidirectional_iterator_tag,
698        typename std::iterator_traits<Iters>::iterator_category...>,
699    // ^ TODO: Implement random access methods.
700    ReferenceTupleType,
701    typename std::iterator_traits<
702        std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
703    // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
704    // inner iterators have the same difference_type. It would fail if, for
705    // instance, the second field's difference_type were non-numeric while the
706    // first is.
707    ReferenceTupleType *, ReferenceTupleType>;
708
709template <typename ZipType, typename ReferenceTupleType, typename... Iters>
710struct zip_common : public zip_traits<ZipType, ReferenceTupleType, Iters...> {
711  using Base = zip_traits<ZipType, ReferenceTupleType, Iters...>;
712  using IndexSequence = std::index_sequence_for<Iters...>;
713  using value_type = typename Base::value_type;
714
715  std::tuple<Iters...> iterators;
716
717protected:
718  template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
719    return value_type(*std::get<Ns>(iterators)...);
720  }
721
722  template <size_t... Ns> void tup_inc(std::index_sequence<Ns...>) {
723    (++std::get<Ns>(iterators), ...);
724  }
725
726  template <size_t... Ns> void tup_dec(std::index_sequence<Ns...>) {
727    (--std::get<Ns>(iterators), ...);
728  }
729
730  template <size_t... Ns>
731  bool test_all_equals(const zip_common &other,
732                       std::index_sequence<Ns...>) const {
733    return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) &&
734            ...);
735  }
736
737public:
738  zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
739
740  value_type operator*() const { return deref(IndexSequence{}); }
741
742  ZipType &operator++() {
743    tup_inc(IndexSequence{});
744    return static_cast<ZipType &>(*this);
745  }
746
747  ZipType &operator--() {
748    static_assert(Base::IsBidirectional,
749                  "All inner iterators must be at least bidirectional.");
750    tup_dec(IndexSequence{});
751    return static_cast<ZipType &>(*this);
752  }
753
754  /// Return true if all the iterator are matching `other`'s iterators.
755  bool all_equals(zip_common &other) {
756    return test_all_equals(other, IndexSequence{});
757  }
758};
759
760template <typename... Iters>
761struct zip_first : zip_common<zip_first<Iters...>,
762                              typename ZipTupleType<Iters...>::type, Iters...> {
763  using zip_common<zip_first, typename ZipTupleType<Iters...>::type,
764                   Iters...>::zip_common;
765
766  bool operator==(const zip_first &other) const {
767    return std::get<0>(this->iterators) == std::get<0>(other.iterators);
768  }
769};
770
771template <typename... Iters>
772struct zip_shortest
773    : zip_common<zip_shortest<Iters...>, typename ZipTupleType<Iters...>::type,
774                 Iters...> {
775  using zip_common<zip_shortest, typename ZipTupleType<Iters...>::type,
776                   Iters...>::zip_common;
777
778  bool operator==(const zip_shortest &other) const {
779    return any_iterator_equals(other, std::index_sequence_for<Iters...>{});
780  }
781
782private:
783  template <size_t... Ns>
784  bool any_iterator_equals(const zip_shortest &other,
785                           std::index_sequence<Ns...>) const {
786    return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) ||
787            ...);
788  }
789};
790
791/// Helper to obtain the iterator types for the tuple storage within `zippy`.
792template <template <typename...> class ItType, typename TupleStorageType,
793          typename IndexSequence>
794struct ZippyIteratorTuple;
795
796/// Partial specialization for non-const tuple storage.
797template <template <typename...> class ItType, typename... Args,
798          std::size_t... Ns>
799struct ZippyIteratorTuple<ItType, std::tuple<Args...>,
800                          std::index_sequence<Ns...>> {
801  using type = ItType<decltype(adl_begin(
802      std::get<Ns>(declval<std::tuple<Args...> &>())))...>;
803};
804
805/// Partial specialization for const tuple storage.
806template <template <typename...> class ItType, typename... Args,
807          std::size_t... Ns>
808struct ZippyIteratorTuple<ItType, const std::tuple<Args...>,
809                          std::index_sequence<Ns...>> {
810  using type = ItType<decltype(adl_begin(
811      std::get<Ns>(declval<const std::tuple<Args...> &>())))...>;
812};
813
814template <template <typename...> class ItType, typename... Args> class zippy {
815private:
816  std::tuple<Args...> storage;
817  using IndexSequence = std::index_sequence_for<Args...>;
818
819public:
820  using iterator = typename ZippyIteratorTuple<ItType, decltype(storage),
821                                               IndexSequence>::type;
822  using const_iterator =
823      typename ZippyIteratorTuple<ItType, const decltype(storage),
824                                  IndexSequence>::type;
825  using iterator_category = typename iterator::iterator_category;
826  using value_type = typename iterator::value_type;
827  using difference_type = typename iterator::difference_type;
828  using pointer = typename iterator::pointer;
829  using reference = typename iterator::reference;
830  using const_reference = typename const_iterator::reference;
831
832  zippy(Args &&...args) : storage(std::forward<Args>(args)...) {}
833
834  const_iterator begin() const { return begin_impl(IndexSequence{}); }
835  iterator begin() { return begin_impl(IndexSequence{}); }
836  const_iterator end() const { return end_impl(IndexSequence{}); }
837  iterator end() { return end_impl(IndexSequence{}); }
838
839private:
840  template <size_t... Ns>
841  const_iterator begin_impl(std::index_sequence<Ns...>) const {
842    return const_iterator(adl_begin(std::get<Ns>(storage))...);
843  }
844  template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
845    return iterator(adl_begin(std::get<Ns>(storage))...);
846  }
847
848  template <size_t... Ns>
849  const_iterator end_impl(std::index_sequence<Ns...>) const {
850    return const_iterator(adl_end(std::get<Ns>(storage))...);
851  }
852  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
853    return iterator(adl_end(std::get<Ns>(storage))...);
854  }
855};
856
857} // end namespace detail
858
859/// zip iterator for two or more iteratable types. Iteration continues until the
860/// end of the *shortest* iteratee is reached.
861template <typename T, typename U, typename... Args>
862detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
863                                                       Args &&...args) {
864  return detail::zippy<detail::zip_shortest, T, U, Args...>(
865      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
866}
867
868/// zip iterator that assumes that all iteratees have the same length.
869/// In builds with assertions on, this assumption is checked before the
870/// iteration starts.
871template <typename T, typename U, typename... Args>
872detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u,
873                                                          Args &&...args) {
874  assert(all_equal({range_size(t), range_size(u), range_size(args)...}) &&
875         "Iteratees do not have equal length");
876  return detail::zippy<detail::zip_first, T, U, Args...>(
877      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
878}
879
880/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
881/// be the shortest. Iteration continues until the end of the first iteratee is
882/// reached. In builds with assertions on, we check that the assumption about
883/// the first iteratee being the shortest holds.
884template <typename T, typename U, typename... Args>
885detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
886                                                          Args &&...args) {
887  assert(range_size(t) <= std::min({range_size(u), range_size(args)...}) &&
888         "First iteratee is not the shortest");
889
890  return detail::zippy<detail::zip_first, T, U, Args...>(
891      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
892}
893
894namespace detail {
895template <typename Iter>
896Iter next_or_end(const Iter &I, const Iter &End) {
897  if (I == End)
898    return End;
899  return std::next(I);
900}
901
902template <typename Iter>
903auto deref_or_none(const Iter &I, const Iter &End) -> std::optional<
904    std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
905  if (I == End)
906    return std::nullopt;
907  return *I;
908}
909
910template <typename Iter> struct ZipLongestItemType {
911  using type = std::optional<std::remove_const_t<
912      std::remove_reference_t<decltype(*std::declval<Iter>())>>>;
913};
914
915template <typename... Iters> struct ZipLongestTupleType {
916  using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
917};
918
919template <typename... Iters>
920class zip_longest_iterator
921    : public iterator_facade_base<
922          zip_longest_iterator<Iters...>,
923          std::common_type_t<
924              std::forward_iterator_tag,
925              typename std::iterator_traits<Iters>::iterator_category...>,
926          typename ZipLongestTupleType<Iters...>::type,
927          typename std::iterator_traits<
928              std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
929          typename ZipLongestTupleType<Iters...>::type *,
930          typename ZipLongestTupleType<Iters...>::type> {
931public:
932  using value_type = typename ZipLongestTupleType<Iters...>::type;
933
934private:
935  std::tuple<Iters...> iterators;
936  std::tuple<Iters...> end_iterators;
937
938  template <size_t... Ns>
939  bool test(const zip_longest_iterator<Iters...> &other,
940            std::index_sequence<Ns...>) const {
941    return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) ||
942            ...);
943  }
944
945  template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
946    return value_type(
947        deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
948  }
949
950  template <size_t... Ns>
951  decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
952    return std::tuple<Iters...>(
953        next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
954  }
955
956public:
957  zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
958      : iterators(std::forward<Iters>(ts.first)...),
959        end_iterators(std::forward<Iters>(ts.second)...) {}
960
961  value_type operator*() const {
962    return deref(std::index_sequence_for<Iters...>{});
963  }
964
965  zip_longest_iterator<Iters...> &operator++() {
966    iterators = tup_inc(std::index_sequence_for<Iters...>{});
967    return *this;
968  }
969
970  bool operator==(const zip_longest_iterator<Iters...> &other) const {
971    return !test(other, std::index_sequence_for<Iters...>{});
972  }
973};
974
975template <typename... Args> class zip_longest_range {
976public:
977  using iterator =
978      zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
979  using iterator_category = typename iterator::iterator_category;
980  using value_type = typename iterator::value_type;
981  using difference_type = typename iterator::difference_type;
982  using pointer = typename iterator::pointer;
983  using reference = typename iterator::reference;
984
985private:
986  std::tuple<Args...> ts;
987
988  template <size_t... Ns>
989  iterator begin_impl(std::index_sequence<Ns...>) const {
990    return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
991                                   adl_end(std::get<Ns>(ts)))...);
992  }
993
994  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
995    return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
996                                   adl_end(std::get<Ns>(ts)))...);
997  }
998
999public:
1000  zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
1001
1002  iterator begin() const {
1003    return begin_impl(std::index_sequence_for<Args...>{});
1004  }
1005  iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
1006};
1007} // namespace detail
1008
1009/// Iterate over two or more iterators at the same time. Iteration continues
1010/// until all iterators reach the end. The std::optional only contains a value
1011/// if the iterator has not reached the end.
1012template <typename T, typename U, typename... Args>
1013detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
1014                                                     Args &&... args) {
1015  return detail::zip_longest_range<T, U, Args...>(
1016      std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
1017}
1018
1019/// Iterator wrapper that concatenates sequences together.
1020///
1021/// This can concatenate different iterators, even with different types, into
1022/// a single iterator provided the value types of all the concatenated
1023/// iterators expose `reference` and `pointer` types that can be converted to
1024/// `ValueT &` and `ValueT *` respectively. It doesn't support more
1025/// interesting/customized pointer or reference types.
1026///
1027/// Currently this only supports forward or higher iterator categories as
1028/// inputs and always exposes a forward iterator interface.
1029template <typename ValueT, typename... IterTs>
1030class concat_iterator
1031    : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
1032                                  std::forward_iterator_tag, ValueT> {
1033  using BaseT = typename concat_iterator::iterator_facade_base;
1034
1035  /// We store both the current and end iterators for each concatenated
1036  /// sequence in a tuple of pairs.
1037  ///
1038  /// Note that something like iterator_range seems nice at first here, but the
1039  /// range properties are of little benefit and end up getting in the way
1040  /// because we need to do mutation on the current iterators.
1041  std::tuple<IterTs...> Begins;
1042  std::tuple<IterTs...> Ends;
1043
1044  /// Attempts to increment a specific iterator.
1045  ///
1046  /// Returns true if it was able to increment the iterator. Returns false if
1047  /// the iterator is already at the end iterator.
1048  template <size_t Index> bool incrementHelper() {
1049    auto &Begin = std::get<Index>(Begins);
1050    auto &End = std::get<Index>(Ends);
1051    if (Begin == End)
1052      return false;
1053
1054    ++Begin;
1055    return true;
1056  }
1057
1058  /// Increments the first non-end iterator.
1059  ///
1060  /// It is an error to call this with all iterators at the end.
1061  template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
1062    // Build a sequence of functions to increment each iterator if possible.
1063    bool (concat_iterator::*IncrementHelperFns[])() = {
1064        &concat_iterator::incrementHelper<Ns>...};
1065
1066    // Loop over them, and stop as soon as we succeed at incrementing one.
1067    for (auto &IncrementHelperFn : IncrementHelperFns)
1068      if ((this->*IncrementHelperFn)())
1069        return;
1070
1071    llvm_unreachable("Attempted to increment an end concat iterator!");
1072  }
1073
1074  /// Returns null if the specified iterator is at the end. Otherwise,
1075  /// dereferences the iterator and returns the address of the resulting
1076  /// reference.
1077  template <size_t Index> ValueT *getHelper() const {
1078    auto &Begin = std::get<Index>(Begins);
1079    auto &End = std::get<Index>(Ends);
1080    if (Begin == End)
1081      return nullptr;
1082
1083    return &*Begin;
1084  }
1085
1086  /// Finds the first non-end iterator, dereferences, and returns the resulting
1087  /// reference.
1088  ///
1089  /// It is an error to call this with all iterators at the end.
1090  template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
1091    // Build a sequence of functions to get from iterator if possible.
1092    ValueT *(concat_iterator::*GetHelperFns[])() const = {
1093        &concat_iterator::getHelper<Ns>...};
1094
1095    // Loop over them, and return the first result we find.
1096    for (auto &GetHelperFn : GetHelperFns)
1097      if (ValueT *P = (this->*GetHelperFn)())
1098        return *P;
1099
1100    llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
1101  }
1102
1103public:
1104  /// Constructs an iterator from a sequence of ranges.
1105  ///
1106  /// We need the full range to know how to switch between each of the
1107  /// iterators.
1108  template <typename... RangeTs>
1109  explicit concat_iterator(RangeTs &&... Ranges)
1110      : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
1111
1112  using BaseT::operator++;
1113
1114  concat_iterator &operator++() {
1115    increment(std::index_sequence_for<IterTs...>());
1116    return *this;
1117  }
1118
1119  ValueT &operator*() const {
1120    return get(std::index_sequence_for<IterTs...>());
1121  }
1122
1123  bool operator==(const concat_iterator &RHS) const {
1124    return Begins == RHS.Begins && Ends == RHS.Ends;
1125  }
1126};
1127
1128namespace detail {
1129
1130/// Helper to store a sequence of ranges being concatenated and access them.
1131///
1132/// This is designed to facilitate providing actual storage when temporaries
1133/// are passed into the constructor such that we can use it as part of range
1134/// based for loops.
1135template <typename ValueT, typename... RangeTs> class concat_range {
1136public:
1137  using iterator =
1138      concat_iterator<ValueT,
1139                      decltype(std::begin(std::declval<RangeTs &>()))...>;
1140
1141private:
1142  std::tuple<RangeTs...> Ranges;
1143
1144  template <size_t... Ns>
1145  iterator begin_impl(std::index_sequence<Ns...>) {
1146    return iterator(std::get<Ns>(Ranges)...);
1147  }
1148  template <size_t... Ns>
1149  iterator begin_impl(std::index_sequence<Ns...>) const {
1150    return iterator(std::get<Ns>(Ranges)...);
1151  }
1152  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
1153    return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1154                               std::end(std::get<Ns>(Ranges)))...);
1155  }
1156  template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
1157    return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1158                               std::end(std::get<Ns>(Ranges)))...);
1159  }
1160
1161public:
1162  concat_range(RangeTs &&... Ranges)
1163      : Ranges(std::forward<RangeTs>(Ranges)...) {}
1164
1165  iterator begin() {
1166    return begin_impl(std::index_sequence_for<RangeTs...>{});
1167  }
1168  iterator begin() const {
1169    return begin_impl(std::index_sequence_for<RangeTs...>{});
1170  }
1171  iterator end() {
1172    return end_impl(std::index_sequence_for<RangeTs...>{});
1173  }
1174  iterator end() const {
1175    return end_impl(std::index_sequence_for<RangeTs...>{});
1176  }
1177};
1178
1179} // end namespace detail
1180
1181/// Concatenated range across two or more ranges.
1182///
1183/// The desired value type must be explicitly specified.
1184template <typename ValueT, typename... RangeTs>
1185detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
1186  static_assert(sizeof...(RangeTs) > 1,
1187                "Need more than one range to concatenate!");
1188  return detail::concat_range<ValueT, RangeTs...>(
1189      std::forward<RangeTs>(Ranges)...);
1190}
1191
1192/// A utility class used to implement an iterator that contains some base object
1193/// and an index. The iterator moves the index but keeps the base constant.
1194template <typename DerivedT, typename BaseT, typename T,
1195          typename PointerT = T *, typename ReferenceT = T &>
1196class indexed_accessor_iterator
1197    : public llvm::iterator_facade_base<DerivedT,
1198                                        std::random_access_iterator_tag, T,
1199                                        std::ptrdiff_t, PointerT, ReferenceT> {
1200public:
1201  ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
1202    assert(base == rhs.base && "incompatible iterators");
1203    return index - rhs.index;
1204  }
1205  bool operator==(const indexed_accessor_iterator &rhs) const {
1206    return base == rhs.base && index == rhs.index;
1207  }
1208  bool operator<(const indexed_accessor_iterator &rhs) const {
1209    assert(base == rhs.base && "incompatible iterators");
1210    return index < rhs.index;
1211  }
1212
1213  DerivedT &operator+=(ptrdiff_t offset) {
1214    this->index += offset;
1215    return static_cast<DerivedT &>(*this);
1216  }
1217  DerivedT &operator-=(ptrdiff_t offset) {
1218    this->index -= offset;
1219    return static_cast<DerivedT &>(*this);
1220  }
1221
1222  /// Returns the current index of the iterator.
1223  ptrdiff_t getIndex() const { return index; }
1224
1225  /// Returns the current base of the iterator.
1226  const BaseT &getBase() const { return base; }
1227
1228protected:
1229  indexed_accessor_iterator(BaseT base, ptrdiff_t index)
1230      : base(base), index(index) {}
1231  BaseT base;
1232  ptrdiff_t index;
1233};
1234
1235namespace detail {
1236/// The class represents the base of a range of indexed_accessor_iterators. It
1237/// provides support for many different range functionalities, e.g.
1238/// drop_front/slice/etc.. Derived range classes must implement the following
1239/// static methods:
1240///   * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
1241///     - Dereference an iterator pointing to the base object at the given
1242///       index.
1243///   * BaseT offset_base(const BaseT &base, ptrdiff_t index)
1244///     - Return a new base that is offset from the provide base by 'index'
1245///       elements.
1246template <typename DerivedT, typename BaseT, typename T,
1247          typename PointerT = T *, typename ReferenceT = T &>
1248class indexed_accessor_range_base {
1249public:
1250  using RangeBaseT = indexed_accessor_range_base;
1251
1252  /// An iterator element of this range.
1253  class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
1254                                                    PointerT, ReferenceT> {
1255  public:
1256    // Index into this iterator, invoking a static method on the derived type.
1257    ReferenceT operator*() const {
1258      return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
1259    }
1260
1261  private:
1262    iterator(BaseT owner, ptrdiff_t curIndex)
1263        : iterator::indexed_accessor_iterator(owner, curIndex) {}
1264
1265    /// Allow access to the constructor.
1266    friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1267                                       ReferenceT>;
1268  };
1269
1270  indexed_accessor_range_base(iterator begin, iterator end)
1271      : base(offset_base(begin.getBase(), begin.getIndex())),
1272        count(end.getIndex() - begin.getIndex()) {}
1273  indexed_accessor_range_base(const iterator_range<iterator> &range)
1274      : indexed_accessor_range_base(range.begin(), range.end()) {}
1275  indexed_accessor_range_base(BaseT base, ptrdiff_t count)
1276      : base(base), count(count) {}
1277
1278  iterator begin() const { return iterator(base, 0); }
1279  iterator end() const { return iterator(base, count); }
1280  ReferenceT operator[](size_t Index) const {
1281    assert(Index < size() && "invalid index for value range");
1282    return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
1283  }
1284  ReferenceT front() const {
1285    assert(!empty() && "expected non-empty range");
1286    return (*this)[0];
1287  }
1288  ReferenceT back() const {
1289    assert(!empty() && "expected non-empty range");
1290    return (*this)[size() - 1];
1291  }
1292
1293  /// Return the size of this range.
1294  size_t size() const { return count; }
1295
1296  /// Return if the range is empty.
1297  bool empty() const { return size() == 0; }
1298
1299  /// Drop the first N elements, and keep M elements.
1300  DerivedT slice(size_t n, size_t m) const {
1301    assert(n + m <= size() && "invalid size specifiers");
1302    return DerivedT(offset_base(base, n), m);
1303  }
1304
1305  /// Drop the first n elements.
1306  DerivedT drop_front(size_t n = 1) const {
1307    assert(size() >= n && "Dropping more elements than exist");
1308    return slice(n, size() - n);
1309  }
1310  /// Drop the last n elements.
1311  DerivedT drop_back(size_t n = 1) const {
1312    assert(size() >= n && "Dropping more elements than exist");
1313    return DerivedT(base, size() - n);
1314  }
1315
1316  /// Take the first n elements.
1317  DerivedT take_front(size_t n = 1) const {
1318    return n < size() ? drop_back(size() - n)
1319                      : static_cast<const DerivedT &>(*this);
1320  }
1321
1322  /// Take the last n elements.
1323  DerivedT take_back(size_t n = 1) const {
1324    return n < size() ? drop_front(size() - n)
1325                      : static_cast<const DerivedT &>(*this);
1326  }
1327
1328  /// Allow conversion to any type accepting an iterator_range.
1329  template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
1330                                 RangeT, iterator_range<iterator>>::value>>
1331  operator RangeT() const {
1332    return RangeT(iterator_range<iterator>(*this));
1333  }
1334
1335  /// Returns the base of this range.
1336  const BaseT &getBase() const { return base; }
1337
1338private:
1339  /// Offset the given base by the given amount.
1340  static BaseT offset_base(const BaseT &base, size_t n) {
1341    return n == 0 ? base : DerivedT::offset_base(base, n);
1342  }
1343
1344protected:
1345  indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
1346  indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
1347  indexed_accessor_range_base &
1348  operator=(const indexed_accessor_range_base &) = default;
1349
1350  /// The base that owns the provided range of values.
1351  BaseT base;
1352  /// The size from the owning range.
1353  ptrdiff_t count;
1354};
1355/// Compare this range with another.
1356/// FIXME: Make me a member function instead of friend when it works in C++20.
1357template <typename OtherT, typename DerivedT, typename BaseT, typename T,
1358          typename PointerT, typename ReferenceT>
1359bool operator==(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1360                                                  ReferenceT> &lhs,
1361                const OtherT &rhs) {
1362  return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
1363}
1364
1365template <typename OtherT, typename DerivedT, typename BaseT, typename T,
1366          typename PointerT, typename ReferenceT>
1367bool operator!=(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1368                                                  ReferenceT> &lhs,
1369                const OtherT &rhs) {
1370  return !(lhs == rhs);
1371}
1372} // end namespace detail
1373
1374/// This class provides an implementation of a range of
1375/// indexed_accessor_iterators where the base is not indexable. Ranges with
1376/// bases that are offsetable should derive from indexed_accessor_range_base
1377/// instead. Derived range classes are expected to implement the following
1378/// static method:
1379///   * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
1380///     - Dereference an iterator pointing to a parent base at the given index.
1381template <typename DerivedT, typename BaseT, typename T,
1382          typename PointerT = T *, typename ReferenceT = T &>
1383class indexed_accessor_range
1384    : public detail::indexed_accessor_range_base<
1385          DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
1386public:
1387  indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
1388      : detail::indexed_accessor_range_base<
1389            DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
1390            std::make_pair(base, startIndex), count) {}
1391  using detail::indexed_accessor_range_base<
1392      DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
1393      ReferenceT>::indexed_accessor_range_base;
1394
1395  /// Returns the current base of the range.
1396  const BaseT &getBase() const { return this->base.first; }
1397
1398  /// Returns the current start index of the range.
1399  ptrdiff_t getStartIndex() const { return this->base.second; }
1400
1401  /// See `detail::indexed_accessor_range_base` for details.
1402  static std::pair<BaseT, ptrdiff_t>
1403  offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
1404    // We encode the internal base as a pair of the derived base and a start
1405    // index into the derived base.
1406    return std::make_pair(base.first, base.second + index);
1407  }
1408  /// See `detail::indexed_accessor_range_base` for details.
1409  static ReferenceT
1410  dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
1411                       ptrdiff_t index) {
1412    return DerivedT::dereference(base.first, base.second + index);
1413  }
1414};
1415
1416namespace detail {
1417/// Return a reference to the first or second member of a reference. Otherwise,
1418/// return a copy of the member of a temporary.
1419///
1420/// When passing a range whose iterators return values instead of references,
1421/// the reference must be dropped from `decltype((elt.first))`, which will
1422/// always be a reference, to avoid returning a reference to a temporary.
1423template <typename EltTy, typename FirstTy> class first_or_second_type {
1424public:
1425  using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
1426                                  std::remove_reference_t<FirstTy>>;
1427};
1428} // end namespace detail
1429
1430/// Given a container of pairs, return a range over the first elements.
1431template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
1432  using EltTy = decltype((*std::begin(c)));
1433  return llvm::map_range(std::forward<ContainerTy>(c),
1434                         [](EltTy elt) -> typename detail::first_or_second_type<
1435                                           EltTy, decltype((elt.first))>::type {
1436                           return elt.first;
1437                         });
1438}
1439
1440/// Given a container of pairs, return a range over the second elements.
1441template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
1442  using EltTy = decltype((*std::begin(c)));
1443  return llvm::map_range(
1444      std::forward<ContainerTy>(c),
1445      [](EltTy elt) ->
1446      typename detail::first_or_second_type<EltTy,
1447                                            decltype((elt.second))>::type {
1448        return elt.second;
1449      });
1450}
1451
1452//===----------------------------------------------------------------------===//
1453//     Extra additions to <utility>
1454//===----------------------------------------------------------------------===//
1455
1456/// Function object to check whether the first component of a container
1457/// supported by std::get (like std::pair and std::tuple) compares less than the
1458/// first component of another container.
1459struct less_first {
1460  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1461    return std::less<>()(std::get<0>(lhs), std::get<0>(rhs));
1462  }
1463};
1464
1465/// Function object to check whether the second component of a container
1466/// supported by std::get (like std::pair and std::tuple) compares less than the
1467/// second component of another container.
1468struct less_second {
1469  template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1470    return std::less<>()(std::get<1>(lhs), std::get<1>(rhs));
1471  }
1472};
1473
1474/// \brief Function object to apply a binary function to the first component of
1475/// a std::pair.
1476template<typename FuncTy>
1477struct on_first {
1478  FuncTy func;
1479
1480  template <typename T>
1481  decltype(auto) operator()(const T &lhs, const T &rhs) const {
1482    return func(lhs.first, rhs.first);
1483  }
1484};
1485
1486/// Utility type to build an inheritance chain that makes it easy to rank
1487/// overload candidates.
1488template <int N> struct rank : rank<N - 1> {};
1489template <> struct rank<0> {};
1490
1491namespace detail {
1492template <typename... Ts> struct Visitor;
1493
1494template <typename HeadT, typename... TailTs>
1495struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
1496  explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
1497      : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
1498        Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
1499  using remove_cvref_t<HeadT>::operator();
1500  using Visitor<TailTs...>::operator();
1501};
1502
1503template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
1504  explicit constexpr Visitor(HeadT &&Head)
1505      : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
1506  using remove_cvref_t<HeadT>::operator();
1507};
1508} // namespace detail
1509
1510/// Returns an opaquely-typed Callable object whose operator() overload set is
1511/// the sum of the operator() overload sets of each CallableT in CallableTs.
1512///
1513/// The type of the returned object derives from each CallableT in CallableTs.
1514/// The returned object is constructed by invoking the appropriate copy or move
1515/// constructor of each CallableT, as selected by overload resolution on the
1516/// corresponding argument to makeVisitor.
1517///
1518/// Example:
1519///
1520/// \code
1521/// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
1522///                            [](int i) { return "int"; },
1523///                            [](std::string s) { return "str"; });
1524/// auto a = visitor(42);    // `a` is now "int".
1525/// auto b = visitor("foo"); // `b` is now "str".
1526/// auto c = visitor(3.14f); // `c` is now "unhandled type".
1527/// \endcode
1528///
1529/// Example of making a visitor with a lambda which captures a move-only type:
1530///
1531/// \code
1532/// std::unique_ptr<FooHandler> FH = /* ... */;
1533/// auto visitor = makeVisitor(
1534///     [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
1535///     [](int i) { return i; },
1536///     [](std::string s) { return atoi(s); });
1537/// \endcode
1538template <typename... CallableTs>
1539constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
1540  return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
1541}
1542
1543//===----------------------------------------------------------------------===//
1544//     Extra additions to <algorithm>
1545//===----------------------------------------------------------------------===//
1546
1547// We have a copy here so that LLVM behaves the same when using different
1548// standard libraries.
1549template <class Iterator, class RNG>
1550void shuffle(Iterator first, Iterator last, RNG &&g) {
1551  // It would be better to use a std::uniform_int_distribution,
1552  // but that would be stdlib dependent.
1553  typedef
1554      typename std::iterator_traits<Iterator>::difference_type difference_type;
1555  for (auto size = last - first; size > 1; ++first, (void)--size) {
1556    difference_type offset = g() % size;
1557    // Avoid self-assignment due to incorrect assertions in libstdc++
1558    // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
1559    if (offset != difference_type(0))
1560      std::iter_swap(first, first + offset);
1561  }
1562}
1563
1564/// Adapt std::less<T> for array_pod_sort.
1565template<typename T>
1566inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1567  if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1568                     *reinterpret_cast<const T*>(P2)))
1569    return -1;
1570  if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1571                     *reinterpret_cast<const T*>(P1)))
1572    return 1;
1573  return 0;
1574}
1575
1576/// get_array_pod_sort_comparator - This is an internal helper function used to
1577/// get type deduction of T right.
1578template<typename T>
1579inline int (*get_array_pod_sort_comparator(const T &))
1580             (const void*, const void*) {
1581  return array_pod_sort_comparator<T>;
1582}
1583
1584#ifdef EXPENSIVE_CHECKS
1585namespace detail {
1586
1587inline unsigned presortShuffleEntropy() {
1588  static unsigned Result(std::random_device{}());
1589  return Result;
1590}
1591
1592template <class IteratorTy>
1593inline void presortShuffle(IteratorTy Start, IteratorTy End) {
1594  std::mt19937 Generator(presortShuffleEntropy());
1595  llvm::shuffle(Start, End, Generator);
1596}
1597
1598} // end namespace detail
1599#endif
1600
1601/// array_pod_sort - This sorts an array with the specified start and end
1602/// extent.  This is just like std::sort, except that it calls qsort instead of
1603/// using an inlined template.  qsort is slightly slower than std::sort, but
1604/// most sorts are not performance critical in LLVM and std::sort has to be
1605/// template instantiated for each type, leading to significant measured code
1606/// bloat.  This function should generally be used instead of std::sort where
1607/// possible.
1608///
1609/// This function assumes that you have simple POD-like types that can be
1610/// compared with std::less and can be moved with memcpy.  If this isn't true,
1611/// you should use std::sort.
1612///
1613/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1614/// default to std::less.
1615template<class IteratorTy>
1616inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1617  // Don't inefficiently call qsort with one element or trigger undefined
1618  // behavior with an empty sequence.
1619  auto NElts = End - Start;
1620  if (NElts <= 1) return;
1621#ifdef EXPENSIVE_CHECKS
1622  detail::presortShuffle<IteratorTy>(Start, End);
1623#endif
1624  qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1625}
1626
1627template <class IteratorTy>
1628inline void array_pod_sort(
1629    IteratorTy Start, IteratorTy End,
1630    int (*Compare)(
1631        const typename std::iterator_traits<IteratorTy>::value_type *,
1632        const typename std::iterator_traits<IteratorTy>::value_type *)) {
1633  // Don't inefficiently call qsort with one element or trigger undefined
1634  // behavior with an empty sequence.
1635  auto NElts = End - Start;
1636  if (NElts <= 1) return;
1637#ifdef EXPENSIVE_CHECKS
1638  detail::presortShuffle<IteratorTy>(Start, End);
1639#endif
1640  qsort(&*Start, NElts, sizeof(*Start),
1641        reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1642}
1643
1644namespace detail {
1645template <typename T>
1646// We can use qsort if the iterator type is a pointer and the underlying value
1647// is trivially copyable.
1648using sort_trivially_copyable = std::conjunction<
1649    std::is_pointer<T>,
1650    std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
1651} // namespace detail
1652
1653// Provide wrappers to std::sort which shuffle the elements before sorting
1654// to help uncover non-deterministic behavior (PR35135).
1655template <typename IteratorTy>
1656inline void sort(IteratorTy Start, IteratorTy End) {
1657  if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) {
1658    // Forward trivially copyable types to array_pod_sort. This avoids a large
1659    // amount of code bloat for a minor performance hit.
1660    array_pod_sort(Start, End);
1661  } else {
1662#ifdef EXPENSIVE_CHECKS
1663    detail::presortShuffle<IteratorTy>(Start, End);
1664#endif
1665    std::sort(Start, End);
1666  }
1667}
1668
1669template <typename Container> inline void sort(Container &&C) {
1670  llvm::sort(adl_begin(C), adl_end(C));
1671}
1672
1673template <typename IteratorTy, typename Compare>
1674inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1675#ifdef EXPENSIVE_CHECKS
1676  detail::presortShuffle<IteratorTy>(Start, End);
1677#endif
1678  std::sort(Start, End, Comp);
1679}
1680
1681template <typename Container, typename Compare>
1682inline void sort(Container &&C, Compare Comp) {
1683  llvm::sort(adl_begin(C), adl_end(C), Comp);
1684}
1685
1686/// Get the size of a range. This is a wrapper function around std::distance
1687/// which is only enabled when the operation is O(1).
1688template <typename R>
1689auto size(R &&Range,
1690          std::enable_if_t<
1691              std::is_base_of<std::random_access_iterator_tag,
1692                              typename std::iterator_traits<decltype(
1693                                  Range.begin())>::iterator_category>::value,
1694              void> * = nullptr) {
1695  return std::distance(Range.begin(), Range.end());
1696}
1697
1698namespace detail {
1699template <typename Range>
1700using check_has_free_function_size =
1701    decltype(adl_size(std::declval<Range &>()));
1702
1703template <typename Range>
1704static constexpr bool HasFreeFunctionSize =
1705    is_detected<check_has_free_function_size, Range>::value;
1706} // namespace detail
1707
1708/// Returns the size of the \p Range, i.e., the number of elements. This
1709/// implementation takes inspiration from `std::ranges::size` from C++20 and
1710/// delegates the size check to `adl_size` or `std::distance`, in this order of
1711/// preference. Unlike `llvm::size`, this function does *not* guarantee O(1)
1712/// running time, and is intended to be used in generic code that does not know
1713/// the exact range type.
1714template <typename R> constexpr size_t range_size(R &&Range) {
1715  if constexpr (detail::HasFreeFunctionSize<R>)
1716    return adl_size(Range);
1717  else
1718    return static_cast<size_t>(std::distance(adl_begin(Range), adl_end(Range)));
1719}
1720
1721/// Provide wrappers to std::for_each which take ranges instead of having to
1722/// pass begin/end explicitly.
1723template <typename R, typename UnaryFunction>
1724UnaryFunction for_each(R &&Range, UnaryFunction F) {
1725  return std::for_each(adl_begin(Range), adl_end(Range), F);
1726}
1727
1728/// Provide wrappers to std::all_of which take ranges instead of having to pass
1729/// begin/end explicitly.
1730template <typename R, typename UnaryPredicate>
1731bool all_of(R &&Range, UnaryPredicate P) {
1732  return std::all_of(adl_begin(Range), adl_end(Range), P);
1733}
1734
1735/// Provide wrappers to std::any_of which take ranges instead of having to pass
1736/// begin/end explicitly.
1737template <typename R, typename UnaryPredicate>
1738bool any_of(R &&Range, UnaryPredicate P) {
1739  return std::any_of(adl_begin(Range), adl_end(Range), P);
1740}
1741
1742/// Provide wrappers to std::none_of which take ranges instead of having to pass
1743/// begin/end explicitly.
1744template <typename R, typename UnaryPredicate>
1745bool none_of(R &&Range, UnaryPredicate P) {
1746  return std::none_of(adl_begin(Range), adl_end(Range), P);
1747}
1748
1749/// Provide wrappers to std::find which take ranges instead of having to pass
1750/// begin/end explicitly.
1751template <typename R, typename T> auto find(R &&Range, const T &Val) {
1752  return std::find(adl_begin(Range), adl_end(Range), Val);
1753}
1754
1755/// Provide wrappers to std::find_if which take ranges instead of having to pass
1756/// begin/end explicitly.
1757template <typename R, typename UnaryPredicate>
1758auto find_if(R &&Range, UnaryPredicate P) {
1759  return std::find_if(adl_begin(Range), adl_end(Range), P);
1760}
1761
1762template <typename R, typename UnaryPredicate>
1763auto find_if_not(R &&Range, UnaryPredicate P) {
1764  return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1765}
1766
1767/// Provide wrappers to std::remove_if which take ranges instead of having to
1768/// pass begin/end explicitly.
1769template <typename R, typename UnaryPredicate>
1770auto remove_if(R &&Range, UnaryPredicate P) {
1771  return std::remove_if(adl_begin(Range), adl_end(Range), P);
1772}
1773
1774/// Provide wrappers to std::copy_if which take ranges instead of having to
1775/// pass begin/end explicitly.
1776template <typename R, typename OutputIt, typename UnaryPredicate>
1777OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1778  return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1779}
1780
1781/// Return the single value in \p Range that satisfies
1782/// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr
1783/// when no values or multiple values were found.
1784/// When \p AllowRepeats is true, multiple values that compare equal
1785/// are allowed.
1786template <typename T, typename R, typename Predicate>
1787T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) {
1788  T *RC = nullptr;
1789  for (auto &&A : Range) {
1790    if (T *PRC = P(A, AllowRepeats)) {
1791      if (RC) {
1792        if (!AllowRepeats || PRC != RC)
1793          return nullptr;
1794      } else
1795        RC = PRC;
1796    }
1797  }
1798  return RC;
1799}
1800
1801/// Return a pair consisting of the single value in \p Range that satisfies
1802/// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning
1803/// nullptr when no values or multiple values were found, and a bool indicating
1804/// whether multiple values were found to cause the nullptr.
1805/// When \p AllowRepeats is true, multiple values that compare equal are
1806/// allowed.  The predicate \p P returns a pair<T *, bool> where T is the
1807/// singleton while the bool indicates whether multiples have already been
1808/// found.  It is expected that first will be nullptr when second is true.
1809/// This allows using find_singleton_nested within the predicate \P.
1810template <typename T, typename R, typename Predicate>
1811std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P,
1812                                           bool AllowRepeats = false) {
1813  T *RC = nullptr;
1814  for (auto *A : Range) {
1815    std::pair<T *, bool> PRC = P(A, AllowRepeats);
1816    if (PRC.second) {
1817      assert(PRC.first == nullptr &&
1818             "Inconsistent return values in find_singleton_nested.");
1819      return PRC;
1820    }
1821    if (PRC.first) {
1822      if (RC) {
1823        if (!AllowRepeats || PRC.first != RC)
1824          return {nullptr, true};
1825      } else
1826        RC = PRC.first;
1827    }
1828  }
1829  return {RC, false};
1830}
1831
1832template <typename R, typename OutputIt>
1833OutputIt copy(R &&Range, OutputIt Out) {
1834  return std::copy(adl_begin(Range), adl_end(Range), Out);
1835}
1836
1837/// Provide wrappers to std::replace_copy_if which take ranges instead of having
1838/// to pass begin/end explicitly.
1839template <typename R, typename OutputIt, typename UnaryPredicate, typename T>
1840OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P,
1841                         const T &NewValue) {
1842  return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P,
1843                              NewValue);
1844}
1845
1846/// Provide wrappers to std::replace_copy which take ranges instead of having to
1847/// pass begin/end explicitly.
1848template <typename R, typename OutputIt, typename T>
1849OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue,
1850                      const T &NewValue) {
1851  return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue,
1852                           NewValue);
1853}
1854
1855/// Provide wrappers to std::move which take ranges instead of having to
1856/// pass begin/end explicitly.
1857template <typename R, typename OutputIt>
1858OutputIt move(R &&Range, OutputIt Out) {
1859  return std::move(adl_begin(Range), adl_end(Range), Out);
1860}
1861
1862namespace detail {
1863template <typename Range, typename Element>
1864using check_has_member_contains_t =
1865    decltype(std::declval<Range &>().contains(std::declval<const Element &>()));
1866
1867template <typename Range, typename Element>
1868static constexpr bool HasMemberContains =
1869    is_detected<check_has_member_contains_t, Range, Element>::value;
1870
1871template <typename Range, typename Element>
1872using check_has_member_find_t =
1873    decltype(std::declval<Range &>().find(std::declval<const Element &>()) !=
1874             std::declval<Range &>().end());
1875
1876template <typename Range, typename Element>
1877static constexpr bool HasMemberFind =
1878    is_detected<check_has_member_find_t, Range, Element>::value;
1879
1880} // namespace detail
1881
1882/// Returns true if \p Element is found in \p Range. Delegates the check to
1883/// either `.contains(Element)`, `.find(Element)`, or `std::find`, in this
1884/// order of preference. This is intended as the canonical way to check if an
1885/// element exists in a range in generic code or range type that does not
1886/// expose a `.contains(Element)` member.
1887template <typename R, typename E>
1888bool is_contained(R &&Range, const E &Element) {
1889  if constexpr (detail::HasMemberContains<R, E>)
1890    return Range.contains(Element);
1891  else if constexpr (detail::HasMemberFind<R, E>)
1892    return Range.find(Element) != Range.end();
1893  else
1894    return std::find(adl_begin(Range), adl_end(Range), Element) !=
1895           adl_end(Range);
1896}
1897
1898/// Returns true iff \p Element exists in \p Set. This overload takes \p Set as
1899/// an initializer list and is `constexpr`-friendly.
1900template <typename T, typename E>
1901constexpr bool is_contained(std::initializer_list<T> Set, const E &Element) {
1902  // TODO: Use std::find when we switch to C++20.
1903  for (const T &V : Set)
1904    if (V == Element)
1905      return true;
1906  return false;
1907}
1908
1909/// Wrapper function around std::is_sorted to check if elements in a range \p R
1910/// are sorted with respect to a comparator \p C.
1911template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
1912  return std::is_sorted(adl_begin(Range), adl_end(Range), C);
1913}
1914
1915/// Wrapper function around std::is_sorted to check if elements in a range \p R
1916/// are sorted in non-descending order.
1917template <typename R> bool is_sorted(R &&Range) {
1918  return std::is_sorted(adl_begin(Range), adl_end(Range));
1919}
1920
1921/// Wrapper function around std::count to count the number of times an element
1922/// \p Element occurs in the given range \p Range.
1923template <typename R, typename E> auto count(R &&Range, const E &Element) {
1924  return std::count(adl_begin(Range), adl_end(Range), Element);
1925}
1926
1927/// Wrapper function around std::count_if to count the number of times an
1928/// element satisfying a given predicate occurs in a range.
1929template <typename R, typename UnaryPredicate>
1930auto count_if(R &&Range, UnaryPredicate P) {
1931  return std::count_if(adl_begin(Range), adl_end(Range), P);
1932}
1933
1934/// Wrapper function around std::transform to apply a function to a range and
1935/// store the result elsewhere.
1936template <typename R, typename OutputIt, typename UnaryFunction>
1937OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
1938  return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
1939}
1940
1941/// Provide wrappers to std::partition which take ranges instead of having to
1942/// pass begin/end explicitly.
1943template <typename R, typename UnaryPredicate>
1944auto partition(R &&Range, UnaryPredicate P) {
1945  return std::partition(adl_begin(Range), adl_end(Range), P);
1946}
1947
1948/// Provide wrappers to std::lower_bound which take ranges instead of having to
1949/// pass begin/end explicitly.
1950template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
1951  return std::lower_bound(adl_begin(Range), adl_end(Range),
1952                          std::forward<T>(Value));
1953}
1954
1955template <typename R, typename T, typename Compare>
1956auto lower_bound(R &&Range, T &&Value, Compare C) {
1957  return std::lower_bound(adl_begin(Range), adl_end(Range),
1958                          std::forward<T>(Value), C);
1959}
1960
1961/// Provide wrappers to std::upper_bound which take ranges instead of having to
1962/// pass begin/end explicitly.
1963template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
1964  return std::upper_bound(adl_begin(Range), adl_end(Range),
1965                          std::forward<T>(Value));
1966}
1967
1968template <typename R, typename T, typename Compare>
1969auto upper_bound(R &&Range, T &&Value, Compare C) {
1970  return std::upper_bound(adl_begin(Range), adl_end(Range),
1971                          std::forward<T>(Value), C);
1972}
1973
1974template <typename R>
1975void stable_sort(R &&Range) {
1976  std::stable_sort(adl_begin(Range), adl_end(Range));
1977}
1978
1979template <typename R, typename Compare>
1980void stable_sort(R &&Range, Compare C) {
1981  std::stable_sort(adl_begin(Range), adl_end(Range), C);
1982}
1983
1984/// Binary search for the first iterator in a range where a predicate is false.
1985/// Requires that C is always true below some limit, and always false above it.
1986template <typename R, typename Predicate,
1987          typename Val = decltype(*adl_begin(std::declval<R>()))>
1988auto partition_point(R &&Range, Predicate P) {
1989  return std::partition_point(adl_begin(Range), adl_end(Range), P);
1990}
1991
1992template<typename Range, typename Predicate>
1993auto unique(Range &&R, Predicate P) {
1994  return std::unique(adl_begin(R), adl_end(R), P);
1995}
1996
1997/// Wrapper function around std::equal to detect if pair-wise elements between
1998/// two ranges are the same.
1999template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
2000  return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
2001                    adl_end(RRange));
2002}
2003
2004/// Returns true if all elements in Range are equal or when the Range is empty.
2005template <typename R> bool all_equal(R &&Range) {
2006  auto Begin = adl_begin(Range);
2007  auto End = adl_end(Range);
2008  return Begin == End || std::equal(Begin + 1, End, Begin);
2009}
2010
2011/// Returns true if all Values in the initializer lists are equal or the list
2012// is empty.
2013template <typename T> bool all_equal(std::initializer_list<T> Values) {
2014  return all_equal<std::initializer_list<T>>(std::move(Values));
2015}
2016
2017/// Provide a container algorithm similar to C++ Library Fundamentals v2's
2018/// `erase_if` which is equivalent to:
2019///
2020///   C.erase(remove_if(C, pred), C.end());
2021///
2022/// This version works for any container with an erase method call accepting
2023/// two iterators.
2024template <typename Container, typename UnaryPredicate>
2025void erase_if(Container &C, UnaryPredicate P) {
2026  C.erase(remove_if(C, P), C.end());
2027}
2028
2029/// Wrapper function to remove a value from a container:
2030///
2031/// C.erase(remove(C.begin(), C.end(), V), C.end());
2032template <typename Container, typename ValueType>
2033void erase(Container &C, ValueType V) {
2034  C.erase(std::remove(C.begin(), C.end(), V), C.end());
2035}
2036
2037template <typename Container, typename ValueType>
2038LLVM_DEPRECATED("Use erase instead", "erase")
2039void erase_value(Container &C, ValueType V) {
2040  erase(C, V);
2041}
2042
2043/// Wrapper function to append range `R` to container `C`.
2044///
2045/// C.insert(C.end(), R.begin(), R.end());
2046template <typename Container, typename Range>
2047void append_range(Container &C, Range &&R) {
2048  C.insert(C.end(), adl_begin(R), adl_end(R));
2049}
2050
2051/// Appends all `Values` to container `C`.
2052template <typename Container, typename... Args>
2053void append_values(Container &C, Args &&...Values) {
2054  C.reserve(range_size(C) + sizeof...(Args));
2055  // Append all values one by one.
2056  ((void)C.insert(C.end(), std::forward<Args>(Values)), ...);
2057}
2058
2059/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2060/// the range [ValIt, ValEnd) (which is not from the same container).
2061template<typename Container, typename RandomAccessIterator>
2062void replace(Container &Cont, typename Container::iterator ContIt,
2063             typename Container::iterator ContEnd, RandomAccessIterator ValIt,
2064             RandomAccessIterator ValEnd) {
2065  while (true) {
2066    if (ValIt == ValEnd) {
2067      Cont.erase(ContIt, ContEnd);
2068      return;
2069    } else if (ContIt == ContEnd) {
2070      Cont.insert(ContIt, ValIt, ValEnd);
2071      return;
2072    }
2073    *ContIt++ = *ValIt++;
2074  }
2075}
2076
2077/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2078/// the range R.
2079template<typename Container, typename Range = std::initializer_list<
2080                                 typename Container::value_type>>
2081void replace(Container &Cont, typename Container::iterator ContIt,
2082             typename Container::iterator ContEnd, Range R) {
2083  replace(Cont, ContIt, ContEnd, R.begin(), R.end());
2084}
2085
2086/// An STL-style algorithm similar to std::for_each that applies a second
2087/// functor between every pair of elements.
2088///
2089/// This provides the control flow logic to, for example, print a
2090/// comma-separated list:
2091/// \code
2092///   interleave(names.begin(), names.end(),
2093///              [&](StringRef name) { os << name; },
2094///              [&] { os << ", "; });
2095/// \endcode
2096template <typename ForwardIterator, typename UnaryFunctor,
2097          typename NullaryFunctor,
2098          typename = std::enable_if_t<
2099              !std::is_constructible<StringRef, UnaryFunctor>::value &&
2100              !std::is_constructible<StringRef, NullaryFunctor>::value>>
2101inline void interleave(ForwardIterator begin, ForwardIterator end,
2102                       UnaryFunctor each_fn, NullaryFunctor between_fn) {
2103  if (begin == end)
2104    return;
2105  each_fn(*begin);
2106  ++begin;
2107  for (; begin != end; ++begin) {
2108    between_fn();
2109    each_fn(*begin);
2110  }
2111}
2112
2113template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
2114          typename = std::enable_if_t<
2115              !std::is_constructible<StringRef, UnaryFunctor>::value &&
2116              !std::is_constructible<StringRef, NullaryFunctor>::value>>
2117inline void interleave(const Container &c, UnaryFunctor each_fn,
2118                       NullaryFunctor between_fn) {
2119  interleave(c.begin(), c.end(), each_fn, between_fn);
2120}
2121
2122/// Overload of interleave for the common case of string separator.
2123template <typename Container, typename UnaryFunctor, typename StreamT,
2124          typename T = detail::ValueOfRange<Container>>
2125inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
2126                       const StringRef &separator) {
2127  interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
2128}
2129template <typename Container, typename StreamT,
2130          typename T = detail::ValueOfRange<Container>>
2131inline void interleave(const Container &c, StreamT &os,
2132                       const StringRef &separator) {
2133  interleave(
2134      c, os, [&](const T &a) { os << a; }, separator);
2135}
2136
2137template <typename Container, typename UnaryFunctor, typename StreamT,
2138          typename T = detail::ValueOfRange<Container>>
2139inline void interleaveComma(const Container &c, StreamT &os,
2140                            UnaryFunctor each_fn) {
2141  interleave(c, os, each_fn, ", ");
2142}
2143template <typename Container, typename StreamT,
2144          typename T = detail::ValueOfRange<Container>>
2145inline void interleaveComma(const Container &c, StreamT &os) {
2146  interleaveComma(c, os, [&](const T &a) { os << a; });
2147}
2148
2149//===----------------------------------------------------------------------===//
2150//     Extra additions to <memory>
2151//===----------------------------------------------------------------------===//
2152
2153struct FreeDeleter {
2154  void operator()(void* v) {
2155    ::free(v);
2156  }
2157};
2158
2159template<typename First, typename Second>
2160struct pair_hash {
2161  size_t operator()(const std::pair<First, Second> &P) const {
2162    return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
2163  }
2164};
2165
2166/// Binary functor that adapts to any other binary functor after dereferencing
2167/// operands.
2168template <typename T> struct deref {
2169  T func;
2170
2171  // Could be further improved to cope with non-derivable functors and
2172  // non-binary functors (should be a variadic template member function
2173  // operator()).
2174  template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
2175    assert(lhs);
2176    assert(rhs);
2177    return func(*lhs, *rhs);
2178  }
2179};
2180
2181namespace detail {
2182
2183/// Tuple-like type for `zip_enumerator` dereference.
2184template <typename... Refs> struct enumerator_result;
2185
2186template <typename... Iters>
2187using EnumeratorTupleType = enumerator_result<decltype(*declval<Iters>())...>;
2188
2189/// Zippy iterator that uses the second iterator for comparisons. For the
2190/// increment to be safe, the second range has to be the shortest.
2191/// Returns `enumerator_result` on dereference to provide `.index()` and
2192/// `.value()` member functions.
2193/// Note: Because the dereference operator returns `enumerator_result` as a
2194/// value instead of a reference and does not strictly conform to the C++17's
2195/// definition of forward iterator. However, it satisfies all the
2196/// forward_iterator requirements that the `zip_common` and `zippy` depend on
2197/// and fully conforms to the C++20 definition of forward iterator.
2198/// This is similar to `std::vector<bool>::iterator` that returns bit reference
2199/// wrappers on dereference.
2200template <typename... Iters>
2201struct zip_enumerator : zip_common<zip_enumerator<Iters...>,
2202                                   EnumeratorTupleType<Iters...>, Iters...> {
2203  static_assert(sizeof...(Iters) >= 2, "Expected at least two iteratees");
2204  using zip_common<zip_enumerator<Iters...>, EnumeratorTupleType<Iters...>,
2205                   Iters...>::zip_common;
2206
2207  bool operator==(const zip_enumerator &Other) const {
2208    return std::get<1>(this->iterators) == std::get<1>(Other.iterators);
2209  }
2210};
2211
2212template <typename... Refs> struct enumerator_result<std::size_t, Refs...> {
2213  static constexpr std::size_t NumRefs = sizeof...(Refs);
2214  static_assert(NumRefs != 0);
2215  // `NumValues` includes the index.
2216  static constexpr std::size_t NumValues = NumRefs + 1;
2217
2218  // Tuple type whose element types are references for each `Ref`.
2219  using range_reference_tuple = std::tuple<Refs...>;
2220  // Tuple type who elements are references to all values, including both
2221  // the index and `Refs` reference types.
2222  using value_reference_tuple = std::tuple<std::size_t, Refs...>;
2223
2224  enumerator_result(std::size_t Index, Refs &&...Rs)
2225      : Idx(Index), Storage(std::forward<Refs>(Rs)...) {}
2226
2227  /// Returns the 0-based index of the current position within the original
2228  /// input range(s).
2229  std::size_t index() const { return Idx; }
2230
2231  /// Returns the value(s) for the current iterator. This does not include the
2232  /// index.
2233  decltype(auto) value() const {
2234    if constexpr (NumRefs == 1)
2235      return std::get<0>(Storage);
2236    else
2237      return Storage;
2238  }
2239
2240  /// Returns the value at index `I`. This case covers the index.
2241  template <std::size_t I, typename = std::enable_if_t<I == 0>>
2242  friend std::size_t get(const enumerator_result &Result) {
2243    return Result.Idx;
2244  }
2245
2246  /// Returns the value at index `I`. This case covers references to the
2247  /// iteratees.
2248  template <std::size_t I, typename = std::enable_if_t<I != 0>>
2249  friend decltype(auto) get(const enumerator_result &Result) {
2250    // Note: This is a separate function from the other `get`, instead of an
2251    // `if constexpr` case, to work around an MSVC 19.31.31XXX compiler
2252    // (Visual Studio 2022 17.1) return type deduction bug.
2253    return std::get<I - 1>(Result.Storage);
2254  }
2255
2256  template <typename... Ts>
2257  friend bool operator==(const enumerator_result &Result,
2258                         const std::tuple<std::size_t, Ts...> &Other) {
2259    static_assert(NumRefs == sizeof...(Ts), "Size mismatch");
2260    if (Result.Idx != std::get<0>(Other))
2261      return false;
2262    return Result.is_value_equal(Other, std::make_index_sequence<NumRefs>{});
2263  }
2264
2265private:
2266  template <typename Tuple, std::size_t... Idx>
2267  bool is_value_equal(const Tuple &Other, std::index_sequence<Idx...>) const {
2268    return ((std::get<Idx>(Storage) == std::get<Idx + 1>(Other)) && ...);
2269  }
2270
2271  std::size_t Idx;
2272  // Make this tuple mutable to avoid casts that obfuscate const-correctness
2273  // issues. Const-correctness of references is taken care of by `zippy` that
2274  // defines const-non and const iterator types that will propagate down to
2275  // `enumerator_result`'s `Refs`.
2276  //  Note that unlike the results of `zip*` functions, `enumerate`'s result are
2277  //  supposed to be modifiable even when defined as
2278  // `const`.
2279  mutable range_reference_tuple Storage;
2280};
2281
2282struct index_iterator
2283    : llvm::iterator_facade_base<index_iterator,
2284                                 std::random_access_iterator_tag, std::size_t> {
2285  index_iterator(std::size_t Index) : Index(Index) {}
2286
2287  index_iterator &operator+=(std::ptrdiff_t N) {
2288    Index += N;
2289    return *this;
2290  }
2291
2292  index_iterator &operator-=(std::ptrdiff_t N) {
2293    Index -= N;
2294    return *this;
2295  }
2296
2297  std::ptrdiff_t operator-(const index_iterator &R) const {
2298    return Index - R.Index;
2299  }
2300
2301  // Note: This dereference operator returns a value instead of a reference
2302  // and does not strictly conform to the C++17's definition of forward
2303  // iterator. However, it satisfies all the forward_iterator requirements
2304  // that the `zip_common` depends on and fully conforms to the C++20
2305  // definition of forward iterator.
2306  std::size_t operator*() const { return Index; }
2307
2308  friend bool operator==(const index_iterator &Lhs, const index_iterator &Rhs) {
2309    return Lhs.Index == Rhs.Index;
2310  }
2311
2312  friend bool operator<(const index_iterator &Lhs, const index_iterator &Rhs) {
2313    return Lhs.Index < Rhs.Index;
2314  }
2315
2316private:
2317  std::size_t Index;
2318};
2319
2320/// Infinite stream of increasing 0-based `size_t` indices.
2321struct index_stream {
2322  index_iterator begin() const { return {0}; }
2323  index_iterator end() const {
2324    // We approximate 'infinity' with the max size_t value, which should be good
2325    // enough to index over any container.
2326    return index_iterator{std::numeric_limits<std::size_t>::max()};
2327  }
2328};
2329
2330} // end namespace detail
2331
2332/// Increasing range of `size_t` indices.
2333class index_range {
2334  std::size_t Begin;
2335  std::size_t End;
2336
2337public:
2338  index_range(std::size_t Begin, std::size_t End) : Begin(Begin), End(End) {}
2339  detail::index_iterator begin() const { return {Begin}; }
2340  detail::index_iterator end() const { return {End}; }
2341};
2342
2343/// Given two or more input ranges, returns a new range whose values are are
2344/// tuples (A, B, C, ...), such that A is the 0-based index of the item in the
2345/// sequence, and B, C, ..., are the values from the original input ranges. All
2346/// input ranges are required to have equal lengths. Note that the returned
2347/// iterator allows for the values (B, C, ...) to be modified.  Example:
2348///
2349/// ```c++
2350/// std::vector<char> Letters = {'A', 'B', 'C', 'D'};
2351/// std::vector<int> Vals = {10, 11, 12, 13};
2352///
2353/// for (auto [Index, Letter, Value] : enumerate(Letters, Vals)) {
2354///   printf("Item %zu - %c: %d\n", Index, Letter, Value);
2355///   Value -= 10;
2356/// }
2357/// ```
2358///
2359/// Output:
2360///   Item 0 - A: 10
2361///   Item 1 - B: 11
2362///   Item 2 - C: 12
2363///   Item 3 - D: 13
2364///
2365/// or using an iterator:
2366/// ```c++
2367/// for (auto it : enumerate(Vals)) {
2368///   it.value() += 10;
2369///   printf("Item %zu: %d\n", it.index(), it.value());
2370/// }
2371/// ```
2372///
2373/// Output:
2374///   Item 0: 20
2375///   Item 1: 21
2376///   Item 2: 22
2377///   Item 3: 23
2378///
2379template <typename FirstRange, typename... RestRanges>
2380auto enumerate(FirstRange &&First, RestRanges &&...Rest) {
2381  if constexpr (sizeof...(Rest) != 0) {
2382#ifndef NDEBUG
2383    // Note: Create an array instead of an initializer list to work around an
2384    // Apple clang 14 compiler bug.
2385    size_t sizes[] = {range_size(First), range_size(Rest)...};
2386    assert(all_equal(sizes) && "Ranges have different length");
2387#endif
2388  }
2389  using enumerator = detail::zippy<detail::zip_enumerator, detail::index_stream,
2390                                   FirstRange, RestRanges...>;
2391  return enumerator(detail::index_stream{}, std::forward<FirstRange>(First),
2392                    std::forward<RestRanges>(Rest)...);
2393}
2394
2395namespace detail {
2396
2397template <typename Predicate, typename... Args>
2398bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
2399  auto z = zip(args...);
2400  auto it = z.begin();
2401  auto end = z.end();
2402  while (it != end) {
2403    if (!std::apply([&](auto &&...args) { return P(args...); }, *it))
2404      return false;
2405    ++it;
2406  }
2407  return it.all_equals(end);
2408}
2409
2410// Just an adaptor to switch the order of argument and have the predicate before
2411// the zipped inputs.
2412template <typename... ArgsThenPredicate, size_t... InputIndexes>
2413bool all_of_zip_predicate_last(
2414    std::tuple<ArgsThenPredicate...> argsThenPredicate,
2415    std::index_sequence<InputIndexes...>) {
2416  auto constexpr OutputIndex =
2417      std::tuple_size<decltype(argsThenPredicate)>::value - 1;
2418  return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
2419                             std::get<InputIndexes>(argsThenPredicate)...);
2420}
2421
2422} // end namespace detail
2423
2424/// Compare two zipped ranges using the provided predicate (as last argument).
2425/// Return true if all elements satisfy the predicate and false otherwise.
2426//  Return false if the zipped iterator aren't all at end (size mismatch).
2427template <typename... ArgsAndPredicate>
2428bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
2429  return detail::all_of_zip_predicate_last(
2430      std::forward_as_tuple(argsAndPredicate...),
2431      std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
2432}
2433
2434/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
2435/// time. Not meant for use with random-access iterators.
2436/// Can optionally take a predicate to filter lazily some items.
2437template <typename IterTy,
2438          typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2439bool hasNItems(
2440    IterTy &&Begin, IterTy &&End, unsigned N,
2441    Pred &&ShouldBeCounted =
2442        [](const decltype(*std::declval<IterTy>()) &) { return true; },
2443    std::enable_if_t<
2444        !std::is_base_of<std::random_access_iterator_tag,
2445                         typename std::iterator_traits<std::remove_reference_t<
2446                             decltype(Begin)>>::iterator_category>::value,
2447        void> * = nullptr) {
2448  for (; N; ++Begin) {
2449    if (Begin == End)
2450      return false; // Too few.
2451    N -= ShouldBeCounted(*Begin);
2452  }
2453  for (; Begin != End; ++Begin)
2454    if (ShouldBeCounted(*Begin))
2455      return false; // Too many.
2456  return true;
2457}
2458
2459/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
2460/// time. Not meant for use with random-access iterators.
2461/// Can optionally take a predicate to lazily filter some items.
2462template <typename IterTy,
2463          typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2464bool hasNItemsOrMore(
2465    IterTy &&Begin, IterTy &&End, unsigned N,
2466    Pred &&ShouldBeCounted =
2467        [](const decltype(*std::declval<IterTy>()) &) { return true; },
2468    std::enable_if_t<
2469        !std::is_base_of<std::random_access_iterator_tag,
2470                         typename std::iterator_traits<std::remove_reference_t<
2471                             decltype(Begin)>>::iterator_category>::value,
2472        void> * = nullptr) {
2473  for (; N; ++Begin) {
2474    if (Begin == End)
2475      return false; // Too few.
2476    N -= ShouldBeCounted(*Begin);
2477  }
2478  return true;
2479}
2480
2481/// Returns true if the sequence [Begin, End) has N or less items. Can
2482/// optionally take a predicate to lazily filter some items.
2483template <typename IterTy,
2484          typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2485bool hasNItemsOrLess(
2486    IterTy &&Begin, IterTy &&End, unsigned N,
2487    Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
2488      return true;
2489    }) {
2490  assert(N != std::numeric_limits<unsigned>::max());
2491  return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
2492}
2493
2494/// Returns true if the given container has exactly N items
2495template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
2496  return hasNItems(std::begin(C), std::end(C), N);
2497}
2498
2499/// Returns true if the given container has N or more items
2500template <typename ContainerTy>
2501bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
2502  return hasNItemsOrMore(std::begin(C), std::end(C), N);
2503}
2504
2505/// Returns true if the given container has N or less items
2506template <typename ContainerTy>
2507bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
2508  return hasNItemsOrLess(std::begin(C), std::end(C), N);
2509}
2510
2511/// Returns a raw pointer that represents the same address as the argument.
2512///
2513/// This implementation can be removed once we move to C++20 where it's defined
2514/// as std::to_address().
2515///
2516/// The std::pointer_traits<>::to_address(p) variations of these overloads has
2517/// not been implemented.
2518template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
2519template <class T> constexpr T *to_address(T *P) { return P; }
2520
2521// Detect incomplete types, relying on the fact that their size is unknown.
2522namespace detail {
2523template <typename T> using has_sizeof = decltype(sizeof(T));
2524} // namespace detail
2525
2526/// Detects when type `T` is incomplete. This is true for forward declarations
2527/// and false for types with a full definition.
2528template <typename T>
2529constexpr bool is_incomplete_v = !is_detected<detail::has_sizeof, T>::value;
2530
2531} // end namespace llvm
2532
2533namespace std {
2534template <typename... Refs>
2535struct tuple_size<llvm::detail::enumerator_result<Refs...>>
2536    : std::integral_constant<std::size_t, sizeof...(Refs)> {};
2537
2538template <std::size_t I, typename... Refs>
2539struct tuple_element<I, llvm::detail::enumerator_result<Refs...>>
2540    : std::tuple_element<I, std::tuple<Refs...>> {};
2541
2542template <std::size_t I, typename... Refs>
2543struct tuple_element<I, const llvm::detail::enumerator_result<Refs...>>
2544    : std::tuple_element<I, std::tuple<Refs...>> {};
2545
2546} // namespace std
2547
2548#endif // LLVM_ADT_STLEXTRAS_H
2549