1203053Sdelphij//===- SyntheticSections.cpp ----------------------------------------------===//
2203053Sdelphij//
3203053Sdelphij// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4203053Sdelphij// See https://llvm.org/LICENSE.txt for license information.
5203053Sdelphij// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6203053Sdelphij//
7203053Sdelphij//===----------------------------------------------------------------------===//
8203053Sdelphij//
9203053Sdelphij// This file contains linker-synthesized sections. Currently,
10203053Sdelphij// synthetic sections are created either output sections or input sections,
11203053Sdelphij// but we are rewriting code so that all synthetic sections are created as
12203053Sdelphij// input sections.
13203053Sdelphij//
14203053Sdelphij//===----------------------------------------------------------------------===//
15203053Sdelphij
16203053Sdelphij#include "SyntheticSections.h"
17203053Sdelphij#include "Config.h"
18203053Sdelphij#include "DWARF.h"
19203053Sdelphij#include "EhFrame.h"
20203053Sdelphij#include "InputFiles.h"
21203053Sdelphij#include "LinkerScript.h"
22203053Sdelphij#include "OutputSections.h"
23203053Sdelphij#include "SymbolTable.h"
24203053Sdelphij#include "Symbols.h"
25203053Sdelphij#include "Target.h"
26203053Sdelphij#include "Thunks.h"
27203053Sdelphij#include "Writer.h"
28203053Sdelphij#include "lld/Common/CommonLinkerContext.h"
29203684Sgavin#include "lld/Common/DWARF.h"
30203684Sgavin#include "lld/Common/Strings.h"
31203053Sdelphij#include "lld/Common/Version.h"
32203053Sdelphij#include "llvm/ADT/STLExtras.h"
33203053Sdelphij#include "llvm/ADT/SetOperations.h"
34203053Sdelphij#include "llvm/ADT/StringExtras.h"
35203053Sdelphij#include "llvm/BinaryFormat/Dwarf.h"
36203053Sdelphij#include "llvm/BinaryFormat/ELF.h"
37203053Sdelphij#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
38203053Sdelphij#include "llvm/Support/Endian.h"
39203053Sdelphij#include "llvm/Support/LEB128.h"
40203053Sdelphij#include "llvm/Support/Parallel.h"
41203053Sdelphij#include "llvm/Support/TimeProfiler.h"
42203053Sdelphij#include <cstdlib>
43203053Sdelphij
44203053Sdelphijusing namespace llvm;
45203053Sdelphijusing namespace llvm::dwarf;
46203053Sdelphijusing namespace llvm::ELF;
47203053Sdelphijusing namespace llvm::object;
48203053Sdelphijusing namespace llvm::support;
49203053Sdelphijusing namespace lld;
50203053Sdelphijusing namespace lld::elf;
51203053Sdelphij
52203053Sdelphijusing llvm::support::endian::read32le;
53203053Sdelphijusing llvm::support::endian::write32le;
54203053Sdelphijusing llvm::support::endian::write64le;
55203053Sdelphij
56203053Sdelphijconstexpr size_t MergeNoTailSection::numShards;
57203053Sdelphij
58203053Sdelphijstatic uint64_t readUint(uint8_t *buf) {
59203053Sdelphij  return config->is64 ? read64(buf) : read32(buf);
60203053Sdelphij}
61203053Sdelphij
62203053Sdelphijstatic void writeUint(uint8_t *buf, uint64_t val) {
63203053Sdelphij  if (config->is64)
64203053Sdelphij    write64(buf, val);
65203053Sdelphij  else
66203053Sdelphij    write32(buf, val);
67203053Sdelphij}
68203053Sdelphij
69203053Sdelphij// Returns an LLD version string.
70203053Sdelphijstatic ArrayRef<uint8_t> getVersion() {
71203053Sdelphij  // Check LLD_VERSION first for ease of testing.
72203053Sdelphij  // You can get consistent output by using the environment variable.
73203053Sdelphij  // This is only for testing.
74203053Sdelphij  StringRef s = getenv("LLD_VERSION");
75203053Sdelphij  if (s.empty())
76203053Sdelphij    s = saver().save(Twine("Linker: ") + getLLDVersion());
77203053Sdelphij
78203053Sdelphij  // +1 to include the terminating '\0'.
79203053Sdelphij  return {(const uint8_t *)s.data(), s.size() + 1};
80203053Sdelphij}
81203053Sdelphij
82203053Sdelphij// Creates a .comment section containing LLD version info.
83203053Sdelphij// With this feature, you can identify LLD-generated binaries easily
84203053Sdelphij// by "readelf --string-dump .comment <file>".
85203053Sdelphij// The returned object is a mergeable string section.
86203053SdelphijMergeInputSection *elf::createCommentSection() {
87203053Sdelphij  auto *sec = make<MergeInputSection>(SHF_MERGE | SHF_STRINGS, SHT_PROGBITS, 1,
88203053Sdelphij                                      getVersion(), ".comment");
89203053Sdelphij  sec->splitIntoPieces();
90203053Sdelphij  return sec;
91203053Sdelphij}
92203053Sdelphij
93203053Sdelphij// .MIPS.abiflags section.
94template <class ELFT>
95MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Elf_Mips_ABIFlags flags)
96    : SyntheticSection(SHF_ALLOC, SHT_MIPS_ABIFLAGS, 8, ".MIPS.abiflags"),
97      flags(flags) {
98  this->entsize = sizeof(Elf_Mips_ABIFlags);
99}
100
101template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
102  memcpy(buf, &flags, sizeof(flags));
103}
104
105template <class ELFT>
106std::unique_ptr<MipsAbiFlagsSection<ELFT>> MipsAbiFlagsSection<ELFT>::create() {
107  Elf_Mips_ABIFlags flags = {};
108  bool create = false;
109
110  for (InputSectionBase *sec : ctx.inputSections) {
111    if (sec->type != SHT_MIPS_ABIFLAGS)
112      continue;
113    sec->markDead();
114    create = true;
115
116    std::string filename = toString(sec->file);
117    const size_t size = sec->content().size();
118    // Older version of BFD (such as the default FreeBSD linker) concatenate
119    // .MIPS.abiflags instead of merging. To allow for this case (or potential
120    // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
121    if (size < sizeof(Elf_Mips_ABIFlags)) {
122      error(filename + ": invalid size of .MIPS.abiflags section: got " +
123            Twine(size) + " instead of " + Twine(sizeof(Elf_Mips_ABIFlags)));
124      return nullptr;
125    }
126    auto *s =
127        reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data());
128    if (s->version != 0) {
129      error(filename + ": unexpected .MIPS.abiflags version " +
130            Twine(s->version));
131      return nullptr;
132    }
133
134    // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
135    // select the highest number of ISA/Rev/Ext.
136    flags.isa_level = std::max(flags.isa_level, s->isa_level);
137    flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
138    flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
139    flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
140    flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
141    flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
142    flags.ases |= s->ases;
143    flags.flags1 |= s->flags1;
144    flags.flags2 |= s->flags2;
145    flags.fp_abi = elf::getMipsFpAbiFlag(flags.fp_abi, s->fp_abi, filename);
146  };
147
148  if (create)
149    return std::make_unique<MipsAbiFlagsSection<ELFT>>(flags);
150  return nullptr;
151}
152
153// .MIPS.options section.
154template <class ELFT>
155MipsOptionsSection<ELFT>::MipsOptionsSection(Elf_Mips_RegInfo reginfo)
156    : SyntheticSection(SHF_ALLOC, SHT_MIPS_OPTIONS, 8, ".MIPS.options"),
157      reginfo(reginfo) {
158  this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
159}
160
161template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
162  auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
163  options->kind = ODK_REGINFO;
164  options->size = getSize();
165
166  if (!config->relocatable)
167    reginfo.ri_gp_value = in.mipsGot->getGp();
168  memcpy(buf + sizeof(Elf_Mips_Options), &reginfo, sizeof(reginfo));
169}
170
171template <class ELFT>
172std::unique_ptr<MipsOptionsSection<ELFT>> MipsOptionsSection<ELFT>::create() {
173  // N64 ABI only.
174  if (!ELFT::Is64Bits)
175    return nullptr;
176
177  SmallVector<InputSectionBase *, 0> sections;
178  for (InputSectionBase *sec : ctx.inputSections)
179    if (sec->type == SHT_MIPS_OPTIONS)
180      sections.push_back(sec);
181
182  if (sections.empty())
183    return nullptr;
184
185  Elf_Mips_RegInfo reginfo = {};
186  for (InputSectionBase *sec : sections) {
187    sec->markDead();
188
189    std::string filename = toString(sec->file);
190    ArrayRef<uint8_t> d = sec->content();
191
192    while (!d.empty()) {
193      if (d.size() < sizeof(Elf_Mips_Options)) {
194        error(filename + ": invalid size of .MIPS.options section");
195        break;
196      }
197
198      auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
199      if (opt->kind == ODK_REGINFO) {
200        reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
201        sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
202        break;
203      }
204
205      if (!opt->size)
206        fatal(filename + ": zero option descriptor size");
207      d = d.slice(opt->size);
208    }
209  };
210
211  return std::make_unique<MipsOptionsSection<ELFT>>(reginfo);
212}
213
214// MIPS .reginfo section.
215template <class ELFT>
216MipsReginfoSection<ELFT>::MipsReginfoSection(Elf_Mips_RegInfo reginfo)
217    : SyntheticSection(SHF_ALLOC, SHT_MIPS_REGINFO, 4, ".reginfo"),
218      reginfo(reginfo) {
219  this->entsize = sizeof(Elf_Mips_RegInfo);
220}
221
222template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
223  if (!config->relocatable)
224    reginfo.ri_gp_value = in.mipsGot->getGp();
225  memcpy(buf, &reginfo, sizeof(reginfo));
226}
227
228template <class ELFT>
229std::unique_ptr<MipsReginfoSection<ELFT>> MipsReginfoSection<ELFT>::create() {
230  // Section should be alive for O32 and N32 ABIs only.
231  if (ELFT::Is64Bits)
232    return nullptr;
233
234  SmallVector<InputSectionBase *, 0> sections;
235  for (InputSectionBase *sec : ctx.inputSections)
236    if (sec->type == SHT_MIPS_REGINFO)
237      sections.push_back(sec);
238
239  if (sections.empty())
240    return nullptr;
241
242  Elf_Mips_RegInfo reginfo = {};
243  for (InputSectionBase *sec : sections) {
244    sec->markDead();
245
246    if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) {
247      error(toString(sec->file) + ": invalid size of .reginfo section");
248      return nullptr;
249    }
250
251    auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data());
252    reginfo.ri_gprmask |= r->ri_gprmask;
253    sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
254  };
255
256  return std::make_unique<MipsReginfoSection<ELFT>>(reginfo);
257}
258
259InputSection *elf::createInterpSection() {
260  // StringSaver guarantees that the returned string ends with '\0'.
261  StringRef s = saver().save(config->dynamicLinker);
262  ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
263
264  return make<InputSection>(ctx.internalFile, SHF_ALLOC, SHT_PROGBITS, 1,
265                            contents, ".interp");
266}
267
268Defined *elf::addSyntheticLocal(StringRef name, uint8_t type, uint64_t value,
269                                uint64_t size, InputSectionBase &section) {
270  Defined *s = makeDefined(section.file, name, STB_LOCAL, STV_DEFAULT, type,
271                           value, size, &section);
272  if (in.symTab)
273    in.symTab->addSymbol(s);
274
275  if (config->emachine == EM_ARM && !config->isLE && config->armBe8 &&
276      (section.flags & SHF_EXECINSTR))
277    // Adding Linker generated mapping symbols to the arm specific mapping
278    // symbols list.
279    addArmSyntheticSectionMappingSymbol(s);
280
281  return s;
282}
283
284static size_t getHashSize() {
285  switch (config->buildId) {
286  case BuildIdKind::Fast:
287    return 8;
288  case BuildIdKind::Md5:
289  case BuildIdKind::Uuid:
290    return 16;
291  case BuildIdKind::Sha1:
292    return 20;
293  case BuildIdKind::Hexstring:
294    return config->buildIdVector.size();
295  default:
296    llvm_unreachable("unknown BuildIdKind");
297  }
298}
299
300// This class represents a linker-synthesized .note.gnu.property section.
301//
302// In x86 and AArch64, object files may contain feature flags indicating the
303// features that they have used. The flags are stored in a .note.gnu.property
304// section.
305//
306// lld reads the sections from input files and merges them by computing AND of
307// the flags. The result is written as a new .note.gnu.property section.
308//
309// If the flag is zero (which indicates that the intersection of the feature
310// sets is empty, or some input files didn't have .note.gnu.property sections),
311// we don't create this section.
312GnuPropertySection::GnuPropertySection()
313    : SyntheticSection(llvm::ELF::SHF_ALLOC, llvm::ELF::SHT_NOTE,
314                       config->wordsize, ".note.gnu.property") {}
315
316void GnuPropertySection::writeTo(uint8_t *buf) {
317  uint32_t featureAndType = config->emachine == EM_AARCH64
318                                ? GNU_PROPERTY_AARCH64_FEATURE_1_AND
319                                : GNU_PROPERTY_X86_FEATURE_1_AND;
320
321  write32(buf, 4);                                   // Name size
322  write32(buf + 4, config->is64 ? 16 : 12);          // Content size
323  write32(buf + 8, NT_GNU_PROPERTY_TYPE_0);          // Type
324  memcpy(buf + 12, "GNU", 4);                        // Name string
325  write32(buf + 16, featureAndType);                 // Feature type
326  write32(buf + 20, 4);                              // Feature size
327  write32(buf + 24, config->andFeatures);            // Feature flags
328  if (config->is64)
329    write32(buf + 28, 0); // Padding
330}
331
332size_t GnuPropertySection::getSize() const { return config->is64 ? 32 : 28; }
333
334BuildIdSection::BuildIdSection()
335    : SyntheticSection(SHF_ALLOC, SHT_NOTE, 4, ".note.gnu.build-id"),
336      hashSize(getHashSize()) {}
337
338void BuildIdSection::writeTo(uint8_t *buf) {
339  write32(buf, 4);                      // Name size
340  write32(buf + 4, hashSize);           // Content size
341  write32(buf + 8, NT_GNU_BUILD_ID);    // Type
342  memcpy(buf + 12, "GNU", 4);           // Name string
343  hashBuf = buf + 16;
344}
345
346void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
347  assert(buf.size() == hashSize);
348  memcpy(hashBuf, buf.data(), hashSize);
349}
350
351BssSection::BssSection(StringRef name, uint64_t size, uint32_t alignment)
352    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, alignment, name) {
353  this->bss = true;
354  this->size = size;
355}
356
357EhFrameSection::EhFrameSection()
358    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 1, ".eh_frame") {}
359
360// Search for an existing CIE record or create a new one.
361// CIE records from input object files are uniquified by their contents
362// and where their relocations point to.
363template <class ELFT, class RelTy>
364CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
365  Symbol *personality = nullptr;
366  unsigned firstRelI = cie.firstRelocation;
367  if (firstRelI != (unsigned)-1)
368    personality =
369        &cie.sec->template getFile<ELFT>()->getRelocTargetSym(rels[firstRelI]);
370
371  // Search for an existing CIE by CIE contents/relocation target pair.
372  CieRecord *&rec = cieMap[{cie.data(), personality}];
373
374  // If not found, create a new one.
375  if (!rec) {
376    rec = make<CieRecord>();
377    rec->cie = &cie;
378    cieRecords.push_back(rec);
379  }
380  return rec;
381}
382
383// There is one FDE per function. Returns a non-null pointer to the function
384// symbol if the given FDE points to a live function.
385template <class ELFT, class RelTy>
386Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
387  auto *sec = cast<EhInputSection>(fde.sec);
388  unsigned firstRelI = fde.firstRelocation;
389
390  // An FDE should point to some function because FDEs are to describe
391  // functions. That's however not always the case due to an issue of
392  // ld.gold with -r. ld.gold may discard only functions and leave their
393  // corresponding FDEs, which results in creating bad .eh_frame sections.
394  // To deal with that, we ignore such FDEs.
395  if (firstRelI == (unsigned)-1)
396    return nullptr;
397
398  const RelTy &rel = rels[firstRelI];
399  Symbol &b = sec->template getFile<ELFT>()->getRelocTargetSym(rel);
400
401  // FDEs for garbage-collected or merged-by-ICF sections, or sections in
402  // another partition, are dead.
403  if (auto *d = dyn_cast<Defined>(&b))
404    if (!d->folded && d->section && d->section->partition == partition)
405      return d;
406  return nullptr;
407}
408
409// .eh_frame is a sequence of CIE or FDE records. In general, there
410// is one CIE record per input object file which is followed by
411// a list of FDEs. This function searches an existing CIE or create a new
412// one and associates FDEs to the CIE.
413template <class ELFT, class RelTy>
414void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
415  offsetToCie.clear();
416  for (EhSectionPiece &cie : sec->cies)
417    offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels);
418  for (EhSectionPiece &fde : sec->fdes) {
419    uint32_t id = endian::read32<ELFT::TargetEndianness>(fde.data().data() + 4);
420    CieRecord *rec = offsetToCie[fde.inputOff + 4 - id];
421    if (!rec)
422      fatal(toString(sec) + ": invalid CIE reference");
423
424    if (!isFdeLive<ELFT>(fde, rels))
425      continue;
426    rec->fdes.push_back(&fde);
427    numFdes++;
428  }
429}
430
431template <class ELFT>
432void EhFrameSection::addSectionAux(EhInputSection *sec) {
433  if (!sec->isLive())
434    return;
435  const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
436  if (rels.areRelocsRel())
437    addRecords<ELFT>(sec, rels.rels);
438  else
439    addRecords<ELFT>(sec, rels.relas);
440}
441
442// Used by ICF<ELFT>::handleLSDA(). This function is very similar to
443// EhFrameSection::addRecords().
444template <class ELFT, class RelTy>
445void EhFrameSection::iterateFDEWithLSDAAux(
446    EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA,
447    llvm::function_ref<void(InputSection &)> fn) {
448  for (EhSectionPiece &cie : sec.cies)
449    if (hasLSDA(cie))
450      ciesWithLSDA.insert(cie.inputOff);
451  for (EhSectionPiece &fde : sec.fdes) {
452    uint32_t id = endian::read32<ELFT::TargetEndianness>(fde.data().data() + 4);
453    if (!ciesWithLSDA.contains(fde.inputOff + 4 - id))
454      continue;
455
456    // The CIE has a LSDA argument. Call fn with d's section.
457    if (Defined *d = isFdeLive<ELFT>(fde, rels))
458      if (auto *s = dyn_cast_or_null<InputSection>(d->section))
459        fn(*s);
460  }
461}
462
463template <class ELFT>
464void EhFrameSection::iterateFDEWithLSDA(
465    llvm::function_ref<void(InputSection &)> fn) {
466  DenseSet<size_t> ciesWithLSDA;
467  for (EhInputSection *sec : sections) {
468    ciesWithLSDA.clear();
469    const RelsOrRelas<ELFT> rels = sec->template relsOrRelas<ELFT>();
470    if (rels.areRelocsRel())
471      iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn);
472    else
473      iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn);
474  }
475}
476
477static void writeCieFde(uint8_t *buf, ArrayRef<uint8_t> d) {
478  memcpy(buf, d.data(), d.size());
479  // Fix the size field. -4 since size does not include the size field itself.
480  write32(buf, d.size() - 4);
481}
482
483void EhFrameSection::finalizeContents() {
484  assert(!this->size); // Not finalized.
485
486  switch (config->ekind) {
487  case ELFNoneKind:
488    llvm_unreachable("invalid ekind");
489  case ELF32LEKind:
490    for (EhInputSection *sec : sections)
491      addSectionAux<ELF32LE>(sec);
492    break;
493  case ELF32BEKind:
494    for (EhInputSection *sec : sections)
495      addSectionAux<ELF32BE>(sec);
496    break;
497  case ELF64LEKind:
498    for (EhInputSection *sec : sections)
499      addSectionAux<ELF64LE>(sec);
500    break;
501  case ELF64BEKind:
502    for (EhInputSection *sec : sections)
503      addSectionAux<ELF64BE>(sec);
504    break;
505  }
506
507  size_t off = 0;
508  for (CieRecord *rec : cieRecords) {
509    rec->cie->outputOff = off;
510    off += rec->cie->size;
511
512    for (EhSectionPiece *fde : rec->fdes) {
513      fde->outputOff = off;
514      off += fde->size;
515    }
516  }
517
518  // The LSB standard does not allow a .eh_frame section with zero
519  // Call Frame Information records. glibc unwind-dw2-fde.c
520  // classify_object_over_fdes expects there is a CIE record length 0 as a
521  // terminator. Thus we add one unconditionally.
522  off += 4;
523
524  this->size = off;
525}
526
527// Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
528// to get an FDE from an address to which FDE is applied. This function
529// returns a list of such pairs.
530SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const {
531  uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
532  SmallVector<FdeData, 0> ret;
533
534  uint64_t va = getPartition().ehFrameHdr->getVA();
535  for (CieRecord *rec : cieRecords) {
536    uint8_t enc = getFdeEncoding(rec->cie);
537    for (EhSectionPiece *fde : rec->fdes) {
538      uint64_t pc = getFdePc(buf, fde->outputOff, enc);
539      uint64_t fdeVA = getParent()->addr + fde->outputOff;
540      if (!isInt<32>(pc - va))
541        fatal(toString(fde->sec) + ": PC offset is too large: 0x" +
542              Twine::utohexstr(pc - va));
543      ret.push_back({uint32_t(pc - va), uint32_t(fdeVA - va)});
544    }
545  }
546
547  // Sort the FDE list by their PC and uniqueify. Usually there is only
548  // one FDE for a PC (i.e. function), but if ICF merges two functions
549  // into one, there can be more than one FDEs pointing to the address.
550  auto less = [](const FdeData &a, const FdeData &b) {
551    return a.pcRel < b.pcRel;
552  };
553  llvm::stable_sort(ret, less);
554  auto eq = [](const FdeData &a, const FdeData &b) {
555    return a.pcRel == b.pcRel;
556  };
557  ret.erase(std::unique(ret.begin(), ret.end(), eq), ret.end());
558
559  return ret;
560}
561
562static uint64_t readFdeAddr(uint8_t *buf, int size) {
563  switch (size) {
564  case DW_EH_PE_udata2:
565    return read16(buf);
566  case DW_EH_PE_sdata2:
567    return (int16_t)read16(buf);
568  case DW_EH_PE_udata4:
569    return read32(buf);
570  case DW_EH_PE_sdata4:
571    return (int32_t)read32(buf);
572  case DW_EH_PE_udata8:
573  case DW_EH_PE_sdata8:
574    return read64(buf);
575  case DW_EH_PE_absptr:
576    return readUint(buf);
577  }
578  fatal("unknown FDE size encoding");
579}
580
581// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
582// We need it to create .eh_frame_hdr section.
583uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
584                                  uint8_t enc) const {
585  // The starting address to which this FDE applies is
586  // stored at FDE + 8 byte. And this offset is within
587  // the .eh_frame section.
588  size_t off = fdeOff + 8;
589  uint64_t addr = readFdeAddr(buf + off, enc & 0xf);
590  if ((enc & 0x70) == DW_EH_PE_absptr)
591    return addr;
592  if ((enc & 0x70) == DW_EH_PE_pcrel)
593    return addr + getParent()->addr + off + outSecOff;
594  fatal("unknown FDE size relative encoding");
595}
596
597void EhFrameSection::writeTo(uint8_t *buf) {
598  // Write CIE and FDE records.
599  for (CieRecord *rec : cieRecords) {
600    size_t cieOffset = rec->cie->outputOff;
601    writeCieFde(buf + cieOffset, rec->cie->data());
602
603    for (EhSectionPiece *fde : rec->fdes) {
604      size_t off = fde->outputOff;
605      writeCieFde(buf + off, fde->data());
606
607      // FDE's second word should have the offset to an associated CIE.
608      // Write it.
609      write32(buf + off + 4, off + 4 - cieOffset);
610    }
611  }
612
613  // Apply relocations. .eh_frame section contents are not contiguous
614  // in the output buffer, but relocateAlloc() still works because
615  // getOffset() takes care of discontiguous section pieces.
616  for (EhInputSection *s : sections)
617    target->relocateAlloc(*s, buf);
618
619  if (getPartition().ehFrameHdr && getPartition().ehFrameHdr->getParent())
620    getPartition().ehFrameHdr->write();
621}
622
623GotSection::GotSection()
624    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS,
625                       target->gotEntrySize, ".got") {
626  numEntries = target->gotHeaderEntriesNum;
627}
628
629void GotSection::addConstant(const Relocation &r) { relocations.push_back(r); }
630void GotSection::addEntry(Symbol &sym) {
631  assert(sym.auxIdx == symAux.size() - 1);
632  symAux.back().gotIdx = numEntries++;
633}
634
635bool GotSection::addTlsDescEntry(Symbol &sym) {
636  assert(sym.auxIdx == symAux.size() - 1);
637  symAux.back().tlsDescIdx = numEntries;
638  numEntries += 2;
639  return true;
640}
641
642bool GotSection::addDynTlsEntry(Symbol &sym) {
643  assert(sym.auxIdx == symAux.size() - 1);
644  symAux.back().tlsGdIdx = numEntries;
645  // Global Dynamic TLS entries take two GOT slots.
646  numEntries += 2;
647  return true;
648}
649
650// Reserves TLS entries for a TLS module ID and a TLS block offset.
651// In total it takes two GOT slots.
652bool GotSection::addTlsIndex() {
653  if (tlsIndexOff != uint32_t(-1))
654    return false;
655  tlsIndexOff = numEntries * config->wordsize;
656  numEntries += 2;
657  return true;
658}
659
660uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const {
661  return sym.getTlsDescIdx() * config->wordsize;
662}
663
664uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const {
665  return getVA() + getTlsDescOffset(sym);
666}
667
668uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
669  return this->getVA() + b.getTlsGdIdx() * config->wordsize;
670}
671
672uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
673  return b.getTlsGdIdx() * config->wordsize;
674}
675
676void GotSection::finalizeContents() {
677  if (config->emachine == EM_PPC64 &&
678      numEntries <= target->gotHeaderEntriesNum && !ElfSym::globalOffsetTable)
679    size = 0;
680  else
681    size = numEntries * config->wordsize;
682}
683
684bool GotSection::isNeeded() const {
685  // Needed if the GOT symbol is used or the number of entries is more than just
686  // the header. A GOT with just the header may not be needed.
687  return hasGotOffRel || numEntries > target->gotHeaderEntriesNum;
688}
689
690void GotSection::writeTo(uint8_t *buf) {
691  // On PPC64 .got may be needed but empty. Skip the write.
692  if (size == 0)
693    return;
694  target->writeGotHeader(buf);
695  target->relocateAlloc(*this, buf);
696}
697
698static uint64_t getMipsPageAddr(uint64_t addr) {
699  return (addr + 0x8000) & ~0xffff;
700}
701
702static uint64_t getMipsPageCount(uint64_t size) {
703  return (size + 0xfffe) / 0xffff + 1;
704}
705
706MipsGotSection::MipsGotSection()
707    : SyntheticSection(SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, SHT_PROGBITS, 16,
708                       ".got") {}
709
710void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
711                              RelExpr expr) {
712  FileGot &g = getGot(file);
713  if (expr == R_MIPS_GOT_LOCAL_PAGE) {
714    if (const OutputSection *os = sym.getOutputSection())
715      g.pagesMap.insert({os, {}});
716    else
717      g.local16.insert({{nullptr, getMipsPageAddr(sym.getVA(addend))}, 0});
718  } else if (sym.isTls())
719    g.tls.insert({&sym, 0});
720  else if (sym.isPreemptible && expr == R_ABS)
721    g.relocs.insert({&sym, 0});
722  else if (sym.isPreemptible)
723    g.global.insert({&sym, 0});
724  else if (expr == R_MIPS_GOT_OFF32)
725    g.local32.insert({{&sym, addend}, 0});
726  else
727    g.local16.insert({{&sym, addend}, 0});
728}
729
730void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
731  getGot(file).dynTlsSymbols.insert({&sym, 0});
732}
733
734void MipsGotSection::addTlsIndex(InputFile &file) {
735  getGot(file).dynTlsSymbols.insert({nullptr, 0});
736}
737
738size_t MipsGotSection::FileGot::getEntriesNum() const {
739  return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
740         tls.size() + dynTlsSymbols.size() * 2;
741}
742
743size_t MipsGotSection::FileGot::getPageEntriesNum() const {
744  size_t num = 0;
745  for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
746    num += p.second.count;
747  return num;
748}
749
750size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
751  size_t count = getPageEntriesNum() + local16.size() + global.size();
752  // If there are relocation-only entries in the GOT, TLS entries
753  // are allocated after them. TLS entries should be addressable
754  // by 16-bit index so count both reloc-only and TLS entries.
755  if (!tls.empty() || !dynTlsSymbols.empty())
756    count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
757  return count;
758}
759
760MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
761  if (f.mipsGotIndex == uint32_t(-1)) {
762    gots.emplace_back();
763    gots.back().file = &f;
764    f.mipsGotIndex = gots.size() - 1;
765  }
766  return gots[f.mipsGotIndex];
767}
768
769uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
770                                            const Symbol &sym,
771                                            int64_t addend) const {
772  const FileGot &g = gots[f->mipsGotIndex];
773  uint64_t index = 0;
774  if (const OutputSection *outSec = sym.getOutputSection()) {
775    uint64_t secAddr = getMipsPageAddr(outSec->addr);
776    uint64_t symAddr = getMipsPageAddr(sym.getVA(addend));
777    index = g.pagesMap.lookup(outSec).firstIndex + (symAddr - secAddr) / 0xffff;
778  } else {
779    index = g.local16.lookup({nullptr, getMipsPageAddr(sym.getVA(addend))});
780  }
781  return index * config->wordsize;
782}
783
784uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
785                                           int64_t addend) const {
786  const FileGot &g = gots[f->mipsGotIndex];
787  Symbol *sym = const_cast<Symbol *>(&s);
788  if (sym->isTls())
789    return g.tls.lookup(sym) * config->wordsize;
790  if (sym->isPreemptible)
791    return g.global.lookup(sym) * config->wordsize;
792  return g.local16.lookup({sym, addend}) * config->wordsize;
793}
794
795uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
796  const FileGot &g = gots[f->mipsGotIndex];
797  return g.dynTlsSymbols.lookup(nullptr) * config->wordsize;
798}
799
800uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
801                                            const Symbol &s) const {
802  const FileGot &g = gots[f->mipsGotIndex];
803  Symbol *sym = const_cast<Symbol *>(&s);
804  return g.dynTlsSymbols.lookup(sym) * config->wordsize;
805}
806
807const Symbol *MipsGotSection::getFirstGlobalEntry() const {
808  if (gots.empty())
809    return nullptr;
810  const FileGot &primGot = gots.front();
811  if (!primGot.global.empty())
812    return primGot.global.front().first;
813  if (!primGot.relocs.empty())
814    return primGot.relocs.front().first;
815  return nullptr;
816}
817
818unsigned MipsGotSection::getLocalEntriesNum() const {
819  if (gots.empty())
820    return headerEntriesNum;
821  return headerEntriesNum + gots.front().getPageEntriesNum() +
822         gots.front().local16.size();
823}
824
825bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
826  FileGot tmp = dst;
827  set_union(tmp.pagesMap, src.pagesMap);
828  set_union(tmp.local16, src.local16);
829  set_union(tmp.global, src.global);
830  set_union(tmp.relocs, src.relocs);
831  set_union(tmp.tls, src.tls);
832  set_union(tmp.dynTlsSymbols, src.dynTlsSymbols);
833
834  size_t count = isPrimary ? headerEntriesNum : 0;
835  count += tmp.getIndexedEntriesNum();
836
837  if (count * config->wordsize > config->mipsGotSize)
838    return false;
839
840  std::swap(tmp, dst);
841  return true;
842}
843
844void MipsGotSection::finalizeContents() { updateAllocSize(); }
845
846bool MipsGotSection::updateAllocSize() {
847  size = headerEntriesNum * config->wordsize;
848  for (const FileGot &g : gots)
849    size += g.getEntriesNum() * config->wordsize;
850  return false;
851}
852
853void MipsGotSection::build() {
854  if (gots.empty())
855    return;
856
857  std::vector<FileGot> mergedGots(1);
858
859  // For each GOT move non-preemptible symbols from the `Global`
860  // to `Local16` list. Preemptible symbol might become non-preemptible
861  // one if, for example, it gets a related copy relocation.
862  for (FileGot &got : gots) {
863    for (auto &p: got.global)
864      if (!p.first->isPreemptible)
865        got.local16.insert({{p.first, 0}, 0});
866    got.global.remove_if([&](const std::pair<Symbol *, size_t> &p) {
867      return !p.first->isPreemptible;
868    });
869  }
870
871  // For each GOT remove "reloc-only" entry if there is "global"
872  // entry for the same symbol. And add local entries which indexed
873  // using 32-bit value at the end of 16-bit entries.
874  for (FileGot &got : gots) {
875    got.relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
876      return got.global.count(p.first);
877    });
878    set_union(got.local16, got.local32);
879    got.local32.clear();
880  }
881
882  // Evaluate number of "reloc-only" entries in the resulting GOT.
883  // To do that put all unique "reloc-only" and "global" entries
884  // from all GOTs to the future primary GOT.
885  FileGot *primGot = &mergedGots.front();
886  for (FileGot &got : gots) {
887    set_union(primGot->relocs, got.global);
888    set_union(primGot->relocs, got.relocs);
889    got.relocs.clear();
890  }
891
892  // Evaluate number of "page" entries in each GOT.
893  for (FileGot &got : gots) {
894    for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
895         got.pagesMap) {
896      const OutputSection *os = p.first;
897      uint64_t secSize = 0;
898      for (SectionCommand *cmd : os->commands) {
899        if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
900          for (InputSection *isec : isd->sections) {
901            uint64_t off = alignToPowerOf2(secSize, isec->addralign);
902            secSize = off + isec->getSize();
903          }
904      }
905      p.second.count = getMipsPageCount(secSize);
906    }
907  }
908
909  // Merge GOTs. Try to join as much as possible GOTs but do not exceed
910  // maximum GOT size. At first, try to fill the primary GOT because
911  // the primary GOT can be accessed in the most effective way. If it
912  // is not possible, try to fill the last GOT in the list, and finally
913  // create a new GOT if both attempts failed.
914  for (FileGot &srcGot : gots) {
915    InputFile *file = srcGot.file;
916    if (tryMergeGots(mergedGots.front(), srcGot, true)) {
917      file->mipsGotIndex = 0;
918    } else {
919      // If this is the first time we failed to merge with the primary GOT,
920      // MergedGots.back() will also be the primary GOT. We must make sure not
921      // to try to merge again with isPrimary=false, as otherwise, if the
922      // inputs are just right, we could allow the primary GOT to become 1 or 2
923      // words bigger due to ignoring the header size.
924      if (mergedGots.size() == 1 ||
925          !tryMergeGots(mergedGots.back(), srcGot, false)) {
926        mergedGots.emplace_back();
927        std::swap(mergedGots.back(), srcGot);
928      }
929      file->mipsGotIndex = mergedGots.size() - 1;
930    }
931  }
932  std::swap(gots, mergedGots);
933
934  // Reduce number of "reloc-only" entries in the primary GOT
935  // by subtracting "global" entries in the primary GOT.
936  primGot = &gots.front();
937  primGot->relocs.remove_if([&](const std::pair<Symbol *, size_t> &p) {
938    return primGot->global.count(p.first);
939  });
940
941  // Calculate indexes for each GOT entry.
942  size_t index = headerEntriesNum;
943  for (FileGot &got : gots) {
944    got.startIndex = &got == primGot ? 0 : index;
945    for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
946         got.pagesMap) {
947      // For each output section referenced by GOT page relocations calculate
948      // and save into pagesMap an upper bound of MIPS GOT entries required
949      // to store page addresses of local symbols. We assume the worst case -
950      // each 64kb page of the output section has at least one GOT relocation
951      // against it. And take in account the case when the section intersects
952      // page boundaries.
953      p.second.firstIndex = index;
954      index += p.second.count;
955    }
956    for (auto &p: got.local16)
957      p.second = index++;
958    for (auto &p: got.global)
959      p.second = index++;
960    for (auto &p: got.relocs)
961      p.second = index++;
962    for (auto &p: got.tls)
963      p.second = index++;
964    for (auto &p: got.dynTlsSymbols) {
965      p.second = index;
966      index += 2;
967    }
968  }
969
970  // Update SymbolAux::gotIdx field to use this
971  // value later in the `sortMipsSymbols` function.
972  for (auto &p : primGot->global) {
973    if (p.first->auxIdx == 0)
974      p.first->allocateAux();
975    symAux.back().gotIdx = p.second;
976  }
977  for (auto &p : primGot->relocs) {
978    if (p.first->auxIdx == 0)
979      p.first->allocateAux();
980    symAux.back().gotIdx = p.second;
981  }
982
983  // Create dynamic relocations.
984  for (FileGot &got : gots) {
985    // Create dynamic relocations for TLS entries.
986    for (std::pair<Symbol *, size_t> &p : got.tls) {
987      Symbol *s = p.first;
988      uint64_t offset = p.second * config->wordsize;
989      // When building a shared library we still need a dynamic relocation
990      // for the TP-relative offset as we don't know how much other data will
991      // be allocated before us in the static TLS block.
992      if (s->isPreemptible || config->shared)
993        mainPart->relaDyn->addReloc({target->tlsGotRel, this, offset,
994                                     DynamicReloc::AgainstSymbolWithTargetVA,
995                                     *s, 0, R_ABS});
996    }
997    for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
998      Symbol *s = p.first;
999      uint64_t offset = p.second * config->wordsize;
1000      if (s == nullptr) {
1001        if (!config->shared)
1002          continue;
1003        mainPart->relaDyn->addReloc({target->tlsModuleIndexRel, this, offset});
1004      } else {
1005        // When building a shared library we still need a dynamic relocation
1006        // for the module index. Therefore only checking for
1007        // S->isPreemptible is not sufficient (this happens e.g. for
1008        // thread-locals that have been marked as local through a linker script)
1009        if (!s->isPreemptible && !config->shared)
1010          continue;
1011        mainPart->relaDyn->addSymbolReloc(target->tlsModuleIndexRel, *this,
1012                                          offset, *s);
1013        // However, we can skip writing the TLS offset reloc for non-preemptible
1014        // symbols since it is known even in shared libraries
1015        if (!s->isPreemptible)
1016          continue;
1017        offset += config->wordsize;
1018        mainPart->relaDyn->addSymbolReloc(target->tlsOffsetRel, *this, offset,
1019                                          *s);
1020      }
1021    }
1022
1023    // Do not create dynamic relocations for non-TLS
1024    // entries in the primary GOT.
1025    if (&got == primGot)
1026      continue;
1027
1028    // Dynamic relocations for "global" entries.
1029    for (const std::pair<Symbol *, size_t> &p : got.global) {
1030      uint64_t offset = p.second * config->wordsize;
1031      mainPart->relaDyn->addSymbolReloc(target->relativeRel, *this, offset,
1032                                        *p.first);
1033    }
1034    if (!config->isPic)
1035      continue;
1036    // Dynamic relocations for "local" entries in case of PIC.
1037    for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1038         got.pagesMap) {
1039      size_t pageCount = l.second.count;
1040      for (size_t pi = 0; pi < pageCount; ++pi) {
1041        uint64_t offset = (l.second.firstIndex + pi) * config->wordsize;
1042        mainPart->relaDyn->addReloc({target->relativeRel, this, offset, l.first,
1043                                     int64_t(pi * 0x10000)});
1044      }
1045    }
1046    for (const std::pair<GotEntry, size_t> &p : got.local16) {
1047      uint64_t offset = p.second * config->wordsize;
1048      mainPart->relaDyn->addReloc({target->relativeRel, this, offset,
1049                                   DynamicReloc::AddendOnlyWithTargetVA,
1050                                   *p.first.first, p.first.second, R_ABS});
1051    }
1052  }
1053}
1054
1055bool MipsGotSection::isNeeded() const {
1056  // We add the .got section to the result for dynamic MIPS target because
1057  // its address and properties are mentioned in the .dynamic section.
1058  return !config->relocatable;
1059}
1060
1061uint64_t MipsGotSection::getGp(const InputFile *f) const {
1062  // For files without related GOT or files refer a primary GOT
1063  // returns "common" _gp value. For secondary GOTs calculate
1064  // individual _gp values.
1065  if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0)
1066    return ElfSym::mipsGp->getVA(0);
1067  return getVA() + gots[f->mipsGotIndex].startIndex * config->wordsize + 0x7ff0;
1068}
1069
1070void MipsGotSection::writeTo(uint8_t *buf) {
1071  // Set the MSB of the second GOT slot. This is not required by any
1072  // MIPS ABI documentation, though.
1073  //
1074  // There is a comment in glibc saying that "The MSB of got[1] of a
1075  // gnu object is set to identify gnu objects," and in GNU gold it
1076  // says "the second entry will be used by some runtime loaders".
1077  // But how this field is being used is unclear.
1078  //
1079  // We are not really willing to mimic other linkers behaviors
1080  // without understanding why they do that, but because all files
1081  // generated by GNU tools have this special GOT value, and because
1082  // we've been doing this for years, it is probably a safe bet to
1083  // keep doing this for now. We really need to revisit this to see
1084  // if we had to do this.
1085  writeUint(buf + config->wordsize, (uint64_t)1 << (config->wordsize * 8 - 1));
1086  for (const FileGot &g : gots) {
1087    auto write = [&](size_t i, const Symbol *s, int64_t a) {
1088      uint64_t va = a;
1089      if (s)
1090        va = s->getVA(a);
1091      writeUint(buf + i * config->wordsize, va);
1092    };
1093    // Write 'page address' entries to the local part of the GOT.
1094    for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1095         g.pagesMap) {
1096      size_t pageCount = l.second.count;
1097      uint64_t firstPageAddr = getMipsPageAddr(l.first->addr);
1098      for (size_t pi = 0; pi < pageCount; ++pi)
1099        write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
1100    }
1101    // Local, global, TLS, reloc-only  entries.
1102    // If TLS entry has a corresponding dynamic relocations, leave it
1103    // initialized by zero. Write down adjusted TLS symbol's values otherwise.
1104    // To calculate the adjustments use offsets for thread-local storage.
1105    // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL
1106    for (const std::pair<GotEntry, size_t> &p : g.local16)
1107      write(p.second, p.first.first, p.first.second);
1108    // Write VA to the primary GOT only. For secondary GOTs that
1109    // will be done by REL32 dynamic relocations.
1110    if (&g == &gots.front())
1111      for (const std::pair<Symbol *, size_t> &p : g.global)
1112        write(p.second, p.first, 0);
1113    for (const std::pair<Symbol *, size_t> &p : g.relocs)
1114      write(p.second, p.first, 0);
1115    for (const std::pair<Symbol *, size_t> &p : g.tls)
1116      write(p.second, p.first,
1117            p.first->isPreemptible || config->shared ? 0 : -0x7000);
1118    for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
1119      if (p.first == nullptr && !config->shared)
1120        write(p.second, nullptr, 1);
1121      else if (p.first && !p.first->isPreemptible) {
1122        // If we are emitting a shared library with relocations we mustn't write
1123        // anything to the GOT here. When using Elf_Rel relocations the value
1124        // one will be treated as an addend and will cause crashes at runtime
1125        if (!config->shared)
1126          write(p.second, nullptr, 1);
1127        write(p.second + 1, p.first, -0x8000);
1128      }
1129    }
1130  }
1131}
1132
1133// On PowerPC the .plt section is used to hold the table of function addresses
1134// instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
1135// section. I don't know why we have a BSS style type for the section but it is
1136// consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
1137GotPltSection::GotPltSection()
1138    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
1139                       ".got.plt") {
1140  if (config->emachine == EM_PPC) {
1141    name = ".plt";
1142  } else if (config->emachine == EM_PPC64) {
1143    type = SHT_NOBITS;
1144    name = ".plt";
1145  }
1146}
1147
1148void GotPltSection::addEntry(Symbol &sym) {
1149  assert(sym.auxIdx == symAux.size() - 1 &&
1150         symAux.back().pltIdx == entries.size());
1151  entries.push_back(&sym);
1152}
1153
1154size_t GotPltSection::getSize() const {
1155  return (target->gotPltHeaderEntriesNum + entries.size()) *
1156         target->gotEntrySize;
1157}
1158
1159void GotPltSection::writeTo(uint8_t *buf) {
1160  target->writeGotPltHeader(buf);
1161  buf += target->gotPltHeaderEntriesNum * target->gotEntrySize;
1162  for (const Symbol *b : entries) {
1163    target->writeGotPlt(buf, *b);
1164    buf += target->gotEntrySize;
1165  }
1166}
1167
1168bool GotPltSection::isNeeded() const {
1169  // We need to emit GOTPLT even if it's empty if there's a relocation relative
1170  // to it.
1171  return !entries.empty() || hasGotPltOffRel;
1172}
1173
1174static StringRef getIgotPltName() {
1175  // On ARM the IgotPltSection is part of the GotSection.
1176  if (config->emachine == EM_ARM)
1177    return ".got";
1178
1179  // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
1180  // needs to be named the same.
1181  if (config->emachine == EM_PPC64)
1182    return ".plt";
1183
1184  return ".got.plt";
1185}
1186
1187// On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
1188// with the IgotPltSection.
1189IgotPltSection::IgotPltSection()
1190    : SyntheticSection(SHF_ALLOC | SHF_WRITE,
1191                       config->emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
1192                       target->gotEntrySize, getIgotPltName()) {}
1193
1194void IgotPltSection::addEntry(Symbol &sym) {
1195  assert(symAux.back().pltIdx == entries.size());
1196  entries.push_back(&sym);
1197}
1198
1199size_t IgotPltSection::getSize() const {
1200  return entries.size() * target->gotEntrySize;
1201}
1202
1203void IgotPltSection::writeTo(uint8_t *buf) {
1204  for (const Symbol *b : entries) {
1205    target->writeIgotPlt(buf, *b);
1206    buf += target->gotEntrySize;
1207  }
1208}
1209
1210StringTableSection::StringTableSection(StringRef name, bool dynamic)
1211    : SyntheticSection(dynamic ? (uint64_t)SHF_ALLOC : 0, SHT_STRTAB, 1, name),
1212      dynamic(dynamic) {
1213  // ELF string tables start with a NUL byte.
1214  strings.push_back("");
1215  stringMap.try_emplace(CachedHashStringRef(""), 0);
1216  size = 1;
1217}
1218
1219// Adds a string to the string table. If `hashIt` is true we hash and check for
1220// duplicates. It is optional because the name of global symbols are already
1221// uniqued and hashing them again has a big cost for a small value: uniquing
1222// them with some other string that happens to be the same.
1223unsigned StringTableSection::addString(StringRef s, bool hashIt) {
1224  if (hashIt) {
1225    auto r = stringMap.try_emplace(CachedHashStringRef(s), size);
1226    if (!r.second)
1227      return r.first->second;
1228  }
1229  if (s.empty())
1230    return 0;
1231  unsigned ret = this->size;
1232  this->size = this->size + s.size() + 1;
1233  strings.push_back(s);
1234  return ret;
1235}
1236
1237void StringTableSection::writeTo(uint8_t *buf) {
1238  for (StringRef s : strings) {
1239    memcpy(buf, s.data(), s.size());
1240    buf[s.size()] = '\0';
1241    buf += s.size() + 1;
1242  }
1243}
1244
1245// Returns the number of entries in .gnu.version_d: the number of
1246// non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
1247// Note that we don't support vd_cnt > 1 yet.
1248static unsigned getVerDefNum() {
1249  return namedVersionDefs().size() + 1;
1250}
1251
1252template <class ELFT>
1253DynamicSection<ELFT>::DynamicSection()
1254    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_DYNAMIC, config->wordsize,
1255                       ".dynamic") {
1256  this->entsize = ELFT::Is64Bits ? 16 : 8;
1257
1258  // .dynamic section is not writable on MIPS and on Fuchsia OS
1259  // which passes -z rodynamic.
1260  // See "Special Section" in Chapter 4 in the following document:
1261  // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1262  if (config->emachine == EM_MIPS || config->zRodynamic)
1263    this->flags = SHF_ALLOC;
1264}
1265
1266// The output section .rela.dyn may include these synthetic sections:
1267//
1268// - part.relaDyn
1269// - in.relaIplt: this is included if in.relaIplt is named .rela.dyn
1270// - in.relaPlt: this is included if a linker script places .rela.plt inside
1271//   .rela.dyn
1272//
1273// DT_RELASZ is the total size of the included sections.
1274static uint64_t addRelaSz(const RelocationBaseSection &relaDyn) {
1275  size_t size = relaDyn.getSize();
1276  if (in.relaIplt->getParent() == relaDyn.getParent())
1277    size += in.relaIplt->getSize();
1278  if (in.relaPlt->getParent() == relaDyn.getParent())
1279    size += in.relaPlt->getSize();
1280  return size;
1281}
1282
1283// A Linker script may assign the RELA relocation sections to the same
1284// output section. When this occurs we cannot just use the OutputSection
1285// Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
1286// overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
1287static uint64_t addPltRelSz() {
1288  size_t size = in.relaPlt->getSize();
1289  if (in.relaIplt->getParent() == in.relaPlt->getParent() &&
1290      in.relaIplt->name == in.relaPlt->name)
1291    size += in.relaIplt->getSize();
1292  return size;
1293}
1294
1295// Add remaining entries to complete .dynamic contents.
1296template <class ELFT>
1297std::vector<std::pair<int32_t, uint64_t>>
1298DynamicSection<ELFT>::computeContents() {
1299  elf::Partition &part = getPartition();
1300  bool isMain = part.name.empty();
1301  std::vector<std::pair<int32_t, uint64_t>> entries;
1302
1303  auto addInt = [&](int32_t tag, uint64_t val) {
1304    entries.emplace_back(tag, val);
1305  };
1306  auto addInSec = [&](int32_t tag, const InputSection &sec) {
1307    entries.emplace_back(tag, sec.getVA());
1308  };
1309
1310  for (StringRef s : config->filterList)
1311    addInt(DT_FILTER, part.dynStrTab->addString(s));
1312  for (StringRef s : config->auxiliaryList)
1313    addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
1314
1315  if (!config->rpath.empty())
1316    addInt(config->enableNewDtags ? DT_RUNPATH : DT_RPATH,
1317           part.dynStrTab->addString(config->rpath));
1318
1319  for (SharedFile *file : ctx.sharedFiles)
1320    if (file->isNeeded)
1321      addInt(DT_NEEDED, part.dynStrTab->addString(file->soName));
1322
1323  if (isMain) {
1324    if (!config->soName.empty())
1325      addInt(DT_SONAME, part.dynStrTab->addString(config->soName));
1326  } else {
1327    if (!config->soName.empty())
1328      addInt(DT_NEEDED, part.dynStrTab->addString(config->soName));
1329    addInt(DT_SONAME, part.dynStrTab->addString(part.name));
1330  }
1331
1332  // Set DT_FLAGS and DT_FLAGS_1.
1333  uint32_t dtFlags = 0;
1334  uint32_t dtFlags1 = 0;
1335  if (config->bsymbolic == BsymbolicKind::All)
1336    dtFlags |= DF_SYMBOLIC;
1337  if (config->zGlobal)
1338    dtFlags1 |= DF_1_GLOBAL;
1339  if (config->zInitfirst)
1340    dtFlags1 |= DF_1_INITFIRST;
1341  if (config->zInterpose)
1342    dtFlags1 |= DF_1_INTERPOSE;
1343  if (config->zNodefaultlib)
1344    dtFlags1 |= DF_1_NODEFLIB;
1345  if (config->zNodelete)
1346    dtFlags1 |= DF_1_NODELETE;
1347  if (config->zNodlopen)
1348    dtFlags1 |= DF_1_NOOPEN;
1349  if (config->pie)
1350    dtFlags1 |= DF_1_PIE;
1351  if (config->zNow) {
1352    dtFlags |= DF_BIND_NOW;
1353    dtFlags1 |= DF_1_NOW;
1354  }
1355  if (config->zOrigin) {
1356    dtFlags |= DF_ORIGIN;
1357    dtFlags1 |= DF_1_ORIGIN;
1358  }
1359  if (!config->zText)
1360    dtFlags |= DF_TEXTREL;
1361  if (ctx.hasTlsIe && config->shared)
1362    dtFlags |= DF_STATIC_TLS;
1363
1364  if (dtFlags)
1365    addInt(DT_FLAGS, dtFlags);
1366  if (dtFlags1)
1367    addInt(DT_FLAGS_1, dtFlags1);
1368
1369  // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
1370  // need it for each process, so we don't write it for DSOs. The loader writes
1371  // the pointer into this entry.
1372  //
1373  // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
1374  // systems (currently only Fuchsia OS) provide other means to give the
1375  // debugger this information. Such systems may choose make .dynamic read-only.
1376  // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
1377  if (!config->shared && !config->relocatable && !config->zRodynamic)
1378    addInt(DT_DEBUG, 0);
1379
1380  if (part.relaDyn->isNeeded() ||
1381      (in.relaIplt->isNeeded() &&
1382       part.relaDyn->getParent() == in.relaIplt->getParent())) {
1383    addInSec(part.relaDyn->dynamicTag, *part.relaDyn);
1384    entries.emplace_back(part.relaDyn->sizeDynamicTag,
1385                         addRelaSz(*part.relaDyn));
1386
1387    bool isRela = config->isRela;
1388    addInt(isRela ? DT_RELAENT : DT_RELENT,
1389           isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
1390
1391    // MIPS dynamic loader does not support RELCOUNT tag.
1392    // The problem is in the tight relation between dynamic
1393    // relocations and GOT. So do not emit this tag on MIPS.
1394    if (config->emachine != EM_MIPS) {
1395      size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
1396      if (config->zCombreloc && numRelativeRels)
1397        addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
1398    }
1399  }
1400  if (part.relrDyn && part.relrDyn->getParent() &&
1401      !part.relrDyn->relocs.empty()) {
1402    addInSec(config->useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
1403             *part.relrDyn);
1404    addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
1405           part.relrDyn->getParent()->size);
1406    addInt(config->useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
1407           sizeof(Elf_Relr));
1408  }
1409  // .rel[a].plt section usually consists of two parts, containing plt and
1410  // iplt relocations. It is possible to have only iplt relocations in the
1411  // output. In that case relaPlt is empty and have zero offset, the same offset
1412  // as relaIplt has. And we still want to emit proper dynamic tags for that
1413  // case, so here we always use relaPlt as marker for the beginning of
1414  // .rel[a].plt section.
1415  if (isMain && (in.relaPlt->isNeeded() || in.relaIplt->isNeeded())) {
1416    addInSec(DT_JMPREL, *in.relaPlt);
1417    entries.emplace_back(DT_PLTRELSZ, addPltRelSz());
1418    switch (config->emachine) {
1419    case EM_MIPS:
1420      addInSec(DT_MIPS_PLTGOT, *in.gotPlt);
1421      break;
1422    case EM_S390:
1423      addInSec(DT_PLTGOT, *in.got);
1424      break;
1425    case EM_SPARCV9:
1426      addInSec(DT_PLTGOT, *in.plt);
1427      break;
1428    case EM_AARCH64:
1429      if (llvm::find_if(in.relaPlt->relocs, [](const DynamicReloc &r) {
1430           return r.type == target->pltRel &&
1431                  r.sym->stOther & STO_AARCH64_VARIANT_PCS;
1432          }) != in.relaPlt->relocs.end())
1433        addInt(DT_AARCH64_VARIANT_PCS, 0);
1434      addInSec(DT_PLTGOT, *in.gotPlt);
1435      break;
1436    case EM_RISCV:
1437      if (llvm::any_of(in.relaPlt->relocs, [](const DynamicReloc &r) {
1438            return r.type == target->pltRel &&
1439                   (r.sym->stOther & STO_RISCV_VARIANT_CC);
1440          }))
1441        addInt(DT_RISCV_VARIANT_CC, 0);
1442      [[fallthrough]];
1443    default:
1444      addInSec(DT_PLTGOT, *in.gotPlt);
1445      break;
1446    }
1447    addInt(DT_PLTREL, config->isRela ? DT_RELA : DT_REL);
1448  }
1449
1450  if (config->emachine == EM_AARCH64) {
1451    if (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
1452      addInt(DT_AARCH64_BTI_PLT, 0);
1453    if (config->zPacPlt)
1454      addInt(DT_AARCH64_PAC_PLT, 0);
1455
1456    if (hasMemtag()) {
1457      addInt(DT_AARCH64_MEMTAG_MODE, config->androidMemtagMode == NT_MEMTAG_LEVEL_ASYNC);
1458      addInt(DT_AARCH64_MEMTAG_HEAP, config->androidMemtagHeap);
1459      addInt(DT_AARCH64_MEMTAG_STACK, config->androidMemtagStack);
1460      if (mainPart->memtagGlobalDescriptors->isNeeded()) {
1461        addInSec(DT_AARCH64_MEMTAG_GLOBALS, *mainPart->memtagGlobalDescriptors);
1462        addInt(DT_AARCH64_MEMTAG_GLOBALSSZ,
1463               mainPart->memtagGlobalDescriptors->getSize());
1464      }
1465    }
1466  }
1467
1468  addInSec(DT_SYMTAB, *part.dynSymTab);
1469  addInt(DT_SYMENT, sizeof(Elf_Sym));
1470  addInSec(DT_STRTAB, *part.dynStrTab);
1471  addInt(DT_STRSZ, part.dynStrTab->getSize());
1472  if (!config->zText)
1473    addInt(DT_TEXTREL, 0);
1474  if (part.gnuHashTab && part.gnuHashTab->getParent())
1475    addInSec(DT_GNU_HASH, *part.gnuHashTab);
1476  if (part.hashTab && part.hashTab->getParent())
1477    addInSec(DT_HASH, *part.hashTab);
1478
1479  if (isMain) {
1480    if (Out::preinitArray) {
1481      addInt(DT_PREINIT_ARRAY, Out::preinitArray->addr);
1482      addInt(DT_PREINIT_ARRAYSZ, Out::preinitArray->size);
1483    }
1484    if (Out::initArray) {
1485      addInt(DT_INIT_ARRAY, Out::initArray->addr);
1486      addInt(DT_INIT_ARRAYSZ, Out::initArray->size);
1487    }
1488    if (Out::finiArray) {
1489      addInt(DT_FINI_ARRAY, Out::finiArray->addr);
1490      addInt(DT_FINI_ARRAYSZ, Out::finiArray->size);
1491    }
1492
1493    if (Symbol *b = symtab.find(config->init))
1494      if (b->isDefined())
1495        addInt(DT_INIT, b->getVA());
1496    if (Symbol *b = symtab.find(config->fini))
1497      if (b->isDefined())
1498        addInt(DT_FINI, b->getVA());
1499  }
1500
1501  if (part.verSym && part.verSym->isNeeded())
1502    addInSec(DT_VERSYM, *part.verSym);
1503  if (part.verDef && part.verDef->isLive()) {
1504    addInSec(DT_VERDEF, *part.verDef);
1505    addInt(DT_VERDEFNUM, getVerDefNum());
1506  }
1507  if (part.verNeed && part.verNeed->isNeeded()) {
1508    addInSec(DT_VERNEED, *part.verNeed);
1509    unsigned needNum = 0;
1510    for (SharedFile *f : ctx.sharedFiles)
1511      if (!f->vernauxs.empty())
1512        ++needNum;
1513    addInt(DT_VERNEEDNUM, needNum);
1514  }
1515
1516  if (config->emachine == EM_MIPS) {
1517    addInt(DT_MIPS_RLD_VERSION, 1);
1518    addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
1519    addInt(DT_MIPS_BASE_ADDRESS, target->getImageBase());
1520    addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
1521    addInt(DT_MIPS_LOCAL_GOTNO, in.mipsGot->getLocalEntriesNum());
1522
1523    if (const Symbol *b = in.mipsGot->getFirstGlobalEntry())
1524      addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
1525    else
1526      addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
1527    addInSec(DT_PLTGOT, *in.mipsGot);
1528    if (in.mipsRldMap) {
1529      if (!config->pie)
1530        addInSec(DT_MIPS_RLD_MAP, *in.mipsRldMap);
1531      // Store the offset to the .rld_map section
1532      // relative to the address of the tag.
1533      addInt(DT_MIPS_RLD_MAP_REL,
1534             in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize));
1535    }
1536  }
1537
1538  // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
1539  // glibc assumes the old-style BSS PLT layout which we don't support.
1540  if (config->emachine == EM_PPC)
1541    addInSec(DT_PPC_GOT, *in.got);
1542
1543  // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
1544  if (config->emachine == EM_PPC64 && in.plt->isNeeded()) {
1545    // The Glink tag points to 32 bytes before the first lazy symbol resolution
1546    // stub, which starts directly after the header.
1547    addInt(DT_PPC64_GLINK, in.plt->getVA() + target->pltHeaderSize - 32);
1548  }
1549
1550  if (config->emachine == EM_PPC64)
1551    addInt(DT_PPC64_OPT, getPPC64TargetInfo()->ppc64DynamicSectionOpt);
1552
1553  addInt(DT_NULL, 0);
1554  return entries;
1555}
1556
1557template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
1558  if (OutputSection *sec = getPartition().dynStrTab->getParent())
1559    getParent()->link = sec->sectionIndex;
1560  this->size = computeContents().size() * this->entsize;
1561}
1562
1563template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
1564  auto *p = reinterpret_cast<Elf_Dyn *>(buf);
1565
1566  for (std::pair<int32_t, uint64_t> kv : computeContents()) {
1567    p->d_tag = kv.first;
1568    p->d_un.d_val = kv.second;
1569    ++p;
1570  }
1571}
1572
1573uint64_t DynamicReloc::getOffset() const {
1574  return inputSec->getVA(offsetInSec);
1575}
1576
1577int64_t DynamicReloc::computeAddend() const {
1578  switch (kind) {
1579  case AddendOnly:
1580    assert(sym == nullptr);
1581    return addend;
1582  case AgainstSymbol:
1583    assert(sym != nullptr);
1584    return addend;
1585  case AddendOnlyWithTargetVA:
1586  case AgainstSymbolWithTargetVA: {
1587    uint64_t ca = InputSection::getRelocTargetVA(inputSec->file, type, addend,
1588                                                 getOffset(), *sym, expr);
1589    return config->is64 ? ca : SignExtend64<32>(ca);
1590  }
1591  case MipsMultiGotPage:
1592    assert(sym == nullptr);
1593    return getMipsPageAddr(outputSec->addr) + addend;
1594  }
1595  llvm_unreachable("Unknown DynamicReloc::Kind enum");
1596}
1597
1598uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
1599  if (!needsDynSymIndex())
1600    return 0;
1601
1602  size_t index = symTab->getSymbolIndex(sym);
1603  assert((index != 0 || (type != target->gotRel && type != target->pltRel) ||
1604          !mainPart->dynSymTab->getParent()) &&
1605         "GOT or PLT relocation must refer to symbol in dynamic symbol table");
1606  return index;
1607}
1608
1609RelocationBaseSection::RelocationBaseSection(StringRef name, uint32_t type,
1610                                             int32_t dynamicTag,
1611                                             int32_t sizeDynamicTag,
1612                                             bool combreloc,
1613                                             unsigned concurrency)
1614    : SyntheticSection(SHF_ALLOC, type, config->wordsize, name),
1615      dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag),
1616      relocsVec(concurrency), combreloc(combreloc) {}
1617
1618void RelocationBaseSection::addSymbolReloc(
1619    RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym,
1620    int64_t addend, std::optional<RelType> addendRelType) {
1621  addReloc(DynamicReloc::AgainstSymbol, dynType, isec, offsetInSec, sym, addend,
1622           R_ADDEND, addendRelType ? *addendRelType : target->noneRel);
1623}
1624
1625void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible(
1626    RelType dynType, GotSection &sec, uint64_t offsetInSec, Symbol &sym,
1627    RelType addendRelType) {
1628  // No need to write an addend to the section for preemptible symbols.
1629  if (sym.isPreemptible)
1630    addReloc({dynType, &sec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0,
1631              R_ABS});
1632  else
1633    addReloc(DynamicReloc::AddendOnlyWithTargetVA, dynType, sec, offsetInSec,
1634             sym, 0, R_ABS, addendRelType);
1635}
1636
1637void RelocationBaseSection::mergeRels() {
1638  size_t newSize = relocs.size();
1639  for (const auto &v : relocsVec)
1640    newSize += v.size();
1641  relocs.reserve(newSize);
1642  for (const auto &v : relocsVec)
1643    llvm::append_range(relocs, v);
1644  relocsVec.clear();
1645}
1646
1647void RelocationBaseSection::partitionRels() {
1648  if (!combreloc)
1649    return;
1650  const RelType relativeRel = target->relativeRel;
1651  numRelativeRelocs =
1652      llvm::partition(relocs, [=](auto &r) { return r.type == relativeRel; }) -
1653      relocs.begin();
1654}
1655
1656void RelocationBaseSection::finalizeContents() {
1657  SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1658
1659  // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
1660  // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
1661  // case.
1662  if (symTab && symTab->getParent())
1663    getParent()->link = symTab->getParent()->sectionIndex;
1664  else
1665    getParent()->link = 0;
1666
1667  if (in.relaPlt.get() == this && in.gotPlt->getParent()) {
1668    getParent()->flags |= ELF::SHF_INFO_LINK;
1669    getParent()->info = in.gotPlt->getParent()->sectionIndex;
1670  }
1671  if (in.relaIplt.get() == this && in.igotPlt->getParent()) {
1672    getParent()->flags |= ELF::SHF_INFO_LINK;
1673    getParent()->info = in.igotPlt->getParent()->sectionIndex;
1674  }
1675}
1676
1677void DynamicReloc::computeRaw(SymbolTableBaseSection *symtab) {
1678  r_offset = getOffset();
1679  r_sym = getSymIndex(symtab);
1680  addend = computeAddend();
1681  kind = AddendOnly; // Catch errors
1682}
1683
1684void RelocationBaseSection::computeRels() {
1685  SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
1686  parallelForEach(relocs,
1687                  [symTab](DynamicReloc &rel) { rel.computeRaw(symTab); });
1688  // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
1689  // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
1690  // is to make results easier to read.
1691  if (combreloc) {
1692    auto nonRelative = relocs.begin() + numRelativeRelocs;
1693    parallelSort(relocs.begin(), nonRelative,
1694                 [&](auto &a, auto &b) { return a.r_offset < b.r_offset; });
1695    // Non-relative relocations are few, so don't bother with parallelSort.
1696    llvm::sort(nonRelative, relocs.end(), [&](auto &a, auto &b) {
1697      return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset);
1698    });
1699  }
1700}
1701
1702template <class ELFT>
1703RelocationSection<ELFT>::RelocationSection(StringRef name, bool combreloc,
1704                                           unsigned concurrency)
1705    : RelocationBaseSection(name, config->isRela ? SHT_RELA : SHT_REL,
1706                            config->isRela ? DT_RELA : DT_REL,
1707                            config->isRela ? DT_RELASZ : DT_RELSZ, combreloc,
1708                            concurrency) {
1709  this->entsize = config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1710}
1711
1712template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
1713  computeRels();
1714  for (const DynamicReloc &rel : relocs) {
1715    auto *p = reinterpret_cast<Elf_Rela *>(buf);
1716    p->r_offset = rel.r_offset;
1717    p->setSymbolAndType(rel.r_sym, rel.type, config->isMips64EL);
1718    if (config->isRela)
1719      p->r_addend = rel.addend;
1720    buf += config->isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1721  }
1722}
1723
1724RelrBaseSection::RelrBaseSection(unsigned concurrency)
1725    : SyntheticSection(SHF_ALLOC,
1726                       config->useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR,
1727                       config->wordsize, ".relr.dyn"),
1728      relocsVec(concurrency) {}
1729
1730void RelrBaseSection::mergeRels() {
1731  size_t newSize = relocs.size();
1732  for (const auto &v : relocsVec)
1733    newSize += v.size();
1734  relocs.reserve(newSize);
1735  for (const auto &v : relocsVec)
1736    llvm::append_range(relocs, v);
1737  relocsVec.clear();
1738}
1739
1740template <class ELFT>
1741AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
1742    StringRef name, unsigned concurrency)
1743    : RelocationBaseSection(
1744          name, config->isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
1745          config->isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
1746          config->isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ,
1747          /*combreloc=*/false, concurrency) {
1748  this->entsize = 1;
1749}
1750
1751template <class ELFT>
1752bool AndroidPackedRelocationSection<ELFT>::updateAllocSize() {
1753  // This function computes the contents of an Android-format packed relocation
1754  // section.
1755  //
1756  // This format compresses relocations by using relocation groups to factor out
1757  // fields that are common between relocations and storing deltas from previous
1758  // relocations in SLEB128 format (which has a short representation for small
1759  // numbers). A good example of a relocation type with common fields is
1760  // R_*_RELATIVE, which is normally used to represent function pointers in
1761  // vtables. In the REL format, each relative relocation has the same r_info
1762  // field, and is only different from other relative relocations in terms of
1763  // the r_offset field. By sorting relocations by offset, grouping them by
1764  // r_info and representing each relocation with only the delta from the
1765  // previous offset, each 8-byte relocation can be compressed to as little as 1
1766  // byte (or less with run-length encoding). This relocation packer was able to
1767  // reduce the size of the relocation section in an Android Chromium DSO from
1768  // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
1769  //
1770  // A relocation section consists of a header containing the literal bytes
1771  // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
1772  // elements are the total number of relocations in the section and an initial
1773  // r_offset value. The remaining elements define a sequence of relocation
1774  // groups. Each relocation group starts with a header consisting of the
1775  // following elements:
1776  //
1777  // - the number of relocations in the relocation group
1778  // - flags for the relocation group
1779  // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
1780  //   for each relocation in the group.
1781  // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
1782  //   field for each relocation in the group.
1783  // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
1784  //   RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
1785  //   each relocation in the group.
1786  //
1787  // Following the relocation group header are descriptions of each of the
1788  // relocations in the group. They consist of the following elements:
1789  //
1790  // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
1791  //   delta for this relocation.
1792  // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
1793  //   field for this relocation.
1794  // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
1795  //   RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
1796  //   this relocation.
1797
1798  size_t oldSize = relocData.size();
1799
1800  relocData = {'A', 'P', 'S', '2'};
1801  raw_svector_ostream os(relocData);
1802  auto add = [&](int64_t v) { encodeSLEB128(v, os); };
1803
1804  // The format header includes the number of relocations and the initial
1805  // offset (we set this to zero because the first relocation group will
1806  // perform the initial adjustment).
1807  add(relocs.size());
1808  add(0);
1809
1810  std::vector<Elf_Rela> relatives, nonRelatives;
1811
1812  for (const DynamicReloc &rel : relocs) {
1813    Elf_Rela r;
1814    r.r_offset = rel.getOffset();
1815    r.setSymbolAndType(rel.getSymIndex(getPartition().dynSymTab.get()),
1816                       rel.type, false);
1817    r.r_addend = config->isRela ? rel.computeAddend() : 0;
1818
1819    if (r.getType(config->isMips64EL) == target->relativeRel)
1820      relatives.push_back(r);
1821    else
1822      nonRelatives.push_back(r);
1823  }
1824
1825  llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
1826    return a.r_offset < b.r_offset;
1827  });
1828
1829  // Try to find groups of relative relocations which are spaced one word
1830  // apart from one another. These generally correspond to vtable entries. The
1831  // format allows these groups to be encoded using a sort of run-length
1832  // encoding, but each group will cost 7 bytes in addition to the offset from
1833  // the previous group, so it is only profitable to do this for groups of
1834  // size 8 or larger.
1835  std::vector<Elf_Rela> ungroupedRelatives;
1836  std::vector<std::vector<Elf_Rela>> relativeGroups;
1837  for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
1838    std::vector<Elf_Rela> group;
1839    do {
1840      group.push_back(*i++);
1841    } while (i != e && (i - 1)->r_offset + config->wordsize == i->r_offset);
1842
1843    if (group.size() < 8)
1844      ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
1845                                group.end());
1846    else
1847      relativeGroups.emplace_back(std::move(group));
1848  }
1849
1850  // For non-relative relocations, we would like to:
1851  //   1. Have relocations with the same symbol offset to be consecutive, so
1852  //      that the runtime linker can speed-up symbol lookup by implementing an
1853  //      1-entry cache.
1854  //   2. Group relocations by r_info to reduce the size of the relocation
1855  //      section.
1856  // Since the symbol offset is the high bits in r_info, sorting by r_info
1857  // allows us to do both.
1858  //
1859  // For Rela, we also want to sort by r_addend when r_info is the same. This
1860  // enables us to group by r_addend as well.
1861  llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1862    if (a.r_info != b.r_info)
1863      return a.r_info < b.r_info;
1864    if (a.r_addend != b.r_addend)
1865      return a.r_addend < b.r_addend;
1866    return a.r_offset < b.r_offset;
1867  });
1868
1869  // Group relocations with the same r_info. Note that each group emits a group
1870  // header and that may make the relocation section larger. It is hard to
1871  // estimate the size of a group header as the encoded size of that varies
1872  // based on r_info. However, we can approximate this trade-off by the number
1873  // of values encoded. Each group header contains 3 values, and each relocation
1874  // in a group encodes one less value, as compared to when it is not grouped.
1875  // Therefore, we only group relocations if there are 3 or more of them with
1876  // the same r_info.
1877  //
1878  // For Rela, the addend for most non-relative relocations is zero, and thus we
1879  // can usually get a smaller relocation section if we group relocations with 0
1880  // addend as well.
1881  std::vector<Elf_Rela> ungroupedNonRelatives;
1882  std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
1883  for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
1884    auto j = i + 1;
1885    while (j != e && i->r_info == j->r_info &&
1886           (!config->isRela || i->r_addend == j->r_addend))
1887      ++j;
1888    if (j - i < 3 || (config->isRela && i->r_addend != 0))
1889      ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
1890    else
1891      nonRelativeGroups.emplace_back(i, j);
1892    i = j;
1893  }
1894
1895  // Sort ungrouped relocations by offset to minimize the encoded length.
1896  llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1897    return a.r_offset < b.r_offset;
1898  });
1899
1900  unsigned hasAddendIfRela =
1901      config->isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
1902
1903  uint64_t offset = 0;
1904  uint64_t addend = 0;
1905
1906  // Emit the run-length encoding for the groups of adjacent relative
1907  // relocations. Each group is represented using two groups in the packed
1908  // format. The first is used to set the current offset to the start of the
1909  // group (and also encodes the first relocation), and the second encodes the
1910  // remaining relocations.
1911  for (std::vector<Elf_Rela> &g : relativeGroups) {
1912    // The first relocation in the group.
1913    add(1);
1914    add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1915        RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1916    add(g[0].r_offset - offset);
1917    add(target->relativeRel);
1918    if (config->isRela) {
1919      add(g[0].r_addend - addend);
1920      addend = g[0].r_addend;
1921    }
1922
1923    // The remaining relocations.
1924    add(g.size() - 1);
1925    add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1926        RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1927    add(config->wordsize);
1928    add(target->relativeRel);
1929    if (config->isRela) {
1930      for (const auto &i : llvm::drop_begin(g)) {
1931        add(i.r_addend - addend);
1932        addend = i.r_addend;
1933      }
1934    }
1935
1936    offset = g.back().r_offset;
1937  }
1938
1939  // Now the ungrouped relatives.
1940  if (!ungroupedRelatives.empty()) {
1941    add(ungroupedRelatives.size());
1942    add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1943    add(target->relativeRel);
1944    for (Elf_Rela &r : ungroupedRelatives) {
1945      add(r.r_offset - offset);
1946      offset = r.r_offset;
1947      if (config->isRela) {
1948        add(r.r_addend - addend);
1949        addend = r.r_addend;
1950      }
1951    }
1952  }
1953
1954  // Grouped non-relatives.
1955  for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
1956    add(g.size());
1957    add(RELOCATION_GROUPED_BY_INFO_FLAG);
1958    add(g[0].r_info);
1959    for (const Elf_Rela &r : g) {
1960      add(r.r_offset - offset);
1961      offset = r.r_offset;
1962    }
1963    addend = 0;
1964  }
1965
1966  // Finally the ungrouped non-relative relocations.
1967  if (!ungroupedNonRelatives.empty()) {
1968    add(ungroupedNonRelatives.size());
1969    add(hasAddendIfRela);
1970    for (Elf_Rela &r : ungroupedNonRelatives) {
1971      add(r.r_offset - offset);
1972      offset = r.r_offset;
1973      add(r.r_info);
1974      if (config->isRela) {
1975        add(r.r_addend - addend);
1976        addend = r.r_addend;
1977      }
1978    }
1979  }
1980
1981  // Don't allow the section to shrink; otherwise the size of the section can
1982  // oscillate infinitely.
1983  if (relocData.size() < oldSize)
1984    relocData.append(oldSize - relocData.size(), 0);
1985
1986  // Returns whether the section size changed. We need to keep recomputing both
1987  // section layout and the contents of this section until the size converges
1988  // because changing this section's size can affect section layout, which in
1989  // turn can affect the sizes of the LEB-encoded integers stored in this
1990  // section.
1991  return relocData.size() != oldSize;
1992}
1993
1994template <class ELFT>
1995RelrSection<ELFT>::RelrSection(unsigned concurrency)
1996    : RelrBaseSection(concurrency) {
1997  this->entsize = config->wordsize;
1998}
1999
2000template <class ELFT> bool RelrSection<ELFT>::updateAllocSize() {
2001  // This function computes the contents of an SHT_RELR packed relocation
2002  // section.
2003  //
2004  // Proposal for adding SHT_RELR sections to generic-abi is here:
2005  //   https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
2006  //
2007  // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
2008  // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
2009  //
2010  // i.e. start with an address, followed by any number of bitmaps. The address
2011  // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
2012  // relocations each, at subsequent offsets following the last address entry.
2013  //
2014  // The bitmap entries must have 1 in the least significant bit. The assumption
2015  // here is that an address cannot have 1 in lsb. Odd addresses are not
2016  // supported.
2017  //
2018  // Excluding the least significant bit in the bitmap, each non-zero bit in
2019  // the bitmap represents a relocation to be applied to a corresponding machine
2020  // word that follows the base address word. The second least significant bit
2021  // represents the machine word immediately following the initial address, and
2022  // each bit that follows represents the next word, in linear order. As such,
2023  // a single bitmap can encode up to 31 relocations in a 32-bit object, and
2024  // 63 relocations in a 64-bit object.
2025  //
2026  // This encoding has a couple of interesting properties:
2027  // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
2028  //    even means address, odd means bitmap.
2029  // 2. Just a simple list of addresses is a valid encoding.
2030
2031  size_t oldSize = relrRelocs.size();
2032  relrRelocs.clear();
2033
2034  // Same as Config->Wordsize but faster because this is a compile-time
2035  // constant.
2036  const size_t wordsize = sizeof(typename ELFT::uint);
2037
2038  // Number of bits to use for the relocation offsets bitmap.
2039  // Must be either 63 or 31.
2040  const size_t nBits = wordsize * 8 - 1;
2041
2042  // Get offsets for all relative relocations and sort them.
2043  std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]);
2044  for (auto [i, r] : llvm::enumerate(relocs))
2045    offsets[i] = r.getOffset();
2046  llvm::sort(offsets.get(), offsets.get() + relocs.size());
2047
2048  // For each leading relocation, find following ones that can be folded
2049  // as a bitmap and fold them.
2050  for (size_t i = 0, e = relocs.size(); i != e;) {
2051    // Add a leading relocation.
2052    relrRelocs.push_back(Elf_Relr(offsets[i]));
2053    uint64_t base = offsets[i] + wordsize;
2054    ++i;
2055
2056    // Find foldable relocations to construct bitmaps.
2057    for (;;) {
2058      uint64_t bitmap = 0;
2059      for (; i != e; ++i) {
2060        uint64_t d = offsets[i] - base;
2061        if (d >= nBits * wordsize || d % wordsize)
2062          break;
2063        bitmap |= uint64_t(1) << (d / wordsize);
2064      }
2065      if (!bitmap)
2066        break;
2067      relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
2068      base += nBits * wordsize;
2069    }
2070  }
2071
2072  // Don't allow the section to shrink; otherwise the size of the section can
2073  // oscillate infinitely. Trailing 1s do not decode to more relocations.
2074  if (relrRelocs.size() < oldSize) {
2075    log(".relr.dyn needs " + Twine(oldSize - relrRelocs.size()) +
2076        " padding word(s)");
2077    relrRelocs.resize(oldSize, Elf_Relr(1));
2078  }
2079
2080  return relrRelocs.size() != oldSize;
2081}
2082
2083SymbolTableBaseSection::SymbolTableBaseSection(StringTableSection &strTabSec)
2084    : SyntheticSection(strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
2085                       strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
2086                       config->wordsize,
2087                       strTabSec.isDynamic() ? ".dynsym" : ".symtab"),
2088      strTabSec(strTabSec) {}
2089
2090// Orders symbols according to their positions in the GOT,
2091// in compliance with MIPS ABI rules.
2092// See "Global Offset Table" in Chapter 5 in the following document
2093// for detailed description:
2094// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2095static bool sortMipsSymbols(const SymbolTableEntry &l,
2096                            const SymbolTableEntry &r) {
2097  // Sort entries related to non-local preemptible symbols by GOT indexes.
2098  // All other entries go to the beginning of a dynsym in arbitrary order.
2099  if (l.sym->isInGot() && r.sym->isInGot())
2100    return l.sym->getGotIdx() < r.sym->getGotIdx();
2101  if (!l.sym->isInGot() && !r.sym->isInGot())
2102    return false;
2103  return !l.sym->isInGot();
2104}
2105
2106void SymbolTableBaseSection::finalizeContents() {
2107  if (OutputSection *sec = strTabSec.getParent())
2108    getParent()->link = sec->sectionIndex;
2109
2110  if (this->type != SHT_DYNSYM) {
2111    sortSymTabSymbols();
2112    return;
2113  }
2114
2115  // If it is a .dynsym, there should be no local symbols, but we need
2116  // to do a few things for the dynamic linker.
2117
2118  // Section's Info field has the index of the first non-local symbol.
2119  // Because the first symbol entry is a null entry, 1 is the first.
2120  getParent()->info = 1;
2121
2122  if (getPartition().gnuHashTab) {
2123    // NB: It also sorts Symbols to meet the GNU hash table requirements.
2124    getPartition().gnuHashTab->addSymbols(symbols);
2125  } else if (config->emachine == EM_MIPS) {
2126    llvm::stable_sort(symbols, sortMipsSymbols);
2127  }
2128
2129  // Only the main partition's dynsym indexes are stored in the symbols
2130  // themselves. All other partitions use a lookup table.
2131  if (this == mainPart->dynSymTab.get()) {
2132    size_t i = 0;
2133    for (const SymbolTableEntry &s : symbols)
2134      s.sym->dynsymIndex = ++i;
2135  }
2136}
2137
2138// The ELF spec requires that all local symbols precede global symbols, so we
2139// sort symbol entries in this function. (For .dynsym, we don't do that because
2140// symbols for dynamic linking are inherently all globals.)
2141//
2142// Aside from above, we put local symbols in groups starting with the STT_FILE
2143// symbol. That is convenient for purpose of identifying where are local symbols
2144// coming from.
2145void SymbolTableBaseSection::sortSymTabSymbols() {
2146  // Move all local symbols before global symbols.
2147  auto e = std::stable_partition(
2148      symbols.begin(), symbols.end(),
2149      [](const SymbolTableEntry &s) { return s.sym->isLocal(); });
2150  size_t numLocals = e - symbols.begin();
2151  getParent()->info = numLocals + 1;
2152
2153  // We want to group the local symbols by file. For that we rebuild the local
2154  // part of the symbols vector. We do not need to care about the STT_FILE
2155  // symbols, they are already naturally placed first in each group. That
2156  // happens because STT_FILE is always the first symbol in the object and hence
2157  // precede all other local symbols we add for a file.
2158  MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr;
2159  for (const SymbolTableEntry &s : llvm::make_range(symbols.begin(), e))
2160    arr[s.sym->file].push_back(s);
2161
2162  auto i = symbols.begin();
2163  for (auto &p : arr)
2164    for (SymbolTableEntry &entry : p.second)
2165      *i++ = entry;
2166}
2167
2168void SymbolTableBaseSection::addSymbol(Symbol *b) {
2169  // Adding a local symbol to a .dynsym is a bug.
2170  assert(this->type != SHT_DYNSYM || !b->isLocal());
2171  symbols.push_back({b, strTabSec.addString(b->getName(), false)});
2172}
2173
2174size_t SymbolTableBaseSection::getSymbolIndex(Symbol *sym) {
2175  if (this == mainPart->dynSymTab.get())
2176    return sym->dynsymIndex;
2177
2178  // Initializes symbol lookup tables lazily. This is used only for -r,
2179  // --emit-relocs and dynsyms in partitions other than the main one.
2180  llvm::call_once(onceFlag, [&] {
2181    symbolIndexMap.reserve(symbols.size());
2182    size_t i = 0;
2183    for (const SymbolTableEntry &e : symbols) {
2184      if (e.sym->type == STT_SECTION)
2185        sectionIndexMap[e.sym->getOutputSection()] = ++i;
2186      else
2187        symbolIndexMap[e.sym] = ++i;
2188    }
2189  });
2190
2191  // Section symbols are mapped based on their output sections
2192  // to maintain their semantics.
2193  if (sym->type == STT_SECTION)
2194    return sectionIndexMap.lookup(sym->getOutputSection());
2195  return symbolIndexMap.lookup(sym);
2196}
2197
2198template <class ELFT>
2199SymbolTableSection<ELFT>::SymbolTableSection(StringTableSection &strTabSec)
2200    : SymbolTableBaseSection(strTabSec) {
2201  this->entsize = sizeof(Elf_Sym);
2202}
2203
2204static BssSection *getCommonSec(Symbol *sym) {
2205  if (config->relocatable)
2206    if (auto *d = dyn_cast<Defined>(sym))
2207      return dyn_cast_or_null<BssSection>(d->section);
2208  return nullptr;
2209}
2210
2211static uint32_t getSymSectionIndex(Symbol *sym) {
2212  assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject()));
2213  if (!isa<Defined>(sym) || sym->hasFlag(NEEDS_COPY))
2214    return SHN_UNDEF;
2215  if (const OutputSection *os = sym->getOutputSection())
2216    return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
2217                                             : os->sectionIndex;
2218  return SHN_ABS;
2219}
2220
2221// Write the internal symbol table contents to the output symbol table.
2222template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
2223  // The first entry is a null entry as per the ELF spec.
2224  buf += sizeof(Elf_Sym);
2225
2226  auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2227
2228  for (SymbolTableEntry &ent : symbols) {
2229    Symbol *sym = ent.sym;
2230    bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
2231
2232    // Set st_name, st_info and st_other.
2233    eSym->st_name = ent.strTabOffset;
2234    eSym->setBindingAndType(sym->binding, sym->type);
2235    eSym->st_other = sym->stOther;
2236
2237    if (BssSection *commonSec = getCommonSec(sym)) {
2238      // When -r is specified, a COMMON symbol is not allocated. Its st_shndx
2239      // holds SHN_COMMON and st_value holds the alignment.
2240      eSym->st_shndx = SHN_COMMON;
2241      eSym->st_value = commonSec->addralign;
2242      eSym->st_size = cast<Defined>(sym)->size;
2243    } else {
2244      const uint32_t shndx = getSymSectionIndex(sym);
2245      if (isDefinedHere) {
2246        eSym->st_shndx = shndx;
2247        eSym->st_value = sym->getVA();
2248        // Copy symbol size if it is a defined symbol. st_size is not
2249        // significant for undefined symbols, so whether copying it or not is up
2250        // to us if that's the case. We'll leave it as zero because by not
2251        // setting a value, we can get the exact same outputs for two sets of
2252        // input files that differ only in undefined symbol size in DSOs.
2253        eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(sym)->size : 0;
2254      } else {
2255        eSym->st_shndx = 0;
2256        eSym->st_value = 0;
2257        eSym->st_size = 0;
2258      }
2259    }
2260
2261    ++eSym;
2262  }
2263
2264  // On MIPS we need to mark symbol which has a PLT entry and requires
2265  // pointer equality by STO_MIPS_PLT flag. That is necessary to help
2266  // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
2267  // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
2268  if (config->emachine == EM_MIPS) {
2269    auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2270
2271    for (SymbolTableEntry &ent : symbols) {
2272      Symbol *sym = ent.sym;
2273      if (sym->isInPlt() && sym->hasFlag(NEEDS_COPY))
2274        eSym->st_other |= STO_MIPS_PLT;
2275      if (isMicroMips()) {
2276        // We already set the less-significant bit for symbols
2277        // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
2278        // records. That allows us to distinguish such symbols in
2279        // the `MIPS<ELFT>::relocate()` routine. Now we should
2280        // clear that bit for non-dynamic symbol table, so tools
2281        // like `objdump` will be able to deal with a correct
2282        // symbol position.
2283        if (sym->isDefined() &&
2284            ((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(NEEDS_COPY))) {
2285          if (!strTabSec.isDynamic())
2286            eSym->st_value &= ~1;
2287          eSym->st_other |= STO_MIPS_MICROMIPS;
2288        }
2289      }
2290      if (config->relocatable)
2291        if (auto *d = dyn_cast<Defined>(sym))
2292          if (isMipsPIC<ELFT>(d))
2293            eSym->st_other |= STO_MIPS_PIC;
2294      ++eSym;
2295    }
2296  }
2297}
2298
2299SymtabShndxSection::SymtabShndxSection()
2300    : SyntheticSection(0, SHT_SYMTAB_SHNDX, 4, ".symtab_shndx") {
2301  this->entsize = 4;
2302}
2303
2304void SymtabShndxSection::writeTo(uint8_t *buf) {
2305  // We write an array of 32 bit values, where each value has 1:1 association
2306  // with an entry in .symtab. If the corresponding entry contains SHN_XINDEX,
2307  // we need to write actual index, otherwise, we must write SHN_UNDEF(0).
2308  buf += 4; // Ignore .symtab[0] entry.
2309  for (const SymbolTableEntry &entry : in.symTab->getSymbols()) {
2310    if (!getCommonSec(entry.sym) && getSymSectionIndex(entry.sym) == SHN_XINDEX)
2311      write32(buf, entry.sym->getOutputSection()->sectionIndex);
2312    buf += 4;
2313  }
2314}
2315
2316bool SymtabShndxSection::isNeeded() const {
2317  // SHT_SYMTAB can hold symbols with section indices values up to
2318  // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
2319  // section. Problem is that we reveal the final section indices a bit too
2320  // late, and we do not know them here. For simplicity, we just always create
2321  // a .symtab_shndx section when the amount of output sections is huge.
2322  size_t size = 0;
2323  for (SectionCommand *cmd : script->sectionCommands)
2324    if (isa<OutputDesc>(cmd))
2325      ++size;
2326  return size >= SHN_LORESERVE;
2327}
2328
2329void SymtabShndxSection::finalizeContents() {
2330  getParent()->link = in.symTab->getParent()->sectionIndex;
2331}
2332
2333size_t SymtabShndxSection::getSize() const {
2334  return in.symTab->getNumSymbols() * 4;
2335}
2336
2337// .hash and .gnu.hash sections contain on-disk hash tables that map
2338// symbol names to their dynamic symbol table indices. Their purpose
2339// is to help the dynamic linker resolve symbols quickly. If ELF files
2340// don't have them, the dynamic linker has to do linear search on all
2341// dynamic symbols, which makes programs slower. Therefore, a .hash
2342// section is added to a DSO by default.
2343//
2344// The Unix semantics of resolving dynamic symbols is somewhat expensive.
2345// Each ELF file has a list of DSOs that the ELF file depends on and a
2346// list of dynamic symbols that need to be resolved from any of the
2347// DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
2348// where m is the number of DSOs and n is the number of dynamic
2349// symbols. For modern large programs, both m and n are large.  So
2350// making each step faster by using hash tables substantially
2351// improves time to load programs.
2352//
2353// (Note that this is not the only way to design the shared library.
2354// For instance, the Windows DLL takes a different approach. On
2355// Windows, each dynamic symbol has a name of DLL from which the symbol
2356// has to be resolved. That makes the cost of symbol resolution O(n).
2357// This disables some hacky techniques you can use on Unix such as
2358// LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
2359//
2360// Due to historical reasons, we have two different hash tables, .hash
2361// and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
2362// and better version of .hash. .hash is just an on-disk hash table, but
2363// .gnu.hash has a bloom filter in addition to a hash table to skip
2364// DSOs very quickly. If you are sure that your dynamic linker knows
2365// about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a
2366// safe bet is to specify --hash-style=both for backward compatibility.
2367GnuHashTableSection::GnuHashTableSection()
2368    : SyntheticSection(SHF_ALLOC, SHT_GNU_HASH, config->wordsize, ".gnu.hash") {
2369}
2370
2371void GnuHashTableSection::finalizeContents() {
2372  if (OutputSection *sec = getPartition().dynSymTab->getParent())
2373    getParent()->link = sec->sectionIndex;
2374
2375  // Computes bloom filter size in word size. We want to allocate 12
2376  // bits for each symbol. It must be a power of two.
2377  if (symbols.empty()) {
2378    maskWords = 1;
2379  } else {
2380    uint64_t numBits = symbols.size() * 12;
2381    maskWords = NextPowerOf2(numBits / (config->wordsize * 8));
2382  }
2383
2384  size = 16;                            // Header
2385  size += config->wordsize * maskWords; // Bloom filter
2386  size += nBuckets * 4;                 // Hash buckets
2387  size += symbols.size() * 4;           // Hash values
2388}
2389
2390void GnuHashTableSection::writeTo(uint8_t *buf) {
2391  // Write a header.
2392  write32(buf, nBuckets);
2393  write32(buf + 4, getPartition().dynSymTab->getNumSymbols() - symbols.size());
2394  write32(buf + 8, maskWords);
2395  write32(buf + 12, Shift2);
2396  buf += 16;
2397
2398  // Write the 2-bit bloom filter.
2399  const unsigned c = config->is64 ? 64 : 32;
2400  for (const Entry &sym : symbols) {
2401    // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
2402    // the word using bits [0:5] and [26:31].
2403    size_t i = (sym.hash / c) & (maskWords - 1);
2404    uint64_t val = readUint(buf + i * config->wordsize);
2405    val |= uint64_t(1) << (sym.hash % c);
2406    val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
2407    writeUint(buf + i * config->wordsize, val);
2408  }
2409  buf += config->wordsize * maskWords;
2410
2411  // Write the hash table.
2412  uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
2413  uint32_t oldBucket = -1;
2414  uint32_t *values = buckets + nBuckets;
2415  for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
2416    // Write a hash value. It represents a sequence of chains that share the
2417    // same hash modulo value. The last element of each chain is terminated by
2418    // LSB 1.
2419    uint32_t hash = i->hash;
2420    bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
2421    hash = isLastInChain ? hash | 1 : hash & ~1;
2422    write32(values++, hash);
2423
2424    if (i->bucketIdx == oldBucket)
2425      continue;
2426    // Write a hash bucket. Hash buckets contain indices in the following hash
2427    // value table.
2428    write32(buckets + i->bucketIdx,
2429            getPartition().dynSymTab->getSymbolIndex(i->sym));
2430    oldBucket = i->bucketIdx;
2431  }
2432}
2433
2434// Add symbols to this symbol hash table. Note that this function
2435// destructively sort a given vector -- which is needed because
2436// GNU-style hash table places some sorting requirements.
2437void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) {
2438  // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
2439  // its type correctly.
2440  auto mid =
2441      std::stable_partition(v.begin(), v.end(), [&](const SymbolTableEntry &s) {
2442        return !s.sym->isDefined() || s.sym->partition != partition;
2443      });
2444
2445  // We chose load factor 4 for the on-disk hash table. For each hash
2446  // collision, the dynamic linker will compare a uint32_t hash value.
2447  // Since the integer comparison is quite fast, we believe we can
2448  // make the load factor even larger. 4 is just a conservative choice.
2449  //
2450  // Note that we don't want to create a zero-sized hash table because
2451  // Android loader as of 2018 doesn't like a .gnu.hash containing such
2452  // table. If that's the case, we create a hash table with one unused
2453  // dummy slot.
2454  nBuckets = std::max<size_t>((v.end() - mid) / 4, 1);
2455
2456  if (mid == v.end())
2457    return;
2458
2459  for (SymbolTableEntry &ent : llvm::make_range(mid, v.end())) {
2460    Symbol *b = ent.sym;
2461    uint32_t hash = hashGnu(b->getName());
2462    uint32_t bucketIdx = hash % nBuckets;
2463    symbols.push_back({b, ent.strTabOffset, hash, bucketIdx});
2464  }
2465
2466  llvm::sort(symbols, [](const Entry &l, const Entry &r) {
2467    return std::tie(l.bucketIdx, l.strTabOffset) <
2468           std::tie(r.bucketIdx, r.strTabOffset);
2469  });
2470
2471  v.erase(mid, v.end());
2472  for (const Entry &ent : symbols)
2473    v.push_back({ent.sym, ent.strTabOffset});
2474}
2475
2476HashTableSection::HashTableSection()
2477    : SyntheticSection(SHF_ALLOC, SHT_HASH, 4, ".hash") {
2478  this->entsize = 4;
2479}
2480
2481void HashTableSection::finalizeContents() {
2482  SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2483
2484  if (OutputSection *sec = symTab->getParent())
2485    getParent()->link = sec->sectionIndex;
2486
2487  unsigned numEntries = 2;               // nbucket and nchain.
2488  numEntries += symTab->getNumSymbols(); // The chain entries.
2489
2490  // Create as many buckets as there are symbols.
2491  numEntries += symTab->getNumSymbols();
2492  this->size = numEntries * 4;
2493}
2494
2495void HashTableSection::writeTo(uint8_t *buf) {
2496  SymbolTableBaseSection *symTab = getPartition().dynSymTab.get();
2497  unsigned numSymbols = symTab->getNumSymbols();
2498
2499  uint32_t *p = reinterpret_cast<uint32_t *>(buf);
2500  write32(p++, numSymbols); // nbucket
2501  write32(p++, numSymbols); // nchain
2502
2503  uint32_t *buckets = p;
2504  uint32_t *chains = p + numSymbols;
2505
2506  for (const SymbolTableEntry &s : symTab->getSymbols()) {
2507    Symbol *sym = s.sym;
2508    StringRef name = sym->getName();
2509    unsigned i = sym->dynsymIndex;
2510    uint32_t hash = hashSysV(name) % numSymbols;
2511    chains[i] = buckets[hash];
2512    write32(buckets + hash, i);
2513  }
2514}
2515
2516PltSection::PltSection()
2517    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt"),
2518      headerSize(target->pltHeaderSize) {
2519  // On PowerPC, this section contains lazy symbol resolvers.
2520  if (config->emachine == EM_PPC64) {
2521    name = ".glink";
2522    addralign = 4;
2523  }
2524
2525  // On x86 when IBT is enabled, this section contains the second PLT (lazy
2526  // symbol resolvers).
2527  if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
2528      (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
2529    name = ".plt.sec";
2530
2531  // The PLT needs to be writable on SPARC as the dynamic linker will
2532  // modify the instructions in the PLT entries.
2533  if (config->emachine == EM_SPARCV9)
2534    this->flags |= SHF_WRITE;
2535}
2536
2537void PltSection::writeTo(uint8_t *buf) {
2538  // At beginning of PLT, we have code to call the dynamic
2539  // linker to resolve dynsyms at runtime. Write such code.
2540  target->writePltHeader(buf);
2541  size_t off = headerSize;
2542
2543  for (const Symbol *sym : entries) {
2544    target->writePlt(buf + off, *sym, getVA() + off);
2545    off += target->pltEntrySize;
2546  }
2547}
2548
2549void PltSection::addEntry(Symbol &sym) {
2550  assert(sym.auxIdx == symAux.size() - 1);
2551  symAux.back().pltIdx = entries.size();
2552  entries.push_back(&sym);
2553}
2554
2555size_t PltSection::getSize() const {
2556  return headerSize + entries.size() * target->pltEntrySize;
2557}
2558
2559bool PltSection::isNeeded() const {
2560  // For -z retpolineplt, .iplt needs the .plt header.
2561  return !entries.empty() || (config->zRetpolineplt && in.iplt->isNeeded());
2562}
2563
2564// Used by ARM to add mapping symbols in the PLT section, which aid
2565// disassembly.
2566void PltSection::addSymbols() {
2567  target->addPltHeaderSymbols(*this);
2568
2569  size_t off = headerSize;
2570  for (size_t i = 0; i < entries.size(); ++i) {
2571    target->addPltSymbols(*this, off);
2572    off += target->pltEntrySize;
2573  }
2574}
2575
2576IpltSection::IpltSection()
2577    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".iplt") {
2578  if (config->emachine == EM_PPC || config->emachine == EM_PPC64) {
2579    name = ".glink";
2580    addralign = 4;
2581  }
2582}
2583
2584void IpltSection::writeTo(uint8_t *buf) {
2585  uint32_t off = 0;
2586  for (const Symbol *sym : entries) {
2587    target->writeIplt(buf + off, *sym, getVA() + off);
2588    off += target->ipltEntrySize;
2589  }
2590}
2591
2592size_t IpltSection::getSize() const {
2593  return entries.size() * target->ipltEntrySize;
2594}
2595
2596void IpltSection::addEntry(Symbol &sym) {
2597  assert(sym.auxIdx == symAux.size() - 1);
2598  symAux.back().pltIdx = entries.size();
2599  entries.push_back(&sym);
2600}
2601
2602// ARM uses mapping symbols to aid disassembly.
2603void IpltSection::addSymbols() {
2604  size_t off = 0;
2605  for (size_t i = 0, e = entries.size(); i != e; ++i) {
2606    target->addPltSymbols(*this, off);
2607    off += target->pltEntrySize;
2608  }
2609}
2610
2611PPC32GlinkSection::PPC32GlinkSection() {
2612  name = ".glink";
2613  addralign = 4;
2614}
2615
2616void PPC32GlinkSection::writeTo(uint8_t *buf) {
2617  writePPC32GlinkSection(buf, entries.size());
2618}
2619
2620size_t PPC32GlinkSection::getSize() const {
2621  return headerSize + entries.size() * target->pltEntrySize + footerSize;
2622}
2623
2624// This is an x86-only extra PLT section and used only when a security
2625// enhancement feature called CET is enabled. In this comment, I'll explain what
2626// the feature is and why we have two PLT sections if CET is enabled.
2627//
2628// So, what does CET do? CET introduces a new restriction to indirect jump
2629// instructions. CET works this way. Assume that CET is enabled. Then, if you
2630// execute an indirect jump instruction, the processor verifies that a special
2631// "landing pad" instruction (which is actually a repurposed NOP instruction and
2632// now called "endbr32" or "endbr64") is at the jump target. If the jump target
2633// does not start with that instruction, the processor raises an exception
2634// instead of continuing executing code.
2635//
2636// If CET is enabled, the compiler emits endbr to all locations where indirect
2637// jumps may jump to.
2638//
2639// This mechanism makes it extremely hard to transfer the control to a middle of
2640// a function that is not supporsed to be a indirect jump target, preventing
2641// certain types of attacks such as ROP or JOP.
2642//
2643// Note that the processors in the market as of 2019 don't actually support the
2644// feature. Only the spec is available at the moment.
2645//
2646// Now, I'll explain why we have this extra PLT section for CET.
2647//
2648// Since you can indirectly jump to a PLT entry, we have to make PLT entries
2649// start with endbr. The problem is there's no extra space for endbr (which is 4
2650// bytes long), as the PLT entry is only 16 bytes long and all bytes are already
2651// used.
2652//
2653// In order to deal with the issue, we split a PLT entry into two PLT entries.
2654// Remember that each PLT entry contains code to jump to an address read from
2655// .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
2656// the former code is written to .plt.sec, and the latter code is written to
2657// .plt.
2658//
2659// Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
2660// that the regular .plt is now called .plt.sec and .plt is repurposed to
2661// contain only code for lazy symbol resolution.
2662//
2663// In other words, this is how the 2-PLT scheme works. Application code is
2664// supposed to jump to .plt.sec to call an external function. Each .plt.sec
2665// entry contains code to read an address from a corresponding .got.plt entry
2666// and jump to that address. Addresses in .got.plt initially point to .plt, so
2667// when an application calls an external function for the first time, the
2668// control is transferred to a function that resolves a symbol name from
2669// external shared object files. That function then rewrites a .got.plt entry
2670// with a resolved address, so that the subsequent function calls directly jump
2671// to a desired location from .plt.sec.
2672//
2673// There is an open question as to whether the 2-PLT scheme was desirable or
2674// not. We could have simply extended the PLT entry size to 32-bytes to
2675// accommodate endbr, and that scheme would have been much simpler than the
2676// 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
2677// code (.plt.sec) from cold code (.plt). But as far as I know no one proved
2678// that the optimization actually makes a difference.
2679//
2680// That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
2681// depend on it, so we implement the ABI.
2682IBTPltSection::IBTPltSection()
2683    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 16, ".plt") {}
2684
2685void IBTPltSection::writeTo(uint8_t *buf) {
2686  target->writeIBTPlt(buf, in.plt->getNumEntries());
2687}
2688
2689size_t IBTPltSection::getSize() const {
2690  // 16 is the header size of .plt.
2691  return 16 + in.plt->getNumEntries() * target->pltEntrySize;
2692}
2693
2694bool IBTPltSection::isNeeded() const { return in.plt->getNumEntries() > 0; }
2695
2696RelroPaddingSection::RelroPaddingSection()
2697    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_NOBITS, 1, ".relro_padding") {
2698}
2699
2700// The string hash function for .gdb_index.
2701static uint32_t computeGdbHash(StringRef s) {
2702  uint32_t h = 0;
2703  for (uint8_t c : s)
2704    h = h * 67 + toLower(c) - 113;
2705  return h;
2706}
2707
2708GdbIndexSection::GdbIndexSection()
2709    : SyntheticSection(0, SHT_PROGBITS, 1, ".gdb_index") {}
2710
2711// Returns the desired size of an on-disk hash table for a .gdb_index section.
2712// There's a tradeoff between size and collision rate. We aim 75% utilization.
2713size_t GdbIndexSection::computeSymtabSize() const {
2714  return std::max<size_t>(NextPowerOf2(symbols.size() * 4 / 3), 1024);
2715}
2716
2717static SmallVector<GdbIndexSection::CuEntry, 0>
2718readCuList(DWARFContext &dwarf) {
2719  SmallVector<GdbIndexSection::CuEntry, 0> ret;
2720  for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
2721    ret.push_back({cu->getOffset(), cu->getLength() + 4});
2722  return ret;
2723}
2724
2725static SmallVector<GdbIndexSection::AddressEntry, 0>
2726readAddressAreas(DWARFContext &dwarf, InputSection *sec) {
2727  SmallVector<GdbIndexSection::AddressEntry, 0> ret;
2728
2729  uint32_t cuIdx = 0;
2730  for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
2731    if (Error e = cu->tryExtractDIEsIfNeeded(false)) {
2732      warn(toString(sec) + ": " + toString(std::move(e)));
2733      return {};
2734    }
2735    Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
2736    if (!ranges) {
2737      warn(toString(sec) + ": " + toString(ranges.takeError()));
2738      return {};
2739    }
2740
2741    ArrayRef<InputSectionBase *> sections = sec->file->getSections();
2742    for (DWARFAddressRange &r : *ranges) {
2743      if (r.SectionIndex == -1ULL)
2744        continue;
2745      // Range list with zero size has no effect.
2746      InputSectionBase *s = sections[r.SectionIndex];
2747      if (s && s != &InputSection::discarded && s->isLive())
2748        if (r.LowPC != r.HighPC)
2749          ret.push_back({cast<InputSection>(s), r.LowPC, r.HighPC, cuIdx});
2750    }
2751    ++cuIdx;
2752  }
2753
2754  return ret;
2755}
2756
2757template <class ELFT>
2758static SmallVector<GdbIndexSection::NameAttrEntry, 0>
2759readPubNamesAndTypes(const LLDDwarfObj<ELFT> &obj,
2760                     const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) {
2761  const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
2762  const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();
2763
2764  SmallVector<GdbIndexSection::NameAttrEntry, 0> ret;
2765  for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
2766    DWARFDataExtractor data(obj, *pub, config->isLE, config->wordsize);
2767    DWARFDebugPubTable table;
2768    table.extract(data, /*GnuStyle=*/true, [&](Error e) {
2769      warn(toString(pub->sec) + ": " + toString(std::move(e)));
2770    });
2771    for (const DWARFDebugPubTable::Set &set : table.getData()) {
2772      // The value written into the constant pool is kind << 24 | cuIndex. As we
2773      // don't know how many compilation units precede this object to compute
2774      // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
2775      // the number of preceding compilation units later.
2776      uint32_t i = llvm::partition_point(cus,
2777                                         [&](GdbIndexSection::CuEntry cu) {
2778                                           return cu.cuOffset < set.Offset;
2779                                         }) -
2780                   cus.begin();
2781      for (const DWARFDebugPubTable::Entry &ent : set.Entries)
2782        ret.push_back({{ent.Name, computeGdbHash(ent.Name)},
2783                       (ent.Descriptor.toBits() << 24) | i});
2784    }
2785  }
2786  return ret;
2787}
2788
2789// Create a list of symbols from a given list of symbol names and types
2790// by uniquifying them by name.
2791static std::pair<SmallVector<GdbIndexSection::GdbSymbol, 0>, size_t>
2792createSymbols(
2793    ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs,
2794    const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) {
2795  using GdbSymbol = GdbIndexSection::GdbSymbol;
2796  using NameAttrEntry = GdbIndexSection::NameAttrEntry;
2797
2798  // For each chunk, compute the number of compilation units preceding it.
2799  uint32_t cuIdx = 0;
2800  std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]);
2801  for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
2802    cuIdxs[i] = cuIdx;
2803    cuIdx += chunks[i].compilationUnits.size();
2804  }
2805
2806  // The number of symbols we will handle in this function is of the order
2807  // of millions for very large executables, so we use multi-threading to
2808  // speed it up.
2809  constexpr size_t numShards = 32;
2810  const size_t concurrency =
2811      llvm::bit_floor(std::min<size_t>(config->threadCount, numShards));
2812
2813  // A sharded map to uniquify symbols by name.
2814  auto map =
2815      std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(numShards);
2816  size_t shift = 32 - llvm::countr_zero(numShards);
2817
2818  // Instantiate GdbSymbols while uniqufying them by name.
2819  auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(numShards);
2820
2821  parallelFor(0, concurrency, [&](size_t threadId) {
2822    uint32_t i = 0;
2823    for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
2824      for (const NameAttrEntry &ent : entries) {
2825        size_t shardId = ent.name.hash() >> shift;
2826        if ((shardId & (concurrency - 1)) != threadId)
2827          continue;
2828
2829        uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
2830        size_t &idx = map[shardId][ent.name];
2831        if (idx) {
2832          symbols[shardId][idx - 1].cuVector.push_back(v);
2833          continue;
2834        }
2835
2836        idx = symbols[shardId].size() + 1;
2837        symbols[shardId].push_back({ent.name, {v}, 0, 0});
2838      }
2839      ++i;
2840    }
2841  });
2842
2843  size_t numSymbols = 0;
2844  for (ArrayRef<GdbSymbol> v : ArrayRef(symbols.get(), numShards))
2845    numSymbols += v.size();
2846
2847  // The return type is a flattened vector, so we'll copy each vector
2848  // contents to Ret.
2849  SmallVector<GdbSymbol, 0> ret;
2850  ret.reserve(numSymbols);
2851  for (SmallVector<GdbSymbol, 0> &vec :
2852       MutableArrayRef(symbols.get(), numShards))
2853    for (GdbSymbol &sym : vec)
2854      ret.push_back(std::move(sym));
2855
2856  // CU vectors and symbol names are adjacent in the output file.
2857  // We can compute their offsets in the output file now.
2858  size_t off = 0;
2859  for (GdbSymbol &sym : ret) {
2860    sym.cuVectorOff = off;
2861    off += (sym.cuVector.size() + 1) * 4;
2862  }
2863  for (GdbSymbol &sym : ret) {
2864    sym.nameOff = off;
2865    off += sym.name.size() + 1;
2866  }
2867  // If off overflows, the last symbol's nameOff likely overflows.
2868  if (!isUInt<32>(off))
2869    errorOrWarn("--gdb-index: constant pool size (" + Twine(off) +
2870                ") exceeds UINT32_MAX");
2871
2872  return {ret, off};
2873}
2874
2875// Returns a newly-created .gdb_index section.
2876template <class ELFT> GdbIndexSection *GdbIndexSection::create() {
2877  llvm::TimeTraceScope timeScope("Create gdb index");
2878
2879  // Collect InputFiles with .debug_info. See the comment in
2880  // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
2881  // note that isec->data() may uncompress the full content, which should be
2882  // parallelized.
2883  SetVector<InputFile *> files;
2884  for (InputSectionBase *s : ctx.inputSections) {
2885    InputSection *isec = dyn_cast<InputSection>(s);
2886    if (!isec)
2887      continue;
2888    // .debug_gnu_pub{names,types} are useless in executables.
2889    // They are present in input object files solely for creating
2890    // a .gdb_index. So we can remove them from the output.
2891    if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
2892      s->markDead();
2893    else if (isec->name == ".debug_info")
2894      files.insert(isec->file);
2895  }
2896  // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs.
2897  llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
2898    if (auto *isec = dyn_cast<InputSection>(s))
2899      if (InputSectionBase *rel = isec->getRelocatedSection())
2900        return !rel->isLive();
2901    return !s->isLive();
2902  });
2903
2904  SmallVector<GdbChunk, 0> chunks(files.size());
2905  SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size());
2906
2907  parallelFor(0, files.size(), [&](size_t i) {
2908    // To keep memory usage low, we don't want to keep cached DWARFContext, so
2909    // avoid getDwarf() here.
2910    ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
2911    DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
2912    auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
2913
2914    // If the are multiple compile units .debug_info (very rare ld -r --unique),
2915    // this only picks the last one. Other address ranges are lost.
2916    chunks[i].sec = dobj.getInfoSection();
2917    chunks[i].compilationUnits = readCuList(dwarf);
2918    chunks[i].addressAreas = readAddressAreas(dwarf, chunks[i].sec);
2919    nameAttrs[i] = readPubNamesAndTypes<ELFT>(dobj, chunks[i].compilationUnits);
2920  });
2921
2922  auto *ret = make<GdbIndexSection>();
2923  ret->chunks = std::move(chunks);
2924  std::tie(ret->symbols, ret->size) = createSymbols(nameAttrs, ret->chunks);
2925
2926  // Count the areas other than the constant pool.
2927  ret->size += sizeof(GdbIndexHeader) + ret->computeSymtabSize() * 8;
2928  for (GdbChunk &chunk : ret->chunks)
2929    ret->size +=
2930        chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
2931
2932  return ret;
2933}
2934
2935void GdbIndexSection::writeTo(uint8_t *buf) {
2936  // Write the header.
2937  auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
2938  uint8_t *start = buf;
2939  hdr->version = 7;
2940  buf += sizeof(*hdr);
2941
2942  // Write the CU list.
2943  hdr->cuListOff = buf - start;
2944  for (GdbChunk &chunk : chunks) {
2945    for (CuEntry &cu : chunk.compilationUnits) {
2946      write64le(buf, chunk.sec->outSecOff + cu.cuOffset);
2947      write64le(buf + 8, cu.cuLength);
2948      buf += 16;
2949    }
2950  }
2951
2952  // Write the address area.
2953  hdr->cuTypesOff = buf - start;
2954  hdr->addressAreaOff = buf - start;
2955  uint32_t cuOff = 0;
2956  for (GdbChunk &chunk : chunks) {
2957    for (AddressEntry &e : chunk.addressAreas) {
2958      // In the case of ICF there may be duplicate address range entries.
2959      const uint64_t baseAddr = e.section->repl->getVA(0);
2960      write64le(buf, baseAddr + e.lowAddress);
2961      write64le(buf + 8, baseAddr + e.highAddress);
2962      write32le(buf + 16, e.cuIndex + cuOff);
2963      buf += 20;
2964    }
2965    cuOff += chunk.compilationUnits.size();
2966  }
2967
2968  // Write the on-disk open-addressing hash table containing symbols.
2969  hdr->symtabOff = buf - start;
2970  size_t symtabSize = computeSymtabSize();
2971  uint32_t mask = symtabSize - 1;
2972
2973  for (GdbSymbol &sym : symbols) {
2974    uint32_t h = sym.name.hash();
2975    uint32_t i = h & mask;
2976    uint32_t step = ((h * 17) & mask) | 1;
2977
2978    while (read32le(buf + i * 8))
2979      i = (i + step) & mask;
2980
2981    write32le(buf + i * 8, sym.nameOff);
2982    write32le(buf + i * 8 + 4, sym.cuVectorOff);
2983  }
2984
2985  buf += symtabSize * 8;
2986
2987  // Write the string pool.
2988  hdr->constantPoolOff = buf - start;
2989  parallelForEach(symbols, [&](GdbSymbol &sym) {
2990    memcpy(buf + sym.nameOff, sym.name.data(), sym.name.size());
2991  });
2992
2993  // Write the CU vectors.
2994  for (GdbSymbol &sym : symbols) {
2995    write32le(buf, sym.cuVector.size());
2996    buf += 4;
2997    for (uint32_t val : sym.cuVector) {
2998      write32le(buf, val);
2999      buf += 4;
3000    }
3001  }
3002}
3003
3004bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
3005
3006EhFrameHeader::EhFrameHeader()
3007    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".eh_frame_hdr") {}
3008
3009void EhFrameHeader::writeTo(uint8_t *buf) {
3010  // Unlike most sections, the EhFrameHeader section is written while writing
3011  // another section, namely EhFrameSection, which calls the write() function
3012  // below from its writeTo() function. This is necessary because the contents
3013  // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
3014  // don't know which order the sections will be written in.
3015}
3016
3017// .eh_frame_hdr contains a binary search table of pointers to FDEs.
3018// Each entry of the search table consists of two values,
3019// the starting PC from where FDEs covers, and the FDE's address.
3020// It is sorted by PC.
3021void EhFrameHeader::write() {
3022  uint8_t *buf = Out::bufferStart + getParent()->offset + outSecOff;
3023  using FdeData = EhFrameSection::FdeData;
3024  SmallVector<FdeData, 0> fdes = getPartition().ehFrame->getFdeData();
3025
3026  buf[0] = 1;
3027  buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
3028  buf[2] = DW_EH_PE_udata4;
3029  buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
3030  write32(buf + 4,
3031          getPartition().ehFrame->getParent()->addr - this->getVA() - 4);
3032  write32(buf + 8, fdes.size());
3033  buf += 12;
3034
3035  for (FdeData &fde : fdes) {
3036    write32(buf, fde.pcRel);
3037    write32(buf + 4, fde.fdeVARel);
3038    buf += 8;
3039  }
3040}
3041
3042size_t EhFrameHeader::getSize() const {
3043  // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
3044  return 12 + getPartition().ehFrame->numFdes * 8;
3045}
3046
3047bool EhFrameHeader::isNeeded() const {
3048  return isLive() && getPartition().ehFrame->isNeeded();
3049}
3050
3051VersionDefinitionSection::VersionDefinitionSection()
3052    : SyntheticSection(SHF_ALLOC, SHT_GNU_verdef, sizeof(uint32_t),
3053                       ".gnu.version_d") {}
3054
3055StringRef VersionDefinitionSection::getFileDefName() {
3056  if (!getPartition().name.empty())
3057    return getPartition().name;
3058  if (!config->soName.empty())
3059    return config->soName;
3060  return config->outputFile;
3061}
3062
3063void VersionDefinitionSection::finalizeContents() {
3064  fileDefNameOff = getPartition().dynStrTab->addString(getFileDefName());
3065  for (const VersionDefinition &v : namedVersionDefs())
3066    verDefNameOffs.push_back(getPartition().dynStrTab->addString(v.name));
3067
3068  if (OutputSection *sec = getPartition().dynStrTab->getParent())
3069    getParent()->link = sec->sectionIndex;
3070
3071  // sh_info should be set to the number of definitions. This fact is missed in
3072  // documentation, but confirmed by binutils community:
3073  // https://sourceware.org/ml/binutils/2014-11/msg00355.html
3074  getParent()->info = getVerDefNum();
3075}
3076
3077void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
3078                                        StringRef name, size_t nameOff) {
3079  uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
3080
3081  // Write a verdef.
3082  write16(buf, 1);                  // vd_version
3083  write16(buf + 2, flags);          // vd_flags
3084  write16(buf + 4, index);          // vd_ndx
3085  write16(buf + 6, 1);              // vd_cnt
3086  write32(buf + 8, hashSysV(name)); // vd_hash
3087  write32(buf + 12, 20);            // vd_aux
3088  write32(buf + 16, 28);            // vd_next
3089
3090  // Write a veraux.
3091  write32(buf + 20, nameOff); // vda_name
3092  write32(buf + 24, 0);       // vda_next
3093}
3094
3095void VersionDefinitionSection::writeTo(uint8_t *buf) {
3096  writeOne(buf, 1, getFileDefName(), fileDefNameOff);
3097
3098  auto nameOffIt = verDefNameOffs.begin();
3099  for (const VersionDefinition &v : namedVersionDefs()) {
3100    buf += EntrySize;
3101    writeOne(buf, v.id, v.name, *nameOffIt++);
3102  }
3103
3104  // Need to terminate the last version definition.
3105  write32(buf + 16, 0); // vd_next
3106}
3107
3108size_t VersionDefinitionSection::getSize() const {
3109  return EntrySize * getVerDefNum();
3110}
3111
3112// .gnu.version is a table where each entry is 2 byte long.
3113VersionTableSection::VersionTableSection()
3114    : SyntheticSection(SHF_ALLOC, SHT_GNU_versym, sizeof(uint16_t),
3115                       ".gnu.version") {
3116  this->entsize = 2;
3117}
3118
3119void VersionTableSection::finalizeContents() {
3120  // At the moment of june 2016 GNU docs does not mention that sh_link field
3121  // should be set, but Sun docs do. Also readelf relies on this field.
3122  getParent()->link = getPartition().dynSymTab->getParent()->sectionIndex;
3123}
3124
3125size_t VersionTableSection::getSize() const {
3126  return (getPartition().dynSymTab->getSymbols().size() + 1) * 2;
3127}
3128
3129void VersionTableSection::writeTo(uint8_t *buf) {
3130  buf += 2;
3131  for (const SymbolTableEntry &s : getPartition().dynSymTab->getSymbols()) {
3132    // For an unextracted lazy symbol (undefined weak), it must have been
3133    // converted to Undefined and have VER_NDX_GLOBAL version here.
3134    assert(!s.sym->isLazy());
3135    write16(buf, s.sym->versionId);
3136    buf += 2;
3137  }
3138}
3139
3140bool VersionTableSection::isNeeded() const {
3141  return isLive() &&
3142         (getPartition().verDef || getPartition().verNeed->isNeeded());
3143}
3144
3145void elf::addVerneed(Symbol *ss) {
3146  auto &file = cast<SharedFile>(*ss->file);
3147  if (ss->versionId == VER_NDX_GLOBAL)
3148    return;
3149
3150  if (file.vernauxs.empty())
3151    file.vernauxs.resize(file.verdefs.size());
3152
3153  // Select a version identifier for the vernaux data structure, if we haven't
3154  // already allocated one. The verdef identifiers cover the range
3155  // [1..getVerDefNum()]; this causes the vernaux identifiers to start from
3156  // getVerDefNum()+1.
3157  if (file.vernauxs[ss->versionId] == 0)
3158    file.vernauxs[ss->versionId] = ++SharedFile::vernauxNum + getVerDefNum();
3159
3160  ss->versionId = file.vernauxs[ss->versionId];
3161}
3162
3163template <class ELFT>
3164VersionNeedSection<ELFT>::VersionNeedSection()
3165    : SyntheticSection(SHF_ALLOC, SHT_GNU_verneed, sizeof(uint32_t),
3166                       ".gnu.version_r") {}
3167
3168template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
3169  for (SharedFile *f : ctx.sharedFiles) {
3170    if (f->vernauxs.empty())
3171      continue;
3172    verneeds.emplace_back();
3173    Verneed &vn = verneeds.back();
3174    vn.nameStrTab = getPartition().dynStrTab->addString(f->soName);
3175    bool isLibc = config->relrGlibc && f->soName.starts_with("libc.so.");
3176    bool isGlibc2 = false;
3177    for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
3178      if (f->vernauxs[i] == 0)
3179        continue;
3180      auto *verdef =
3181          reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
3182      StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name);
3183      if (isLibc && ver.starts_with("GLIBC_2."))
3184        isGlibc2 = true;
3185      vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i],
3186                             getPartition().dynStrTab->addString(ver)});
3187    }
3188    if (isGlibc2) {
3189      const char *ver = "GLIBC_ABI_DT_RELR";
3190      vn.vernauxs.push_back({hashSysV(ver),
3191                             ++SharedFile::vernauxNum + getVerDefNum(),
3192                             getPartition().dynStrTab->addString(ver)});
3193    }
3194  }
3195
3196  if (OutputSection *sec = getPartition().dynStrTab->getParent())
3197    getParent()->link = sec->sectionIndex;
3198  getParent()->info = verneeds.size();
3199}
3200
3201template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
3202  // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
3203  auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
3204  auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
3205
3206  for (auto &vn : verneeds) {
3207    // Create an Elf_Verneed for this DSO.
3208    verneed->vn_version = 1;
3209    verneed->vn_cnt = vn.vernauxs.size();
3210    verneed->vn_file = vn.nameStrTab;
3211    verneed->vn_aux =
3212        reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
3213    verneed->vn_next = sizeof(Elf_Verneed);
3214    ++verneed;
3215
3216    // Create the Elf_Vernauxs for this Elf_Verneed.
3217    for (auto &vna : vn.vernauxs) {
3218      vernaux->vna_hash = vna.hash;
3219      vernaux->vna_flags = 0;
3220      vernaux->vna_other = vna.verneedIndex;
3221      vernaux->vna_name = vna.nameStrTab;
3222      vernaux->vna_next = sizeof(Elf_Vernaux);
3223      ++vernaux;
3224    }
3225
3226    vernaux[-1].vna_next = 0;
3227  }
3228  verneed[-1].vn_next = 0;
3229}
3230
3231template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
3232  return verneeds.size() * sizeof(Elf_Verneed) +
3233         SharedFile::vernauxNum * sizeof(Elf_Vernaux);
3234}
3235
3236template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
3237  return isLive() && SharedFile::vernauxNum != 0;
3238}
3239
3240void MergeSyntheticSection::addSection(MergeInputSection *ms) {
3241  ms->parent = this;
3242  sections.push_back(ms);
3243  assert(addralign == ms->addralign || !(ms->flags & SHF_STRINGS));
3244  addralign = std::max(addralign, ms->addralign);
3245}
3246
3247MergeTailSection::MergeTailSection(StringRef name, uint32_t type,
3248                                   uint64_t flags, uint32_t alignment)
3249    : MergeSyntheticSection(name, type, flags, alignment),
3250      builder(StringTableBuilder::RAW, llvm::Align(alignment)) {}
3251
3252size_t MergeTailSection::getSize() const { return builder.getSize(); }
3253
3254void MergeTailSection::writeTo(uint8_t *buf) { builder.write(buf); }
3255
3256void MergeTailSection::finalizeContents() {
3257  // Add all string pieces to the string table builder to create section
3258  // contents.
3259  for (MergeInputSection *sec : sections)
3260    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3261      if (sec->pieces[i].live)
3262        builder.add(sec->getData(i));
3263
3264  // Fix the string table content. After this, the contents will never change.
3265  builder.finalize();
3266
3267  // finalize() fixed tail-optimized strings, so we can now get
3268  // offsets of strings. Get an offset for each string and save it
3269  // to a corresponding SectionPiece for easy access.
3270  for (MergeInputSection *sec : sections)
3271    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3272      if (sec->pieces[i].live)
3273        sec->pieces[i].outputOff = builder.getOffset(sec->getData(i));
3274}
3275
3276void MergeNoTailSection::writeTo(uint8_t *buf) {
3277  parallelFor(0, numShards,
3278              [&](size_t i) { shards[i].write(buf + shardOffsets[i]); });
3279}
3280
3281// This function is very hot (i.e. it can take several seconds to finish)
3282// because sometimes the number of inputs is in an order of magnitude of
3283// millions. So, we use multi-threading.
3284//
3285// For any strings S and T, we know S is not mergeable with T if S's hash
3286// value is different from T's. If that's the case, we can safely put S and
3287// T into different string builders without worrying about merge misses.
3288// We do it in parallel.
3289void MergeNoTailSection::finalizeContents() {
3290  // Initializes string table builders.
3291  for (size_t i = 0; i < numShards; ++i)
3292    shards.emplace_back(StringTableBuilder::RAW, llvm::Align(addralign));
3293
3294  // Concurrency level. Must be a power of 2 to avoid expensive modulo
3295  // operations in the following tight loop.
3296  const size_t concurrency =
3297      llvm::bit_floor(std::min<size_t>(config->threadCount, numShards));
3298
3299  // Add section pieces to the builders.
3300  parallelFor(0, concurrency, [&](size_t threadId) {
3301    for (MergeInputSection *sec : sections) {
3302      for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
3303        if (!sec->pieces[i].live)
3304          continue;
3305        size_t shardId = getShardId(sec->pieces[i].hash);
3306        if ((shardId & (concurrency - 1)) == threadId)
3307          sec->pieces[i].outputOff = shards[shardId].add(sec->getData(i));
3308      }
3309    }
3310  });
3311
3312  // Compute an in-section offset for each shard.
3313  size_t off = 0;
3314  for (size_t i = 0; i < numShards; ++i) {
3315    shards[i].finalizeInOrder();
3316    if (shards[i].getSize() > 0)
3317      off = alignToPowerOf2(off, addralign);
3318    shardOffsets[i] = off;
3319    off += shards[i].getSize();
3320  }
3321  size = off;
3322
3323  // So far, section pieces have offsets from beginning of shards, but
3324  // we want offsets from beginning of the whole section. Fix them.
3325  parallelForEach(sections, [&](MergeInputSection *sec) {
3326    for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3327      if (sec->pieces[i].live)
3328        sec->pieces[i].outputOff +=
3329            shardOffsets[getShardId(sec->pieces[i].hash)];
3330  });
3331}
3332
3333template <class ELFT> void elf::splitSections() {
3334  llvm::TimeTraceScope timeScope("Split sections");
3335  // splitIntoPieces needs to be called on each MergeInputSection
3336  // before calling finalizeContents().
3337  parallelForEach(ctx.objectFiles, [](ELFFileBase *file) {
3338    for (InputSectionBase *sec : file->getSections()) {
3339      if (!sec)
3340        continue;
3341      if (auto *s = dyn_cast<MergeInputSection>(sec))
3342        s->splitIntoPieces();
3343      else if (auto *eh = dyn_cast<EhInputSection>(sec))
3344        eh->split<ELFT>();
3345    }
3346  });
3347}
3348
3349void elf::combineEhSections() {
3350  llvm::TimeTraceScope timeScope("Combine EH sections");
3351  for (EhInputSection *sec : ctx.ehInputSections) {
3352    EhFrameSection &eh = *sec->getPartition().ehFrame;
3353    sec->parent = &eh;
3354    eh.addralign = std::max(eh.addralign, sec->addralign);
3355    eh.sections.push_back(sec);
3356    llvm::append_range(eh.dependentSections, sec->dependentSections);
3357  }
3358
3359  if (!mainPart->armExidx)
3360    return;
3361  llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
3362    // Ignore dead sections and the partition end marker (.part.end),
3363    // whose partition number is out of bounds.
3364    if (!s->isLive() || s->partition == 255)
3365      return false;
3366    Partition &part = s->getPartition();
3367    return s->kind() == SectionBase::Regular && part.armExidx &&
3368           part.armExidx->addSection(cast<InputSection>(s));
3369  });
3370}
3371
3372MipsRldMapSection::MipsRldMapSection()
3373    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, config->wordsize,
3374                       ".rld_map") {}
3375
3376ARMExidxSyntheticSection::ARMExidxSyntheticSection()
3377    : SyntheticSection(SHF_ALLOC | SHF_LINK_ORDER, SHT_ARM_EXIDX,
3378                       config->wordsize, ".ARM.exidx") {}
3379
3380static InputSection *findExidxSection(InputSection *isec) {
3381  for (InputSection *d : isec->dependentSections)
3382    if (d->type == SHT_ARM_EXIDX && d->isLive())
3383      return d;
3384  return nullptr;
3385}
3386
3387static bool isValidExidxSectionDep(InputSection *isec) {
3388  return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
3389         isec->getSize() > 0;
3390}
3391
3392bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
3393  if (isec->type == SHT_ARM_EXIDX) {
3394    if (InputSection *dep = isec->getLinkOrderDep())
3395      if (isValidExidxSectionDep(dep)) {
3396        exidxSections.push_back(isec);
3397        // Every exidxSection is 8 bytes, we need an estimate of
3398        // size before assignAddresses can be called. Final size
3399        // will only be known after finalize is called.
3400        size += 8;
3401      }
3402    return true;
3403  }
3404
3405  if (isValidExidxSectionDep(isec)) {
3406    executableSections.push_back(isec);
3407    return false;
3408  }
3409
3410  // FIXME: we do not output a relocation section when --emit-relocs is used
3411  // as we do not have relocation sections for linker generated table entries
3412  // and we would have to erase at a late stage relocations from merged entries.
3413  // Given that exception tables are already position independent and a binary
3414  // analyzer could derive the relocations we choose to erase the relocations.
3415  if (config->emitRelocs && isec->type == SHT_REL)
3416    if (InputSectionBase *ex = isec->getRelocatedSection())
3417      if (isa<InputSection>(ex) && ex->type == SHT_ARM_EXIDX)
3418        return true;
3419
3420  return false;
3421}
3422
3423// References to .ARM.Extab Sections have bit 31 clear and are not the
3424// special EXIDX_CANTUNWIND bit-pattern.
3425static bool isExtabRef(uint32_t unwind) {
3426  return (unwind & 0x80000000) == 0 && unwind != 0x1;
3427}
3428
3429// Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
3430// section Prev, where Cur follows Prev in the table. This can be done if the
3431// unwinding instructions in Cur are identical to Prev. Linker generated
3432// EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
3433// InputSection.
3434static bool isDuplicateArmExidxSec(InputSection *prev, InputSection *cur) {
3435  // Get the last table Entry from the previous .ARM.exidx section. If Prev is
3436  // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
3437  uint32_t prevUnwind = 1;
3438  if (prev)
3439    prevUnwind = read32(prev->content().data() + prev->content().size() - 4);
3440  if (isExtabRef(prevUnwind))
3441    return false;
3442
3443  // We consider the unwind instructions of an .ARM.exidx table entry
3444  // a duplicate if the previous unwind instructions if:
3445  // - Both are the special EXIDX_CANTUNWIND.
3446  // - Both are the same inline unwind instructions.
3447  // We do not attempt to follow and check links into .ARM.extab tables as
3448  // consecutive identical entries are rare and the effort to check that they
3449  // are identical is high.
3450
3451  // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
3452  if (cur == nullptr)
3453    return prevUnwind == 1;
3454
3455  for (uint32_t offset = 4; offset < (uint32_t)cur->content().size(); offset +=8) {
3456    uint32_t curUnwind = read32(cur->content().data() + offset);
3457    if (isExtabRef(curUnwind) || curUnwind != prevUnwind)
3458      return false;
3459  }
3460  // All table entries in this .ARM.exidx Section can be merged into the
3461  // previous Section.
3462  return true;
3463}
3464
3465// The .ARM.exidx table must be sorted in ascending order of the address of the
3466// functions the table describes. std::optionally duplicate adjacent table
3467// entries can be removed. At the end of the function the executableSections
3468// must be sorted in ascending order of address, Sentinel is set to the
3469// InputSection with the highest address and any InputSections that have
3470// mergeable .ARM.exidx table entries are removed from it.
3471void ARMExidxSyntheticSection::finalizeContents() {
3472  // The executableSections and exidxSections that we use to derive the final
3473  // contents of this SyntheticSection are populated before
3474  // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
3475  // ICF may remove executable InputSections and their dependent .ARM.exidx
3476  // section that we recorded earlier.
3477  auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
3478  llvm::erase_if(exidxSections, isDiscarded);
3479  // We need to remove discarded InputSections and InputSections without
3480  // .ARM.exidx sections that if we generated the .ARM.exidx it would be out
3481  // of range.
3482  auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
3483    if (!isec->isLive())
3484      return true;
3485    if (findExidxSection(isec))
3486      return false;
3487    int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
3488    return off != llvm::SignExtend64(off, 31);
3489  };
3490  llvm::erase_if(executableSections, isDiscardedOrOutOfRange);
3491
3492  // Sort the executable sections that may or may not have associated
3493  // .ARM.exidx sections by order of ascending address. This requires the
3494  // relative positions of InputSections and OutputSections to be known.
3495  auto compareByFilePosition = [](const InputSection *a,
3496                                  const InputSection *b) {
3497    OutputSection *aOut = a->getParent();
3498    OutputSection *bOut = b->getParent();
3499
3500    if (aOut != bOut)
3501      return aOut->addr < bOut->addr;
3502    return a->outSecOff < b->outSecOff;
3503  };
3504  llvm::stable_sort(executableSections, compareByFilePosition);
3505  sentinel = executableSections.back();
3506  // std::optionally merge adjacent duplicate entries.
3507  if (config->mergeArmExidx) {
3508    SmallVector<InputSection *, 0> selectedSections;
3509    selectedSections.reserve(executableSections.size());
3510    selectedSections.push_back(executableSections[0]);
3511    size_t prev = 0;
3512    for (size_t i = 1; i < executableSections.size(); ++i) {
3513      InputSection *ex1 = findExidxSection(executableSections[prev]);
3514      InputSection *ex2 = findExidxSection(executableSections[i]);
3515      if (!isDuplicateArmExidxSec(ex1, ex2)) {
3516        selectedSections.push_back(executableSections[i]);
3517        prev = i;
3518      }
3519    }
3520    executableSections = std::move(selectedSections);
3521  }
3522  // offset is within the SyntheticSection.
3523  size_t offset = 0;
3524  size = 0;
3525  for (InputSection *isec : executableSections) {
3526    if (InputSection *d = findExidxSection(isec)) {
3527      d->outSecOff = offset;
3528      d->parent = getParent();
3529      offset += d->getSize();
3530    } else {
3531      offset += 8;
3532    }
3533  }
3534  // Size includes Sentinel.
3535  size = offset + 8;
3536}
3537
3538InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
3539  return executableSections.front();
3540}
3541
3542// To write the .ARM.exidx table from the ExecutableSections we have three cases
3543// 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
3544//     We write the .ARM.exidx section contents and apply its relocations.
3545// 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
3546//     must write the contents of an EXIDX_CANTUNWIND directly. We use the
3547//     start of the InputSection as the purpose of the linker generated
3548//     section is to terminate the address range of the previous entry.
3549// 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
3550//     the table to terminate the address range of the final entry.
3551void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
3552
3553  // A linker generated CANTUNWIND entry is made up of two words:
3554  // 0x0 with R_ARM_PREL31 relocation to target.
3555  // 0x1 with EXIDX_CANTUNWIND.
3556  uint64_t offset = 0;
3557  for (InputSection *isec : executableSections) {
3558    assert(isec->getParent() != nullptr);
3559    if (InputSection *d = findExidxSection(isec)) {
3560      for (int dataOffset = 0; dataOffset != (int)d->content().size();
3561           dataOffset += 4)
3562        write32(buf + offset + dataOffset,
3563                read32(d->content().data() + dataOffset));
3564      // Recalculate outSecOff as finalizeAddressDependentContent()
3565      // may have altered syntheticSection outSecOff.
3566      d->outSecOff = offset + outSecOff;
3567      target->relocateAlloc(*d, buf + offset);
3568      offset += d->getSize();
3569    } else {
3570      // A Linker generated CANTUNWIND section.
3571      write32(buf + offset + 0, 0x0);
3572      write32(buf + offset + 4, 0x1);
3573      uint64_t s = isec->getVA();
3574      uint64_t p = getVA() + offset;
3575      target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3576      offset += 8;
3577    }
3578  }
3579  // Write Sentinel CANTUNWIND entry.
3580  write32(buf + offset + 0, 0x0);
3581  write32(buf + offset + 4, 0x1);
3582  uint64_t s = sentinel->getVA(sentinel->getSize());
3583  uint64_t p = getVA() + offset;
3584  target->relocateNoSym(buf + offset, R_ARM_PREL31, s - p);
3585  assert(size == offset + 8);
3586}
3587
3588bool ARMExidxSyntheticSection::isNeeded() const {
3589  return llvm::any_of(exidxSections,
3590                      [](InputSection *isec) { return isec->isLive(); });
3591}
3592
3593ThunkSection::ThunkSection(OutputSection *os, uint64_t off)
3594    : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS,
3595                       config->emachine == EM_PPC64 ? 16 : 4, ".text.thunk") {
3596  this->parent = os;
3597  this->outSecOff = off;
3598}
3599
3600size_t ThunkSection::getSize() const {
3601  if (roundUpSizeForErrata)
3602    return alignTo(size, 4096);
3603  return size;
3604}
3605
3606void ThunkSection::addThunk(Thunk *t) {
3607  thunks.push_back(t);
3608  t->addSymbols(*this);
3609}
3610
3611void ThunkSection::writeTo(uint8_t *buf) {
3612  for (Thunk *t : thunks)
3613    t->writeTo(buf + t->offset);
3614}
3615
3616InputSection *ThunkSection::getTargetInputSection() const {
3617  if (thunks.empty())
3618    return nullptr;
3619  const Thunk *t = thunks.front();
3620  return t->getTargetInputSection();
3621}
3622
3623bool ThunkSection::assignOffsets() {
3624  uint64_t off = 0;
3625  for (Thunk *t : thunks) {
3626    off = alignToPowerOf2(off, t->alignment);
3627    t->setOffset(off);
3628    uint32_t size = t->size();
3629    t->getThunkTargetSym()->size = size;
3630    off += size;
3631  }
3632  bool changed = off != size;
3633  size = off;
3634  return changed;
3635}
3636
3637PPC32Got2Section::PPC32Got2Section()
3638    : SyntheticSection(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 4, ".got2") {}
3639
3640bool PPC32Got2Section::isNeeded() const {
3641  // See the comment below. This is not needed if there is no other
3642  // InputSection.
3643  for (SectionCommand *cmd : getParent()->commands)
3644    if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
3645      for (InputSection *isec : isd->sections)
3646        if (isec != this)
3647          return true;
3648  return false;
3649}
3650
3651void PPC32Got2Section::finalizeContents() {
3652  // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
3653  // .got2 . This function computes outSecOff of each .got2 to be used in
3654  // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
3655  // to collect input sections named ".got2".
3656  for (SectionCommand *cmd : getParent()->commands)
3657    if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
3658      for (InputSection *isec : isd->sections) {
3659        // isec->file may be nullptr for MergeSyntheticSection.
3660        if (isec != this && isec->file)
3661          isec->file->ppc32Got2 = isec;
3662      }
3663    }
3664}
3665
3666// If linking position-dependent code then the table will store the addresses
3667// directly in the binary so the section has type SHT_PROGBITS. If linking
3668// position-independent code the section has type SHT_NOBITS since it will be
3669// allocated and filled in by the dynamic linker.
3670PPC64LongBranchTargetSection::PPC64LongBranchTargetSection()
3671    : SyntheticSection(SHF_ALLOC | SHF_WRITE,
3672                       config->isPic ? SHT_NOBITS : SHT_PROGBITS, 8,
3673                       ".branch_lt") {}
3674
3675uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
3676                                                  int64_t addend) {
3677  return getVA() + entry_index.find({sym, addend})->second * 8;
3678}
3679
3680std::optional<uint32_t>
3681PPC64LongBranchTargetSection::addEntry(const Symbol *sym, int64_t addend) {
3682  auto res =
3683      entry_index.try_emplace(std::make_pair(sym, addend), entries.size());
3684  if (!res.second)
3685    return std::nullopt;
3686  entries.emplace_back(sym, addend);
3687  return res.first->second;
3688}
3689
3690size_t PPC64LongBranchTargetSection::getSize() const {
3691  return entries.size() * 8;
3692}
3693
3694void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
3695  // If linking non-pic we have the final addresses of the targets and they get
3696  // written to the table directly. For pic the dynamic linker will allocate
3697  // the section and fill it.
3698  if (config->isPic)
3699    return;
3700
3701  for (auto entry : entries) {
3702    const Symbol *sym = entry.first;
3703    int64_t addend = entry.second;
3704    assert(sym->getVA());
3705    // Need calls to branch to the local entry-point since a long-branch
3706    // must be a local-call.
3707    write64(buf, sym->getVA(addend) +
3708                     getPPC64GlobalEntryToLocalEntryOffset(sym->stOther));
3709    buf += 8;
3710  }
3711}
3712
3713bool PPC64LongBranchTargetSection::isNeeded() const {
3714  // `removeUnusedSyntheticSections()` is called before thunk allocation which
3715  // is too early to determine if this section will be empty or not. We need
3716  // Finalized to keep the section alive until after thunk creation. Finalized
3717  // only gets set to true once `finalizeSections()` is called after thunk
3718  // creation. Because of this, if we don't create any long-branch thunks we end
3719  // up with an empty .branch_lt section in the binary.
3720  return !finalized || !entries.empty();
3721}
3722
3723static uint8_t getAbiVersion() {
3724  // MIPS non-PIC executable gets ABI version 1.
3725  if (config->emachine == EM_MIPS) {
3726    if (!config->isPic && !config->relocatable &&
3727        (config->eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
3728      return 1;
3729    return 0;
3730  }
3731
3732  if (config->emachine == EM_AMDGPU && !ctx.objectFiles.empty()) {
3733    uint8_t ver = ctx.objectFiles[0]->abiVersion;
3734    for (InputFile *file : ArrayRef(ctx.objectFiles).slice(1))
3735      if (file->abiVersion != ver)
3736        error("incompatible ABI version: " + toString(file));
3737    return ver;
3738  }
3739
3740  return 0;
3741}
3742
3743template <typename ELFT> void elf::writeEhdr(uint8_t *buf, Partition &part) {
3744  memcpy(buf, "\177ELF", 4);
3745
3746  auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3747  eHdr->e_ident[EI_CLASS] = config->is64 ? ELFCLASS64 : ELFCLASS32;
3748  eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
3749  eHdr->e_ident[EI_VERSION] = EV_CURRENT;
3750  eHdr->e_ident[EI_OSABI] = config->osabi;
3751  eHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
3752  eHdr->e_machine = config->emachine;
3753  eHdr->e_version = EV_CURRENT;
3754  eHdr->e_flags = config->eflags;
3755  eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
3756  eHdr->e_phnum = part.phdrs.size();
3757  eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
3758
3759  if (!config->relocatable) {
3760    eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
3761    eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
3762  }
3763}
3764
3765template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
3766  // Write the program header table.
3767  auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
3768  for (PhdrEntry *p : part.phdrs) {
3769    hBuf->p_type = p->p_type;
3770    hBuf->p_flags = p->p_flags;
3771    hBuf->p_offset = p->p_offset;
3772    hBuf->p_vaddr = p->p_vaddr;
3773    hBuf->p_paddr = p->p_paddr;
3774    hBuf->p_filesz = p->p_filesz;
3775    hBuf->p_memsz = p->p_memsz;
3776    hBuf->p_align = p->p_align;
3777    ++hBuf;
3778  }
3779}
3780
3781template <typename ELFT>
3782PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection()
3783    : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_EHDR, 1, "") {}
3784
3785template <typename ELFT>
3786size_t PartitionElfHeaderSection<ELFT>::getSize() const {
3787  return sizeof(typename ELFT::Ehdr);
3788}
3789
3790template <typename ELFT>
3791void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
3792  writeEhdr<ELFT>(buf, getPartition());
3793
3794  // Loadable partitions are always ET_DYN.
3795  auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
3796  eHdr->e_type = ET_DYN;
3797}
3798
3799template <typename ELFT>
3800PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection()
3801    : SyntheticSection(SHF_ALLOC, SHT_LLVM_PART_PHDR, 1, ".phdrs") {}
3802
3803template <typename ELFT>
3804size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
3805  return sizeof(typename ELFT::Phdr) * getPartition().phdrs.size();
3806}
3807
3808template <typename ELFT>
3809void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
3810  writePhdrs<ELFT>(buf, getPartition());
3811}
3812
3813PartitionIndexSection::PartitionIndexSection()
3814    : SyntheticSection(SHF_ALLOC, SHT_PROGBITS, 4, ".rodata") {}
3815
3816size_t PartitionIndexSection::getSize() const {
3817  return 12 * (partitions.size() - 1);
3818}
3819
3820void PartitionIndexSection::finalizeContents() {
3821  for (size_t i = 1; i != partitions.size(); ++i)
3822    partitions[i].nameStrTab = mainPart->dynStrTab->addString(partitions[i].name);
3823}
3824
3825void PartitionIndexSection::writeTo(uint8_t *buf) {
3826  uint64_t va = getVA();
3827  for (size_t i = 1; i != partitions.size(); ++i) {
3828    write32(buf, mainPart->dynStrTab->getVA() + partitions[i].nameStrTab - va);
3829    write32(buf + 4, partitions[i].elfHeader->getVA() - (va + 4));
3830
3831    SyntheticSection *next = i == partitions.size() - 1
3832                                 ? in.partEnd.get()
3833                                 : partitions[i + 1].elfHeader.get();
3834    write32(buf + 8, next->getVA() - partitions[i].elfHeader->getVA());
3835
3836    va += 12;
3837    buf += 12;
3838  }
3839}
3840
3841void InStruct::reset() {
3842  attributes.reset();
3843  riscvAttributes.reset();
3844  bss.reset();
3845  bssRelRo.reset();
3846  got.reset();
3847  gotPlt.reset();
3848  igotPlt.reset();
3849  relroPadding.reset();
3850  armCmseSGSection.reset();
3851  ppc64LongBranchTarget.reset();
3852  mipsAbiFlags.reset();
3853  mipsGot.reset();
3854  mipsOptions.reset();
3855  mipsReginfo.reset();
3856  mipsRldMap.reset();
3857  partEnd.reset();
3858  partIndex.reset();
3859  plt.reset();
3860  iplt.reset();
3861  ppc32Got2.reset();
3862  ibtPlt.reset();
3863  relaPlt.reset();
3864  relaIplt.reset();
3865  shStrTab.reset();
3866  strTab.reset();
3867  symTab.reset();
3868  symTabShndx.reset();
3869}
3870
3871constexpr char kMemtagAndroidNoteName[] = "Android";
3872void MemtagAndroidNote::writeTo(uint8_t *buf) {
3873  static_assert(
3874      sizeof(kMemtagAndroidNoteName) == 8,
3875      "Android 11 & 12 have an ABI that the note name is 8 bytes long. Keep it "
3876      "that way for backwards compatibility.");
3877
3878  write32(buf, sizeof(kMemtagAndroidNoteName));
3879  write32(buf + 4, sizeof(uint32_t));
3880  write32(buf + 8, ELF::NT_ANDROID_TYPE_MEMTAG);
3881  memcpy(buf + 12, kMemtagAndroidNoteName, sizeof(kMemtagAndroidNoteName));
3882  buf += 12 + alignTo(sizeof(kMemtagAndroidNoteName), 4);
3883
3884  uint32_t value = 0;
3885  value |= config->androidMemtagMode;
3886  if (config->androidMemtagHeap)
3887    value |= ELF::NT_MEMTAG_HEAP;
3888  // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled
3889  // binary on Android 11 or 12 will result in a checkfail in the loader.
3890  if (config->androidMemtagStack)
3891    value |= ELF::NT_MEMTAG_STACK;
3892  write32(buf, value); // note value
3893}
3894
3895size_t MemtagAndroidNote::getSize() const {
3896  return sizeof(llvm::ELF::Elf64_Nhdr) +
3897         /*namesz=*/alignTo(sizeof(kMemtagAndroidNoteName), 4) +
3898         /*descsz=*/sizeof(uint32_t);
3899}
3900
3901void PackageMetadataNote::writeTo(uint8_t *buf) {
3902  write32(buf, 4);
3903  write32(buf + 4, config->packageMetadata.size() + 1);
3904  write32(buf + 8, FDO_PACKAGING_METADATA);
3905  memcpy(buf + 12, "FDO", 4);
3906  memcpy(buf + 16, config->packageMetadata.data(),
3907         config->packageMetadata.size());
3908}
3909
3910size_t PackageMetadataNote::getSize() const {
3911  return sizeof(llvm::ELF::Elf64_Nhdr) + 4 +
3912         alignTo(config->packageMetadata.size() + 1, 4);
3913}
3914
3915// Helper function, return the size of the ULEB128 for 'v', optionally writing
3916// it to `*(buf + offset)` if `buf` is non-null.
3917static size_t computeOrWriteULEB128(uint64_t v, uint8_t *buf, size_t offset) {
3918  if (buf)
3919    return encodeULEB128(v, buf + offset);
3920  return getULEB128Size(v);
3921}
3922
3923// https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic
3924constexpr uint64_t kMemtagStepSizeBits = 3;
3925constexpr uint64_t kMemtagGranuleSize = 16;
3926static size_t
3927createMemtagGlobalDescriptors(const SmallVector<const Symbol *, 0> &symbols,
3928                              uint8_t *buf = nullptr) {
3929  size_t sectionSize = 0;
3930  uint64_t lastGlobalEnd = 0;
3931
3932  for (const Symbol *sym : symbols) {
3933    if (!includeInSymtab(*sym))
3934      continue;
3935    const uint64_t addr = sym->getVA();
3936    const uint64_t size = sym->getSize();
3937
3938    if (addr <= kMemtagGranuleSize && buf != nullptr)
3939      errorOrWarn("address of the tagged symbol \"" + sym->getName() +
3940                  "\" falls in the ELF header. This is indicative of a "
3941                  "compiler/linker bug");
3942    if (addr % kMemtagGranuleSize != 0)
3943      errorOrWarn("address of the tagged symbol \"" + sym->getName() +
3944                  "\" at 0x" + Twine::utohexstr(addr) +
3945                  "\" is not granule (16-byte) aligned");
3946    if (size == 0)
3947      errorOrWarn("size of the tagged symbol \"" + sym->getName() +
3948                  "\" is not allowed to be zero");
3949    if (size % kMemtagGranuleSize != 0)
3950      errorOrWarn("size of the tagged symbol \"" + sym->getName() +
3951                  "\" (size 0x" + Twine::utohexstr(size) +
3952                  ") is not granule (16-byte) aligned");
3953
3954    const uint64_t sizeToEncode = size / kMemtagGranuleSize;
3955    const uint64_t stepToEncode = ((addr - lastGlobalEnd) / kMemtagGranuleSize)
3956                                  << kMemtagStepSizeBits;
3957    if (sizeToEncode < (1 << kMemtagStepSizeBits)) {
3958      sectionSize += computeOrWriteULEB128(stepToEncode | sizeToEncode, buf, sectionSize);
3959    } else {
3960      sectionSize += computeOrWriteULEB128(stepToEncode, buf, sectionSize);
3961      sectionSize += computeOrWriteULEB128(sizeToEncode - 1, buf, sectionSize);
3962    }
3963    lastGlobalEnd = addr + size;
3964  }
3965
3966  return sectionSize;
3967}
3968
3969bool MemtagGlobalDescriptors::updateAllocSize() {
3970  size_t oldSize = getSize();
3971  std::stable_sort(symbols.begin(), symbols.end(),
3972                   [](const Symbol *s1, const Symbol *s2) {
3973                     return s1->getVA() < s2->getVA();
3974                   });
3975  return oldSize != getSize();
3976}
3977
3978void MemtagGlobalDescriptors::writeTo(uint8_t *buf) {
3979  createMemtagGlobalDescriptors(symbols, buf);
3980}
3981
3982size_t MemtagGlobalDescriptors::getSize() const {
3983  return createMemtagGlobalDescriptors(symbols);
3984}
3985
3986InStruct elf::in;
3987
3988std::vector<Partition> elf::partitions;
3989Partition *elf::mainPart;
3990
3991template GdbIndexSection *GdbIndexSection::create<ELF32LE>();
3992template GdbIndexSection *GdbIndexSection::create<ELF32BE>();
3993template GdbIndexSection *GdbIndexSection::create<ELF64LE>();
3994template GdbIndexSection *GdbIndexSection::create<ELF64BE>();
3995
3996template void elf::splitSections<ELF32LE>();
3997template void elf::splitSections<ELF32BE>();
3998template void elf::splitSections<ELF64LE>();
3999template void elf::splitSections<ELF64BE>();
4000
4001template class elf::MipsAbiFlagsSection<ELF32LE>;
4002template class elf::MipsAbiFlagsSection<ELF32BE>;
4003template class elf::MipsAbiFlagsSection<ELF64LE>;
4004template class elf::MipsAbiFlagsSection<ELF64BE>;
4005
4006template class elf::MipsOptionsSection<ELF32LE>;
4007template class elf::MipsOptionsSection<ELF32BE>;
4008template class elf::MipsOptionsSection<ELF64LE>;
4009template class elf::MipsOptionsSection<ELF64BE>;
4010
4011template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>(
4012    function_ref<void(InputSection &)>);
4013template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>(
4014    function_ref<void(InputSection &)>);
4015template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>(
4016    function_ref<void(InputSection &)>);
4017template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>(
4018    function_ref<void(InputSection &)>);
4019
4020template class elf::MipsReginfoSection<ELF32LE>;
4021template class elf::MipsReginfoSection<ELF32BE>;
4022template class elf::MipsReginfoSection<ELF64LE>;
4023template class elf::MipsReginfoSection<ELF64BE>;
4024
4025template class elf::DynamicSection<ELF32LE>;
4026template class elf::DynamicSection<ELF32BE>;
4027template class elf::DynamicSection<ELF64LE>;
4028template class elf::DynamicSection<ELF64BE>;
4029
4030template class elf::RelocationSection<ELF32LE>;
4031template class elf::RelocationSection<ELF32BE>;
4032template class elf::RelocationSection<ELF64LE>;
4033template class elf::RelocationSection<ELF64BE>;
4034
4035template class elf::AndroidPackedRelocationSection<ELF32LE>;
4036template class elf::AndroidPackedRelocationSection<ELF32BE>;
4037template class elf::AndroidPackedRelocationSection<ELF64LE>;
4038template class elf::AndroidPackedRelocationSection<ELF64BE>;
4039
4040template class elf::RelrSection<ELF32LE>;
4041template class elf::RelrSection<ELF32BE>;
4042template class elf::RelrSection<ELF64LE>;
4043template class elf::RelrSection<ELF64BE>;
4044
4045template class elf::SymbolTableSection<ELF32LE>;
4046template class elf::SymbolTableSection<ELF32BE>;
4047template class elf::SymbolTableSection<ELF64LE>;
4048template class elf::SymbolTableSection<ELF64BE>;
4049
4050template class elf::VersionNeedSection<ELF32LE>;
4051template class elf::VersionNeedSection<ELF32BE>;
4052template class elf::VersionNeedSection<ELF64LE>;
4053template class elf::VersionNeedSection<ELF64BE>;
4054
4055template void elf::writeEhdr<ELF32LE>(uint8_t *Buf, Partition &Part);
4056template void elf::writeEhdr<ELF32BE>(uint8_t *Buf, Partition &Part);
4057template void elf::writeEhdr<ELF64LE>(uint8_t *Buf, Partition &Part);
4058template void elf::writeEhdr<ELF64BE>(uint8_t *Buf, Partition &Part);
4059
4060template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
4061template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
4062template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
4063template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
4064
4065template class elf::PartitionElfHeaderSection<ELF32LE>;
4066template class elf::PartitionElfHeaderSection<ELF32BE>;
4067template class elf::PartitionElfHeaderSection<ELF64LE>;
4068template class elf::PartitionElfHeaderSection<ELF64BE>;
4069
4070template class elf::PartitionProgramHeadersSection<ELF32LE>;
4071template class elf::PartitionProgramHeadersSection<ELF32BE>;
4072template class elf::PartitionProgramHeadersSection<ELF64LE>;
4073template class elf::PartitionProgramHeadersSection<ELF64BE>;
4074