1//===- ARM.cpp ------------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "InputFiles.h"
10#include "OutputSections.h"
11#include "SymbolTable.h"
12#include "Symbols.h"
13#include "SyntheticSections.h"
14#include "Target.h"
15#include "lld/Common/ErrorHandler.h"
16#include "lld/Common/Filesystem.h"
17#include "llvm/BinaryFormat/ELF.h"
18#include "llvm/Support/Endian.h"
19
20using namespace llvm;
21using namespace llvm::support::endian;
22using namespace llvm::support;
23using namespace llvm::ELF;
24using namespace lld;
25using namespace lld::elf;
26using namespace llvm::object;
27
28namespace {
29class ARM final : public TargetInfo {
30public:
31  ARM();
32  uint32_t calcEFlags() const override;
33  RelExpr getRelExpr(RelType type, const Symbol &s,
34                     const uint8_t *loc) const override;
35  RelType getDynRel(RelType type) const override;
36  int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
37  void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
38  void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
39  void writePltHeader(uint8_t *buf) const override;
40  void writePlt(uint8_t *buf, const Symbol &sym,
41                uint64_t pltEntryAddr) const override;
42  void addPltSymbols(InputSection &isec, uint64_t off) const override;
43  void addPltHeaderSymbols(InputSection &isd) const override;
44  bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
45                  uint64_t branchAddr, const Symbol &s,
46                  int64_t a) const override;
47  uint32_t getThunkSectionSpacing() const override;
48  bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
49  void relocate(uint8_t *loc, const Relocation &rel,
50                uint64_t val) const override;
51};
52enum class CodeState { Data = 0, Thumb = 2, Arm = 4 };
53} // namespace
54
55static DenseMap<InputSection *, SmallVector<const Defined *, 0>> sectionMap{};
56
57ARM::ARM() {
58  copyRel = R_ARM_COPY;
59  relativeRel = R_ARM_RELATIVE;
60  iRelativeRel = R_ARM_IRELATIVE;
61  gotRel = R_ARM_GLOB_DAT;
62  pltRel = R_ARM_JUMP_SLOT;
63  symbolicRel = R_ARM_ABS32;
64  tlsGotRel = R_ARM_TLS_TPOFF32;
65  tlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
66  tlsOffsetRel = R_ARM_TLS_DTPOFF32;
67  pltHeaderSize = 32;
68  pltEntrySize = 16;
69  ipltEntrySize = 16;
70  trapInstr = {0xd4, 0xd4, 0xd4, 0xd4};
71  needsThunks = true;
72  defaultMaxPageSize = 65536;
73}
74
75uint32_t ARM::calcEFlags() const {
76  // The ABIFloatType is used by loaders to detect the floating point calling
77  // convention.
78  uint32_t abiFloatType = 0;
79
80  // Set the EF_ARM_BE8 flag in the ELF header, if ELF file is big-endian
81  // with BE-8 code.
82  uint32_t armBE8 = 0;
83
84  if (config->armVFPArgs == ARMVFPArgKind::Base ||
85      config->armVFPArgs == ARMVFPArgKind::Default)
86    abiFloatType = EF_ARM_ABI_FLOAT_SOFT;
87  else if (config->armVFPArgs == ARMVFPArgKind::VFP)
88    abiFloatType = EF_ARM_ABI_FLOAT_HARD;
89
90  if (!config->isLE && config->armBe8)
91    armBE8 = EF_ARM_BE8;
92
93  // We don't currently use any features incompatible with EF_ARM_EABI_VER5,
94  // but we don't have any firm guarantees of conformance. Linux AArch64
95  // kernels (as of 2016) require an EABI version to be set.
96  return EF_ARM_EABI_VER5 | abiFloatType | armBE8;
97}
98
99RelExpr ARM::getRelExpr(RelType type, const Symbol &s,
100                        const uint8_t *loc) const {
101  switch (type) {
102  case R_ARM_ABS32:
103  case R_ARM_MOVW_ABS_NC:
104  case R_ARM_MOVT_ABS:
105  case R_ARM_THM_MOVW_ABS_NC:
106  case R_ARM_THM_MOVT_ABS:
107  case R_ARM_THM_ALU_ABS_G0_NC:
108  case R_ARM_THM_ALU_ABS_G1_NC:
109  case R_ARM_THM_ALU_ABS_G2_NC:
110  case R_ARM_THM_ALU_ABS_G3:
111    return R_ABS;
112  case R_ARM_THM_JUMP8:
113  case R_ARM_THM_JUMP11:
114    return R_PC;
115  case R_ARM_CALL:
116  case R_ARM_JUMP24:
117  case R_ARM_PC24:
118  case R_ARM_PLT32:
119  case R_ARM_PREL31:
120  case R_ARM_THM_JUMP19:
121  case R_ARM_THM_JUMP24:
122  case R_ARM_THM_CALL:
123    return R_PLT_PC;
124  case R_ARM_GOTOFF32:
125    // (S + A) - GOT_ORG
126    return R_GOTREL;
127  case R_ARM_GOT_BREL:
128    // GOT(S) + A - GOT_ORG
129    return R_GOT_OFF;
130  case R_ARM_GOT_PREL:
131  case R_ARM_TLS_IE32:
132    // GOT(S) + A - P
133    return R_GOT_PC;
134  case R_ARM_SBREL32:
135    return R_ARM_SBREL;
136  case R_ARM_TARGET1:
137    return config->target1Rel ? R_PC : R_ABS;
138  case R_ARM_TARGET2:
139    if (config->target2 == Target2Policy::Rel)
140      return R_PC;
141    if (config->target2 == Target2Policy::Abs)
142      return R_ABS;
143    return R_GOT_PC;
144  case R_ARM_TLS_GD32:
145    return R_TLSGD_PC;
146  case R_ARM_TLS_LDM32:
147    return R_TLSLD_PC;
148  case R_ARM_TLS_LDO32:
149    return R_DTPREL;
150  case R_ARM_BASE_PREL:
151    // B(S) + A - P
152    // FIXME: currently B(S) assumed to be .got, this may not hold for all
153    // platforms.
154    return R_GOTONLY_PC;
155  case R_ARM_MOVW_PREL_NC:
156  case R_ARM_MOVT_PREL:
157  case R_ARM_REL32:
158  case R_ARM_THM_MOVW_PREL_NC:
159  case R_ARM_THM_MOVT_PREL:
160    return R_PC;
161  case R_ARM_ALU_PC_G0:
162  case R_ARM_ALU_PC_G0_NC:
163  case R_ARM_ALU_PC_G1:
164  case R_ARM_ALU_PC_G1_NC:
165  case R_ARM_ALU_PC_G2:
166  case R_ARM_LDR_PC_G0:
167  case R_ARM_LDR_PC_G1:
168  case R_ARM_LDR_PC_G2:
169  case R_ARM_LDRS_PC_G0:
170  case R_ARM_LDRS_PC_G1:
171  case R_ARM_LDRS_PC_G2:
172  case R_ARM_THM_ALU_PREL_11_0:
173  case R_ARM_THM_PC8:
174  case R_ARM_THM_PC12:
175    return R_ARM_PCA;
176  case R_ARM_MOVW_BREL_NC:
177  case R_ARM_MOVW_BREL:
178  case R_ARM_MOVT_BREL:
179  case R_ARM_THM_MOVW_BREL_NC:
180  case R_ARM_THM_MOVW_BREL:
181  case R_ARM_THM_MOVT_BREL:
182    return R_ARM_SBREL;
183  case R_ARM_NONE:
184    return R_NONE;
185  case R_ARM_TLS_LE32:
186    return R_TPREL;
187  case R_ARM_V4BX:
188    // V4BX is just a marker to indicate there's a "bx rN" instruction at the
189    // given address. It can be used to implement a special linker mode which
190    // rewrites ARMv4T inputs to ARMv4. Since we support only ARMv4 input and
191    // not ARMv4 output, we can just ignore it.
192    return R_NONE;
193  default:
194    error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
195          ") against symbol " + toString(s));
196    return R_NONE;
197  }
198}
199
200RelType ARM::getDynRel(RelType type) const {
201  if ((type == R_ARM_ABS32) || (type == R_ARM_TARGET1 && !config->target1Rel))
202    return R_ARM_ABS32;
203  return R_ARM_NONE;
204}
205
206void ARM::writeGotPlt(uint8_t *buf, const Symbol &) const {
207  write32(buf, in.plt->getVA());
208}
209
210void ARM::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
211  // An ARM entry is the address of the ifunc resolver function.
212  write32(buf, s.getVA());
213}
214
215// Long form PLT Header that does not have any restrictions on the displacement
216// of the .plt from the .got.plt.
217static void writePltHeaderLong(uint8_t *buf) {
218  write32(buf + 0, 0xe52de004);   //     str lr, [sp,#-4]!
219  write32(buf + 4, 0xe59fe004);   //     ldr lr, L2
220  write32(buf + 8, 0xe08fe00e);   // L1: add lr, pc, lr
221  write32(buf + 12, 0xe5bef008);  //     ldr pc, [lr, #8]
222  write32(buf + 16, 0x00000000);  // L2: .word   &(.got.plt) - L1 - 8
223  write32(buf + 20, 0xd4d4d4d4);  //     Pad to 32-byte boundary
224  write32(buf + 24, 0xd4d4d4d4);  //     Pad to 32-byte boundary
225  write32(buf + 28, 0xd4d4d4d4);
226  uint64_t gotPlt = in.gotPlt->getVA();
227  uint64_t l1 = in.plt->getVA() + 8;
228  write32(buf + 16, gotPlt - l1 - 8);
229}
230
231// The default PLT header requires the .got.plt to be within 128 Mb of the
232// .plt in the positive direction.
233void ARM::writePltHeader(uint8_t *buf) const {
234  // Use a similar sequence to that in writePlt(), the difference is the calling
235  // conventions mean we use lr instead of ip. The PLT entry is responsible for
236  // saving lr on the stack, the dynamic loader is responsible for reloading
237  // it.
238  const uint32_t pltData[] = {
239      0xe52de004, // L1: str lr, [sp,#-4]!
240      0xe28fe600, //     add lr, pc,  #0x0NN00000 &(.got.plt - L1 - 4)
241      0xe28eea00, //     add lr, lr,  #0x000NN000 &(.got.plt - L1 - 4)
242      0xe5bef000, //     ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
243  };
244
245  uint64_t offset = in.gotPlt->getVA() - in.plt->getVA() - 4;
246  if (!llvm::isUInt<27>(offset)) {
247    // We cannot encode the Offset, use the long form.
248    writePltHeaderLong(buf);
249    return;
250  }
251  write32(buf + 0, pltData[0]);
252  write32(buf + 4, pltData[1] | ((offset >> 20) & 0xff));
253  write32(buf + 8, pltData[2] | ((offset >> 12) & 0xff));
254  write32(buf + 12, pltData[3] | (offset & 0xfff));
255  memcpy(buf + 16, trapInstr.data(), 4); // Pad to 32-byte boundary
256  memcpy(buf + 20, trapInstr.data(), 4);
257  memcpy(buf + 24, trapInstr.data(), 4);
258  memcpy(buf + 28, trapInstr.data(), 4);
259}
260
261void ARM::addPltHeaderSymbols(InputSection &isec) const {
262  addSyntheticLocal("$a", STT_NOTYPE, 0, 0, isec);
263  addSyntheticLocal("$d", STT_NOTYPE, 16, 0, isec);
264}
265
266// Long form PLT entries that do not have any restrictions on the displacement
267// of the .plt from the .got.plt.
268static void writePltLong(uint8_t *buf, uint64_t gotPltEntryAddr,
269                         uint64_t pltEntryAddr) {
270  write32(buf + 0, 0xe59fc004);   //     ldr ip, L2
271  write32(buf + 4, 0xe08cc00f);   // L1: add ip, ip, pc
272  write32(buf + 8, 0xe59cf000);   //     ldr pc, [ip]
273  write32(buf + 12, 0x00000000);  // L2: .word   Offset(&(.got.plt) - L1 - 8
274  uint64_t l1 = pltEntryAddr + 4;
275  write32(buf + 12, gotPltEntryAddr - l1 - 8);
276}
277
278// The default PLT entries require the .got.plt to be within 128 Mb of the
279// .plt in the positive direction.
280void ARM::writePlt(uint8_t *buf, const Symbol &sym,
281                   uint64_t pltEntryAddr) const {
282  // The PLT entry is similar to the example given in Appendix A of ELF for
283  // the Arm Architecture. Instead of using the Group Relocations to find the
284  // optimal rotation for the 8-bit immediate used in the add instructions we
285  // hard code the most compact rotations for simplicity. This saves a load
286  // instruction over the long plt sequences.
287  const uint32_t pltData[] = {
288      0xe28fc600, // L1: add ip, pc,  #0x0NN00000  Offset(&(.got.plt) - L1 - 8
289      0xe28cca00, //     add ip, ip,  #0x000NN000  Offset(&(.got.plt) - L1 - 8
290      0xe5bcf000, //     ldr pc, [ip, #0x00000NNN] Offset(&(.got.plt) - L1 - 8
291  };
292
293  uint64_t offset = sym.getGotPltVA() - pltEntryAddr - 8;
294  if (!llvm::isUInt<27>(offset)) {
295    // We cannot encode the Offset, use the long form.
296    writePltLong(buf, sym.getGotPltVA(), pltEntryAddr);
297    return;
298  }
299  write32(buf + 0, pltData[0] | ((offset >> 20) & 0xff));
300  write32(buf + 4, pltData[1] | ((offset >> 12) & 0xff));
301  write32(buf + 8, pltData[2] | (offset & 0xfff));
302  memcpy(buf + 12, trapInstr.data(), 4); // Pad to 16-byte boundary
303}
304
305void ARM::addPltSymbols(InputSection &isec, uint64_t off) const {
306  addSyntheticLocal("$a", STT_NOTYPE, off, 0, isec);
307  addSyntheticLocal("$d", STT_NOTYPE, off + 12, 0, isec);
308}
309
310bool ARM::needsThunk(RelExpr expr, RelType type, const InputFile *file,
311                     uint64_t branchAddr, const Symbol &s,
312                     int64_t a) const {
313  // If s is an undefined weak symbol and does not have a PLT entry then it will
314  // be resolved as a branch to the next instruction. If it is hidden, its
315  // binding has been converted to local, so we just check isUndefined() here. A
316  // undefined non-weak symbol will have been errored.
317  if (s.isUndefined() && !s.isInPlt())
318    return false;
319  // A state change from ARM to Thumb and vice versa must go through an
320  // interworking thunk if the relocation type is not R_ARM_CALL or
321  // R_ARM_THM_CALL.
322  switch (type) {
323  case R_ARM_PC24:
324  case R_ARM_PLT32:
325  case R_ARM_JUMP24:
326    // Source is ARM, all PLT entries are ARM so no interworking required.
327    // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 set (Thumb).
328    if (s.isFunc() && expr == R_PC && (s.getVA() & 1))
329      return true;
330    [[fallthrough]];
331  case R_ARM_CALL: {
332    uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
333    return !inBranchRange(type, branchAddr, dst + a) ||
334        (!config->armHasBlx && (s.getVA() & 1));
335  }
336  case R_ARM_THM_JUMP19:
337  case R_ARM_THM_JUMP24:
338    // Source is Thumb, all PLT entries are ARM so interworking is required.
339    // Otherwise we need to interwork if STT_FUNC Symbol has bit 0 clear (ARM).
340    if (expr == R_PLT_PC || (s.isFunc() && (s.getVA() & 1) == 0))
341      return true;
342    [[fallthrough]];
343  case R_ARM_THM_CALL: {
344    uint64_t dst = (expr == R_PLT_PC) ? s.getPltVA() : s.getVA();
345    return !inBranchRange(type, branchAddr, dst + a) ||
346        (!config->armHasBlx && (s.getVA() & 1) == 0);;
347  }
348  }
349  return false;
350}
351
352uint32_t ARM::getThunkSectionSpacing() const {
353  // The placing of pre-created ThunkSections is controlled by the value
354  // thunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
355  // place the ThunkSection such that all branches from the InputSections
356  // prior to the ThunkSection can reach a Thunk placed at the end of the
357  // ThunkSection. Graphically:
358  // | up to thunkSectionSpacing .text input sections |
359  // | ThunkSection                                   |
360  // | up to thunkSectionSpacing .text input sections |
361  // | ThunkSection                                   |
362
363  // Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
364  // is to match the most common expected case of a Thumb 2 encoded BL, BLX or
365  // B.W:
366  // ARM B, BL, BLX range +/- 32MiB
367  // Thumb B.W, BL, BLX range +/- 16MiB
368  // Thumb B<cc>.W range +/- 1MiB
369  // If a branch cannot reach a pre-created ThunkSection a new one will be
370  // created so we can handle the rare cases of a Thumb 2 conditional branch.
371  // We intentionally use a lower size for thunkSectionSpacing than the maximum
372  // branch range so the end of the ThunkSection is more likely to be within
373  // range of the branch instruction that is furthest away. The value we shorten
374  // thunkSectionSpacing by is set conservatively to allow us to create 16,384
375  // 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
376  // one of the Thunks going out of range.
377
378  // On Arm the thunkSectionSpacing depends on the range of the Thumb Branch
379  // range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
380  // ARMv6T2) the range is +/- 4MiB.
381
382  return (config->armJ1J2BranchEncoding) ? 0x1000000 - 0x30000
383                                         : 0x400000 - 0x7500;
384}
385
386bool ARM::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
387  if ((dst & 0x1) == 0)
388    // Destination is ARM, if ARM caller then Src is already 4-byte aligned.
389    // If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
390    // destination will be 4 byte aligned.
391    src &= ~0x3;
392  else
393    // Bit 0 == 1 denotes Thumb state, it is not part of the range.
394    dst &= ~0x1;
395
396  int64_t offset = dst - src;
397  switch (type) {
398  case R_ARM_PC24:
399  case R_ARM_PLT32:
400  case R_ARM_JUMP24:
401  case R_ARM_CALL:
402    return llvm::isInt<26>(offset);
403  case R_ARM_THM_JUMP19:
404    return llvm::isInt<21>(offset);
405  case R_ARM_THM_JUMP24:
406  case R_ARM_THM_CALL:
407    return config->armJ1J2BranchEncoding ? llvm::isInt<25>(offset)
408                                         : llvm::isInt<23>(offset);
409  default:
410    return true;
411  }
412}
413
414// Helper to produce message text when LLD detects that a CALL relocation to
415// a non STT_FUNC symbol that may result in incorrect interworking between ARM
416// or Thumb.
417static void stateChangeWarning(uint8_t *loc, RelType relt, const Symbol &s) {
418  assert(!s.isFunc());
419  const ErrorPlace place = getErrorPlace(loc);
420  std::string hint;
421  if (!place.srcLoc.empty())
422    hint = "; " + place.srcLoc;
423  if (s.isSection()) {
424    // Section symbols must be defined and in a section. Users cannot change
425    // the type. Use the section name as getName() returns an empty string.
426    warn(place.loc + "branch and link relocation: " + toString(relt) +
427         " to STT_SECTION symbol " + cast<Defined>(s).section->name +
428         " ; interworking not performed" + hint);
429  } else {
430    // Warn with hint on how to alter the symbol type.
431    warn(getErrorLocation(loc) + "branch and link relocation: " +
432         toString(relt) + " to non STT_FUNC symbol: " + s.getName() +
433         " interworking not performed; consider using directive '.type " +
434         s.getName() +
435         ", %function' to give symbol type STT_FUNC if interworking between "
436         "ARM and Thumb is required" +
437         hint);
438  }
439}
440
441// Rotate a 32-bit unsigned value right by a specified amt of bits.
442static uint32_t rotr32(uint32_t val, uint32_t amt) {
443  assert(amt < 32 && "Invalid rotate amount");
444  return (val >> amt) | (val << ((32 - amt) & 31));
445}
446
447static std::pair<uint32_t, uint32_t> getRemAndLZForGroup(unsigned group,
448                                                         uint32_t val) {
449  uint32_t rem, lz;
450  do {
451    lz = llvm::countl_zero(val) & ~1;
452    rem = val;
453    if (lz == 32) // implies rem == 0
454      break;
455    val &= 0xffffff >> lz;
456  } while (group--);
457  return {rem, lz};
458}
459
460static void encodeAluGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
461                           int group, bool check) {
462  // ADD/SUB (immediate) add = bit23, sub = bit22
463  // immediate field carries is a 12-bit modified immediate, made up of a 4-bit
464  // even rotate right and an 8-bit immediate.
465  uint32_t opcode = 0x00800000;
466  if (val >> 63) {
467    opcode = 0x00400000;
468    val = -val;
469  }
470  uint32_t imm, lz;
471  std::tie(imm, lz) = getRemAndLZForGroup(group, val);
472  uint32_t rot = 0;
473  if (lz < 24) {
474    imm = rotr32(imm, 24 - lz);
475    rot = (lz + 8) << 7;
476  }
477  if (check && imm > 0xff)
478    error(getErrorLocation(loc) + "unencodeable immediate " + Twine(val).str() +
479          " for relocation " + toString(rel.type));
480  write32(loc, (read32(loc) & 0xff3ff000) | opcode | rot | (imm & 0xff));
481}
482
483static void encodeLdrGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
484                           int group) {
485  // R_ARM_LDR_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
486  // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
487  // bottom bit to recover S + A - P.
488  if (rel.sym->isFunc())
489    val &= ~0x1;
490  // LDR (literal) u = bit23
491  uint32_t opcode = 0x00800000;
492  if (val >> 63) {
493    opcode = 0x0;
494    val = -val;
495  }
496  uint32_t imm = getRemAndLZForGroup(group, val).first;
497  checkUInt(loc, imm, 12, rel);
498  write32(loc, (read32(loc) & 0xff7ff000) | opcode | imm);
499}
500
501static void encodeLdrsGroup(uint8_t *loc, const Relocation &rel, uint64_t val,
502                            int group) {
503  // R_ARM_LDRS_PC_Gn is S + A - P, we have ((S + A) | T) - P, if S is a
504  // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
505  // bottom bit to recover S + A - P.
506  if (rel.sym->isFunc())
507    val &= ~0x1;
508  // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23
509  uint32_t opcode = 0x00800000;
510  if (val >> 63) {
511    opcode = 0x0;
512    val = -val;
513  }
514  uint32_t imm = getRemAndLZForGroup(group, val).first;
515  checkUInt(loc, imm, 8, rel);
516  write32(loc, (read32(loc) & 0xff7ff0f0) | opcode | ((imm & 0xf0) << 4) |
517                     (imm & 0xf));
518}
519
520void ARM::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const {
521  switch (rel.type) {
522  case R_ARM_ABS32:
523  case R_ARM_BASE_PREL:
524  case R_ARM_GOTOFF32:
525  case R_ARM_GOT_BREL:
526  case R_ARM_GOT_PREL:
527  case R_ARM_REL32:
528  case R_ARM_RELATIVE:
529  case R_ARM_SBREL32:
530  case R_ARM_TARGET1:
531  case R_ARM_TARGET2:
532  case R_ARM_TLS_GD32:
533  case R_ARM_TLS_IE32:
534  case R_ARM_TLS_LDM32:
535  case R_ARM_TLS_LDO32:
536  case R_ARM_TLS_LE32:
537  case R_ARM_TLS_TPOFF32:
538  case R_ARM_TLS_DTPOFF32:
539    write32(loc, val);
540    break;
541  case R_ARM_PREL31:
542    checkInt(loc, val, 31, rel);
543    write32(loc, (read32(loc) & 0x80000000) | (val & ~0x80000000));
544    break;
545  case R_ARM_CALL: {
546    // R_ARM_CALL is used for BL and BLX instructions, for symbols of type
547    // STT_FUNC we choose whether to write a BL or BLX depending on the
548    // value of bit 0 of Val. With bit 0 == 1 denoting Thumb. If the symbol is
549    // not of type STT_FUNC then we must preserve the original instruction.
550    // PLT entries are always ARM state so we know we don't need to interwork.
551    assert(rel.sym); // R_ARM_CALL is always reached via relocate().
552    bool bit0Thumb = val & 1;
553    bool isBlx = (read32(loc) & 0xfe000000) == 0xfa000000;
554    // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
555    // even when type not STT_FUNC.
556    if (!rel.sym->isFunc() && isBlx != bit0Thumb)
557      stateChangeWarning(loc, rel.type, *rel.sym);
558    if (rel.sym->isFunc() ? bit0Thumb : isBlx) {
559      // The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
560      checkInt(loc, val, 26, rel);
561      write32(loc, 0xfa000000 |                    // opcode
562                         ((val & 2) << 23) |         // H
563                         ((val >> 2) & 0x00ffffff)); // imm24
564      break;
565    }
566    // BLX (always unconditional) instruction to an ARM Target, select an
567    // unconditional BL.
568    write32(loc, 0xeb000000 | (read32(loc) & 0x00ffffff));
569    // fall through as BL encoding is shared with B
570  }
571    [[fallthrough]];
572  case R_ARM_JUMP24:
573  case R_ARM_PC24:
574  case R_ARM_PLT32:
575    checkInt(loc, val, 26, rel);
576    write32(loc, (read32(loc) & ~0x00ffffff) | ((val >> 2) & 0x00ffffff));
577    break;
578  case R_ARM_THM_JUMP8:
579    // We do a 9 bit check because val is right-shifted by 1 bit.
580    checkInt(loc, val, 9, rel);
581    write16(loc, (read32(loc) & 0xff00) | ((val >> 1) & 0x00ff));
582    break;
583  case R_ARM_THM_JUMP11:
584    // We do a 12 bit check because val is right-shifted by 1 bit.
585    checkInt(loc, val, 12, rel);
586    write16(loc, (read32(loc) & 0xf800) | ((val >> 1) & 0x07ff));
587    break;
588  case R_ARM_THM_JUMP19:
589    // Encoding T3: Val = S:J2:J1:imm6:imm11:0
590    checkInt(loc, val, 21, rel);
591    write16(loc,
592              (read16(loc) & 0xfbc0) |   // opcode cond
593                  ((val >> 10) & 0x0400) | // S
594                  ((val >> 12) & 0x003f)); // imm6
595    write16(loc + 2,
596              0x8000 |                    // opcode
597                  ((val >> 8) & 0x0800) | // J2
598                  ((val >> 5) & 0x2000) | // J1
599                  ((val >> 1) & 0x07ff)); // imm11
600    break;
601  case R_ARM_THM_CALL: {
602    // R_ARM_THM_CALL is used for BL and BLX instructions, for symbols of type
603    // STT_FUNC we choose whether to write a BL or BLX depending on the
604    // value of bit 0 of Val. With bit 0 == 0 denoting ARM, if the symbol is
605    // not of type STT_FUNC then we must preserve the original instruction.
606    // PLT entries are always ARM state so we know we need to interwork.
607    assert(rel.sym); // R_ARM_THM_CALL is always reached via relocate().
608    bool bit0Thumb = val & 1;
609    bool isBlx = (read16(loc + 2) & 0x1000) == 0;
610    // lld 10.0 and before always used bit0Thumb when deciding to write a BLX
611    // even when type not STT_FUNC. PLT entries generated by LLD are always ARM.
612    if (!rel.sym->isFunc() && !rel.sym->isInPlt() && isBlx == bit0Thumb)
613      stateChangeWarning(loc, rel.type, *rel.sym);
614    if (rel.sym->isFunc() || rel.sym->isInPlt() ? !bit0Thumb : isBlx) {
615      // We are writing a BLX. Ensure BLX destination is 4-byte aligned. As
616      // the BLX instruction may only be two byte aligned. This must be done
617      // before overflow check.
618      val = alignTo(val, 4);
619      write16(loc + 2, read16(loc + 2) & ~0x1000);
620    } else {
621      write16(loc + 2, (read16(loc + 2) & ~0x1000) | 1 << 12);
622    }
623    if (!config->armJ1J2BranchEncoding) {
624      // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
625      // different encoding rules and range due to J1 and J2 always being 1.
626      checkInt(loc, val, 23, rel);
627      write16(loc,
628                0xf000 |                     // opcode
629                    ((val >> 12) & 0x07ff)); // imm11
630      write16(loc + 2,
631                (read16(loc + 2) & 0xd000) | // opcode
632                    0x2800 |                   // J1 == J2 == 1
633                    ((val >> 1) & 0x07ff));    // imm11
634      break;
635    }
636  }
637    // Fall through as rest of encoding is the same as B.W
638    [[fallthrough]];
639  case R_ARM_THM_JUMP24:
640    // Encoding B  T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
641    checkInt(loc, val, 25, rel);
642    write16(loc,
643              0xf000 |                     // opcode
644                  ((val >> 14) & 0x0400) | // S
645                  ((val >> 12) & 0x03ff)); // imm10
646    write16(loc + 2,
647              (read16(loc + 2) & 0xd000) |                  // opcode
648                  (((~(val >> 10)) ^ (val >> 11)) & 0x2000) | // J1
649                  (((~(val >> 11)) ^ (val >> 13)) & 0x0800) | // J2
650                  ((val >> 1) & 0x07ff));                     // imm11
651    break;
652  case R_ARM_MOVW_ABS_NC:
653  case R_ARM_MOVW_PREL_NC:
654  case R_ARM_MOVW_BREL_NC:
655    write32(loc, (read32(loc) & ~0x000f0fff) | ((val & 0xf000) << 4) |
656                       (val & 0x0fff));
657    break;
658  case R_ARM_MOVT_ABS:
659  case R_ARM_MOVT_PREL:
660  case R_ARM_MOVT_BREL:
661    write32(loc, (read32(loc) & ~0x000f0fff) |
662                       (((val >> 16) & 0xf000) << 4) | ((val >> 16) & 0xfff));
663    break;
664  case R_ARM_THM_MOVT_ABS:
665  case R_ARM_THM_MOVT_PREL:
666  case R_ARM_THM_MOVT_BREL:
667    // Encoding T1: A = imm4:i:imm3:imm8
668
669    write16(loc,
670            0xf2c0 |                     // opcode
671                ((val >> 17) & 0x0400) | // i
672                ((val >> 28) & 0x000f)); // imm4
673
674    write16(loc + 2,
675              (read16(loc + 2) & 0x8f00) | // opcode
676                  ((val >> 12) & 0x7000) |   // imm3
677                  ((val >> 16) & 0x00ff));   // imm8
678    break;
679  case R_ARM_THM_MOVW_ABS_NC:
680  case R_ARM_THM_MOVW_PREL_NC:
681  case R_ARM_THM_MOVW_BREL_NC:
682    // Encoding T3: A = imm4:i:imm3:imm8
683    write16(loc,
684              0xf240 |                     // opcode
685                  ((val >> 1) & 0x0400) |  // i
686                  ((val >> 12) & 0x000f)); // imm4
687    write16(loc + 2,
688              (read16(loc + 2) & 0x8f00) | // opcode
689                  ((val << 4) & 0x7000) |    // imm3
690                  (val & 0x00ff));           // imm8
691    break;
692  case R_ARM_THM_ALU_ABS_G3:
693    write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 24) & 0x00ff));
694    break;
695  case R_ARM_THM_ALU_ABS_G2_NC:
696    write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 16) & 0x00ff));
697    break;
698  case R_ARM_THM_ALU_ABS_G1_NC:
699    write16(loc, (read16(loc) &~ 0x00ff) | ((val >> 8) & 0x00ff));
700    break;
701  case R_ARM_THM_ALU_ABS_G0_NC:
702    write16(loc, (read16(loc) &~ 0x00ff) | (val & 0x00ff));
703    break;
704  case R_ARM_ALU_PC_G0:
705    encodeAluGroup(loc, rel, val, 0, true);
706    break;
707  case R_ARM_ALU_PC_G0_NC:
708    encodeAluGroup(loc, rel, val, 0, false);
709    break;
710  case R_ARM_ALU_PC_G1:
711    encodeAluGroup(loc, rel, val, 1, true);
712    break;
713  case R_ARM_ALU_PC_G1_NC:
714    encodeAluGroup(loc, rel, val, 1, false);
715    break;
716  case R_ARM_ALU_PC_G2:
717    encodeAluGroup(loc, rel, val, 2, true);
718    break;
719  case R_ARM_LDR_PC_G0:
720    encodeLdrGroup(loc, rel, val, 0);
721    break;
722  case R_ARM_LDR_PC_G1:
723    encodeLdrGroup(loc, rel, val, 1);
724    break;
725  case R_ARM_LDR_PC_G2:
726    encodeLdrGroup(loc, rel, val, 2);
727    break;
728  case R_ARM_LDRS_PC_G0:
729    encodeLdrsGroup(loc, rel, val, 0);
730    break;
731  case R_ARM_LDRS_PC_G1:
732    encodeLdrsGroup(loc, rel, val, 1);
733    break;
734  case R_ARM_LDRS_PC_G2:
735    encodeLdrsGroup(loc, rel, val, 2);
736    break;
737  case R_ARM_THM_ALU_PREL_11_0: {
738    // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
739    int64_t imm = val;
740    uint16_t sub = 0;
741    if (imm < 0) {
742      imm = -imm;
743      sub = 0x00a0;
744    }
745    checkUInt(loc, imm, 12, rel);
746    write16(loc, (read16(loc) & 0xfb0f) | sub | (imm & 0x800) >> 1);
747    write16(loc + 2,
748              (read16(loc + 2) & 0x8f00) | (imm & 0x700) << 4 | (imm & 0xff));
749    break;
750  }
751  case R_ARM_THM_PC8:
752    // ADR and LDR literal encoding T1 positive offset only imm8:00
753    // R_ARM_THM_PC8 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
754    // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
755    // bottom bit to recover S + A - Pa.
756    if (rel.sym->isFunc())
757      val &= ~0x1;
758    checkUInt(loc, val, 10, rel);
759    checkAlignment(loc, val, 4, rel);
760    write16(loc, (read16(loc) & 0xff00) | (val & 0x3fc) >> 2);
761    break;
762  case R_ARM_THM_PC12: {
763    // LDR (literal) encoding T2, add = (U == '1') imm12
764    // imm12 is unsigned
765    // R_ARM_THM_PC12 is S + A - Pa, we have ((S + A) | T) - Pa, if S is a
766    // function then addr is 0 (modulo 2) and Pa is 0 (modulo 4) so we can clear
767    // bottom bit to recover S + A - Pa.
768    if (rel.sym->isFunc())
769      val &= ~0x1;
770    int64_t imm12 = val;
771    uint16_t u = 0x0080;
772    if (imm12 < 0) {
773      imm12 = -imm12;
774      u = 0;
775    }
776    checkUInt(loc, imm12, 12, rel);
777    write16(loc, read16(loc) | u);
778    write16(loc + 2, (read16(loc + 2) & 0xf000) | imm12);
779    break;
780  }
781  default:
782    llvm_unreachable("unknown relocation");
783  }
784}
785
786int64_t ARM::getImplicitAddend(const uint8_t *buf, RelType type) const {
787  switch (type) {
788  default:
789    internalLinkerError(getErrorLocation(buf),
790                        "cannot read addend for relocation " + toString(type));
791    return 0;
792  case R_ARM_ABS32:
793  case R_ARM_BASE_PREL:
794  case R_ARM_GLOB_DAT:
795  case R_ARM_GOTOFF32:
796  case R_ARM_GOT_BREL:
797  case R_ARM_GOT_PREL:
798  case R_ARM_IRELATIVE:
799  case R_ARM_REL32:
800  case R_ARM_RELATIVE:
801  case R_ARM_SBREL32:
802  case R_ARM_TARGET1:
803  case R_ARM_TARGET2:
804  case R_ARM_TLS_DTPMOD32:
805  case R_ARM_TLS_DTPOFF32:
806  case R_ARM_TLS_GD32:
807  case R_ARM_TLS_IE32:
808  case R_ARM_TLS_LDM32:
809  case R_ARM_TLS_LE32:
810  case R_ARM_TLS_LDO32:
811  case R_ARM_TLS_TPOFF32:
812    return SignExtend64<32>(read32(buf));
813  case R_ARM_PREL31:
814    return SignExtend64<31>(read32(buf));
815  case R_ARM_CALL:
816  case R_ARM_JUMP24:
817  case R_ARM_PC24:
818  case R_ARM_PLT32:
819    return SignExtend64<26>(read32(buf) << 2);
820  case R_ARM_THM_JUMP8:
821    return SignExtend64<9>(read16(buf) << 1);
822  case R_ARM_THM_JUMP11:
823    return SignExtend64<12>(read16(buf) << 1);
824  case R_ARM_THM_JUMP19: {
825    // Encoding T3: A = S:J2:J1:imm10:imm6:0
826    uint16_t hi = read16(buf);
827    uint16_t lo = read16(buf + 2);
828    return SignExtend64<20>(((hi & 0x0400) << 10) | // S
829                            ((lo & 0x0800) << 8) |  // J2
830                            ((lo & 0x2000) << 5) |  // J1
831                            ((hi & 0x003f) << 12) | // imm6
832                            ((lo & 0x07ff) << 1));  // imm11:0
833  }
834  case R_ARM_THM_CALL:
835    if (!config->armJ1J2BranchEncoding) {
836      // Older Arm architectures do not support R_ARM_THM_JUMP24 and have
837      // different encoding rules and range due to J1 and J2 always being 1.
838      uint16_t hi = read16(buf);
839      uint16_t lo = read16(buf + 2);
840      return SignExtend64<22>(((hi & 0x7ff) << 12) | // imm11
841                              ((lo & 0x7ff) << 1));  // imm11:0
842      break;
843    }
844    [[fallthrough]];
845  case R_ARM_THM_JUMP24: {
846    // Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
847    // I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
848    uint16_t hi = read16(buf);
849    uint16_t lo = read16(buf + 2);
850    return SignExtend64<24>(((hi & 0x0400) << 14) |                    // S
851                            (~((lo ^ (hi << 3)) << 10) & 0x00800000) | // I1
852                            (~((lo ^ (hi << 1)) << 11) & 0x00400000) | // I2
853                            ((hi & 0x003ff) << 12) |                   // imm0
854                            ((lo & 0x007ff) << 1)); // imm11:0
855  }
856  // ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
857  // MOVT is in the range -32768 <= A < 32768
858  case R_ARM_MOVW_ABS_NC:
859  case R_ARM_MOVT_ABS:
860  case R_ARM_MOVW_PREL_NC:
861  case R_ARM_MOVT_PREL:
862  case R_ARM_MOVW_BREL_NC:
863  case R_ARM_MOVT_BREL: {
864    uint64_t val = read32(buf) & 0x000f0fff;
865    return SignExtend64<16>(((val & 0x000f0000) >> 4) | (val & 0x00fff));
866  }
867  case R_ARM_THM_MOVW_ABS_NC:
868  case R_ARM_THM_MOVT_ABS:
869  case R_ARM_THM_MOVW_PREL_NC:
870  case R_ARM_THM_MOVT_PREL:
871  case R_ARM_THM_MOVW_BREL_NC:
872  case R_ARM_THM_MOVT_BREL: {
873    // Encoding T3: A = imm4:i:imm3:imm8
874    uint16_t hi = read16(buf);
875    uint16_t lo = read16(buf + 2);
876    return SignExtend64<16>(((hi & 0x000f) << 12) | // imm4
877                            ((hi & 0x0400) << 1) |  // i
878                            ((lo & 0x7000) >> 4) |  // imm3
879                            (lo & 0x00ff));         // imm8
880  }
881  case R_ARM_THM_ALU_ABS_G0_NC:
882  case R_ARM_THM_ALU_ABS_G1_NC:
883  case R_ARM_THM_ALU_ABS_G2_NC:
884  case R_ARM_THM_ALU_ABS_G3:
885    return read16(buf) & 0xff;
886  case R_ARM_ALU_PC_G0:
887  case R_ARM_ALU_PC_G0_NC:
888  case R_ARM_ALU_PC_G1:
889  case R_ARM_ALU_PC_G1_NC:
890  case R_ARM_ALU_PC_G2: {
891    // 12-bit immediate is a modified immediate made up of a 4-bit even
892    // right rotation and 8-bit constant. After the rotation the value
893    // is zero-extended. When bit 23 is set the instruction is an add, when
894    // bit 22 is set it is a sub.
895    uint32_t instr = read32(buf);
896    uint32_t val = rotr32(instr & 0xff, ((instr & 0xf00) >> 8) * 2);
897    return (instr & 0x00400000) ? -val : val;
898  }
899  case R_ARM_LDR_PC_G0:
900  case R_ARM_LDR_PC_G1:
901  case R_ARM_LDR_PC_G2: {
902    // ADR (literal) add = bit23, sub = bit22
903    // LDR (literal) u = bit23 unsigned imm12
904    bool u = read32(buf) & 0x00800000;
905    uint32_t imm12 = read32(buf) & 0xfff;
906    return u ? imm12 : -imm12;
907  }
908  case R_ARM_LDRS_PC_G0:
909  case R_ARM_LDRS_PC_G1:
910  case R_ARM_LDRS_PC_G2: {
911    // LDRD/LDRH/LDRSB/LDRSH (literal) u = bit23 unsigned imm8
912    uint32_t opcode = read32(buf);
913    bool u = opcode & 0x00800000;
914    uint32_t imm4l = opcode & 0xf;
915    uint32_t imm4h = (opcode & 0xf00) >> 4;
916    return u ? (imm4h | imm4l) : -(imm4h | imm4l);
917  }
918  case R_ARM_THM_ALU_PREL_11_0: {
919    // Thumb2 ADR, which is an alias for a sub or add instruction with an
920    // unsigned immediate.
921    // ADR encoding T2 (sub), T3 (add) i:imm3:imm8
922    uint16_t hi = read16(buf);
923    uint16_t lo = read16(buf + 2);
924    uint64_t imm = (hi & 0x0400) << 1 | // i
925                   (lo & 0x7000) >> 4 | // imm3
926                   (lo & 0x00ff);       // imm8
927    // For sub, addend is negative, add is positive.
928    return (hi & 0x00f0) ? -imm : imm;
929  }
930  case R_ARM_THM_PC8:
931    // ADR and LDR (literal) encoding T1
932    // From ELF for the ARM Architecture the initial signed addend is formed
933    // from an unsigned field using expression (((imm8:00 + 4) & 0x3ff) ��� 4)
934    // this trick permits the PC bias of -4 to be encoded using imm8 = 0xff
935    return ((((read16(buf) & 0xff) << 2) + 4) & 0x3ff) - 4;
936  case R_ARM_THM_PC12: {
937    // LDR (literal) encoding T2, add = (U == '1') imm12
938    bool u = read16(buf) & 0x0080;
939    uint64_t imm12 = read16(buf + 2) & 0x0fff;
940    return u ? imm12 : -imm12;
941  }
942  case R_ARM_NONE:
943  case R_ARM_V4BX:
944  case R_ARM_JUMP_SLOT:
945    // These relocations are defined as not having an implicit addend.
946    return 0;
947  }
948}
949
950static bool isArmMapSymbol(const Symbol *b) {
951  return b->getName() == "$a" || b->getName().starts_with("$a.");
952}
953
954static bool isThumbMapSymbol(const Symbol *s) {
955  return s->getName() == "$t" || s->getName().starts_with("$t.");
956}
957
958static bool isDataMapSymbol(const Symbol *b) {
959  return b->getName() == "$d" || b->getName().starts_with("$d.");
960}
961
962void elf::sortArmMappingSymbols() {
963  // For each input section make sure the mapping symbols are sorted in
964  // ascending order.
965  for (auto &kv : sectionMap) {
966    SmallVector<const Defined *, 0> &mapSyms = kv.second;
967    llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
968      return a->value < b->value;
969    });
970  }
971}
972
973void elf::addArmInputSectionMappingSymbols() {
974  // Collect mapping symbols for every executable input sections.
975  // The linker generated mapping symbols for all the synthetic
976  // sections are adding into the sectionmap through the function
977  // addArmSyntheitcSectionMappingSymbol.
978  for (ELFFileBase *file : ctx.objectFiles) {
979    for (Symbol *sym : file->getLocalSymbols()) {
980      auto *def = dyn_cast<Defined>(sym);
981      if (!def)
982        continue;
983      if (!isArmMapSymbol(def) && !isDataMapSymbol(def) &&
984          !isThumbMapSymbol(def))
985        continue;
986      if (auto *sec = cast_if_present<InputSection>(def->section))
987        if (sec->flags & SHF_EXECINSTR)
988          sectionMap[sec].push_back(def);
989    }
990  }
991}
992
993// Synthetic sections are not backed by an ELF file where we can access the
994// symbol table, instead mapping symbols added to synthetic sections are stored
995// in the synthetic symbol table. Due to the presence of strip (--strip-all),
996// we can not rely on the synthetic symbol table retaining the mapping symbols.
997// Instead we record the mapping symbols locally.
998void elf::addArmSyntheticSectionMappingSymbol(Defined *sym) {
999  if (!isArmMapSymbol(sym) && !isDataMapSymbol(sym) && !isThumbMapSymbol(sym))
1000    return;
1001  if (auto *sec = cast_if_present<InputSection>(sym->section))
1002    if (sec->flags & SHF_EXECINSTR)
1003      sectionMap[sec].push_back(sym);
1004}
1005
1006static void toLittleEndianInstructions(uint8_t *buf, uint64_t start,
1007                                       uint64_t end, uint64_t width) {
1008  CodeState curState = static_cast<CodeState>(width);
1009  if (curState == CodeState::Arm)
1010    for (uint64_t i = start; i < end; i += width)
1011      write32le(buf + i, read32(buf + i));
1012
1013  if (curState == CodeState::Thumb)
1014    for (uint64_t i = start; i < end; i += width)
1015      write16le(buf + i, read16(buf + i));
1016}
1017
1018// Arm BE8 big endian format requires instructions to be little endian, with
1019// the initial contents big-endian. Convert the big-endian instructions to
1020// little endian leaving literal data untouched. We use mapping symbols to
1021// identify half open intervals of Arm code [$a, non $a) and Thumb code
1022// [$t, non $t) and convert these to little endian a word or half word at a
1023// time respectively.
1024void elf::convertArmInstructionstoBE8(InputSection *sec, uint8_t *buf) {
1025  if (!sectionMap.contains(sec))
1026    return;
1027
1028  SmallVector<const Defined *, 0> &mapSyms = sectionMap[sec];
1029
1030  if (mapSyms.empty())
1031    return;
1032
1033  CodeState curState = CodeState::Data;
1034  uint64_t start = 0, width = 0, size = sec->getSize();
1035  for (auto &msym : mapSyms) {
1036    CodeState newState = CodeState::Data;
1037    if (isThumbMapSymbol(msym))
1038      newState = CodeState::Thumb;
1039    else if (isArmMapSymbol(msym))
1040      newState = CodeState::Arm;
1041
1042    if (newState == curState)
1043      continue;
1044
1045    if (curState != CodeState::Data) {
1046      width = static_cast<uint64_t>(curState);
1047      toLittleEndianInstructions(buf, start, msym->value, width);
1048    }
1049    start = msym->value;
1050    curState = newState;
1051  }
1052
1053  // Passed last mapping symbol, may need to reverse
1054  // up to end of section.
1055  if (curState != CodeState::Data) {
1056    width = static_cast<uint64_t>(curState);
1057    toLittleEndianInstructions(buf, start, size, width);
1058  }
1059}
1060
1061// The Arm Cortex-M Security Extensions (CMSE) splits a system into two parts;
1062// the non-secure and secure states with the secure state inaccessible from the
1063// non-secure state, apart from an area of memory in secure state called the
1064// secure gateway which is accessible from non-secure state. The secure gateway
1065// contains one or more entry points which must start with a landing pad
1066// instruction SG. Arm recommends that the secure gateway consists only of
1067// secure gateway veneers, which are made up of a SG instruction followed by a
1068// branch to the destination in secure state. Full details can be found in Arm
1069// v8-M Security Extensions Requirements on Development Tools.
1070//
1071// The CMSE model of software development requires the non-secure and secure
1072// states to be developed as two separate programs. The non-secure developer is
1073// provided with an import library defining symbols describing the entry points
1074// in the secure gateway. No additional linker support is required for the
1075// non-secure state.
1076//
1077// Development of the secure state requires linker support to manage the secure
1078// gateway veneers. The management consists of:
1079// - Creation of new secure gateway veneers based on symbol conventions.
1080// - Checking the address of existing secure gateway veneers.
1081// - Warning when existing secure gateway veneers removed.
1082//
1083// The secure gateway veneers are created in an import library, which is just an
1084// ELF object with a symbol table. The import library is controlled by two
1085// command line options:
1086// --in-implib (specify an input import library from a previous revision of the
1087// program).
1088// --out-implib (specify an output import library to be created by the linker).
1089//
1090// The input import library is used to manage consistency of the secure entry
1091// points. The output import library is for new and updated secure entry points.
1092//
1093// The symbol convention that identifies secure entry functions is the prefix
1094// __acle_se_ for a symbol called name the linker is expected to create a secure
1095// gateway veneer if symbols __acle_se_name and name have the same address.
1096// After creating a secure gateway veneer the symbol name labels the secure
1097// gateway veneer and the __acle_se_name labels the function definition.
1098//
1099// The LLD implementation:
1100// - Reads an existing import library with importCmseSymbols().
1101// - Determines which new secure gateway veneers to create and redirects calls
1102//   within the secure state to the __acle_se_ prefixed symbol with
1103//   processArmCmseSymbols().
1104// - Models the SG veneers as a synthetic section.
1105
1106// Initialize symbols. symbols is a parallel array to the corresponding ELF
1107// symbol table.
1108template <class ELFT> void ObjFile<ELFT>::importCmseSymbols() {
1109  ArrayRef<Elf_Sym> eSyms = getELFSyms<ELFT>();
1110  // Error for local symbols. The symbol at index 0 is LOCAL. So skip it.
1111  for (size_t i = 1, end = firstGlobal; i != end; ++i) {
1112    errorOrWarn("CMSE symbol '" + CHECK(eSyms[i].getName(stringTable), this) +
1113                "' in import library '" + toString(this) + "' is not global");
1114  }
1115
1116  for (size_t i = firstGlobal, end = eSyms.size(); i != end; ++i) {
1117    const Elf_Sym &eSym = eSyms[i];
1118    Defined *sym = reinterpret_cast<Defined *>(make<SymbolUnion>());
1119
1120    // Initialize symbol fields.
1121    memset(sym, 0, sizeof(Symbol));
1122    sym->setName(CHECK(eSyms[i].getName(stringTable), this));
1123    sym->value = eSym.st_value;
1124    sym->size = eSym.st_size;
1125    sym->type = eSym.getType();
1126    sym->binding = eSym.getBinding();
1127    sym->stOther = eSym.st_other;
1128
1129    if (eSym.st_shndx != SHN_ABS) {
1130      error("CMSE symbol '" + sym->getName() + "' in import library '" +
1131            toString(this) + "' is not absolute");
1132      continue;
1133    }
1134
1135    if (!(eSym.st_value & 1) || (eSym.getType() != STT_FUNC)) {
1136      error("CMSE symbol '" + sym->getName() + "' in import library '" +
1137            toString(this) + "' is not a Thumb function definition");
1138      continue;
1139    }
1140
1141    if (symtab.cmseImportLib.count(sym->getName())) {
1142      error("CMSE symbol '" + sym->getName() +
1143            "' is multiply defined in import library '" + toString(this) + "'");
1144      continue;
1145    }
1146
1147    if (eSym.st_size != ACLESESYM_SIZE) {
1148      warn("CMSE symbol '" + sym->getName() + "' in import library '" +
1149           toString(this) + "' does not have correct size of " +
1150           Twine(ACLESESYM_SIZE) + " bytes");
1151    }
1152
1153    symtab.cmseImportLib[sym->getName()] = sym;
1154  }
1155}
1156
1157// Check symbol attributes of the acleSeSym, sym pair.
1158// Both symbols should be global/weak Thumb code symbol definitions.
1159static std::string checkCmseSymAttributes(Symbol *acleSeSym, Symbol *sym) {
1160  auto check = [](Symbol *s, StringRef type) -> std::optional<std::string> {
1161    auto d = dyn_cast_or_null<Defined>(s);
1162    if (!(d && d->isFunc() && (d->value & 1)))
1163      return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" +
1164              s->getName() + "' is not a Thumb function definition")
1165          .str();
1166    if (!d->section)
1167      return (Twine(toString(s->file)) + ": cmse " + type + " symbol '" +
1168              s->getName() + "' cannot be an absolute symbol")
1169          .str();
1170    return std::nullopt;
1171  };
1172  for (auto [sym, type] :
1173       {std::make_pair(acleSeSym, "special"), std::make_pair(sym, "entry")})
1174    if (auto err = check(sym, type))
1175      return *err;
1176  return "";
1177}
1178
1179// Look for [__acle_se_<sym>, <sym>] pairs, as specified in the Cortex-M
1180// Security Extensions specification.
1181// 1) <sym> : A standard function name.
1182// 2) __acle_se_<sym> : A special symbol that prefixes the standard function
1183// name with __acle_se_.
1184// Both these symbols are Thumb function symbols with external linkage.
1185// <sym> may be redefined in .gnu.sgstubs.
1186void elf::processArmCmseSymbols() {
1187  if (!config->cmseImplib)
1188    return;
1189  // Only symbols with external linkage end up in symtab, so no need to do
1190  // linkage checks. Only check symbol type.
1191  for (Symbol *acleSeSym : symtab.getSymbols()) {
1192    if (!acleSeSym->getName().starts_with(ACLESESYM_PREFIX))
1193      continue;
1194    // If input object build attributes do not support CMSE, error and disable
1195    // further scanning for <sym>, __acle_se_<sym> pairs.
1196    if (!config->armCMSESupport) {
1197      error("CMSE is only supported by ARMv8-M architecture or later");
1198      config->cmseImplib = false;
1199      break;
1200    }
1201
1202    // Try to find the associated symbol definition.
1203    // Symbol must have external linkage.
1204    StringRef name = acleSeSym->getName().substr(std::strlen(ACLESESYM_PREFIX));
1205    Symbol *sym = symtab.find(name);
1206    if (!sym) {
1207      error(toString(acleSeSym->file) + ": cmse special symbol '" +
1208            acleSeSym->getName() +
1209            "' detected, but no associated entry function definition '" + name +
1210            "' with external linkage found");
1211      continue;
1212    }
1213
1214    std::string errMsg = checkCmseSymAttributes(acleSeSym, sym);
1215    if (!errMsg.empty()) {
1216      error(errMsg);
1217      continue;
1218    }
1219
1220    // <sym> may be redefined later in the link in .gnu.sgstubs
1221    symtab.cmseSymMap[name] = {acleSeSym, sym};
1222  }
1223
1224  // If this is an Arm CMSE secure app, replace references to entry symbol <sym>
1225  // with its corresponding special symbol __acle_se_<sym>.
1226  parallelForEach(ctx.objectFiles, [&](InputFile *file) {
1227    MutableArrayRef<Symbol *> syms = file->getMutableSymbols();
1228    for (size_t i = 0, e = syms.size(); i != e; ++i) {
1229      StringRef symName = syms[i]->getName();
1230      if (symtab.cmseSymMap.count(symName))
1231        syms[i] = symtab.cmseSymMap[symName].acleSeSym;
1232    }
1233  });
1234}
1235
1236class elf::ArmCmseSGVeneer {
1237public:
1238  ArmCmseSGVeneer(Symbol *sym, Symbol *acleSeSym,
1239                  std::optional<uint64_t> addr = std::nullopt)
1240      : sym(sym), acleSeSym(acleSeSym), entAddr{addr} {}
1241  static const size_t size{ACLESESYM_SIZE};
1242  const std::optional<uint64_t> getAddr() const { return entAddr; };
1243
1244  Symbol *sym;
1245  Symbol *acleSeSym;
1246  uint64_t offset = 0;
1247
1248private:
1249  const std::optional<uint64_t> entAddr;
1250};
1251
1252ArmCmseSGSection::ArmCmseSGSection()
1253    : SyntheticSection(llvm::ELF::SHF_ALLOC | llvm::ELF::SHF_EXECINSTR,
1254                       llvm::ELF::SHT_PROGBITS,
1255                       /*alignment=*/32, ".gnu.sgstubs") {
1256  entsize = ACLESESYM_SIZE;
1257  // The range of addresses used in the CMSE import library should be fixed.
1258  for (auto &[_, sym] : symtab.cmseImportLib) {
1259    if (impLibMaxAddr <= sym->value)
1260      impLibMaxAddr = sym->value + sym->size;
1261  }
1262  if (symtab.cmseSymMap.empty())
1263    return;
1264  addMappingSymbol();
1265  for (auto &[_, entryFunc] : symtab.cmseSymMap)
1266    addSGVeneer(cast<Defined>(entryFunc.acleSeSym),
1267                cast<Defined>(entryFunc.sym));
1268  for (auto &[_, sym] : symtab.cmseImportLib) {
1269    if (!symtab.inCMSEOutImpLib.count(sym->getName()))
1270      warn("entry function '" + sym->getName() +
1271           "' from CMSE import library is not present in secure application");
1272  }
1273
1274  if (!symtab.cmseImportLib.empty() && config->cmseOutputLib.empty()) {
1275    for (auto &[_, entryFunc] : symtab.cmseSymMap) {
1276      Symbol *sym = entryFunc.sym;
1277      if (!symtab.inCMSEOutImpLib.count(sym->getName()))
1278        warn("new entry function '" + sym->getName() +
1279             "' introduced but no output import library specified");
1280    }
1281  }
1282}
1283
1284void ArmCmseSGSection::addSGVeneer(Symbol *acleSeSym, Symbol *sym) {
1285  entries.emplace_back(acleSeSym, sym);
1286  if (symtab.cmseImportLib.count(sym->getName()))
1287    symtab.inCMSEOutImpLib[sym->getName()] = true;
1288  // Symbol addresses different, nothing to do.
1289  if (acleSeSym->file != sym->file ||
1290      cast<Defined>(*acleSeSym).value != cast<Defined>(*sym).value)
1291    return;
1292  // Only secure symbols with values equal to that of it's non-secure
1293  // counterpart needs to be in the .gnu.sgstubs section.
1294  ArmCmseSGVeneer *ss = nullptr;
1295  if (symtab.cmseImportLib.count(sym->getName())) {
1296    Defined *impSym = symtab.cmseImportLib[sym->getName()];
1297    ss = make<ArmCmseSGVeneer>(sym, acleSeSym, impSym->value);
1298  } else {
1299    ss = make<ArmCmseSGVeneer>(sym, acleSeSym);
1300    ++newEntries;
1301  }
1302  sgVeneers.emplace_back(ss);
1303}
1304
1305void ArmCmseSGSection::writeTo(uint8_t *buf) {
1306  for (ArmCmseSGVeneer *s : sgVeneers) {
1307    uint8_t *p = buf + s->offset;
1308    write16(p + 0, 0xe97f); // SG
1309    write16(p + 2, 0xe97f);
1310    write16(p + 4, 0xf000); // B.W S
1311    write16(p + 6, 0xb000);
1312    target->relocateNoSym(p + 4, R_ARM_THM_JUMP24,
1313                          s->acleSeSym->getVA() -
1314                              (getVA() + s->offset + s->size));
1315  }
1316}
1317
1318void ArmCmseSGSection::addMappingSymbol() {
1319  addSyntheticLocal("$t", STT_NOTYPE, /*off=*/0, /*size=*/0, *this);
1320}
1321
1322size_t ArmCmseSGSection::getSize() const {
1323  if (sgVeneers.empty())
1324    return (impLibMaxAddr ? impLibMaxAddr - getVA() : 0) + newEntries * entsize;
1325
1326  return entries.size() * entsize;
1327}
1328
1329void ArmCmseSGSection::finalizeContents() {
1330  if (sgVeneers.empty())
1331    return;
1332
1333  auto it =
1334      std::stable_partition(sgVeneers.begin(), sgVeneers.end(),
1335                            [](auto *i) { return i->getAddr().has_value(); });
1336  std::sort(sgVeneers.begin(), it, [](auto *a, auto *b) {
1337    return a->getAddr().value() < b->getAddr().value();
1338  });
1339  // This is the partition of the veneers with fixed addresses.
1340  uint64_t addr = (*sgVeneers.begin())->getAddr().has_value()
1341                      ? (*sgVeneers.begin())->getAddr().value()
1342                      : getVA();
1343  // Check if the start address of '.gnu.sgstubs' correspond to the
1344  // linker-synthesized veneer with the lowest address.
1345  if ((getVA() & ~1) != (addr & ~1)) {
1346    error("start address of '.gnu.sgstubs' is different from previous link");
1347    return;
1348  }
1349
1350  for (size_t i = 0; i < sgVeneers.size(); ++i) {
1351    ArmCmseSGVeneer *s = sgVeneers[i];
1352    s->offset = i * s->size;
1353    Defined(file, StringRef(), s->sym->binding, s->sym->stOther, s->sym->type,
1354            s->offset | 1, s->size, this)
1355        .overwrite(*s->sym);
1356  }
1357}
1358
1359// Write the CMSE import library to disk.
1360// The CMSE import library is a relocatable object with only a symbol table.
1361// The symbols are copies of the (absolute) symbols of the secure gateways
1362// in the executable output by this link.
1363// See Arm�� v8-M Security Extensions: Requirements on Development Tools
1364// https://developer.arm.com/documentation/ecm0359818/latest
1365template <typename ELFT> void elf::writeARMCmseImportLib() {
1366  StringTableSection *shstrtab =
1367      make<StringTableSection>(".shstrtab", /*dynamic=*/false);
1368  StringTableSection *strtab =
1369      make<StringTableSection>(".strtab", /*dynamic=*/false);
1370  SymbolTableBaseSection *impSymTab = make<SymbolTableSection<ELFT>>(*strtab);
1371
1372  SmallVector<std::pair<OutputSection *, SyntheticSection *>, 0> osIsPairs;
1373  osIsPairs.emplace_back(make<OutputSection>(strtab->name, 0, 0), strtab);
1374  osIsPairs.emplace_back(make<OutputSection>(impSymTab->name, 0, 0), impSymTab);
1375  osIsPairs.emplace_back(make<OutputSection>(shstrtab->name, 0, 0), shstrtab);
1376
1377  std::sort(symtab.cmseSymMap.begin(), symtab.cmseSymMap.end(),
1378            [](const auto &a, const auto &b) -> bool {
1379              return a.second.sym->getVA() < b.second.sym->getVA();
1380            });
1381  // Copy the secure gateway entry symbols to the import library symbol table.
1382  for (auto &p : symtab.cmseSymMap) {
1383    Defined *d = cast<Defined>(p.second.sym);
1384    impSymTab->addSymbol(makeDefined(
1385        ctx.internalFile, d->getName(), d->computeBinding(),
1386        /*stOther=*/0, STT_FUNC, d->getVA(), d->getSize(), nullptr));
1387  }
1388
1389  size_t idx = 0;
1390  uint64_t off = sizeof(typename ELFT::Ehdr);
1391  for (auto &[osec, isec] : osIsPairs) {
1392    osec->sectionIndex = ++idx;
1393    osec->recordSection(isec);
1394    osec->finalizeInputSections();
1395    osec->shName = shstrtab->addString(osec->name);
1396    osec->size = isec->getSize();
1397    isec->finalizeContents();
1398    osec->offset = alignToPowerOf2(off, osec->addralign);
1399    off = osec->offset + osec->size;
1400  }
1401
1402  const uint64_t sectionHeaderOff = alignToPowerOf2(off, config->wordsize);
1403  const auto shnum = osIsPairs.size() + 1;
1404  const uint64_t fileSize =
1405      sectionHeaderOff + shnum * sizeof(typename ELFT::Shdr);
1406  const unsigned flags =
1407      config->mmapOutputFile ? 0 : (unsigned)FileOutputBuffer::F_no_mmap;
1408  unlinkAsync(config->cmseOutputLib);
1409  Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
1410      FileOutputBuffer::create(config->cmseOutputLib, fileSize, flags);
1411  if (!bufferOrErr) {
1412    error("failed to open " + config->cmseOutputLib + ": " +
1413          llvm::toString(bufferOrErr.takeError()));
1414    return;
1415  }
1416
1417  // Write the ELF Header
1418  std::unique_ptr<FileOutputBuffer> &buffer = *bufferOrErr;
1419  uint8_t *const buf = buffer->getBufferStart();
1420  memcpy(buf, "\177ELF", 4);
1421  auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
1422  eHdr->e_type = ET_REL;
1423  eHdr->e_entry = 0;
1424  eHdr->e_shoff = sectionHeaderOff;
1425  eHdr->e_ident[EI_CLASS] = ELFCLASS32;
1426  eHdr->e_ident[EI_DATA] = config->isLE ? ELFDATA2LSB : ELFDATA2MSB;
1427  eHdr->e_ident[EI_VERSION] = EV_CURRENT;
1428  eHdr->e_ident[EI_OSABI] = config->osabi;
1429  eHdr->e_ident[EI_ABIVERSION] = 0;
1430  eHdr->e_machine = EM_ARM;
1431  eHdr->e_version = EV_CURRENT;
1432  eHdr->e_flags = config->eflags;
1433  eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
1434  eHdr->e_phnum = 0;
1435  eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
1436  eHdr->e_phoff = 0;
1437  eHdr->e_phentsize = 0;
1438  eHdr->e_shnum = shnum;
1439  eHdr->e_shstrndx = shstrtab->getParent()->sectionIndex;
1440
1441  // Write the section header table.
1442  auto *sHdrs = reinterpret_cast<typename ELFT::Shdr *>(buf + eHdr->e_shoff);
1443  for (auto &[osec, _] : osIsPairs)
1444    osec->template writeHeaderTo<ELFT>(++sHdrs);
1445
1446  // Write section contents to a mmap'ed file.
1447  {
1448    parallel::TaskGroup tg;
1449    for (auto &[osec, _] : osIsPairs)
1450      osec->template writeTo<ELFT>(buf + osec->offset, tg);
1451  }
1452
1453  if (auto e = buffer->commit())
1454    fatal("failed to write output '" + buffer->getPath() +
1455          "': " + toString(std::move(e)));
1456}
1457
1458TargetInfo *elf::getARMTargetInfo() {
1459  static ARM target;
1460  return &target;
1461}
1462
1463template void elf::writeARMCmseImportLib<ELF32LE>();
1464template void elf::writeARMCmseImportLib<ELF32BE>();
1465template void elf::writeARMCmseImportLib<ELF64LE>();
1466template void elf::writeARMCmseImportLib<ELF64BE>();
1467
1468template void ObjFile<ELF32LE>::importCmseSymbols();
1469template void ObjFile<ELF32BE>::importCmseSymbols();
1470template void ObjFile<ELF64LE>::importCmseSymbols();
1471template void ObjFile<ELF64BE>::importCmseSymbols();
1472