1//=-- lsan_common.cpp -----------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of LeakSanitizer.
10// Implementation of common leak checking functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "lsan_common.h"
15
16#include "sanitizer_common/sanitizer_common.h"
17#include "sanitizer_common/sanitizer_flag_parser.h"
18#include "sanitizer_common/sanitizer_flags.h"
19#include "sanitizer_common/sanitizer_placement_new.h"
20#include "sanitizer_common/sanitizer_procmaps.h"
21#include "sanitizer_common/sanitizer_report_decorator.h"
22#include "sanitizer_common/sanitizer_stackdepot.h"
23#include "sanitizer_common/sanitizer_stacktrace.h"
24#include "sanitizer_common/sanitizer_suppressions.h"
25#include "sanitizer_common/sanitizer_thread_registry.h"
26#include "sanitizer_common/sanitizer_tls_get_addr.h"
27
28#if CAN_SANITIZE_LEAKS
29
30#  if SANITIZER_APPLE
31// https://github.com/apple-oss-distributions/objc4/blob/8701d5672d3fd3cd817aeb84db1077aafe1a1604/runtime/objc-runtime-new.h#L127
32#    if SANITIZER_IOS && !SANITIZER_IOSSIM
33#      define OBJC_DATA_MASK 0x0000007ffffffff8UL
34#    else
35#      define OBJC_DATA_MASK 0x00007ffffffffff8UL
36#    endif
37#  endif
38
39namespace __lsan {
40
41// This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
42// also to protect the global list of root regions.
43static Mutex global_mutex;
44
45void LockGlobal() SANITIZER_ACQUIRE(global_mutex) { global_mutex.Lock(); }
46void UnlockGlobal() SANITIZER_RELEASE(global_mutex) { global_mutex.Unlock(); }
47
48Flags lsan_flags;
49
50void DisableCounterUnderflow() {
51  if (common_flags()->detect_leaks) {
52    Report("Unmatched call to __lsan_enable().\n");
53    Die();
54  }
55}
56
57void Flags::SetDefaults() {
58#  define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
59#  include "lsan_flags.inc"
60#  undef LSAN_FLAG
61}
62
63void RegisterLsanFlags(FlagParser *parser, Flags *f) {
64#  define LSAN_FLAG(Type, Name, DefaultValue, Description) \
65    RegisterFlag(parser, #Name, Description, &f->Name);
66#  include "lsan_flags.inc"
67#  undef LSAN_FLAG
68}
69
70#  define LOG_POINTERS(...)      \
71    do {                         \
72      if (flags()->log_pointers) \
73        Report(__VA_ARGS__);     \
74    } while (0)
75
76#  define LOG_THREADS(...)      \
77    do {                        \
78      if (flags()->log_threads) \
79        Report(__VA_ARGS__);    \
80    } while (0)
81
82class LeakSuppressionContext {
83  bool parsed = false;
84  SuppressionContext context;
85  bool suppressed_stacks_sorted = true;
86  InternalMmapVector<u32> suppressed_stacks;
87  const LoadedModule *suppress_module = nullptr;
88
89  void LazyInit();
90  Suppression *GetSuppressionForAddr(uptr addr);
91  bool SuppressInvalid(const StackTrace &stack);
92  bool SuppressByRule(const StackTrace &stack, uptr hit_count, uptr total_size);
93
94 public:
95  LeakSuppressionContext(const char *supprression_types[],
96                         int suppression_types_num)
97      : context(supprression_types, suppression_types_num) {}
98
99  bool Suppress(u32 stack_trace_id, uptr hit_count, uptr total_size);
100
101  const InternalMmapVector<u32> &GetSortedSuppressedStacks() {
102    if (!suppressed_stacks_sorted) {
103      suppressed_stacks_sorted = true;
104      SortAndDedup(suppressed_stacks);
105    }
106    return suppressed_stacks;
107  }
108  void PrintMatchedSuppressions();
109};
110
111ALIGNED(64) static char suppression_placeholder[sizeof(LeakSuppressionContext)];
112static LeakSuppressionContext *suppression_ctx = nullptr;
113static const char kSuppressionLeak[] = "leak";
114static const char *kSuppressionTypes[] = {kSuppressionLeak};
115static const char kStdSuppressions[] =
116#  if SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
117    // For more details refer to the SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
118    // definition.
119    "leak:*pthread_exit*\n"
120#  endif  // SANITIZER_SUPPRESS_LEAK_ON_PTHREAD_EXIT
121#  if SANITIZER_APPLE
122    // For Darwin and os_log/os_trace: https://reviews.llvm.org/D35173
123    "leak:*_os_trace*\n"
124#  endif
125    // TLS leak in some glibc versions, described in
126    // https://sourceware.org/bugzilla/show_bug.cgi?id=12650.
127    "leak:*tls_get_addr*\n";
128
129void InitializeSuppressions() {
130  CHECK_EQ(nullptr, suppression_ctx);
131  suppression_ctx = new (suppression_placeholder)
132      LeakSuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
133}
134
135void LeakSuppressionContext::LazyInit() {
136  if (!parsed) {
137    parsed = true;
138    context.ParseFromFile(flags()->suppressions);
139    if (&__lsan_default_suppressions)
140      context.Parse(__lsan_default_suppressions());
141    context.Parse(kStdSuppressions);
142    if (flags()->use_tls && flags()->use_ld_allocations)
143      suppress_module = GetLinker();
144  }
145}
146
147Suppression *LeakSuppressionContext::GetSuppressionForAddr(uptr addr) {
148  Suppression *s = nullptr;
149
150  // Suppress by module name.
151  const char *module_name = Symbolizer::GetOrInit()->GetModuleNameForPc(addr);
152  if (!module_name)
153    module_name = "<unknown module>";
154  if (context.Match(module_name, kSuppressionLeak, &s))
155    return s;
156
157  // Suppress by file or function name.
158  SymbolizedStackHolder symbolized_stack(
159      Symbolizer::GetOrInit()->SymbolizePC(addr));
160  const SymbolizedStack *frames = symbolized_stack.get();
161  for (const SymbolizedStack *cur = frames; cur; cur = cur->next) {
162    if (context.Match(cur->info.function, kSuppressionLeak, &s) ||
163        context.Match(cur->info.file, kSuppressionLeak, &s)) {
164      break;
165    }
166  }
167  return s;
168}
169
170static uptr GetCallerPC(const StackTrace &stack) {
171  // The top frame is our malloc/calloc/etc. The next frame is the caller.
172  if (stack.size >= 2)
173    return stack.trace[1];
174  return 0;
175}
176
177#  if SANITIZER_APPLE
178// Several pointers in the Objective-C runtime (method cache and class_rw_t,
179// for example) are tagged with additional bits we need to strip.
180static inline void *TransformPointer(void *p) {
181  uptr ptr = reinterpret_cast<uptr>(p);
182  return reinterpret_cast<void *>(ptr & OBJC_DATA_MASK);
183}
184#  endif
185
186// On Linux, treats all chunks allocated from ld-linux.so as reachable, which
187// covers dynamically allocated TLS blocks, internal dynamic loader's loaded
188// modules accounting etc.
189// Dynamic TLS blocks contain the TLS variables of dynamically loaded modules.
190// They are allocated with a __libc_memalign() call in allocate_and_init()
191// (elf/dl-tls.c). Glibc won't tell us the address ranges occupied by those
192// blocks, but we can make sure they come from our own allocator by intercepting
193// __libc_memalign(). On top of that, there is no easy way to reach them. Their
194// addresses are stored in a dynamically allocated array (the DTV) which is
195// referenced from the static TLS. Unfortunately, we can't just rely on the DTV
196// being reachable from the static TLS, and the dynamic TLS being reachable from
197// the DTV. This is because the initial DTV is allocated before our interception
198// mechanism kicks in, and thus we don't recognize it as allocated memory. We
199// can't special-case it either, since we don't know its size.
200// Our solution is to include in the root set all allocations made from
201// ld-linux.so (which is where allocate_and_init() is implemented). This is
202// guaranteed to include all dynamic TLS blocks (and possibly other allocations
203// which we don't care about).
204// On all other platforms, this simply checks to ensure that the caller pc is
205// valid before reporting chunks as leaked.
206bool LeakSuppressionContext::SuppressInvalid(const StackTrace &stack) {
207  uptr caller_pc = GetCallerPC(stack);
208  // If caller_pc is unknown, this chunk may be allocated in a coroutine. Mark
209  // it as reachable, as we can't properly report its allocation stack anyway.
210  return !caller_pc ||
211         (suppress_module && suppress_module->containsAddress(caller_pc));
212}
213
214bool LeakSuppressionContext::SuppressByRule(const StackTrace &stack,
215                                            uptr hit_count, uptr total_size) {
216  for (uptr i = 0; i < stack.size; i++) {
217    Suppression *s = GetSuppressionForAddr(
218        StackTrace::GetPreviousInstructionPc(stack.trace[i]));
219    if (s) {
220      s->weight += total_size;
221      atomic_fetch_add(&s->hit_count, hit_count, memory_order_relaxed);
222      return true;
223    }
224  }
225  return false;
226}
227
228bool LeakSuppressionContext::Suppress(u32 stack_trace_id, uptr hit_count,
229                                      uptr total_size) {
230  LazyInit();
231  StackTrace stack = StackDepotGet(stack_trace_id);
232  if (!SuppressInvalid(stack) && !SuppressByRule(stack, hit_count, total_size))
233    return false;
234  suppressed_stacks_sorted = false;
235  suppressed_stacks.push_back(stack_trace_id);
236  return true;
237}
238
239static LeakSuppressionContext *GetSuppressionContext() {
240  CHECK(suppression_ctx);
241  return suppression_ctx;
242}
243
244void InitCommonLsan() {
245  if (common_flags()->detect_leaks) {
246    // Initialization which can fail or print warnings should only be done if
247    // LSan is actually enabled.
248    InitializeSuppressions();
249    InitializePlatformSpecificModules();
250  }
251}
252
253class Decorator : public __sanitizer::SanitizerCommonDecorator {
254 public:
255  Decorator() : SanitizerCommonDecorator() {}
256  const char *Error() { return Red(); }
257  const char *Leak() { return Blue(); }
258};
259
260static inline bool MaybeUserPointer(uptr p) {
261  // Since our heap is located in mmap-ed memory, we can assume a sensible lower
262  // bound on heap addresses.
263  const uptr kMinAddress = 4 * 4096;
264  if (p < kMinAddress)
265    return false;
266#  if defined(__x86_64__)
267  // TODO: support LAM48 and 5 level page tables.
268  // LAM_U57 mask format
269  //  * top byte: 0x81 because the format is: [0] [6-bit tag] [0]
270  //  * top-1 byte: 0xff because it should be 0
271  //  * top-2 byte: 0x80 because Linux uses 128 TB VMA ending at 0x7fffffffffff
272  constexpr uptr kLAM_U57Mask = 0x81ff80;
273  constexpr uptr kPointerMask = kLAM_U57Mask << 40;
274  return ((p & kPointerMask) == 0);
275#  elif defined(__mips64)
276  return ((p >> 40) == 0);
277#  elif defined(__aarch64__)
278  // TBI (Top Byte Ignore) feature of AArch64: bits [63:56] are ignored in
279  // address translation and can be used to store a tag.
280  constexpr uptr kPointerMask = 255ULL << 48;
281  // Accept up to 48 bit VMA.
282  return ((p & kPointerMask) == 0);
283#  elif defined(__loongarch_lp64)
284  // Allow 47-bit user-space VMA at current.
285  return ((p >> 47) == 0);
286#  else
287  return true;
288#  endif
289}
290
291// Scans the memory range, looking for byte patterns that point into allocator
292// chunks. Marks those chunks with |tag| and adds them to |frontier|.
293// There are two usage modes for this function: finding reachable chunks
294// (|tag| = kReachable) and finding indirectly leaked chunks
295// (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
296// so |frontier| = 0.
297void ScanRangeForPointers(uptr begin, uptr end, Frontier *frontier,
298                          const char *region_type, ChunkTag tag) {
299  CHECK(tag == kReachable || tag == kIndirectlyLeaked);
300  const uptr alignment = flags()->pointer_alignment();
301  LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, (void *)begin,
302               (void *)end);
303  uptr pp = begin;
304  if (pp % alignment)
305    pp = pp + alignment - pp % alignment;
306  for (; pp + sizeof(void *) <= end; pp += alignment) {
307    void *p = *reinterpret_cast<void **>(pp);
308#  if SANITIZER_APPLE
309    p = TransformPointer(p);
310#  endif
311    if (!MaybeUserPointer(reinterpret_cast<uptr>(p)))
312      continue;
313    uptr chunk = PointsIntoChunk(p);
314    if (!chunk)
315      continue;
316    // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
317    if (chunk == begin)
318      continue;
319    LsanMetadata m(chunk);
320    if (m.tag() == kReachable || m.tag() == kIgnored)
321      continue;
322
323    // Do this check relatively late so we can log only the interesting cases.
324    if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
325      LOG_POINTERS(
326          "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
327          "%zu.\n",
328          (void *)pp, p, (void *)chunk, (void *)(chunk + m.requested_size()),
329          m.requested_size());
330      continue;
331    }
332
333    m.set_tag(tag);
334    LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n",
335                 (void *)pp, p, (void *)chunk,
336                 (void *)(chunk + m.requested_size()), m.requested_size());
337    if (frontier)
338      frontier->push_back(chunk);
339  }
340}
341
342// Scans a global range for pointers
343void ScanGlobalRange(uptr begin, uptr end, Frontier *frontier) {
344  uptr allocator_begin = 0, allocator_end = 0;
345  GetAllocatorGlobalRange(&allocator_begin, &allocator_end);
346  if (begin <= allocator_begin && allocator_begin < end) {
347    CHECK_LE(allocator_begin, allocator_end);
348    CHECK_LE(allocator_end, end);
349    if (begin < allocator_begin)
350      ScanRangeForPointers(begin, allocator_begin, frontier, "GLOBAL",
351                           kReachable);
352    if (allocator_end < end)
353      ScanRangeForPointers(allocator_end, end, frontier, "GLOBAL", kReachable);
354  } else {
355    ScanRangeForPointers(begin, end, frontier, "GLOBAL", kReachable);
356  }
357}
358
359void ScanExtraStackRanges(const InternalMmapVector<Range> &ranges,
360                          Frontier *frontier) {
361  for (uptr i = 0; i < ranges.size(); i++) {
362    ScanRangeForPointers(ranges[i].begin, ranges[i].end, frontier, "FAKE STACK",
363                         kReachable);
364  }
365}
366
367#  if SANITIZER_FUCHSIA
368
369// Fuchsia handles all threads together with its own callback.
370static void ProcessThreads(SuspendedThreadsList const &, Frontier *, tid_t,
371                           uptr) {}
372
373#  else
374
375#    if SANITIZER_ANDROID
376// FIXME: Move this out into *libcdep.cpp
377extern "C" SANITIZER_WEAK_ATTRIBUTE void __libc_iterate_dynamic_tls(
378    pid_t, void (*cb)(void *, void *, uptr, void *), void *);
379#    endif
380
381static void ProcessThreadRegistry(Frontier *frontier) {
382  InternalMmapVector<uptr> ptrs;
383  GetAdditionalThreadContextPtrsLocked(&ptrs);
384
385  for (uptr i = 0; i < ptrs.size(); ++i) {
386    void *ptr = reinterpret_cast<void *>(ptrs[i]);
387    uptr chunk = PointsIntoChunk(ptr);
388    if (!chunk)
389      continue;
390    LsanMetadata m(chunk);
391    if (!m.allocated())
392      continue;
393
394    // Mark as reachable and add to frontier.
395    LOG_POINTERS("Treating pointer %p from ThreadContext as reachable\n", ptr);
396    m.set_tag(kReachable);
397    frontier->push_back(chunk);
398  }
399}
400
401// Scans thread data (stacks and TLS) for heap pointers.
402static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
403                           Frontier *frontier, tid_t caller_tid,
404                           uptr caller_sp) {
405  InternalMmapVector<uptr> registers;
406  InternalMmapVector<Range> extra_ranges;
407  for (uptr i = 0; i < suspended_threads.ThreadCount(); i++) {
408    tid_t os_id = static_cast<tid_t>(suspended_threads.GetThreadID(i));
409    LOG_THREADS("Processing thread %llu.\n", os_id);
410    uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
411    DTLS *dtls;
412    bool thread_found =
413        GetThreadRangesLocked(os_id, &stack_begin, &stack_end, &tls_begin,
414                              &tls_end, &cache_begin, &cache_end, &dtls);
415    if (!thread_found) {
416      // If a thread can't be found in the thread registry, it's probably in the
417      // process of destruction. Log this event and move on.
418      LOG_THREADS("Thread %llu not found in registry.\n", os_id);
419      continue;
420    }
421    uptr sp;
422    PtraceRegistersStatus have_registers =
423        suspended_threads.GetRegistersAndSP(i, &registers, &sp);
424    if (have_registers != REGISTERS_AVAILABLE) {
425      Report("Unable to get registers from thread %llu.\n", os_id);
426      // If unable to get SP, consider the entire stack to be reachable unless
427      // GetRegistersAndSP failed with ESRCH.
428      if (have_registers == REGISTERS_UNAVAILABLE_FATAL)
429        continue;
430      sp = stack_begin;
431    }
432    if (suspended_threads.GetThreadID(i) == caller_tid) {
433      sp = caller_sp;
434    }
435
436    if (flags()->use_registers && have_registers) {
437      uptr registers_begin = reinterpret_cast<uptr>(registers.data());
438      uptr registers_end =
439          reinterpret_cast<uptr>(registers.data() + registers.size());
440      ScanRangeForPointers(registers_begin, registers_end, frontier,
441                           "REGISTERS", kReachable);
442    }
443
444    if (flags()->use_stacks) {
445      LOG_THREADS("Stack at %p-%p (SP = %p).\n", (void *)stack_begin,
446                  (void *)stack_end, (void *)sp);
447      if (sp < stack_begin || sp >= stack_end) {
448        // SP is outside the recorded stack range (e.g. the thread is running a
449        // signal handler on alternate stack, or swapcontext was used).
450        // Again, consider the entire stack range to be reachable.
451        LOG_THREADS("WARNING: stack pointer not in stack range.\n");
452        uptr page_size = GetPageSizeCached();
453        int skipped = 0;
454        while (stack_begin < stack_end &&
455               !IsAccessibleMemoryRange(stack_begin, 1)) {
456          skipped++;
457          stack_begin += page_size;
458        }
459        LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
460                    skipped, (void *)stack_begin, (void *)stack_end);
461      } else {
462        // Shrink the stack range to ignore out-of-scope values.
463        stack_begin = sp;
464      }
465      ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
466                           kReachable);
467      extra_ranges.clear();
468      GetThreadExtraStackRangesLocked(os_id, &extra_ranges);
469      ScanExtraStackRanges(extra_ranges, frontier);
470    }
471
472    if (flags()->use_tls) {
473      if (tls_begin) {
474        LOG_THREADS("TLS at %p-%p.\n", (void *)tls_begin, (void *)tls_end);
475        // If the tls and cache ranges don't overlap, scan full tls range,
476        // otherwise, only scan the non-overlapping portions
477        if (cache_begin == cache_end || tls_end < cache_begin ||
478            tls_begin > cache_end) {
479          ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
480        } else {
481          if (tls_begin < cache_begin)
482            ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
483                                 kReachable);
484          if (tls_end > cache_end)
485            ScanRangeForPointers(cache_end, tls_end, frontier, "TLS",
486                                 kReachable);
487        }
488      }
489#    if SANITIZER_ANDROID
490      auto *cb = +[](void *dtls_begin, void *dtls_end, uptr /*dso_idd*/,
491                     void *arg) -> void {
492        ScanRangeForPointers(reinterpret_cast<uptr>(dtls_begin),
493                             reinterpret_cast<uptr>(dtls_end),
494                             reinterpret_cast<Frontier *>(arg), "DTLS",
495                             kReachable);
496      };
497
498      // FIXME: There might be a race-condition here (and in Bionic) if the
499      // thread is suspended in the middle of updating its DTLS. IOWs, we
500      // could scan already freed memory. (probably fine for now)
501      __libc_iterate_dynamic_tls(os_id, cb, frontier);
502#    else
503      if (dtls && !DTLSInDestruction(dtls)) {
504        ForEachDVT(dtls, [&](const DTLS::DTV &dtv, int id) {
505          uptr dtls_beg = dtv.beg;
506          uptr dtls_end = dtls_beg + dtv.size;
507          if (dtls_beg < dtls_end) {
508            LOG_THREADS("DTLS %d at %p-%p.\n", id, (void *)dtls_beg,
509                        (void *)dtls_end);
510            ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
511                                 kReachable);
512          }
513        });
514      } else {
515        // We are handling a thread with DTLS under destruction. Log about
516        // this and continue.
517        LOG_THREADS("Thread %llu has DTLS under destruction.\n", os_id);
518      }
519#    endif
520    }
521  }
522
523  // Add pointers reachable from ThreadContexts
524  ProcessThreadRegistry(frontier);
525}
526
527#  endif  // SANITIZER_FUCHSIA
528
529// A map that contains [region_begin, region_end) pairs.
530using RootRegions = DenseMap<detail::DenseMapPair<uptr, uptr>, uptr>;
531
532static RootRegions &GetRootRegionsLocked() {
533  global_mutex.CheckLocked();
534  static RootRegions *regions = nullptr;
535  alignas(RootRegions) static char placeholder[sizeof(RootRegions)];
536  if (!regions)
537    regions = new (placeholder) RootRegions();
538  return *regions;
539}
540
541bool HasRootRegions() { return !GetRootRegionsLocked().empty(); }
542
543void ScanRootRegions(Frontier *frontier,
544                     const InternalMmapVectorNoCtor<Region> &mapped_regions) {
545  if (!flags()->use_root_regions)
546    return;
547
548  InternalMmapVector<Region> regions;
549  GetRootRegionsLocked().forEach([&](const auto &kv) {
550    regions.push_back({kv.first.first, kv.first.second});
551    return true;
552  });
553
554  InternalMmapVector<Region> intersection;
555  Intersect(mapped_regions, regions, intersection);
556
557  for (const Region &r : intersection) {
558    LOG_POINTERS("Root region intersects with mapped region at %p-%p\n",
559                 (void *)r.begin, (void *)r.end);
560    ScanRangeForPointers(r.begin, r.end, frontier, "ROOT", kReachable);
561  }
562}
563
564// Scans root regions for heap pointers.
565static void ProcessRootRegions(Frontier *frontier) {
566  if (!flags()->use_root_regions || !HasRootRegions())
567    return;
568  MemoryMappingLayout proc_maps(/*cache_enabled*/ true);
569  MemoryMappedSegment segment;
570  InternalMmapVector<Region> mapped_regions;
571  while (proc_maps.Next(&segment))
572    if (segment.IsReadable())
573      mapped_regions.push_back({segment.start, segment.end});
574  ScanRootRegions(frontier, mapped_regions);
575}
576
577static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
578  while (frontier->size()) {
579    uptr next_chunk = frontier->back();
580    frontier->pop_back();
581    LsanMetadata m(next_chunk);
582    ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
583                         "HEAP", tag);
584  }
585}
586
587// ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
588// which are reachable from it as indirectly leaked.
589static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
590  chunk = GetUserBegin(chunk);
591  LsanMetadata m(chunk);
592  if (m.allocated() && m.tag() != kReachable) {
593    ScanRangeForPointers(chunk, chunk + m.requested_size(),
594                         /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
595  }
596}
597
598static void IgnoredSuppressedCb(uptr chunk, void *arg) {
599  CHECK(arg);
600  chunk = GetUserBegin(chunk);
601  LsanMetadata m(chunk);
602  if (!m.allocated() || m.tag() == kIgnored)
603    return;
604
605  const InternalMmapVector<u32> &suppressed =
606      *static_cast<const InternalMmapVector<u32> *>(arg);
607  uptr idx = InternalLowerBound(suppressed, m.stack_trace_id());
608  if (idx >= suppressed.size() || m.stack_trace_id() != suppressed[idx])
609    return;
610
611  LOG_POINTERS("Suppressed: chunk %p-%p of size %zu.\n", (void *)chunk,
612               (void *)(chunk + m.requested_size()), m.requested_size());
613  m.set_tag(kIgnored);
614}
615
616// ForEachChunk callback. If chunk is marked as ignored, adds its address to
617// frontier.
618static void CollectIgnoredCb(uptr chunk, void *arg) {
619  CHECK(arg);
620  chunk = GetUserBegin(chunk);
621  LsanMetadata m(chunk);
622  if (m.allocated() && m.tag() == kIgnored) {
623    LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n", (void *)chunk,
624                 (void *)(chunk + m.requested_size()), m.requested_size());
625    reinterpret_cast<Frontier *>(arg)->push_back(chunk);
626  }
627}
628
629// Sets the appropriate tag on each chunk.
630static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads,
631                              Frontier *frontier, tid_t caller_tid,
632                              uptr caller_sp) {
633  const InternalMmapVector<u32> &suppressed_stacks =
634      GetSuppressionContext()->GetSortedSuppressedStacks();
635  if (!suppressed_stacks.empty()) {
636    ForEachChunk(IgnoredSuppressedCb,
637                 const_cast<InternalMmapVector<u32> *>(&suppressed_stacks));
638  }
639  ForEachChunk(CollectIgnoredCb, frontier);
640  ProcessGlobalRegions(frontier);
641  ProcessThreads(suspended_threads, frontier, caller_tid, caller_sp);
642  ProcessRootRegions(frontier);
643  FloodFillTag(frontier, kReachable);
644
645  // The check here is relatively expensive, so we do this in a separate flood
646  // fill. That way we can skip the check for chunks that are reachable
647  // otherwise.
648  LOG_POINTERS("Processing platform-specific allocations.\n");
649  ProcessPlatformSpecificAllocations(frontier);
650  FloodFillTag(frontier, kReachable);
651
652  // Iterate over leaked chunks and mark those that are reachable from other
653  // leaked chunks.
654  LOG_POINTERS("Scanning leaked chunks.\n");
655  ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
656}
657
658// ForEachChunk callback. Resets the tags to pre-leak-check state.
659static void ResetTagsCb(uptr chunk, void *arg) {
660  (void)arg;
661  chunk = GetUserBegin(chunk);
662  LsanMetadata m(chunk);
663  if (m.allocated() && m.tag() != kIgnored)
664    m.set_tag(kDirectlyLeaked);
665}
666
667// ForEachChunk callback. Aggregates information about unreachable chunks into
668// a LeakReport.
669static void CollectLeaksCb(uptr chunk, void *arg) {
670  CHECK(arg);
671  LeakedChunks *leaks = reinterpret_cast<LeakedChunks *>(arg);
672  chunk = GetUserBegin(chunk);
673  LsanMetadata m(chunk);
674  if (!m.allocated())
675    return;
676  if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked)
677    leaks->push_back({chunk, m.stack_trace_id(), m.requested_size(), m.tag()});
678}
679
680void LeakSuppressionContext::PrintMatchedSuppressions() {
681  InternalMmapVector<Suppression *> matched;
682  context.GetMatched(&matched);
683  if (!matched.size())
684    return;
685  const char *line = "-----------------------------------------------------";
686  Printf("%s\n", line);
687  Printf("Suppressions used:\n");
688  Printf("  count      bytes template\n");
689  for (uptr i = 0; i < matched.size(); i++) {
690    Printf("%7zu %10zu %s\n",
691           static_cast<uptr>(atomic_load_relaxed(&matched[i]->hit_count)),
692           matched[i]->weight, matched[i]->templ);
693  }
694  Printf("%s\n\n", line);
695}
696
697#  if SANITIZER_FUCHSIA
698
699// Fuchsia provides a libc interface that guarantees all threads are
700// covered, and SuspendedThreadList is never really used.
701static void ReportUnsuspendedThreads(const SuspendedThreadsList &) {}
702
703#  else  // !SANITIZER_FUCHSIA
704
705static void ReportUnsuspendedThreads(
706    const SuspendedThreadsList &suspended_threads) {
707  InternalMmapVector<tid_t> threads(suspended_threads.ThreadCount());
708  for (uptr i = 0; i < suspended_threads.ThreadCount(); ++i)
709    threads[i] = suspended_threads.GetThreadID(i);
710
711  Sort(threads.data(), threads.size());
712
713  InternalMmapVector<tid_t> unsuspended;
714  GetRunningThreadsLocked(&unsuspended);
715
716  for (auto os_id : unsuspended) {
717    uptr i = InternalLowerBound(threads, os_id);
718    if (i >= threads.size() || threads[i] != os_id)
719      Report(
720          "Running thread %zu was not suspended. False leaks are possible.\n",
721          os_id);
722  }
723}
724
725#  endif  // !SANITIZER_FUCHSIA
726
727static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
728                                  void *arg) {
729  CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
730  CHECK(param);
731  CHECK(!param->success);
732  ReportUnsuspendedThreads(suspended_threads);
733  ClassifyAllChunks(suspended_threads, &param->frontier, param->caller_tid,
734                    param->caller_sp);
735  ForEachChunk(CollectLeaksCb, &param->leaks);
736  // Clean up for subsequent leak checks. This assumes we did not overwrite any
737  // kIgnored tags.
738  ForEachChunk(ResetTagsCb, nullptr);
739  param->success = true;
740}
741
742static bool PrintResults(LeakReport &report) {
743  uptr unsuppressed_count = report.UnsuppressedLeakCount();
744  if (unsuppressed_count) {
745    Decorator d;
746    Printf(
747        "\n"
748        "================================================================="
749        "\n");
750    Printf("%s", d.Error());
751    Report("ERROR: LeakSanitizer: detected memory leaks\n");
752    Printf("%s", d.Default());
753    report.ReportTopLeaks(flags()->max_leaks);
754  }
755  if (common_flags()->print_suppressions)
756    GetSuppressionContext()->PrintMatchedSuppressions();
757  if (unsuppressed_count > 0) {
758    report.PrintSummary();
759    return true;
760  }
761  return false;
762}
763
764static bool CheckForLeaks() {
765  if (&__lsan_is_turned_off && __lsan_is_turned_off()) {
766    VReport(1, "LeakSanitizer is disabled");
767    return false;
768  }
769  VReport(1, "LeakSanitizer: checking for leaks");
770  // Inside LockStuffAndStopTheWorld we can't run symbolizer, so we can't match
771  // suppressions. However if a stack id was previously suppressed, it should be
772  // suppressed in future checks as well.
773  for (int i = 0;; ++i) {
774    EnsureMainThreadIDIsCorrect();
775    CheckForLeaksParam param;
776    // Capture calling thread's stack pointer early, to avoid false negatives.
777    // Old frame with dead pointers might be overlapped by new frame inside
778    // CheckForLeaks which does not use bytes with pointers before the
779    // threads are suspended and stack pointers captured.
780    param.caller_tid = GetTid();
781    param.caller_sp = reinterpret_cast<uptr>(__builtin_frame_address(0));
782    LockStuffAndStopTheWorld(CheckForLeaksCallback, &param);
783    if (!param.success) {
784      Report("LeakSanitizer has encountered a fatal error.\n");
785      Report(
786          "HINT: For debugging, try setting environment variable "
787          "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
788      Report(
789          "HINT: LeakSanitizer does not work under ptrace (strace, gdb, "
790          "etc)\n");
791      Die();
792    }
793    LeakReport leak_report;
794    leak_report.AddLeakedChunks(param.leaks);
795
796    // No new suppressions stacks, so rerun will not help and we can report.
797    if (!leak_report.ApplySuppressions())
798      return PrintResults(leak_report);
799
800    // No indirect leaks to report, so we are done here.
801    if (!leak_report.IndirectUnsuppressedLeakCount())
802      return PrintResults(leak_report);
803
804    if (i >= 8) {
805      Report("WARNING: LeakSanitizer gave up on indirect leaks suppression.\n");
806      return PrintResults(leak_report);
807    }
808
809    // We found a new previously unseen suppressed call stack. Rerun to make
810    // sure it does not hold indirect leaks.
811    VReport(1, "Rerun with %zu suppressed stacks.",
812            GetSuppressionContext()->GetSortedSuppressedStacks().size());
813  }
814}
815
816static bool has_reported_leaks = false;
817bool HasReportedLeaks() { return has_reported_leaks; }
818
819void DoLeakCheck() {
820  Lock l(&global_mutex);
821  static bool already_done;
822  if (already_done)
823    return;
824  already_done = true;
825  has_reported_leaks = CheckForLeaks();
826  if (has_reported_leaks)
827    HandleLeaks();
828}
829
830static int DoRecoverableLeakCheck() {
831  Lock l(&global_mutex);
832  bool have_leaks = CheckForLeaks();
833  return have_leaks ? 1 : 0;
834}
835
836void DoRecoverableLeakCheckVoid() { DoRecoverableLeakCheck(); }
837
838///// LeakReport implementation. /////
839
840// A hard limit on the number of distinct leaks, to avoid quadratic complexity
841// in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
842// in real-world applications.
843// FIXME: Get rid of this limit by moving logic into DedupLeaks.
844const uptr kMaxLeaksConsidered = 5000;
845
846void LeakReport::AddLeakedChunks(const LeakedChunks &chunks) {
847  for (const LeakedChunk &leak : chunks) {
848    uptr chunk = leak.chunk;
849    u32 stack_trace_id = leak.stack_trace_id;
850    uptr leaked_size = leak.leaked_size;
851    ChunkTag tag = leak.tag;
852    CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
853
854    if (u32 resolution = flags()->resolution) {
855      StackTrace stack = StackDepotGet(stack_trace_id);
856      stack.size = Min(stack.size, resolution);
857      stack_trace_id = StackDepotPut(stack);
858    }
859
860    bool is_directly_leaked = (tag == kDirectlyLeaked);
861    uptr i;
862    for (i = 0; i < leaks_.size(); i++) {
863      if (leaks_[i].stack_trace_id == stack_trace_id &&
864          leaks_[i].is_directly_leaked == is_directly_leaked) {
865        leaks_[i].hit_count++;
866        leaks_[i].total_size += leaked_size;
867        break;
868      }
869    }
870    if (i == leaks_.size()) {
871      if (leaks_.size() == kMaxLeaksConsidered)
872        return;
873      Leak leak = {next_id_++,         /* hit_count */ 1,
874                   leaked_size,        stack_trace_id,
875                   is_directly_leaked, /* is_suppressed */ false};
876      leaks_.push_back(leak);
877    }
878    if (flags()->report_objects) {
879      LeakedObject obj = {leaks_[i].id, GetUserAddr(chunk), leaked_size};
880      leaked_objects_.push_back(obj);
881    }
882  }
883}
884
885static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
886  if (leak1.is_directly_leaked == leak2.is_directly_leaked)
887    return leak1.total_size > leak2.total_size;
888  else
889    return leak1.is_directly_leaked;
890}
891
892void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
893  CHECK(leaks_.size() <= kMaxLeaksConsidered);
894  Printf("\n");
895  if (leaks_.size() == kMaxLeaksConsidered)
896    Printf(
897        "Too many leaks! Only the first %zu leaks encountered will be "
898        "reported.\n",
899        kMaxLeaksConsidered);
900
901  uptr unsuppressed_count = UnsuppressedLeakCount();
902  if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
903    Printf("The %zu top leak(s):\n", num_leaks_to_report);
904  Sort(leaks_.data(), leaks_.size(), &LeakComparator);
905  uptr leaks_reported = 0;
906  for (uptr i = 0; i < leaks_.size(); i++) {
907    if (leaks_[i].is_suppressed)
908      continue;
909    PrintReportForLeak(i);
910    leaks_reported++;
911    if (leaks_reported == num_leaks_to_report)
912      break;
913  }
914  if (leaks_reported < unsuppressed_count) {
915    uptr remaining = unsuppressed_count - leaks_reported;
916    Printf("Omitting %zu more leak(s).\n", remaining);
917  }
918}
919
920void LeakReport::PrintReportForLeak(uptr index) {
921  Decorator d;
922  Printf("%s", d.Leak());
923  Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
924         leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
925         leaks_[index].total_size, leaks_[index].hit_count);
926  Printf("%s", d.Default());
927
928  CHECK(leaks_[index].stack_trace_id);
929  StackDepotGet(leaks_[index].stack_trace_id).Print();
930
931  if (flags()->report_objects) {
932    Printf("Objects leaked above:\n");
933    PrintLeakedObjectsForLeak(index);
934    Printf("\n");
935  }
936}
937
938void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
939  u32 leak_id = leaks_[index].id;
940  for (uptr j = 0; j < leaked_objects_.size(); j++) {
941    if (leaked_objects_[j].leak_id == leak_id)
942      Printf("%p (%zu bytes)\n", (void *)leaked_objects_[j].addr,
943             leaked_objects_[j].size);
944  }
945}
946
947void LeakReport::PrintSummary() {
948  CHECK(leaks_.size() <= kMaxLeaksConsidered);
949  uptr bytes = 0, allocations = 0;
950  for (uptr i = 0; i < leaks_.size(); i++) {
951    if (leaks_[i].is_suppressed)
952      continue;
953    bytes += leaks_[i].total_size;
954    allocations += leaks_[i].hit_count;
955  }
956  InternalScopedString summary;
957  summary.AppendF("%zu byte(s) leaked in %zu allocation(s).", bytes,
958                  allocations);
959  ReportErrorSummary(summary.data());
960}
961
962uptr LeakReport::ApplySuppressions() {
963  LeakSuppressionContext *suppressions = GetSuppressionContext();
964  uptr new_suppressions = 0;
965  for (uptr i = 0; i < leaks_.size(); i++) {
966    if (suppressions->Suppress(leaks_[i].stack_trace_id, leaks_[i].hit_count,
967                               leaks_[i].total_size)) {
968      leaks_[i].is_suppressed = true;
969      ++new_suppressions;
970    }
971  }
972  return new_suppressions;
973}
974
975uptr LeakReport::UnsuppressedLeakCount() {
976  uptr result = 0;
977  for (uptr i = 0; i < leaks_.size(); i++)
978    if (!leaks_[i].is_suppressed)
979      result++;
980  return result;
981}
982
983uptr LeakReport::IndirectUnsuppressedLeakCount() {
984  uptr result = 0;
985  for (uptr i = 0; i < leaks_.size(); i++)
986    if (!leaks_[i].is_suppressed && !leaks_[i].is_directly_leaked)
987      result++;
988  return result;
989}
990
991}  // namespace __lsan
992#else   // CAN_SANITIZE_LEAKS
993namespace __lsan {
994void InitCommonLsan() {}
995void DoLeakCheck() {}
996void DoRecoverableLeakCheckVoid() {}
997void DisableInThisThread() {}
998void EnableInThisThread() {}
999}  // namespace __lsan
1000#endif  // CAN_SANITIZE_LEAKS
1001
1002using namespace __lsan;
1003
1004extern "C" {
1005SANITIZER_INTERFACE_ATTRIBUTE
1006void __lsan_ignore_object(const void *p) {
1007#if CAN_SANITIZE_LEAKS
1008  if (!common_flags()->detect_leaks)
1009    return;
1010  // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
1011  // locked.
1012  Lock l(&global_mutex);
1013  IgnoreObjectResult res = IgnoreObject(p);
1014  if (res == kIgnoreObjectInvalid)
1015    VReport(1, "__lsan_ignore_object(): no heap object found at %p\n", p);
1016  if (res == kIgnoreObjectAlreadyIgnored)
1017    VReport(1,
1018            "__lsan_ignore_object(): "
1019            "heap object at %p is already being ignored\n",
1020            p);
1021  if (res == kIgnoreObjectSuccess)
1022    VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
1023#endif  // CAN_SANITIZE_LEAKS
1024}
1025
1026SANITIZER_INTERFACE_ATTRIBUTE
1027void __lsan_register_root_region(const void *begin, uptr size) {
1028#if CAN_SANITIZE_LEAKS
1029  VReport(1, "Registered root region at %p of size %zu\n", begin, size);
1030  uptr b = reinterpret_cast<uptr>(begin);
1031  uptr e = b + size;
1032  CHECK_LT(b, e);
1033
1034  Lock l(&global_mutex);
1035  ++GetRootRegionsLocked()[{b, e}];
1036#endif  // CAN_SANITIZE_LEAKS
1037}
1038
1039SANITIZER_INTERFACE_ATTRIBUTE
1040void __lsan_unregister_root_region(const void *begin, uptr size) {
1041#if CAN_SANITIZE_LEAKS
1042  uptr b = reinterpret_cast<uptr>(begin);
1043  uptr e = b + size;
1044  CHECK_LT(b, e);
1045  VReport(1, "Unregistered root region at %p of size %zu\n", begin, size);
1046
1047  {
1048    Lock l(&global_mutex);
1049    if (auto *f = GetRootRegionsLocked().find({b, e})) {
1050      if (--(f->second) == 0)
1051        GetRootRegionsLocked().erase(f);
1052      return;
1053    }
1054  }
1055  Report(
1056      "__lsan_unregister_root_region(): region at %p of size %zu has not "
1057      "been registered.\n",
1058      begin, size);
1059  Die();
1060#endif  // CAN_SANITIZE_LEAKS
1061}
1062
1063SANITIZER_INTERFACE_ATTRIBUTE
1064void __lsan_disable() {
1065#if CAN_SANITIZE_LEAKS
1066  __lsan::DisableInThisThread();
1067#endif
1068}
1069
1070SANITIZER_INTERFACE_ATTRIBUTE
1071void __lsan_enable() {
1072#if CAN_SANITIZE_LEAKS
1073  __lsan::EnableInThisThread();
1074#endif
1075}
1076
1077SANITIZER_INTERFACE_ATTRIBUTE
1078void __lsan_do_leak_check() {
1079#if CAN_SANITIZE_LEAKS
1080  if (common_flags()->detect_leaks)
1081    __lsan::DoLeakCheck();
1082#endif  // CAN_SANITIZE_LEAKS
1083}
1084
1085SANITIZER_INTERFACE_ATTRIBUTE
1086int __lsan_do_recoverable_leak_check() {
1087#if CAN_SANITIZE_LEAKS
1088  if (common_flags()->detect_leaks)
1089    return __lsan::DoRecoverableLeakCheck();
1090#endif  // CAN_SANITIZE_LEAKS
1091  return 0;
1092}
1093
1094SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_options, void) {
1095  return "";
1096}
1097
1098#if !SANITIZER_SUPPORTS_WEAK_HOOKS
1099SANITIZER_INTERFACE_WEAK_DEF(int, __lsan_is_turned_off, void) {
1100  return 0;
1101}
1102
1103SANITIZER_INTERFACE_WEAK_DEF(const char *, __lsan_default_suppressions, void) {
1104  return "";
1105}
1106#endif
1107}  // extern "C"
1108