1//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Expr nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGCall.h"
16#include "CGCleanup.h"
17#include "CGDebugInfo.h"
18#include "CGObjCRuntime.h"
19#include "CGOpenMPRuntime.h"
20#include "CGRecordLayout.h"
21#include "CodeGenFunction.h"
22#include "CodeGenModule.h"
23#include "ConstantEmitter.h"
24#include "TargetInfo.h"
25#include "clang/AST/ASTContext.h"
26#include "clang/AST/Attr.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/NSAPI.h"
29#include "clang/AST/StmtVisitor.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/CodeGenOptions.h"
32#include "clang/Basic/SourceManager.h"
33#include "llvm/ADT/Hashing.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/ADT/StringExtras.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/Intrinsics.h"
38#include "llvm/IR/IntrinsicsWebAssembly.h"
39#include "llvm/IR/LLVMContext.h"
40#include "llvm/IR/MDBuilder.h"
41#include "llvm/IR/MatrixBuilder.h"
42#include "llvm/Passes/OptimizationLevel.h"
43#include "llvm/Support/ConvertUTF.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Path.h"
46#include "llvm/Support/SaveAndRestore.h"
47#include "llvm/Support/xxhash.h"
48#include "llvm/Transforms/Utils/SanitizerStats.h"
49
50#include <optional>
51#include <string>
52
53using namespace clang;
54using namespace CodeGen;
55
56// Experiment to make sanitizers easier to debug
57static llvm::cl::opt<bool> ClSanitizeDebugDeoptimization(
58    "ubsan-unique-traps", llvm::cl::Optional,
59    llvm::cl::desc("Deoptimize traps for UBSAN so there is 1 trap per check"),
60    llvm::cl::init(false));
61
62//===--------------------------------------------------------------------===//
63//                        Miscellaneous Helper Methods
64//===--------------------------------------------------------------------===//
65
66/// CreateTempAlloca - This creates a alloca and inserts it into the entry
67/// block.
68Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
69                                                     CharUnits Align,
70                                                     const Twine &Name,
71                                                     llvm::Value *ArraySize) {
72  auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
73  Alloca->setAlignment(Align.getAsAlign());
74  return Address(Alloca, Ty, Align, KnownNonNull);
75}
76
77/// CreateTempAlloca - This creates a alloca and inserts it into the entry
78/// block. The alloca is casted to default address space if necessary.
79Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
80                                          const Twine &Name,
81                                          llvm::Value *ArraySize,
82                                          Address *AllocaAddr) {
83  auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
84  if (AllocaAddr)
85    *AllocaAddr = Alloca;
86  llvm::Value *V = Alloca.getPointer();
87  // Alloca always returns a pointer in alloca address space, which may
88  // be different from the type defined by the language. For example,
89  // in C++ the auto variables are in the default address space. Therefore
90  // cast alloca to the default address space when necessary.
91  if (getASTAllocaAddressSpace() != LangAS::Default) {
92    auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
93    llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
94    // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
95    // otherwise alloca is inserted at the current insertion point of the
96    // builder.
97    if (!ArraySize)
98      Builder.SetInsertPoint(getPostAllocaInsertPoint());
99    V = getTargetHooks().performAddrSpaceCast(
100        *this, V, getASTAllocaAddressSpace(), LangAS::Default,
101        Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
102  }
103
104  return Address(V, Ty, Align, KnownNonNull);
105}
106
107/// CreateTempAlloca - This creates an alloca and inserts it into the entry
108/// block if \p ArraySize is nullptr, otherwise inserts it at the current
109/// insertion point of the builder.
110llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
111                                                    const Twine &Name,
112                                                    llvm::Value *ArraySize) {
113  if (ArraySize)
114    return Builder.CreateAlloca(Ty, ArraySize, Name);
115  return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
116                              ArraySize, Name, AllocaInsertPt);
117}
118
119/// CreateDefaultAlignTempAlloca - This creates an alloca with the
120/// default alignment of the corresponding LLVM type, which is *not*
121/// guaranteed to be related in any way to the expected alignment of
122/// an AST type that might have been lowered to Ty.
123Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
124                                                      const Twine &Name) {
125  CharUnits Align =
126      CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlign(Ty));
127  return CreateTempAlloca(Ty, Align, Name);
128}
129
130Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
131  CharUnits Align = getContext().getTypeAlignInChars(Ty);
132  return CreateTempAlloca(ConvertType(Ty), Align, Name);
133}
134
135Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
136                                       Address *Alloca) {
137  // FIXME: Should we prefer the preferred type alignment here?
138  return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
139}
140
141Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
142                                       const Twine &Name, Address *Alloca) {
143  Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
144                                    /*ArraySize=*/nullptr, Alloca);
145
146  if (Ty->isConstantMatrixType()) {
147    auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType());
148    auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
149                                                ArrayTy->getNumElements());
150
151    Result = Address(Result.getPointer(), VectorTy, Result.getAlignment(),
152                     KnownNonNull);
153  }
154  return Result;
155}
156
157Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
158                                                  const Twine &Name) {
159  return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
160}
161
162Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
163                                                  const Twine &Name) {
164  return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
165                                  Name);
166}
167
168/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
169/// expression and compare the result against zero, returning an Int1Ty value.
170llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
171  PGO.setCurrentStmt(E);
172  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
173    llvm::Value *MemPtr = EmitScalarExpr(E);
174    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
175  }
176
177  QualType BoolTy = getContext().BoolTy;
178  SourceLocation Loc = E->getExprLoc();
179  CGFPOptionsRAII FPOptsRAII(*this, E);
180  if (!E->getType()->isAnyComplexType())
181    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
182
183  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
184                                       Loc);
185}
186
187/// EmitIgnoredExpr - Emit code to compute the specified expression,
188/// ignoring the result.
189void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
190  if (E->isPRValue())
191    return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true);
192
193  // if this is a bitfield-resulting conditional operator, we can special case
194  // emit this. The normal 'EmitLValue' version of this is particularly
195  // difficult to codegen for, since creating a single "LValue" for two
196  // different sized arguments here is not particularly doable.
197  if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>(
198          E->IgnoreParenNoopCasts(getContext()))) {
199    if (CondOp->getObjectKind() == OK_BitField)
200      return EmitIgnoredConditionalOperator(CondOp);
201  }
202
203  // Just emit it as an l-value and drop the result.
204  EmitLValue(E);
205}
206
207/// EmitAnyExpr - Emit code to compute the specified expression which
208/// can have any type.  The result is returned as an RValue struct.
209/// If this is an aggregate expression, AggSlot indicates where the
210/// result should be returned.
211RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
212                                    AggValueSlot aggSlot,
213                                    bool ignoreResult) {
214  switch (getEvaluationKind(E->getType())) {
215  case TEK_Scalar:
216    return RValue::get(EmitScalarExpr(E, ignoreResult));
217  case TEK_Complex:
218    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
219  case TEK_Aggregate:
220    if (!ignoreResult && aggSlot.isIgnored())
221      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
222    EmitAggExpr(E, aggSlot);
223    return aggSlot.asRValue();
224  }
225  llvm_unreachable("bad evaluation kind");
226}
227
228/// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
229/// always be accessible even if no aggregate location is provided.
230RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
231  AggValueSlot AggSlot = AggValueSlot::ignored();
232
233  if (hasAggregateEvaluationKind(E->getType()))
234    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
235  return EmitAnyExpr(E, AggSlot);
236}
237
238/// EmitAnyExprToMem - Evaluate an expression into a given memory
239/// location.
240void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
241                                       Address Location,
242                                       Qualifiers Quals,
243                                       bool IsInit) {
244  // FIXME: This function should take an LValue as an argument.
245  switch (getEvaluationKind(E->getType())) {
246  case TEK_Complex:
247    EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
248                              /*isInit*/ false);
249    return;
250
251  case TEK_Aggregate: {
252    EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
253                                         AggValueSlot::IsDestructed_t(IsInit),
254                                         AggValueSlot::DoesNotNeedGCBarriers,
255                                         AggValueSlot::IsAliased_t(!IsInit),
256                                         AggValueSlot::MayOverlap));
257    return;
258  }
259
260  case TEK_Scalar: {
261    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
262    LValue LV = MakeAddrLValue(Location, E->getType());
263    EmitStoreThroughLValue(RV, LV);
264    return;
265  }
266  }
267  llvm_unreachable("bad evaluation kind");
268}
269
270static void
271pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
272                     const Expr *E, Address ReferenceTemporary) {
273  // Objective-C++ ARC:
274  //   If we are binding a reference to a temporary that has ownership, we
275  //   need to perform retain/release operations on the temporary.
276  //
277  // FIXME: This should be looking at E, not M.
278  if (auto Lifetime = M->getType().getObjCLifetime()) {
279    switch (Lifetime) {
280    case Qualifiers::OCL_None:
281    case Qualifiers::OCL_ExplicitNone:
282      // Carry on to normal cleanup handling.
283      break;
284
285    case Qualifiers::OCL_Autoreleasing:
286      // Nothing to do; cleaned up by an autorelease pool.
287      return;
288
289    case Qualifiers::OCL_Strong:
290    case Qualifiers::OCL_Weak:
291      switch (StorageDuration Duration = M->getStorageDuration()) {
292      case SD_Static:
293        // Note: we intentionally do not register a cleanup to release
294        // the object on program termination.
295        return;
296
297      case SD_Thread:
298        // FIXME: We should probably register a cleanup in this case.
299        return;
300
301      case SD_Automatic:
302      case SD_FullExpression:
303        CodeGenFunction::Destroyer *Destroy;
304        CleanupKind CleanupKind;
305        if (Lifetime == Qualifiers::OCL_Strong) {
306          const ValueDecl *VD = M->getExtendingDecl();
307          bool Precise =
308              VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
309          CleanupKind = CGF.getARCCleanupKind();
310          Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
311                            : &CodeGenFunction::destroyARCStrongImprecise;
312        } else {
313          // __weak objects always get EH cleanups; otherwise, exceptions
314          // could cause really nasty crashes instead of mere leaks.
315          CleanupKind = NormalAndEHCleanup;
316          Destroy = &CodeGenFunction::destroyARCWeak;
317        }
318        if (Duration == SD_FullExpression)
319          CGF.pushDestroy(CleanupKind, ReferenceTemporary,
320                          M->getType(), *Destroy,
321                          CleanupKind & EHCleanup);
322        else
323          CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
324                                          M->getType(),
325                                          *Destroy, CleanupKind & EHCleanup);
326        return;
327
328      case SD_Dynamic:
329        llvm_unreachable("temporary cannot have dynamic storage duration");
330      }
331      llvm_unreachable("unknown storage duration");
332    }
333  }
334
335  CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
336  if (const RecordType *RT =
337          E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
338    // Get the destructor for the reference temporary.
339    auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
340    if (!ClassDecl->hasTrivialDestructor())
341      ReferenceTemporaryDtor = ClassDecl->getDestructor();
342  }
343
344  if (!ReferenceTemporaryDtor)
345    return;
346
347  // Call the destructor for the temporary.
348  switch (M->getStorageDuration()) {
349  case SD_Static:
350  case SD_Thread: {
351    llvm::FunctionCallee CleanupFn;
352    llvm::Constant *CleanupArg;
353    if (E->getType()->isArrayType()) {
354      CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
355          ReferenceTemporary, E->getType(),
356          CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
357          dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
358      CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
359    } else {
360      CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
361          GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
362      CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
363    }
364    CGF.CGM.getCXXABI().registerGlobalDtor(
365        CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
366    break;
367  }
368
369  case SD_FullExpression:
370    CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
371                    CodeGenFunction::destroyCXXObject,
372                    CGF.getLangOpts().Exceptions);
373    break;
374
375  case SD_Automatic:
376    CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
377                                    ReferenceTemporary, E->getType(),
378                                    CodeGenFunction::destroyCXXObject,
379                                    CGF.getLangOpts().Exceptions);
380    break;
381
382  case SD_Dynamic:
383    llvm_unreachable("temporary cannot have dynamic storage duration");
384  }
385}
386
387static Address createReferenceTemporary(CodeGenFunction &CGF,
388                                        const MaterializeTemporaryExpr *M,
389                                        const Expr *Inner,
390                                        Address *Alloca = nullptr) {
391  auto &TCG = CGF.getTargetHooks();
392  switch (M->getStorageDuration()) {
393  case SD_FullExpression:
394  case SD_Automatic: {
395    // If we have a constant temporary array or record try to promote it into a
396    // constant global under the same rules a normal constant would've been
397    // promoted. This is easier on the optimizer and generally emits fewer
398    // instructions.
399    QualType Ty = Inner->getType();
400    if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
401        (Ty->isArrayType() || Ty->isRecordType()) &&
402        Ty.isConstantStorage(CGF.getContext(), true, false))
403      if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
404        auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
405        auto *GV = new llvm::GlobalVariable(
406            CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
407            llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
408            llvm::GlobalValue::NotThreadLocal,
409            CGF.getContext().getTargetAddressSpace(AS));
410        CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
411        GV->setAlignment(alignment.getAsAlign());
412        llvm::Constant *C = GV;
413        if (AS != LangAS::Default)
414          C = TCG.performAddrSpaceCast(
415              CGF.CGM, GV, AS, LangAS::Default,
416              GV->getValueType()->getPointerTo(
417                  CGF.getContext().getTargetAddressSpace(LangAS::Default)));
418        // FIXME: Should we put the new global into a COMDAT?
419        return Address(C, GV->getValueType(), alignment);
420      }
421    return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
422  }
423  case SD_Thread:
424  case SD_Static:
425    return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
426
427  case SD_Dynamic:
428    llvm_unreachable("temporary can't have dynamic storage duration");
429  }
430  llvm_unreachable("unknown storage duration");
431}
432
433/// Helper method to check if the underlying ABI is AAPCS
434static bool isAAPCS(const TargetInfo &TargetInfo) {
435  return TargetInfo.getABI().starts_with("aapcs");
436}
437
438LValue CodeGenFunction::
439EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
440  const Expr *E = M->getSubExpr();
441
442  assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
443          !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
444         "Reference should never be pseudo-strong!");
445
446  // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
447  // as that will cause the lifetime adjustment to be lost for ARC
448  auto ownership = M->getType().getObjCLifetime();
449  if (ownership != Qualifiers::OCL_None &&
450      ownership != Qualifiers::OCL_ExplicitNone) {
451    Address Object = createReferenceTemporary(*this, M, E);
452    if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
453      llvm::Type *Ty = ConvertTypeForMem(E->getType());
454      Object = Object.withElementType(Ty);
455
456      // createReferenceTemporary will promote the temporary to a global with a
457      // constant initializer if it can.  It can only do this to a value of
458      // ARC-manageable type if the value is global and therefore "immune" to
459      // ref-counting operations.  Therefore we have no need to emit either a
460      // dynamic initialization or a cleanup and we can just return the address
461      // of the temporary.
462      if (Var->hasInitializer())
463        return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
464
465      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
466    }
467    LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
468                                       AlignmentSource::Decl);
469
470    switch (getEvaluationKind(E->getType())) {
471    default: llvm_unreachable("expected scalar or aggregate expression");
472    case TEK_Scalar:
473      EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
474      break;
475    case TEK_Aggregate: {
476      EmitAggExpr(E, AggValueSlot::forAddr(Object,
477                                           E->getType().getQualifiers(),
478                                           AggValueSlot::IsDestructed,
479                                           AggValueSlot::DoesNotNeedGCBarriers,
480                                           AggValueSlot::IsNotAliased,
481                                           AggValueSlot::DoesNotOverlap));
482      break;
483    }
484    }
485
486    pushTemporaryCleanup(*this, M, E, Object);
487    return RefTempDst;
488  }
489
490  SmallVector<const Expr *, 2> CommaLHSs;
491  SmallVector<SubobjectAdjustment, 2> Adjustments;
492  E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
493
494  for (const auto &Ignored : CommaLHSs)
495    EmitIgnoredExpr(Ignored);
496
497  if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
498    if (opaque->getType()->isRecordType()) {
499      assert(Adjustments.empty());
500      return EmitOpaqueValueLValue(opaque);
501    }
502  }
503
504  // Create and initialize the reference temporary.
505  Address Alloca = Address::invalid();
506  Address Object = createReferenceTemporary(*this, M, E, &Alloca);
507  if (auto *Var = dyn_cast<llvm::GlobalVariable>(
508          Object.getPointer()->stripPointerCasts())) {
509    llvm::Type *TemporaryType = ConvertTypeForMem(E->getType());
510    Object = Object.withElementType(TemporaryType);
511    // If the temporary is a global and has a constant initializer or is a
512    // constant temporary that we promoted to a global, we may have already
513    // initialized it.
514    if (!Var->hasInitializer()) {
515      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
516      EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
517    }
518  } else {
519    switch (M->getStorageDuration()) {
520    case SD_Automatic:
521      if (auto *Size = EmitLifetimeStart(
522              CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
523              Alloca.getPointer())) {
524        pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
525                                                  Alloca, Size);
526      }
527      break;
528
529    case SD_FullExpression: {
530      if (!ShouldEmitLifetimeMarkers)
531        break;
532
533      // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
534      // marker. Instead, start the lifetime of a conditional temporary earlier
535      // so that it's unconditional. Don't do this with sanitizers which need
536      // more precise lifetime marks. However when inside an "await.suspend"
537      // block, we should always avoid conditional cleanup because it creates
538      // boolean marker that lives across await_suspend, which can destroy coro
539      // frame.
540      ConditionalEvaluation *OldConditional = nullptr;
541      CGBuilderTy::InsertPoint OldIP;
542      if (isInConditionalBranch() && !E->getType().isDestructedType() &&
543          ((!SanOpts.has(SanitizerKind::HWAddress) &&
544            !SanOpts.has(SanitizerKind::Memory) &&
545            !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) ||
546           inSuspendBlock())) {
547        OldConditional = OutermostConditional;
548        OutermostConditional = nullptr;
549
550        OldIP = Builder.saveIP();
551        llvm::BasicBlock *Block = OldConditional->getStartingBlock();
552        Builder.restoreIP(CGBuilderTy::InsertPoint(
553            Block, llvm::BasicBlock::iterator(Block->back())));
554      }
555
556      if (auto *Size = EmitLifetimeStart(
557              CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
558              Alloca.getPointer())) {
559        pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
560                                             Size);
561      }
562
563      if (OldConditional) {
564        OutermostConditional = OldConditional;
565        Builder.restoreIP(OldIP);
566      }
567      break;
568    }
569
570    default:
571      break;
572    }
573    EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
574  }
575  pushTemporaryCleanup(*this, M, E, Object);
576
577  // Perform derived-to-base casts and/or field accesses, to get from the
578  // temporary object we created (and, potentially, for which we extended
579  // the lifetime) to the subobject we're binding the reference to.
580  for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
581    switch (Adjustment.Kind) {
582    case SubobjectAdjustment::DerivedToBaseAdjustment:
583      Object =
584          GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
585                                Adjustment.DerivedToBase.BasePath->path_begin(),
586                                Adjustment.DerivedToBase.BasePath->path_end(),
587                                /*NullCheckValue=*/ false, E->getExprLoc());
588      break;
589
590    case SubobjectAdjustment::FieldAdjustment: {
591      LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
592      LV = EmitLValueForField(LV, Adjustment.Field);
593      assert(LV.isSimple() &&
594             "materialized temporary field is not a simple lvalue");
595      Object = LV.getAddress(*this);
596      break;
597    }
598
599    case SubobjectAdjustment::MemberPointerAdjustment: {
600      llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
601      Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
602                                               Adjustment.Ptr.MPT);
603      break;
604    }
605    }
606  }
607
608  return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
609}
610
611RValue
612CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
613  // Emit the expression as an lvalue.
614  LValue LV = EmitLValue(E);
615  assert(LV.isSimple());
616  llvm::Value *Value = LV.getPointer(*this);
617
618  if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
619    // C++11 [dcl.ref]p5 (as amended by core issue 453):
620    //   If a glvalue to which a reference is directly bound designates neither
621    //   an existing object or function of an appropriate type nor a region of
622    //   storage of suitable size and alignment to contain an object of the
623    //   reference's type, the behavior is undefined.
624    QualType Ty = E->getType();
625    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
626  }
627
628  return RValue::get(Value);
629}
630
631
632/// getAccessedFieldNo - Given an encoded value and a result number, return the
633/// input field number being accessed.
634unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
635                                             const llvm::Constant *Elts) {
636  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
637      ->getZExtValue();
638}
639
640/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
641static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
642                                    llvm::Value *High) {
643  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
644  llvm::Value *K47 = Builder.getInt64(47);
645  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
646  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
647  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
648  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
649  return Builder.CreateMul(B1, KMul);
650}
651
652bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
653  return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
654         TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
655}
656
657bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
658  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
659  return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
660         (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
661          TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
662          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
663}
664
665bool CodeGenFunction::sanitizePerformTypeCheck() const {
666  return SanOpts.has(SanitizerKind::Null) ||
667         SanOpts.has(SanitizerKind::Alignment) ||
668         SanOpts.has(SanitizerKind::ObjectSize) ||
669         SanOpts.has(SanitizerKind::Vptr);
670}
671
672void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
673                                    llvm::Value *Ptr, QualType Ty,
674                                    CharUnits Alignment,
675                                    SanitizerSet SkippedChecks,
676                                    llvm::Value *ArraySize) {
677  if (!sanitizePerformTypeCheck())
678    return;
679
680  // Don't check pointers outside the default address space. The null check
681  // isn't correct, the object-size check isn't supported by LLVM, and we can't
682  // communicate the addresses to the runtime handler for the vptr check.
683  if (Ptr->getType()->getPointerAddressSpace())
684    return;
685
686  // Don't check pointers to volatile data. The behavior here is implementation-
687  // defined.
688  if (Ty.isVolatileQualified())
689    return;
690
691  SanitizerScope SanScope(this);
692
693  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
694  llvm::BasicBlock *Done = nullptr;
695
696  // Quickly determine whether we have a pointer to an alloca. It's possible
697  // to skip null checks, and some alignment checks, for these pointers. This
698  // can reduce compile-time significantly.
699  auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
700
701  llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
702  llvm::Value *IsNonNull = nullptr;
703  bool IsGuaranteedNonNull =
704      SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
705  bool AllowNullPointers = isNullPointerAllowed(TCK);
706  if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
707      !IsGuaranteedNonNull) {
708    // The glvalue must not be an empty glvalue.
709    IsNonNull = Builder.CreateIsNotNull(Ptr);
710
711    // The IR builder can constant-fold the null check if the pointer points to
712    // a constant.
713    IsGuaranteedNonNull = IsNonNull == True;
714
715    // Skip the null check if the pointer is known to be non-null.
716    if (!IsGuaranteedNonNull) {
717      if (AllowNullPointers) {
718        // When performing pointer casts, it's OK if the value is null.
719        // Skip the remaining checks in that case.
720        Done = createBasicBlock("null");
721        llvm::BasicBlock *Rest = createBasicBlock("not.null");
722        Builder.CreateCondBr(IsNonNull, Rest, Done);
723        EmitBlock(Rest);
724      } else {
725        Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
726      }
727    }
728  }
729
730  if (SanOpts.has(SanitizerKind::ObjectSize) &&
731      !SkippedChecks.has(SanitizerKind::ObjectSize) &&
732      !Ty->isIncompleteType()) {
733    uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
734    llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
735    if (ArraySize)
736      Size = Builder.CreateMul(Size, ArraySize);
737
738    // Degenerate case: new X[0] does not need an objectsize check.
739    llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
740    if (!ConstantSize || !ConstantSize->isNullValue()) {
741      // The glvalue must refer to a large enough storage region.
742      // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
743      //        to check this.
744      // FIXME: Get object address space
745      llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
746      llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
747      llvm::Value *Min = Builder.getFalse();
748      llvm::Value *NullIsUnknown = Builder.getFalse();
749      llvm::Value *Dynamic = Builder.getFalse();
750      llvm::Value *LargeEnough = Builder.CreateICmpUGE(
751          Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}), Size);
752      Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
753    }
754  }
755
756  llvm::MaybeAlign AlignVal;
757  llvm::Value *PtrAsInt = nullptr;
758
759  if (SanOpts.has(SanitizerKind::Alignment) &&
760      !SkippedChecks.has(SanitizerKind::Alignment)) {
761    AlignVal = Alignment.getAsMaybeAlign();
762    if (!Ty->isIncompleteType() && !AlignVal)
763      AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
764                                             /*ForPointeeType=*/true)
765                     .getAsMaybeAlign();
766
767    // The glvalue must be suitably aligned.
768    if (AlignVal && *AlignVal > llvm::Align(1) &&
769        (!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) {
770      PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
771      llvm::Value *Align = Builder.CreateAnd(
772          PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1));
773      llvm::Value *Aligned =
774          Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
775      if (Aligned != True)
776        Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
777    }
778  }
779
780  if (Checks.size() > 0) {
781    llvm::Constant *StaticData[] = {
782        EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
783        llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1),
784        llvm::ConstantInt::get(Int8Ty, TCK)};
785    EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
786              PtrAsInt ? PtrAsInt : Ptr);
787  }
788
789  // If possible, check that the vptr indicates that there is a subobject of
790  // type Ty at offset zero within this object.
791  //
792  // C++11 [basic.life]p5,6:
793  //   [For storage which does not refer to an object within its lifetime]
794  //   The program has undefined behavior if:
795  //    -- the [pointer or glvalue] is used to access a non-static data member
796  //       or call a non-static member function
797  if (SanOpts.has(SanitizerKind::Vptr) &&
798      !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
799    // Ensure that the pointer is non-null before loading it. If there is no
800    // compile-time guarantee, reuse the run-time null check or emit a new one.
801    if (!IsGuaranteedNonNull) {
802      if (!IsNonNull)
803        IsNonNull = Builder.CreateIsNotNull(Ptr);
804      if (!Done)
805        Done = createBasicBlock("vptr.null");
806      llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
807      Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
808      EmitBlock(VptrNotNull);
809    }
810
811    // Compute a hash of the mangled name of the type.
812    //
813    // FIXME: This is not guaranteed to be deterministic! Move to a
814    //        fingerprinting mechanism once LLVM provides one. For the time
815    //        being the implementation happens to be deterministic.
816    SmallString<64> MangledName;
817    llvm::raw_svector_ostream Out(MangledName);
818    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
819                                                     Out);
820
821    // Contained in NoSanitizeList based on the mangled type.
822    if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
823                                                           Out.str())) {
824      llvm::hash_code TypeHash = hash_value(Out.str());
825
826      // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
827      llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
828      Address VPtrAddr(Ptr, IntPtrTy, getPointerAlign());
829      llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
830      llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
831
832      llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
833      Hash = Builder.CreateTrunc(Hash, IntPtrTy);
834
835      // Look the hash up in our cache.
836      const int CacheSize = 128;
837      llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
838      llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
839                                                     "__ubsan_vptr_type_cache");
840      llvm::Value *Slot = Builder.CreateAnd(Hash,
841                                            llvm::ConstantInt::get(IntPtrTy,
842                                                                   CacheSize-1));
843      llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
844      llvm::Value *CacheVal = Builder.CreateAlignedLoad(
845          IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
846          getPointerAlign());
847
848      // If the hash isn't in the cache, call a runtime handler to perform the
849      // hard work of checking whether the vptr is for an object of the right
850      // type. This will either fill in the cache and return, or produce a
851      // diagnostic.
852      llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
853      llvm::Constant *StaticData[] = {
854        EmitCheckSourceLocation(Loc),
855        EmitCheckTypeDescriptor(Ty),
856        CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
857        llvm::ConstantInt::get(Int8Ty, TCK)
858      };
859      llvm::Value *DynamicData[] = { Ptr, Hash };
860      EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
861                SanitizerHandler::DynamicTypeCacheMiss, StaticData,
862                DynamicData);
863    }
864  }
865
866  if (Done) {
867    Builder.CreateBr(Done);
868    EmitBlock(Done);
869  }
870}
871
872llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
873                                                   QualType EltTy) {
874  ASTContext &C = getContext();
875  uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
876  if (!EltSize)
877    return nullptr;
878
879  auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
880  if (!ArrayDeclRef)
881    return nullptr;
882
883  auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
884  if (!ParamDecl)
885    return nullptr;
886
887  auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
888  if (!POSAttr)
889    return nullptr;
890
891  // Don't load the size if it's a lower bound.
892  int POSType = POSAttr->getType();
893  if (POSType != 0 && POSType != 1)
894    return nullptr;
895
896  // Find the implicit size parameter.
897  auto PassedSizeIt = SizeArguments.find(ParamDecl);
898  if (PassedSizeIt == SizeArguments.end())
899    return nullptr;
900
901  const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
902  assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
903  Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
904  llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
905                                              C.getSizeType(), E->getExprLoc());
906  llvm::Value *SizeOfElement =
907      llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
908  return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
909}
910
911/// If Base is known to point to the start of an array, return the length of
912/// that array. Return 0 if the length cannot be determined.
913static llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF,
914                                          const Expr *Base,
915                                          QualType &IndexedType,
916                                          LangOptions::StrictFlexArraysLevelKind
917                                          StrictFlexArraysLevel) {
918  // For the vector indexing extension, the bound is the number of elements.
919  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
920    IndexedType = Base->getType();
921    return CGF.Builder.getInt32(VT->getNumElements());
922  }
923
924  Base = Base->IgnoreParens();
925
926  if (const auto *CE = dyn_cast<CastExpr>(Base)) {
927    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
928        !CE->getSubExpr()->isFlexibleArrayMemberLike(CGF.getContext(),
929                                                     StrictFlexArraysLevel)) {
930      CodeGenFunction::SanitizerScope SanScope(&CGF);
931
932      IndexedType = CE->getSubExpr()->getType();
933      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
934      if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
935        return CGF.Builder.getInt(CAT->getSize());
936
937      if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
938        return CGF.getVLASize(VAT).NumElts;
939      // Ignore pass_object_size here. It's not applicable on decayed pointers.
940    }
941  }
942
943  CodeGenFunction::SanitizerScope SanScope(&CGF);
944
945  QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
946  if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
947    IndexedType = Base->getType();
948    return POS;
949  }
950
951  return nullptr;
952}
953
954namespace {
955
956/// \p StructAccessBase returns the base \p Expr of a field access. It returns
957/// either a \p DeclRefExpr, representing the base pointer to the struct, i.e.:
958///
959///     p in p-> a.b.c
960///
961/// or a \p MemberExpr, if the \p MemberExpr has the \p RecordDecl we're
962/// looking for:
963///
964///     struct s {
965///       struct s *ptr;
966///       int count;
967///       char array[] __attribute__((counted_by(count)));
968///     };
969///
970/// If we have an expression like \p p->ptr->array[index], we want the
971/// \p MemberExpr for \p p->ptr instead of \p p.
972class StructAccessBase
973    : public ConstStmtVisitor<StructAccessBase, const Expr *> {
974  const RecordDecl *ExpectedRD;
975
976  bool IsExpectedRecordDecl(const Expr *E) const {
977    QualType Ty = E->getType();
978    if (Ty->isPointerType())
979      Ty = Ty->getPointeeType();
980    return ExpectedRD == Ty->getAsRecordDecl();
981  }
982
983public:
984  StructAccessBase(const RecordDecl *ExpectedRD) : ExpectedRD(ExpectedRD) {}
985
986  //===--------------------------------------------------------------------===//
987  //                            Visitor Methods
988  //===--------------------------------------------------------------------===//
989
990  // NOTE: If we build C++ support for counted_by, then we'll have to handle
991  // horrors like this:
992  //
993  //     struct S {
994  //       int x, y;
995  //       int blah[] __attribute__((counted_by(x)));
996  //     } s;
997  //
998  //     int foo(int index, int val) {
999  //       int (S::*IHatePMDs)[] = &S::blah;
1000  //       (s.*IHatePMDs)[index] = val;
1001  //     }
1002
1003  const Expr *Visit(const Expr *E) {
1004    return ConstStmtVisitor<StructAccessBase, const Expr *>::Visit(E);
1005  }
1006
1007  const Expr *VisitStmt(const Stmt *S) { return nullptr; }
1008
1009  // These are the types we expect to return (in order of most to least
1010  // likely):
1011  //
1012  //   1. DeclRefExpr - This is the expression for the base of the structure.
1013  //      It's exactly what we want to build an access to the \p counted_by
1014  //      field.
1015  //   2. MemberExpr - This is the expression that has the same \p RecordDecl
1016  //      as the flexble array member's lexical enclosing \p RecordDecl. This
1017  //      allows us to catch things like: "p->p->array"
1018  //   3. CompoundLiteralExpr - This is for people who create something
1019  //      heretical like (struct foo has a flexible array member):
1020  //
1021  //        (struct foo){ 1, 2 }.blah[idx];
1022  const Expr *VisitDeclRefExpr(const DeclRefExpr *E) {
1023    return IsExpectedRecordDecl(E) ? E : nullptr;
1024  }
1025  const Expr *VisitMemberExpr(const MemberExpr *E) {
1026    if (IsExpectedRecordDecl(E) && E->isArrow())
1027      return E;
1028    const Expr *Res = Visit(E->getBase());
1029    return !Res && IsExpectedRecordDecl(E) ? E : Res;
1030  }
1031  const Expr *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1032    return IsExpectedRecordDecl(E) ? E : nullptr;
1033  }
1034  const Expr *VisitCallExpr(const CallExpr *E) {
1035    return IsExpectedRecordDecl(E) ? E : nullptr;
1036  }
1037
1038  const Expr *VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1039    if (IsExpectedRecordDecl(E))
1040      return E;
1041    return Visit(E->getBase());
1042  }
1043  const Expr *VisitCastExpr(const CastExpr *E) {
1044    return Visit(E->getSubExpr());
1045  }
1046  const Expr *VisitParenExpr(const ParenExpr *E) {
1047    return Visit(E->getSubExpr());
1048  }
1049  const Expr *VisitUnaryAddrOf(const UnaryOperator *E) {
1050    return Visit(E->getSubExpr());
1051  }
1052  const Expr *VisitUnaryDeref(const UnaryOperator *E) {
1053    return Visit(E->getSubExpr());
1054  }
1055};
1056
1057} // end anonymous namespace
1058
1059using RecIndicesTy =
1060    SmallVector<std::pair<const RecordDecl *, llvm::Value *>, 8>;
1061
1062static bool getGEPIndicesToField(CodeGenFunction &CGF, const RecordDecl *RD,
1063                                 const FieldDecl *FD, RecIndicesTy &Indices) {
1064  const CGRecordLayout &Layout = CGF.CGM.getTypes().getCGRecordLayout(RD);
1065  int64_t FieldNo = -1;
1066  for (const Decl *D : RD->decls()) {
1067    if (const auto *Field = dyn_cast<FieldDecl>(D)) {
1068      FieldNo = Layout.getLLVMFieldNo(Field);
1069      if (FD == Field) {
1070        Indices.emplace_back(std::make_pair(RD, CGF.Builder.getInt32(FieldNo)));
1071        return true;
1072      }
1073    }
1074
1075    if (const auto *Record = dyn_cast<RecordDecl>(D)) {
1076      ++FieldNo;
1077      if (getGEPIndicesToField(CGF, Record, FD, Indices)) {
1078        if (RD->isUnion())
1079          FieldNo = 0;
1080        Indices.emplace_back(std::make_pair(RD, CGF.Builder.getInt32(FieldNo)));
1081        return true;
1082      }
1083    }
1084  }
1085
1086  return false;
1087}
1088
1089/// This method is typically called in contexts where we can't generate
1090/// side-effects, like in __builtin_dynamic_object_size. When finding
1091/// expressions, only choose those that have either already been emitted or can
1092/// be loaded without side-effects.
1093///
1094/// - \p FAMDecl: the \p Decl for the flexible array member. It may not be
1095///   within the top-level struct.
1096/// - \p CountDecl: must be within the same non-anonymous struct as \p FAMDecl.
1097llvm::Value *CodeGenFunction::EmitCountedByFieldExpr(
1098    const Expr *Base, const FieldDecl *FAMDecl, const FieldDecl *CountDecl) {
1099  const RecordDecl *RD = CountDecl->getParent()->getOuterLexicalRecordContext();
1100
1101  // Find the base struct expr (i.e. p in p->a.b.c.d).
1102  const Expr *StructBase = StructAccessBase(RD).Visit(Base);
1103  if (!StructBase || StructBase->HasSideEffects(getContext()))
1104    return nullptr;
1105
1106  llvm::Value *Res = nullptr;
1107  if (const auto *DRE = dyn_cast<DeclRefExpr>(StructBase)) {
1108    Res = EmitDeclRefLValue(DRE).getPointer(*this);
1109    Res = Builder.CreateAlignedLoad(ConvertType(DRE->getType()), Res,
1110                                    getPointerAlign(), "dre.load");
1111  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(StructBase)) {
1112    LValue LV = EmitMemberExpr(ME);
1113    Address Addr = LV.getAddress(*this);
1114    Res = Addr.getPointer();
1115  } else if (StructBase->getType()->isPointerType()) {
1116    LValueBaseInfo BaseInfo;
1117    TBAAAccessInfo TBAAInfo;
1118    Address Addr = EmitPointerWithAlignment(StructBase, &BaseInfo, &TBAAInfo);
1119    Res = Addr.getPointer();
1120  } else {
1121    return nullptr;
1122  }
1123
1124  llvm::Value *Zero = Builder.getInt32(0);
1125  RecIndicesTy Indices;
1126
1127  getGEPIndicesToField(*this, RD, CountDecl, Indices);
1128
1129  for (auto I = Indices.rbegin(), E = Indices.rend(); I != E; ++I)
1130    Res = Builder.CreateInBoundsGEP(
1131        ConvertType(QualType(I->first->getTypeForDecl(), 0)), Res,
1132        {Zero, I->second}, "..counted_by.gep");
1133
1134  return Builder.CreateAlignedLoad(ConvertType(CountDecl->getType()), Res,
1135                                   getIntAlign(), "..counted_by.load");
1136}
1137
1138const FieldDecl *CodeGenFunction::FindCountedByField(const FieldDecl *FD) {
1139  if (!FD || !FD->hasAttr<CountedByAttr>())
1140    return nullptr;
1141
1142  const auto *CBA = FD->getAttr<CountedByAttr>();
1143  if (!CBA)
1144    return nullptr;
1145
1146  auto GetNonAnonStructOrUnion =
1147      [](const RecordDecl *RD) -> const RecordDecl * {
1148    while (RD && RD->isAnonymousStructOrUnion()) {
1149      const auto *R = dyn_cast<RecordDecl>(RD->getDeclContext());
1150      if (!R)
1151        return nullptr;
1152      RD = R;
1153    }
1154    return RD;
1155  };
1156  const RecordDecl *EnclosingRD = GetNonAnonStructOrUnion(FD->getParent());
1157  if (!EnclosingRD)
1158    return nullptr;
1159
1160  DeclarationName DName(CBA->getCountedByField());
1161  DeclContext::lookup_result Lookup = EnclosingRD->lookup(DName);
1162
1163  if (Lookup.empty())
1164    return nullptr;
1165
1166  const NamedDecl *ND = Lookup.front();
1167  if (const auto *IFD = dyn_cast<IndirectFieldDecl>(ND))
1168    ND = IFD->getAnonField();
1169
1170  return dyn_cast<FieldDecl>(ND);
1171}
1172
1173void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
1174                                      llvm::Value *Index, QualType IndexType,
1175                                      bool Accessed) {
1176  assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
1177         "should not be called unless adding bounds checks");
1178  const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
1179      getLangOpts().getStrictFlexArraysLevel();
1180  QualType IndexedType;
1181  llvm::Value *Bound =
1182      getArrayIndexingBound(*this, Base, IndexedType, StrictFlexArraysLevel);
1183
1184  EmitBoundsCheckImpl(E, Bound, Index, IndexType, IndexedType, Accessed);
1185}
1186
1187void CodeGenFunction::EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound,
1188                                          llvm::Value *Index,
1189                                          QualType IndexType,
1190                                          QualType IndexedType, bool Accessed) {
1191  if (!Bound)
1192    return;
1193
1194  SanitizerScope SanScope(this);
1195
1196  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1197  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1198  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1199
1200  llvm::Constant *StaticData[] = {
1201    EmitCheckSourceLocation(E->getExprLoc()),
1202    EmitCheckTypeDescriptor(IndexedType),
1203    EmitCheckTypeDescriptor(IndexType)
1204  };
1205  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1206                                : Builder.CreateICmpULE(IndexVal, BoundVal);
1207  EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1208            SanitizerHandler::OutOfBounds, StaticData, Index);
1209}
1210
1211CodeGenFunction::ComplexPairTy CodeGenFunction::
1212EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1213                         bool isInc, bool isPre) {
1214  ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1215
1216  llvm::Value *NextVal;
1217  if (isa<llvm::IntegerType>(InVal.first->getType())) {
1218    uint64_t AmountVal = isInc ? 1 : -1;
1219    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1220
1221    // Add the inc/dec to the real part.
1222    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1223  } else {
1224    QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1225    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1226    if (!isInc)
1227      FVal.changeSign();
1228    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1229
1230    // Add the inc/dec to the real part.
1231    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1232  }
1233
1234  ComplexPairTy IncVal(NextVal, InVal.second);
1235
1236  // Store the updated result through the lvalue.
1237  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1238  if (getLangOpts().OpenMP)
1239    CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1240                                                              E->getSubExpr());
1241
1242  // If this is a postinc, return the value read from memory, otherwise use the
1243  // updated value.
1244  return isPre ? IncVal : InVal;
1245}
1246
1247void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1248                                             CodeGenFunction *CGF) {
1249  // Bind VLAs in the cast type.
1250  if (CGF && E->getType()->isVariablyModifiedType())
1251    CGF->EmitVariablyModifiedType(E->getType());
1252
1253  if (CGDebugInfo *DI = getModuleDebugInfo())
1254    DI->EmitExplicitCastType(E->getType());
1255}
1256
1257//===----------------------------------------------------------------------===//
1258//                         LValue Expression Emission
1259//===----------------------------------------------------------------------===//
1260
1261static Address EmitPointerWithAlignment(const Expr *E, LValueBaseInfo *BaseInfo,
1262                                        TBAAAccessInfo *TBAAInfo,
1263                                        KnownNonNull_t IsKnownNonNull,
1264                                        CodeGenFunction &CGF) {
1265  // We allow this with ObjC object pointers because of fragile ABIs.
1266  assert(E->getType()->isPointerType() ||
1267         E->getType()->isObjCObjectPointerType());
1268  E = E->IgnoreParens();
1269
1270  // Casts:
1271  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1272    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1273      CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
1274
1275    switch (CE->getCastKind()) {
1276    // Non-converting casts (but not C's implicit conversion from void*).
1277    case CK_BitCast:
1278    case CK_NoOp:
1279    case CK_AddressSpaceConversion:
1280      if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1281        if (PtrTy->getPointeeType()->isVoidType())
1282          break;
1283
1284        LValueBaseInfo InnerBaseInfo;
1285        TBAAAccessInfo InnerTBAAInfo;
1286        Address Addr = CGF.EmitPointerWithAlignment(
1287            CE->getSubExpr(), &InnerBaseInfo, &InnerTBAAInfo, IsKnownNonNull);
1288        if (BaseInfo) *BaseInfo = InnerBaseInfo;
1289        if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1290
1291        if (isa<ExplicitCastExpr>(CE)) {
1292          LValueBaseInfo TargetTypeBaseInfo;
1293          TBAAAccessInfo TargetTypeTBAAInfo;
1294          CharUnits Align = CGF.CGM.getNaturalPointeeTypeAlignment(
1295              E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1296          if (TBAAInfo)
1297            *TBAAInfo =
1298                CGF.CGM.mergeTBAAInfoForCast(*TBAAInfo, TargetTypeTBAAInfo);
1299          // If the source l-value is opaque, honor the alignment of the
1300          // casted-to type.
1301          if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1302            if (BaseInfo)
1303              BaseInfo->mergeForCast(TargetTypeBaseInfo);
1304            Addr = Address(Addr.getPointer(), Addr.getElementType(), Align,
1305                           IsKnownNonNull);
1306          }
1307        }
1308
1309        if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1310            CE->getCastKind() == CK_BitCast) {
1311          if (auto PT = E->getType()->getAs<PointerType>())
1312            CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr,
1313                                          /*MayBeNull=*/true,
1314                                          CodeGenFunction::CFITCK_UnrelatedCast,
1315                                          CE->getBeginLoc());
1316        }
1317
1318        llvm::Type *ElemTy =
1319            CGF.ConvertTypeForMem(E->getType()->getPointeeType());
1320        Addr = Addr.withElementType(ElemTy);
1321        if (CE->getCastKind() == CK_AddressSpaceConversion)
1322          Addr = CGF.Builder.CreateAddrSpaceCast(Addr,
1323                                                 CGF.ConvertType(E->getType()));
1324        return Addr;
1325      }
1326      break;
1327
1328    // Array-to-pointer decay.
1329    case CK_ArrayToPointerDecay:
1330      return CGF.EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1331
1332    // Derived-to-base conversions.
1333    case CK_UncheckedDerivedToBase:
1334    case CK_DerivedToBase: {
1335      // TODO: Support accesses to members of base classes in TBAA. For now, we
1336      // conservatively pretend that the complete object is of the base class
1337      // type.
1338      if (TBAAInfo)
1339        *TBAAInfo = CGF.CGM.getTBAAAccessInfo(E->getType());
1340      Address Addr = CGF.EmitPointerWithAlignment(
1341          CE->getSubExpr(), BaseInfo, nullptr,
1342          (KnownNonNull_t)(IsKnownNonNull ||
1343                           CE->getCastKind() == CK_UncheckedDerivedToBase));
1344      auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1345      return CGF.GetAddressOfBaseClass(
1346          Addr, Derived, CE->path_begin(), CE->path_end(),
1347          CGF.ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
1348    }
1349
1350    // TODO: Is there any reason to treat base-to-derived conversions
1351    // specially?
1352    default:
1353      break;
1354    }
1355  }
1356
1357  // Unary &.
1358  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1359    if (UO->getOpcode() == UO_AddrOf) {
1360      LValue LV = CGF.EmitLValue(UO->getSubExpr(), IsKnownNonNull);
1361      if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1362      if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1363      return LV.getAddress(CGF);
1364    }
1365  }
1366
1367  // std::addressof and variants.
1368  if (auto *Call = dyn_cast<CallExpr>(E)) {
1369    switch (Call->getBuiltinCallee()) {
1370    default:
1371      break;
1372    case Builtin::BIaddressof:
1373    case Builtin::BI__addressof:
1374    case Builtin::BI__builtin_addressof: {
1375      LValue LV = CGF.EmitLValue(Call->getArg(0), IsKnownNonNull);
1376      if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1377      if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1378      return LV.getAddress(CGF);
1379    }
1380    }
1381  }
1382
1383  // TODO: conditional operators, comma.
1384
1385  // Otherwise, use the alignment of the type.
1386  CharUnits Align =
1387      CGF.CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1388  llvm::Type *ElemTy = CGF.ConvertTypeForMem(E->getType()->getPointeeType());
1389  return Address(CGF.EmitScalarExpr(E), ElemTy, Align, IsKnownNonNull);
1390}
1391
1392/// EmitPointerWithAlignment - Given an expression of pointer type, try to
1393/// derive a more accurate bound on the alignment of the pointer.
1394Address CodeGenFunction::EmitPointerWithAlignment(
1395    const Expr *E, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo,
1396    KnownNonNull_t IsKnownNonNull) {
1397  Address Addr =
1398      ::EmitPointerWithAlignment(E, BaseInfo, TBAAInfo, IsKnownNonNull, *this);
1399  if (IsKnownNonNull && !Addr.isKnownNonNull())
1400    Addr.setKnownNonNull();
1401  return Addr;
1402}
1403
1404llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1405  llvm::Value *V = RV.getScalarVal();
1406  if (auto MPT = T->getAs<MemberPointerType>())
1407    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1408  return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1409}
1410
1411RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1412  if (Ty->isVoidType())
1413    return RValue::get(nullptr);
1414
1415  switch (getEvaluationKind(Ty)) {
1416  case TEK_Complex: {
1417    llvm::Type *EltTy =
1418      ConvertType(Ty->castAs<ComplexType>()->getElementType());
1419    llvm::Value *U = llvm::UndefValue::get(EltTy);
1420    return RValue::getComplex(std::make_pair(U, U));
1421  }
1422
1423  // If this is a use of an undefined aggregate type, the aggregate must have an
1424  // identifiable address.  Just because the contents of the value are undefined
1425  // doesn't mean that the address can't be taken and compared.
1426  case TEK_Aggregate: {
1427    Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1428    return RValue::getAggregate(DestPtr);
1429  }
1430
1431  case TEK_Scalar:
1432    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1433  }
1434  llvm_unreachable("bad evaluation kind");
1435}
1436
1437RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1438                                              const char *Name) {
1439  ErrorUnsupported(E, Name);
1440  return GetUndefRValue(E->getType());
1441}
1442
1443LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1444                                              const char *Name) {
1445  ErrorUnsupported(E, Name);
1446  llvm::Type *ElTy = ConvertType(E->getType());
1447  llvm::Type *Ty = UnqualPtrTy;
1448  return MakeAddrLValue(
1449      Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType());
1450}
1451
1452bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1453  const Expr *Base = Obj;
1454  while (!isa<CXXThisExpr>(Base)) {
1455    // The result of a dynamic_cast can be null.
1456    if (isa<CXXDynamicCastExpr>(Base))
1457      return false;
1458
1459    if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1460      Base = CE->getSubExpr();
1461    } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1462      Base = PE->getSubExpr();
1463    } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1464      if (UO->getOpcode() == UO_Extension)
1465        Base = UO->getSubExpr();
1466      else
1467        return false;
1468    } else {
1469      return false;
1470    }
1471  }
1472  return true;
1473}
1474
1475LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1476  LValue LV;
1477  if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1478    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1479  else
1480    LV = EmitLValue(E);
1481  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1482    SanitizerSet SkippedChecks;
1483    if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1484      bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1485      if (IsBaseCXXThis)
1486        SkippedChecks.set(SanitizerKind::Alignment, true);
1487      if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1488        SkippedChecks.set(SanitizerKind::Null, true);
1489    }
1490    EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1491                  LV.getAlignment(), SkippedChecks);
1492  }
1493  return LV;
1494}
1495
1496/// EmitLValue - Emit code to compute a designator that specifies the location
1497/// of the expression.
1498///
1499/// This can return one of two things: a simple address or a bitfield reference.
1500/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1501/// an LLVM pointer type.
1502///
1503/// If this returns a bitfield reference, nothing about the pointee type of the
1504/// LLVM value is known: For example, it may not be a pointer to an integer.
1505///
1506/// If this returns a normal address, and if the lvalue's C type is fixed size,
1507/// this method guarantees that the returned pointer type will point to an LLVM
1508/// type of the same size of the lvalue's type.  If the lvalue has a variable
1509/// length type, this is not possible.
1510///
1511LValue CodeGenFunction::EmitLValue(const Expr *E,
1512                                   KnownNonNull_t IsKnownNonNull) {
1513  LValue LV = EmitLValueHelper(E, IsKnownNonNull);
1514  if (IsKnownNonNull && !LV.isKnownNonNull())
1515    LV.setKnownNonNull();
1516  return LV;
1517}
1518
1519static QualType getConstantExprReferredType(const FullExpr *E,
1520                                            const ASTContext &Ctx) {
1521  const Expr *SE = E->getSubExpr()->IgnoreImplicit();
1522  if (isa<OpaqueValueExpr>(SE))
1523    return SE->getType();
1524  return cast<CallExpr>(SE)->getCallReturnType(Ctx)->getPointeeType();
1525}
1526
1527LValue CodeGenFunction::EmitLValueHelper(const Expr *E,
1528                                         KnownNonNull_t IsKnownNonNull) {
1529  ApplyDebugLocation DL(*this, E);
1530  switch (E->getStmtClass()) {
1531  default: return EmitUnsupportedLValue(E, "l-value expression");
1532
1533  case Expr::ObjCPropertyRefExprClass:
1534    llvm_unreachable("cannot emit a property reference directly");
1535
1536  case Expr::ObjCSelectorExprClass:
1537    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1538  case Expr::ObjCIsaExprClass:
1539    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1540  case Expr::BinaryOperatorClass:
1541    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1542  case Expr::CompoundAssignOperatorClass: {
1543    QualType Ty = E->getType();
1544    if (const AtomicType *AT = Ty->getAs<AtomicType>())
1545      Ty = AT->getValueType();
1546    if (!Ty->isAnyComplexType())
1547      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1548    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1549  }
1550  case Expr::CallExprClass:
1551  case Expr::CXXMemberCallExprClass:
1552  case Expr::CXXOperatorCallExprClass:
1553  case Expr::UserDefinedLiteralClass:
1554    return EmitCallExprLValue(cast<CallExpr>(E));
1555  case Expr::CXXRewrittenBinaryOperatorClass:
1556    return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
1557                      IsKnownNonNull);
1558  case Expr::VAArgExprClass:
1559    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1560  case Expr::DeclRefExprClass:
1561    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1562  case Expr::ConstantExprClass: {
1563    const ConstantExpr *CE = cast<ConstantExpr>(E);
1564    if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1565      QualType RetType = getConstantExprReferredType(CE, getContext());
1566      return MakeNaturalAlignAddrLValue(Result, RetType);
1567    }
1568    return EmitLValue(cast<ConstantExpr>(E)->getSubExpr(), IsKnownNonNull);
1569  }
1570  case Expr::ParenExprClass:
1571    return EmitLValue(cast<ParenExpr>(E)->getSubExpr(), IsKnownNonNull);
1572  case Expr::GenericSelectionExprClass:
1573    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr(),
1574                      IsKnownNonNull);
1575  case Expr::PredefinedExprClass:
1576    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1577  case Expr::StringLiteralClass:
1578    return EmitStringLiteralLValue(cast<StringLiteral>(E));
1579  case Expr::ObjCEncodeExprClass:
1580    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1581  case Expr::PseudoObjectExprClass:
1582    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1583  case Expr::InitListExprClass:
1584    return EmitInitListLValue(cast<InitListExpr>(E));
1585  case Expr::CXXTemporaryObjectExprClass:
1586  case Expr::CXXConstructExprClass:
1587    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1588  case Expr::CXXBindTemporaryExprClass:
1589    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1590  case Expr::CXXUuidofExprClass:
1591    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1592  case Expr::LambdaExprClass:
1593    return EmitAggExprToLValue(E);
1594
1595  case Expr::ExprWithCleanupsClass: {
1596    const auto *cleanups = cast<ExprWithCleanups>(E);
1597    RunCleanupsScope Scope(*this);
1598    LValue LV = EmitLValue(cleanups->getSubExpr(), IsKnownNonNull);
1599    if (LV.isSimple()) {
1600      // Defend against branches out of gnu statement expressions surrounded by
1601      // cleanups.
1602      Address Addr = LV.getAddress(*this);
1603      llvm::Value *V = Addr.getPointer();
1604      Scope.ForceCleanup({&V});
1605      return LValue::MakeAddr(Addr.withPointer(V, Addr.isKnownNonNull()),
1606                              LV.getType(), getContext(), LV.getBaseInfo(),
1607                              LV.getTBAAInfo());
1608    }
1609    // FIXME: Is it possible to create an ExprWithCleanups that produces a
1610    // bitfield lvalue or some other non-simple lvalue?
1611    return LV;
1612  }
1613
1614  case Expr::CXXDefaultArgExprClass: {
1615    auto *DAE = cast<CXXDefaultArgExpr>(E);
1616    CXXDefaultArgExprScope Scope(*this, DAE);
1617    return EmitLValue(DAE->getExpr(), IsKnownNonNull);
1618  }
1619  case Expr::CXXDefaultInitExprClass: {
1620    auto *DIE = cast<CXXDefaultInitExpr>(E);
1621    CXXDefaultInitExprScope Scope(*this, DIE);
1622    return EmitLValue(DIE->getExpr(), IsKnownNonNull);
1623  }
1624  case Expr::CXXTypeidExprClass:
1625    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1626
1627  case Expr::ObjCMessageExprClass:
1628    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1629  case Expr::ObjCIvarRefExprClass:
1630    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1631  case Expr::StmtExprClass:
1632    return EmitStmtExprLValue(cast<StmtExpr>(E));
1633  case Expr::UnaryOperatorClass:
1634    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1635  case Expr::ArraySubscriptExprClass:
1636    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1637  case Expr::MatrixSubscriptExprClass:
1638    return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1639  case Expr::OMPArraySectionExprClass:
1640    return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1641  case Expr::ExtVectorElementExprClass:
1642    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1643  case Expr::CXXThisExprClass:
1644    return MakeAddrLValue(LoadCXXThisAddress(), E->getType());
1645  case Expr::MemberExprClass:
1646    return EmitMemberExpr(cast<MemberExpr>(E));
1647  case Expr::CompoundLiteralExprClass:
1648    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1649  case Expr::ConditionalOperatorClass:
1650    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1651  case Expr::BinaryConditionalOperatorClass:
1652    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1653  case Expr::ChooseExprClass:
1654    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(), IsKnownNonNull);
1655  case Expr::OpaqueValueExprClass:
1656    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1657  case Expr::SubstNonTypeTemplateParmExprClass:
1658    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
1659                      IsKnownNonNull);
1660  case Expr::ImplicitCastExprClass:
1661  case Expr::CStyleCastExprClass:
1662  case Expr::CXXFunctionalCastExprClass:
1663  case Expr::CXXStaticCastExprClass:
1664  case Expr::CXXDynamicCastExprClass:
1665  case Expr::CXXReinterpretCastExprClass:
1666  case Expr::CXXConstCastExprClass:
1667  case Expr::CXXAddrspaceCastExprClass:
1668  case Expr::ObjCBridgedCastExprClass:
1669    return EmitCastLValue(cast<CastExpr>(E));
1670
1671  case Expr::MaterializeTemporaryExprClass:
1672    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1673
1674  case Expr::CoawaitExprClass:
1675    return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1676  case Expr::CoyieldExprClass:
1677    return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1678  }
1679}
1680
1681/// Given an object of the given canonical type, can we safely copy a
1682/// value out of it based on its initializer?
1683static bool isConstantEmittableObjectType(QualType type) {
1684  assert(type.isCanonical());
1685  assert(!type->isReferenceType());
1686
1687  // Must be const-qualified but non-volatile.
1688  Qualifiers qs = type.getLocalQualifiers();
1689  if (!qs.hasConst() || qs.hasVolatile()) return false;
1690
1691  // Otherwise, all object types satisfy this except C++ classes with
1692  // mutable subobjects or non-trivial copy/destroy behavior.
1693  if (const auto *RT = dyn_cast<RecordType>(type))
1694    if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1695      if (RD->hasMutableFields() || !RD->isTrivial())
1696        return false;
1697
1698  return true;
1699}
1700
1701/// Can we constant-emit a load of a reference to a variable of the
1702/// given type?  This is different from predicates like
1703/// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1704/// in situations that don't necessarily satisfy the language's rules
1705/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1706/// to do this with const float variables even if those variables
1707/// aren't marked 'constexpr'.
1708enum ConstantEmissionKind {
1709  CEK_None,
1710  CEK_AsReferenceOnly,
1711  CEK_AsValueOrReference,
1712  CEK_AsValueOnly
1713};
1714static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1715  type = type.getCanonicalType();
1716  if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1717    if (isConstantEmittableObjectType(ref->getPointeeType()))
1718      return CEK_AsValueOrReference;
1719    return CEK_AsReferenceOnly;
1720  }
1721  if (isConstantEmittableObjectType(type))
1722    return CEK_AsValueOnly;
1723  return CEK_None;
1724}
1725
1726/// Try to emit a reference to the given value without producing it as
1727/// an l-value.  This is just an optimization, but it avoids us needing
1728/// to emit global copies of variables if they're named without triggering
1729/// a formal use in a context where we can't emit a direct reference to them,
1730/// for instance if a block or lambda or a member of a local class uses a
1731/// const int variable or constexpr variable from an enclosing function.
1732CodeGenFunction::ConstantEmission
1733CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1734  ValueDecl *value = refExpr->getDecl();
1735
1736  // The value needs to be an enum constant or a constant variable.
1737  ConstantEmissionKind CEK;
1738  if (isa<ParmVarDecl>(value)) {
1739    CEK = CEK_None;
1740  } else if (auto *var = dyn_cast<VarDecl>(value)) {
1741    CEK = checkVarTypeForConstantEmission(var->getType());
1742  } else if (isa<EnumConstantDecl>(value)) {
1743    CEK = CEK_AsValueOnly;
1744  } else {
1745    CEK = CEK_None;
1746  }
1747  if (CEK == CEK_None) return ConstantEmission();
1748
1749  Expr::EvalResult result;
1750  bool resultIsReference;
1751  QualType resultType;
1752
1753  // It's best to evaluate all the way as an r-value if that's permitted.
1754  if (CEK != CEK_AsReferenceOnly &&
1755      refExpr->EvaluateAsRValue(result, getContext())) {
1756    resultIsReference = false;
1757    resultType = refExpr->getType();
1758
1759  // Otherwise, try to evaluate as an l-value.
1760  } else if (CEK != CEK_AsValueOnly &&
1761             refExpr->EvaluateAsLValue(result, getContext())) {
1762    resultIsReference = true;
1763    resultType = value->getType();
1764
1765  // Failure.
1766  } else {
1767    return ConstantEmission();
1768  }
1769
1770  // In any case, if the initializer has side-effects, abandon ship.
1771  if (result.HasSideEffects)
1772    return ConstantEmission();
1773
1774  // In CUDA/HIP device compilation, a lambda may capture a reference variable
1775  // referencing a global host variable by copy. In this case the lambda should
1776  // make a copy of the value of the global host variable. The DRE of the
1777  // captured reference variable cannot be emitted as load from the host
1778  // global variable as compile time constant, since the host variable is not
1779  // accessible on device. The DRE of the captured reference variable has to be
1780  // loaded from captures.
1781  if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1782      refExpr->refersToEnclosingVariableOrCapture()) {
1783    auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1784    if (MD && MD->getParent()->isLambda() &&
1785        MD->getOverloadedOperator() == OO_Call) {
1786      const APValue::LValueBase &base = result.Val.getLValueBase();
1787      if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1788        if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1789          if (!VD->hasAttr<CUDADeviceAttr>()) {
1790            return ConstantEmission();
1791          }
1792        }
1793      }
1794    }
1795  }
1796
1797  // Emit as a constant.
1798  auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1799                                               result.Val, resultType);
1800
1801  // Make sure we emit a debug reference to the global variable.
1802  // This should probably fire even for
1803  if (isa<VarDecl>(value)) {
1804    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1805      EmitDeclRefExprDbgValue(refExpr, result.Val);
1806  } else {
1807    assert(isa<EnumConstantDecl>(value));
1808    EmitDeclRefExprDbgValue(refExpr, result.Val);
1809  }
1810
1811  // If we emitted a reference constant, we need to dereference that.
1812  if (resultIsReference)
1813    return ConstantEmission::forReference(C);
1814
1815  return ConstantEmission::forValue(C);
1816}
1817
1818static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1819                                                        const MemberExpr *ME) {
1820  if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1821    // Try to emit static variable member expressions as DREs.
1822    return DeclRefExpr::Create(
1823        CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1824        /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1825        ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1826  }
1827  return nullptr;
1828}
1829
1830CodeGenFunction::ConstantEmission
1831CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1832  if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1833    return tryEmitAsConstant(DRE);
1834  return ConstantEmission();
1835}
1836
1837llvm::Value *CodeGenFunction::emitScalarConstant(
1838    const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1839  assert(Constant && "not a constant");
1840  if (Constant.isReference())
1841    return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1842                            E->getExprLoc())
1843        .getScalarVal();
1844  return Constant.getValue();
1845}
1846
1847llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1848                                               SourceLocation Loc) {
1849  return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1850                          lvalue.getType(), Loc, lvalue.getBaseInfo(),
1851                          lvalue.getTBAAInfo(), lvalue.isNontemporal());
1852}
1853
1854static bool hasBooleanRepresentation(QualType Ty) {
1855  if (Ty->isBooleanType())
1856    return true;
1857
1858  if (const EnumType *ET = Ty->getAs<EnumType>())
1859    return ET->getDecl()->getIntegerType()->isBooleanType();
1860
1861  if (const AtomicType *AT = Ty->getAs<AtomicType>())
1862    return hasBooleanRepresentation(AT->getValueType());
1863
1864  return false;
1865}
1866
1867static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1868                            llvm::APInt &Min, llvm::APInt &End,
1869                            bool StrictEnums, bool IsBool) {
1870  const EnumType *ET = Ty->getAs<EnumType>();
1871  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1872                                ET && !ET->getDecl()->isFixed();
1873  if (!IsBool && !IsRegularCPlusPlusEnum)
1874    return false;
1875
1876  if (IsBool) {
1877    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1878    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1879  } else {
1880    const EnumDecl *ED = ET->getDecl();
1881    ED->getValueRange(End, Min);
1882  }
1883  return true;
1884}
1885
1886llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1887  llvm::APInt Min, End;
1888  if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1889                       hasBooleanRepresentation(Ty)))
1890    return nullptr;
1891
1892  llvm::MDBuilder MDHelper(getLLVMContext());
1893  return MDHelper.createRange(Min, End);
1894}
1895
1896bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1897                                           SourceLocation Loc) {
1898  bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1899  bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1900  if (!HasBoolCheck && !HasEnumCheck)
1901    return false;
1902
1903  bool IsBool = hasBooleanRepresentation(Ty) ||
1904                NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1905  bool NeedsBoolCheck = HasBoolCheck && IsBool;
1906  bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1907  if (!NeedsBoolCheck && !NeedsEnumCheck)
1908    return false;
1909
1910  // Single-bit booleans don't need to be checked. Special-case this to avoid
1911  // a bit width mismatch when handling bitfield values. This is handled by
1912  // EmitFromMemory for the non-bitfield case.
1913  if (IsBool &&
1914      cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1915    return false;
1916
1917  llvm::APInt Min, End;
1918  if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1919    return true;
1920
1921  auto &Ctx = getLLVMContext();
1922  SanitizerScope SanScope(this);
1923  llvm::Value *Check;
1924  --End;
1925  if (!Min) {
1926    Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1927  } else {
1928    llvm::Value *Upper =
1929        Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1930    llvm::Value *Lower =
1931        Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1932    Check = Builder.CreateAnd(Upper, Lower);
1933  }
1934  llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1935                                  EmitCheckTypeDescriptor(Ty)};
1936  SanitizerMask Kind =
1937      NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1938  EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1939            StaticArgs, EmitCheckValue(Value));
1940  return true;
1941}
1942
1943llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1944                                               QualType Ty,
1945                                               SourceLocation Loc,
1946                                               LValueBaseInfo BaseInfo,
1947                                               TBAAAccessInfo TBAAInfo,
1948                                               bool isNontemporal) {
1949  if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer()))
1950    if (GV->isThreadLocal())
1951      Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV),
1952                              NotKnownNonNull);
1953
1954  if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1955    // Boolean vectors use `iN` as storage type.
1956    if (ClangVecTy->isExtVectorBoolType()) {
1957      llvm::Type *ValTy = ConvertType(Ty);
1958      unsigned ValNumElems =
1959          cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1960      // Load the `iP` storage object (P is the padded vector size).
1961      auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits");
1962      const auto *RawIntTy = RawIntV->getType();
1963      assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors");
1964      // Bitcast iP --> <P x i1>.
1965      auto *PaddedVecTy = llvm::FixedVectorType::get(
1966          Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1967      llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy);
1968      // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1969      V = emitBoolVecConversion(V, ValNumElems, "extractvec");
1970
1971      return EmitFromMemory(V, Ty);
1972    }
1973
1974    // Handle vectors of size 3 like size 4 for better performance.
1975    const llvm::Type *EltTy = Addr.getElementType();
1976    const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1977
1978    if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) {
1979
1980      llvm::VectorType *vec4Ty =
1981          llvm::FixedVectorType::get(VTy->getElementType(), 4);
1982      Address Cast = Addr.withElementType(vec4Ty);
1983      // Now load value.
1984      llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1985
1986      // Shuffle vector to get vec3.
1987      V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec");
1988      return EmitFromMemory(V, Ty);
1989    }
1990  }
1991
1992  // Atomic operations have to be done on integral types.
1993  LValue AtomicLValue =
1994      LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1995  if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1996    return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1997  }
1998
1999  llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
2000  if (isNontemporal) {
2001    llvm::MDNode *Node = llvm::MDNode::get(
2002        Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
2003    Load->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
2004  }
2005
2006  CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
2007
2008  if (EmitScalarRangeCheck(Load, Ty, Loc)) {
2009    // In order to prevent the optimizer from throwing away the check, don't
2010    // attach range metadata to the load.
2011  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
2012    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) {
2013      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
2014      Load->setMetadata(llvm::LLVMContext::MD_noundef,
2015                        llvm::MDNode::get(getLLVMContext(), std::nullopt));
2016    }
2017
2018  return EmitFromMemory(Load, Ty);
2019}
2020
2021llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
2022  // Bool has a different representation in memory than in registers.
2023  if (hasBooleanRepresentation(Ty)) {
2024    // This should really always be an i1, but sometimes it's already
2025    // an i8, and it's awkward to track those cases down.
2026    if (Value->getType()->isIntegerTy(1))
2027      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
2028    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
2029           "wrong value rep of bool");
2030  }
2031
2032  return Value;
2033}
2034
2035llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
2036  // Bool has a different representation in memory than in registers.
2037  if (hasBooleanRepresentation(Ty)) {
2038    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
2039           "wrong value rep of bool");
2040    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
2041  }
2042  if (Ty->isExtVectorBoolType()) {
2043    const auto *RawIntTy = Value->getType();
2044    // Bitcast iP --> <P x i1>.
2045    auto *PaddedVecTy = llvm::FixedVectorType::get(
2046        Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
2047    auto *V = Builder.CreateBitCast(Value, PaddedVecTy);
2048    // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
2049    llvm::Type *ValTy = ConvertType(Ty);
2050    unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements();
2051    return emitBoolVecConversion(V, ValNumElems, "extractvec");
2052  }
2053
2054  return Value;
2055}
2056
2057// Convert the pointer of \p Addr to a pointer to a vector (the value type of
2058// MatrixType), if it points to a array (the memory type of MatrixType).
2059static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
2060                                         bool IsVector = true) {
2061  auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType());
2062  if (ArrayTy && IsVector) {
2063    auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
2064                                                ArrayTy->getNumElements());
2065
2066    return Addr.withElementType(VectorTy);
2067  }
2068  auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType());
2069  if (VectorTy && !IsVector) {
2070    auto *ArrayTy = llvm::ArrayType::get(
2071        VectorTy->getElementType(),
2072        cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
2073
2074    return Addr.withElementType(ArrayTy);
2075  }
2076
2077  return Addr;
2078}
2079
2080// Emit a store of a matrix LValue. This may require casting the original
2081// pointer to memory address (ArrayType) to a pointer to the value type
2082// (VectorType).
2083static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
2084                                    bool isInit, CodeGenFunction &CGF) {
2085  Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
2086                                           value->getType()->isVectorTy());
2087  CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
2088                        lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
2089                        lvalue.isNontemporal());
2090}
2091
2092void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2093                                        bool Volatile, QualType Ty,
2094                                        LValueBaseInfo BaseInfo,
2095                                        TBAAAccessInfo TBAAInfo,
2096                                        bool isInit, bool isNontemporal) {
2097  if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer()))
2098    if (GV->isThreadLocal())
2099      Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV),
2100                              NotKnownNonNull);
2101
2102  llvm::Type *SrcTy = Value->getType();
2103  if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
2104    auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy);
2105    if (VecTy && ClangVecTy->isExtVectorBoolType()) {
2106      auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType());
2107      // Expand to the memory bit width.
2108      unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits();
2109      // <N x i1> --> <P x i1>.
2110      Value = emitBoolVecConversion(Value, MemNumElems, "insertvec");
2111      // <P x i1> --> iP.
2112      Value = Builder.CreateBitCast(Value, MemIntTy);
2113    } else if (!CGM.getCodeGenOpts().PreserveVec3Type) {
2114      // Handle vec3 special.
2115      if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
2116        // Our source is a vec3, do a shuffle vector to make it a vec4.
2117        Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
2118                                            "extractVec");
2119        SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
2120      }
2121      if (Addr.getElementType() != SrcTy) {
2122        Addr = Addr.withElementType(SrcTy);
2123      }
2124    }
2125  }
2126
2127  Value = EmitToMemory(Value, Ty);
2128
2129  LValue AtomicLValue =
2130      LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
2131  if (Ty->isAtomicType() ||
2132      (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
2133    EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
2134    return;
2135  }
2136
2137  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
2138  if (isNontemporal) {
2139    llvm::MDNode *Node =
2140        llvm::MDNode::get(Store->getContext(),
2141                          llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
2142    Store->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
2143  }
2144
2145  CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2146}
2147
2148void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
2149                                        bool isInit) {
2150  if (lvalue.getType()->isConstantMatrixType()) {
2151    EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
2152    return;
2153  }
2154
2155  EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
2156                    lvalue.getType(), lvalue.getBaseInfo(),
2157                    lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
2158}
2159
2160// Emit a load of a LValue of matrix type. This may require casting the pointer
2161// to memory address (ArrayType) to a pointer to the value type (VectorType).
2162static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
2163                                     CodeGenFunction &CGF) {
2164  assert(LV.getType()->isConstantMatrixType());
2165  Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
2166  LV.setAddress(Addr);
2167  return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
2168}
2169
2170/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
2171/// method emits the address of the lvalue, then loads the result as an rvalue,
2172/// returning the rvalue.
2173RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
2174  if (LV.isObjCWeak()) {
2175    // load of a __weak object.
2176    Address AddrWeakObj = LV.getAddress(*this);
2177    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
2178                                                             AddrWeakObj));
2179  }
2180  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
2181    // In MRC mode, we do a load+autorelease.
2182    if (!getLangOpts().ObjCAutoRefCount) {
2183      return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
2184    }
2185
2186    // In ARC mode, we load retained and then consume the value.
2187    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
2188    Object = EmitObjCConsumeObject(LV.getType(), Object);
2189    return RValue::get(Object);
2190  }
2191
2192  if (LV.isSimple()) {
2193    assert(!LV.getType()->isFunctionType());
2194
2195    if (LV.getType()->isConstantMatrixType())
2196      return EmitLoadOfMatrixLValue(LV, Loc, *this);
2197
2198    // Everything needs a load.
2199    return RValue::get(EmitLoadOfScalar(LV, Loc));
2200  }
2201
2202  if (LV.isVectorElt()) {
2203    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
2204                                              LV.isVolatileQualified());
2205    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
2206                                                    "vecext"));
2207  }
2208
2209  // If this is a reference to a subset of the elements of a vector, either
2210  // shuffle the input or extract/insert them as appropriate.
2211  if (LV.isExtVectorElt()) {
2212    return EmitLoadOfExtVectorElementLValue(LV);
2213  }
2214
2215  // Global Register variables always invoke intrinsics
2216  if (LV.isGlobalReg())
2217    return EmitLoadOfGlobalRegLValue(LV);
2218
2219  if (LV.isMatrixElt()) {
2220    llvm::Value *Idx = LV.getMatrixIdx();
2221    if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2222      const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>();
2223      llvm::MatrixBuilder MB(Builder);
2224      MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2225    }
2226    llvm::LoadInst *Load =
2227        Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
2228    return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
2229  }
2230
2231  assert(LV.isBitField() && "Unknown LValue type!");
2232  return EmitLoadOfBitfieldLValue(LV, Loc);
2233}
2234
2235RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
2236                                                 SourceLocation Loc) {
2237  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
2238
2239  // Get the output type.
2240  llvm::Type *ResLTy = ConvertType(LV.getType());
2241
2242  Address Ptr = LV.getBitFieldAddress();
2243  llvm::Value *Val =
2244      Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
2245
2246  bool UseVolatile = LV.isVolatileQualified() &&
2247                     Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2248  const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2249  const unsigned StorageSize =
2250      UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2251  if (Info.IsSigned) {
2252    assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
2253    unsigned HighBits = StorageSize - Offset - Info.Size;
2254    if (HighBits)
2255      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
2256    if (Offset + HighBits)
2257      Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
2258  } else {
2259    if (Offset)
2260      Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
2261    if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
2262      Val = Builder.CreateAnd(
2263          Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
2264  }
2265  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
2266  EmitScalarRangeCheck(Val, LV.getType(), Loc);
2267  return RValue::get(Val);
2268}
2269
2270// If this is a reference to a subset of the elements of a vector, create an
2271// appropriate shufflevector.
2272RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
2273  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
2274                                        LV.isVolatileQualified());
2275
2276  // HLSL allows treating scalars as one-element vectors. Converting the scalar
2277  // IR value to a vector here allows the rest of codegen to behave as normal.
2278  if (getLangOpts().HLSL && !Vec->getType()->isVectorTy()) {
2279    llvm::Type *DstTy = llvm::FixedVectorType::get(Vec->getType(), 1);
2280    llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2281    Vec = Builder.CreateInsertElement(DstTy, Vec, Zero, "cast.splat");
2282  }
2283
2284  const llvm::Constant *Elts = LV.getExtVectorElts();
2285
2286  // If the result of the expression is a non-vector type, we must be extracting
2287  // a single element.  Just codegen as an extractelement.
2288  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2289  if (!ExprVT) {
2290    unsigned InIdx = getAccessedFieldNo(0, Elts);
2291    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2292    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2293  }
2294
2295  // Always use shuffle vector to try to retain the original program structure
2296  unsigned NumResultElts = ExprVT->getNumElements();
2297
2298  SmallVector<int, 4> Mask;
2299  for (unsigned i = 0; i != NumResultElts; ++i)
2300    Mask.push_back(getAccessedFieldNo(i, Elts));
2301
2302  Vec = Builder.CreateShuffleVector(Vec, Mask);
2303  return RValue::get(Vec);
2304}
2305
2306/// Generates lvalue for partial ext_vector access.
2307Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2308  Address VectorAddress = LV.getExtVectorAddress();
2309  QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2310  llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2311
2312  Address CastToPointerElement = VectorAddress.withElementType(VectorElementTy);
2313
2314  const llvm::Constant *Elts = LV.getExtVectorElts();
2315  unsigned ix = getAccessedFieldNo(0, Elts);
2316
2317  Address VectorBasePtrPlusIx =
2318    Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2319                                   "vector.elt");
2320
2321  return VectorBasePtrPlusIx;
2322}
2323
2324/// Load of global gamed gegisters are always calls to intrinsics.
2325RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2326  assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2327         "Bad type for register variable");
2328  llvm::MDNode *RegName = cast<llvm::MDNode>(
2329      cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2330
2331  // We accept integer and pointer types only
2332  llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2333  llvm::Type *Ty = OrigTy;
2334  if (OrigTy->isPointerTy())
2335    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2336  llvm::Type *Types[] = { Ty };
2337
2338  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2339  llvm::Value *Call = Builder.CreateCall(
2340      F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2341  if (OrigTy->isPointerTy())
2342    Call = Builder.CreateIntToPtr(Call, OrigTy);
2343  return RValue::get(Call);
2344}
2345
2346/// EmitStoreThroughLValue - Store the specified rvalue into the specified
2347/// lvalue, where both are guaranteed to the have the same type, and that type
2348/// is 'Ty'.
2349void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2350                                             bool isInit) {
2351  if (!Dst.isSimple()) {
2352    if (Dst.isVectorElt()) {
2353      // Read/modify/write the vector, inserting the new element.
2354      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2355                                            Dst.isVolatileQualified());
2356      auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType());
2357      if (IRStoreTy) {
2358        auto *IRVecTy = llvm::FixedVectorType::get(
2359            Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits());
2360        Vec = Builder.CreateBitCast(Vec, IRVecTy);
2361        // iN --> <N x i1>.
2362      }
2363      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2364                                        Dst.getVectorIdx(), "vecins");
2365      if (IRStoreTy) {
2366        // <N x i1> --> <iN>.
2367        Vec = Builder.CreateBitCast(Vec, IRStoreTy);
2368      }
2369      Builder.CreateStore(Vec, Dst.getVectorAddress(),
2370                          Dst.isVolatileQualified());
2371      return;
2372    }
2373
2374    // If this is an update of extended vector elements, insert them as
2375    // appropriate.
2376    if (Dst.isExtVectorElt())
2377      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2378
2379    if (Dst.isGlobalReg())
2380      return EmitStoreThroughGlobalRegLValue(Src, Dst);
2381
2382    if (Dst.isMatrixElt()) {
2383      llvm::Value *Idx = Dst.getMatrixIdx();
2384      if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2385        const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>();
2386        llvm::MatrixBuilder MB(Builder);
2387        MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2388      }
2389      llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2390      llvm::Value *Vec =
2391          Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2392      Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2393                          Dst.isVolatileQualified());
2394      return;
2395    }
2396
2397    assert(Dst.isBitField() && "Unknown LValue type");
2398    return EmitStoreThroughBitfieldLValue(Src, Dst);
2399  }
2400
2401  // There's special magic for assigning into an ARC-qualified l-value.
2402  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2403    switch (Lifetime) {
2404    case Qualifiers::OCL_None:
2405      llvm_unreachable("present but none");
2406
2407    case Qualifiers::OCL_ExplicitNone:
2408      // nothing special
2409      break;
2410
2411    case Qualifiers::OCL_Strong:
2412      if (isInit) {
2413        Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2414        break;
2415      }
2416      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2417      return;
2418
2419    case Qualifiers::OCL_Weak:
2420      if (isInit)
2421        // Initialize and then skip the primitive store.
2422        EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2423      else
2424        EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2425                         /*ignore*/ true);
2426      return;
2427
2428    case Qualifiers::OCL_Autoreleasing:
2429      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2430                                                     Src.getScalarVal()));
2431      // fall into the normal path
2432      break;
2433    }
2434  }
2435
2436  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2437    // load of a __weak object.
2438    Address LvalueDst = Dst.getAddress(*this);
2439    llvm::Value *src = Src.getScalarVal();
2440     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2441    return;
2442  }
2443
2444  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2445    // load of a __strong object.
2446    Address LvalueDst = Dst.getAddress(*this);
2447    llvm::Value *src = Src.getScalarVal();
2448    if (Dst.isObjCIvar()) {
2449      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2450      llvm::Type *ResultType = IntPtrTy;
2451      Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2452      llvm::Value *RHS = dst.getPointer();
2453      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2454      llvm::Value *LHS =
2455        Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2456                               "sub.ptr.lhs.cast");
2457      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2458      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2459                                              BytesBetween);
2460    } else if (Dst.isGlobalObjCRef()) {
2461      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2462                                                Dst.isThreadLocalRef());
2463    }
2464    else
2465      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2466    return;
2467  }
2468
2469  assert(Src.isScalar() && "Can't emit an agg store with this method");
2470  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2471}
2472
2473void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2474                                                     llvm::Value **Result) {
2475  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2476  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2477  Address Ptr = Dst.getBitFieldAddress();
2478
2479  // Get the source value, truncated to the width of the bit-field.
2480  llvm::Value *SrcVal = Src.getScalarVal();
2481
2482  // Cast the source to the storage type and shift it into place.
2483  SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2484                                 /*isSigned=*/false);
2485  llvm::Value *MaskedVal = SrcVal;
2486
2487  const bool UseVolatile =
2488      CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2489      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2490  const unsigned StorageSize =
2491      UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2492  const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2493  // See if there are other bits in the bitfield's storage we'll need to load
2494  // and mask together with source before storing.
2495  if (StorageSize != Info.Size) {
2496    assert(StorageSize > Info.Size && "Invalid bitfield size.");
2497    llvm::Value *Val =
2498        Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2499
2500    // Mask the source value as needed.
2501    if (!hasBooleanRepresentation(Dst.getType()))
2502      SrcVal = Builder.CreateAnd(
2503          SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2504          "bf.value");
2505    MaskedVal = SrcVal;
2506    if (Offset)
2507      SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2508
2509    // Mask out the original value.
2510    Val = Builder.CreateAnd(
2511        Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2512        "bf.clear");
2513
2514    // Or together the unchanged values and the source value.
2515    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2516  } else {
2517    assert(Offset == 0);
2518    // According to the AACPS:
2519    // When a volatile bit-field is written, and its container does not overlap
2520    // with any non-bit-field member, its container must be read exactly once
2521    // and written exactly once using the access width appropriate to the type
2522    // of the container. The two accesses are not atomic.
2523    if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2524        CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2525      Builder.CreateLoad(Ptr, true, "bf.load");
2526  }
2527
2528  // Write the new value back out.
2529  Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2530
2531  // Return the new value of the bit-field, if requested.
2532  if (Result) {
2533    llvm::Value *ResultVal = MaskedVal;
2534
2535    // Sign extend the value if needed.
2536    if (Info.IsSigned) {
2537      assert(Info.Size <= StorageSize);
2538      unsigned HighBits = StorageSize - Info.Size;
2539      if (HighBits) {
2540        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2541        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2542      }
2543    }
2544
2545    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2546                                      "bf.result.cast");
2547    *Result = EmitFromMemory(ResultVal, Dst.getType());
2548  }
2549}
2550
2551void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2552                                                               LValue Dst) {
2553  // HLSL allows storing to scalar values through ExtVector component LValues.
2554  // To support this we need to handle the case where the destination address is
2555  // a scalar.
2556  Address DstAddr = Dst.getExtVectorAddress();
2557  if (!DstAddr.getElementType()->isVectorTy()) {
2558    assert(!Dst.getType()->isVectorType() &&
2559           "this should only occur for non-vector l-values");
2560    Builder.CreateStore(Src.getScalarVal(), DstAddr, Dst.isVolatileQualified());
2561    return;
2562  }
2563
2564  // This access turns into a read/modify/write of the vector.  Load the input
2565  // value now.
2566  llvm::Value *Vec = Builder.CreateLoad(DstAddr, Dst.isVolatileQualified());
2567  const llvm::Constant *Elts = Dst.getExtVectorElts();
2568
2569  llvm::Value *SrcVal = Src.getScalarVal();
2570
2571  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2572    unsigned NumSrcElts = VTy->getNumElements();
2573    unsigned NumDstElts =
2574        cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2575    if (NumDstElts == NumSrcElts) {
2576      // Use shuffle vector is the src and destination are the same number of
2577      // elements and restore the vector mask since it is on the side it will be
2578      // stored.
2579      SmallVector<int, 4> Mask(NumDstElts);
2580      for (unsigned i = 0; i != NumSrcElts; ++i)
2581        Mask[getAccessedFieldNo(i, Elts)] = i;
2582
2583      Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2584    } else if (NumDstElts > NumSrcElts) {
2585      // Extended the source vector to the same length and then shuffle it
2586      // into the destination.
2587      // FIXME: since we're shuffling with undef, can we just use the indices
2588      //        into that?  This could be simpler.
2589      SmallVector<int, 4> ExtMask;
2590      for (unsigned i = 0; i != NumSrcElts; ++i)
2591        ExtMask.push_back(i);
2592      ExtMask.resize(NumDstElts, -1);
2593      llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2594      // build identity
2595      SmallVector<int, 4> Mask;
2596      for (unsigned i = 0; i != NumDstElts; ++i)
2597        Mask.push_back(i);
2598
2599      // When the vector size is odd and .odd or .hi is used, the last element
2600      // of the Elts constant array will be one past the size of the vector.
2601      // Ignore the last element here, if it is greater than the mask size.
2602      if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2603        NumSrcElts--;
2604
2605      // modify when what gets shuffled in
2606      for (unsigned i = 0; i != NumSrcElts; ++i)
2607        Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2608      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2609    } else {
2610      // We should never shorten the vector
2611      llvm_unreachable("unexpected shorten vector length");
2612    }
2613  } else {
2614    // If the Src is a scalar (not a vector), and the target is a vector it must
2615    // be updating one element.
2616    unsigned InIdx = getAccessedFieldNo(0, Elts);
2617    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2618    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2619  }
2620
2621  Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2622                      Dst.isVolatileQualified());
2623}
2624
2625/// Store of global named registers are always calls to intrinsics.
2626void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2627  assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2628         "Bad type for register variable");
2629  llvm::MDNode *RegName = cast<llvm::MDNode>(
2630      cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2631  assert(RegName && "Register LValue is not metadata");
2632
2633  // We accept integer and pointer types only
2634  llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2635  llvm::Type *Ty = OrigTy;
2636  if (OrigTy->isPointerTy())
2637    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2638  llvm::Type *Types[] = { Ty };
2639
2640  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2641  llvm::Value *Value = Src.getScalarVal();
2642  if (OrigTy->isPointerTy())
2643    Value = Builder.CreatePtrToInt(Value, Ty);
2644  Builder.CreateCall(
2645      F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2646}
2647
2648// setObjCGCLValueClass - sets class of the lvalue for the purpose of
2649// generating write-barries API. It is currently a global, ivar,
2650// or neither.
2651static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2652                                 LValue &LV,
2653                                 bool IsMemberAccess=false) {
2654  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2655    return;
2656
2657  if (isa<ObjCIvarRefExpr>(E)) {
2658    QualType ExpTy = E->getType();
2659    if (IsMemberAccess && ExpTy->isPointerType()) {
2660      // If ivar is a structure pointer, assigning to field of
2661      // this struct follows gcc's behavior and makes it a non-ivar
2662      // writer-barrier conservatively.
2663      ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2664      if (ExpTy->isRecordType()) {
2665        LV.setObjCIvar(false);
2666        return;
2667      }
2668    }
2669    LV.setObjCIvar(true);
2670    auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2671    LV.setBaseIvarExp(Exp->getBase());
2672    LV.setObjCArray(E->getType()->isArrayType());
2673    return;
2674  }
2675
2676  if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2677    if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2678      if (VD->hasGlobalStorage()) {
2679        LV.setGlobalObjCRef(true);
2680        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2681      }
2682    }
2683    LV.setObjCArray(E->getType()->isArrayType());
2684    return;
2685  }
2686
2687  if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2688    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2689    return;
2690  }
2691
2692  if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2693    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2694    if (LV.isObjCIvar()) {
2695      // If cast is to a structure pointer, follow gcc's behavior and make it
2696      // a non-ivar write-barrier.
2697      QualType ExpTy = E->getType();
2698      if (ExpTy->isPointerType())
2699        ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2700      if (ExpTy->isRecordType())
2701        LV.setObjCIvar(false);
2702    }
2703    return;
2704  }
2705
2706  if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2707    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2708    return;
2709  }
2710
2711  if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2712    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2713    return;
2714  }
2715
2716  if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2717    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2718    return;
2719  }
2720
2721  if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2722    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2723    return;
2724  }
2725
2726  if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2727    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2728    if (LV.isObjCIvar() && !LV.isObjCArray())
2729      // Using array syntax to assigning to what an ivar points to is not
2730      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2731      LV.setObjCIvar(false);
2732    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2733      // Using array syntax to assigning to what global points to is not
2734      // same as assigning to the global itself. {id *G;} G[i] = 0;
2735      LV.setGlobalObjCRef(false);
2736    return;
2737  }
2738
2739  if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2740    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2741    // We don't know if member is an 'ivar', but this flag is looked at
2742    // only in the context of LV.isObjCIvar().
2743    LV.setObjCArray(E->getType()->isArrayType());
2744    return;
2745  }
2746}
2747
2748static LValue EmitThreadPrivateVarDeclLValue(
2749    CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2750    llvm::Type *RealVarTy, SourceLocation Loc) {
2751  if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2752    Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2753        CGF, VD, Addr, Loc);
2754  else
2755    Addr =
2756        CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2757
2758  Addr = Addr.withElementType(RealVarTy);
2759  return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2760}
2761
2762static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2763                                           const VarDecl *VD, QualType T) {
2764  std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2765      OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2766  // Return an invalid address if variable is MT_To (or MT_Enter starting with
2767  // OpenMP 5.2) and unified memory is not enabled. For all other cases: MT_Link
2768  // and MT_To (or MT_Enter) with unified memory, return a valid address.
2769  if (!Res || ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
2770                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
2771               !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2772    return Address::invalid();
2773  assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2774          ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
2775            *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
2776           CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2777         "Expected link clause OR to clause with unified memory enabled.");
2778  QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2779  Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2780  return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2781}
2782
2783Address
2784CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2785                                     LValueBaseInfo *PointeeBaseInfo,
2786                                     TBAAAccessInfo *PointeeTBAAInfo) {
2787  llvm::LoadInst *Load =
2788      Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2789  CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2790
2791  QualType PointeeType = RefLVal.getType()->getPointeeType();
2792  CharUnits Align = CGM.getNaturalTypeAlignment(
2793      PointeeType, PointeeBaseInfo, PointeeTBAAInfo,
2794      /* forPointeeType= */ true);
2795  return Address(Load, ConvertTypeForMem(PointeeType), Align);
2796}
2797
2798LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2799  LValueBaseInfo PointeeBaseInfo;
2800  TBAAAccessInfo PointeeTBAAInfo;
2801  Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2802                                            &PointeeTBAAInfo);
2803  return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2804                        PointeeBaseInfo, PointeeTBAAInfo);
2805}
2806
2807Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2808                                           const PointerType *PtrTy,
2809                                           LValueBaseInfo *BaseInfo,
2810                                           TBAAAccessInfo *TBAAInfo) {
2811  llvm::Value *Addr = Builder.CreateLoad(Ptr);
2812  return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()),
2813                 CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo,
2814                                             TBAAInfo,
2815                                             /*forPointeeType=*/true));
2816}
2817
2818LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2819                                                const PointerType *PtrTy) {
2820  LValueBaseInfo BaseInfo;
2821  TBAAAccessInfo TBAAInfo;
2822  Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2823  return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2824}
2825
2826static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2827                                      const Expr *E, const VarDecl *VD) {
2828  QualType T = E->getType();
2829
2830  // If it's thread_local, emit a call to its wrapper function instead.
2831  if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2832      CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2833    return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2834  // Check if the variable is marked as declare target with link clause in
2835  // device codegen.
2836  if (CGF.getLangOpts().OpenMPIsTargetDevice) {
2837    Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2838    if (Addr.isValid())
2839      return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2840  }
2841
2842  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2843
2844  if (VD->getTLSKind() != VarDecl::TLS_None)
2845    V = CGF.Builder.CreateThreadLocalAddress(V);
2846
2847  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2848  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2849  Address Addr(V, RealVarTy, Alignment);
2850  // Emit reference to the private copy of the variable if it is an OpenMP
2851  // threadprivate variable.
2852  if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2853      VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2854    return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2855                                          E->getExprLoc());
2856  }
2857  LValue LV = VD->getType()->isReferenceType() ?
2858      CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2859                                    AlignmentSource::Decl) :
2860      CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2861  setObjCGCLValueClass(CGF.getContext(), E, LV);
2862  return LV;
2863}
2864
2865static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2866                                               GlobalDecl GD) {
2867  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2868  if (FD->hasAttr<WeakRefAttr>()) {
2869    ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2870    return aliasee.getPointer();
2871  }
2872
2873  llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2874  return V;
2875}
2876
2877static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2878                                     GlobalDecl GD) {
2879  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2880  llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2881  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2882  return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2883                            AlignmentSource::Decl);
2884}
2885
2886static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2887                                      llvm::Value *ThisValue) {
2888
2889  return CGF.EmitLValueForLambdaField(FD, ThisValue);
2890}
2891
2892/// Named Registers are named metadata pointing to the register name
2893/// which will be read from/written to as an argument to the intrinsic
2894/// @llvm.read/write_register.
2895/// So far, only the name is being passed down, but other options such as
2896/// register type, allocation type or even optimization options could be
2897/// passed down via the metadata node.
2898static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2899  SmallString<64> Name("llvm.named.register.");
2900  AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2901  assert(Asm->getLabel().size() < 64-Name.size() &&
2902      "Register name too big");
2903  Name.append(Asm->getLabel());
2904  llvm::NamedMDNode *M =
2905    CGM.getModule().getOrInsertNamedMetadata(Name);
2906  if (M->getNumOperands() == 0) {
2907    llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2908                                              Asm->getLabel());
2909    llvm::Metadata *Ops[] = {Str};
2910    M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2911  }
2912
2913  CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2914
2915  llvm::Value *Ptr =
2916    llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2917  return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType());
2918}
2919
2920/// Determine whether we can emit a reference to \p VD from the current
2921/// context, despite not necessarily having seen an odr-use of the variable in
2922/// this context.
2923static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2924                                               const DeclRefExpr *E,
2925                                               const VarDecl *VD) {
2926  // For a variable declared in an enclosing scope, do not emit a spurious
2927  // reference even if we have a capture, as that will emit an unwarranted
2928  // reference to our capture state, and will likely generate worse code than
2929  // emitting a local copy.
2930  if (E->refersToEnclosingVariableOrCapture())
2931    return false;
2932
2933  // For a local declaration declared in this function, we can always reference
2934  // it even if we don't have an odr-use.
2935  if (VD->hasLocalStorage()) {
2936    return VD->getDeclContext() ==
2937           dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2938  }
2939
2940  // For a global declaration, we can emit a reference to it if we know
2941  // for sure that we are able to emit a definition of it.
2942  VD = VD->getDefinition(CGF.getContext());
2943  if (!VD)
2944    return false;
2945
2946  // Don't emit a spurious reference if it might be to a variable that only
2947  // exists on a different device / target.
2948  // FIXME: This is unnecessarily broad. Check whether this would actually be a
2949  // cross-target reference.
2950  if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2951      CGF.getLangOpts().OpenCL) {
2952    return false;
2953  }
2954
2955  // We can emit a spurious reference only if the linkage implies that we'll
2956  // be emitting a non-interposable symbol that will be retained until link
2957  // time.
2958  switch (CGF.CGM.getLLVMLinkageVarDefinition(VD)) {
2959  case llvm::GlobalValue::ExternalLinkage:
2960  case llvm::GlobalValue::LinkOnceODRLinkage:
2961  case llvm::GlobalValue::WeakODRLinkage:
2962  case llvm::GlobalValue::InternalLinkage:
2963  case llvm::GlobalValue::PrivateLinkage:
2964    return true;
2965  default:
2966    return false;
2967  }
2968}
2969
2970LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2971  const NamedDecl *ND = E->getDecl();
2972  QualType T = E->getType();
2973
2974  assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2975         "should not emit an unevaluated operand");
2976
2977  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2978    // Global Named registers access via intrinsics only
2979    if (VD->getStorageClass() == SC_Register &&
2980        VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2981      return EmitGlobalNamedRegister(VD, CGM);
2982
2983    // If this DeclRefExpr does not constitute an odr-use of the variable,
2984    // we're not permitted to emit a reference to it in general, and it might
2985    // not be captured if capture would be necessary for a use. Emit the
2986    // constant value directly instead.
2987    if (E->isNonOdrUse() == NOUR_Constant &&
2988        (VD->getType()->isReferenceType() ||
2989         !canEmitSpuriousReferenceToVariable(*this, E, VD))) {
2990      VD->getAnyInitializer(VD);
2991      llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2992          E->getLocation(), *VD->evaluateValue(), VD->getType());
2993      assert(Val && "failed to emit constant expression");
2994
2995      Address Addr = Address::invalid();
2996      if (!VD->getType()->isReferenceType()) {
2997        // Spill the constant value to a global.
2998        Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2999                                           getContext().getDeclAlign(VD));
3000        llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
3001        auto *PTy = llvm::PointerType::get(
3002            VarTy, getTypes().getTargetAddressSpace(VD->getType()));
3003        Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy);
3004      } else {
3005        // Should we be using the alignment of the constant pointer we emitted?
3006        CharUnits Alignment =
3007            CGM.getNaturalTypeAlignment(E->getType(),
3008                                        /* BaseInfo= */ nullptr,
3009                                        /* TBAAInfo= */ nullptr,
3010                                        /* forPointeeType= */ true);
3011        Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment);
3012      }
3013      return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
3014    }
3015
3016    // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
3017
3018    // Check for captured variables.
3019    if (E->refersToEnclosingVariableOrCapture()) {
3020      VD = VD->getCanonicalDecl();
3021      if (auto *FD = LambdaCaptureFields.lookup(VD))
3022        return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
3023      if (CapturedStmtInfo) {
3024        auto I = LocalDeclMap.find(VD);
3025        if (I != LocalDeclMap.end()) {
3026          LValue CapLVal;
3027          if (VD->getType()->isReferenceType())
3028            CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
3029                                                AlignmentSource::Decl);
3030          else
3031            CapLVal = MakeAddrLValue(I->second, T);
3032          // Mark lvalue as nontemporal if the variable is marked as nontemporal
3033          // in simd context.
3034          if (getLangOpts().OpenMP &&
3035              CGM.getOpenMPRuntime().isNontemporalDecl(VD))
3036            CapLVal.setNontemporal(/*Value=*/true);
3037          return CapLVal;
3038        }
3039        LValue CapLVal =
3040            EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
3041                                    CapturedStmtInfo->getContextValue());
3042        Address LValueAddress = CapLVal.getAddress(*this);
3043        CapLVal = MakeAddrLValue(
3044            Address(LValueAddress.getPointer(), LValueAddress.getElementType(),
3045                    getContext().getDeclAlign(VD)),
3046            CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
3047            CapLVal.getTBAAInfo());
3048        // Mark lvalue as nontemporal if the variable is marked as nontemporal
3049        // in simd context.
3050        if (getLangOpts().OpenMP &&
3051            CGM.getOpenMPRuntime().isNontemporalDecl(VD))
3052          CapLVal.setNontemporal(/*Value=*/true);
3053        return CapLVal;
3054      }
3055
3056      assert(isa<BlockDecl>(CurCodeDecl));
3057      Address addr = GetAddrOfBlockDecl(VD);
3058      return MakeAddrLValue(addr, T, AlignmentSource::Decl);
3059    }
3060  }
3061
3062  // FIXME: We should be able to assert this for FunctionDecls as well!
3063  // FIXME: We should be able to assert this for all DeclRefExprs, not just
3064  // those with a valid source location.
3065  assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
3066          !E->getLocation().isValid()) &&
3067         "Should not use decl without marking it used!");
3068
3069  if (ND->hasAttr<WeakRefAttr>()) {
3070    const auto *VD = cast<ValueDecl>(ND);
3071    ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
3072    return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
3073  }
3074
3075  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
3076    // Check if this is a global variable.
3077    if (VD->hasLinkage() || VD->isStaticDataMember())
3078      return EmitGlobalVarDeclLValue(*this, E, VD);
3079
3080    Address addr = Address::invalid();
3081
3082    // The variable should generally be present in the local decl map.
3083    auto iter = LocalDeclMap.find(VD);
3084    if (iter != LocalDeclMap.end()) {
3085      addr = iter->second;
3086
3087    // Otherwise, it might be static local we haven't emitted yet for
3088    // some reason; most likely, because it's in an outer function.
3089    } else if (VD->isStaticLocal()) {
3090      llvm::Constant *var = CGM.getOrCreateStaticVarDecl(
3091          *VD, CGM.getLLVMLinkageVarDefinition(VD));
3092      addr = Address(
3093          var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD));
3094
3095    // No other cases for now.
3096    } else {
3097      llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
3098    }
3099
3100    // Handle threadlocal function locals.
3101    if (VD->getTLSKind() != VarDecl::TLS_None)
3102      addr = addr.withPointer(
3103          Builder.CreateThreadLocalAddress(addr.getPointer()), NotKnownNonNull);
3104
3105    // Check for OpenMP threadprivate variables.
3106    if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
3107        VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
3108      return EmitThreadPrivateVarDeclLValue(
3109          *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
3110          E->getExprLoc());
3111    }
3112
3113    // Drill into block byref variables.
3114    bool isBlockByref = VD->isEscapingByref();
3115    if (isBlockByref) {
3116      addr = emitBlockByrefAddress(addr, VD);
3117    }
3118
3119    // Drill into reference types.
3120    LValue LV = VD->getType()->isReferenceType() ?
3121        EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
3122        MakeAddrLValue(addr, T, AlignmentSource::Decl);
3123
3124    bool isLocalStorage = VD->hasLocalStorage();
3125
3126    bool NonGCable = isLocalStorage &&
3127                     !VD->getType()->isReferenceType() &&
3128                     !isBlockByref;
3129    if (NonGCable) {
3130      LV.getQuals().removeObjCGCAttr();
3131      LV.setNonGC(true);
3132    }
3133
3134    bool isImpreciseLifetime =
3135      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
3136    if (isImpreciseLifetime)
3137      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
3138    setObjCGCLValueClass(getContext(), E, LV);
3139    return LV;
3140  }
3141
3142  if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
3143    LValue LV = EmitFunctionDeclLValue(*this, E, FD);
3144
3145    // Emit debuginfo for the function declaration if the target wants to.
3146    if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
3147      if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
3148        auto *Fn =
3149            cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
3150        if (!Fn->getSubprogram())
3151          DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
3152      }
3153    }
3154
3155    return LV;
3156  }
3157
3158  // FIXME: While we're emitting a binding from an enclosing scope, all other
3159  // DeclRefExprs we see should be implicitly treated as if they also refer to
3160  // an enclosing scope.
3161  if (const auto *BD = dyn_cast<BindingDecl>(ND)) {
3162    if (E->refersToEnclosingVariableOrCapture()) {
3163      auto *FD = LambdaCaptureFields.lookup(BD);
3164      return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
3165    }
3166    return EmitLValue(BD->getBinding());
3167  }
3168
3169  // We can form DeclRefExprs naming GUID declarations when reconstituting
3170  // non-type template parameters into expressions.
3171  if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
3172    return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
3173                          AlignmentSource::Decl);
3174
3175  if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
3176    auto ATPO = CGM.GetAddrOfTemplateParamObject(TPO);
3177    auto AS = getLangASFromTargetAS(ATPO.getAddressSpace());
3178
3179    if (AS != T.getAddressSpace()) {
3180      auto TargetAS = getContext().getTargetAddressSpace(T.getAddressSpace());
3181      auto PtrTy = ATPO.getElementType()->getPointerTo(TargetAS);
3182      auto ASC = getTargetHooks().performAddrSpaceCast(
3183          CGM, ATPO.getPointer(), AS, T.getAddressSpace(), PtrTy);
3184      ATPO = ConstantAddress(ASC, ATPO.getElementType(), ATPO.getAlignment());
3185    }
3186
3187    return MakeAddrLValue(ATPO, T, AlignmentSource::Decl);
3188  }
3189
3190  llvm_unreachable("Unhandled DeclRefExpr");
3191}
3192
3193LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
3194  // __extension__ doesn't affect lvalue-ness.
3195  if (E->getOpcode() == UO_Extension)
3196    return EmitLValue(E->getSubExpr());
3197
3198  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
3199  switch (E->getOpcode()) {
3200  default: llvm_unreachable("Unknown unary operator lvalue!");
3201  case UO_Deref: {
3202    QualType T = E->getSubExpr()->getType()->getPointeeType();
3203    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
3204
3205    LValueBaseInfo BaseInfo;
3206    TBAAAccessInfo TBAAInfo;
3207    Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
3208                                            &TBAAInfo);
3209    LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
3210    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
3211
3212    // We should not generate __weak write barrier on indirect reference
3213    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
3214    // But, we continue to generate __strong write barrier on indirect write
3215    // into a pointer to object.
3216    if (getLangOpts().ObjC &&
3217        getLangOpts().getGC() != LangOptions::NonGC &&
3218        LV.isObjCWeak())
3219      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3220    return LV;
3221  }
3222  case UO_Real:
3223  case UO_Imag: {
3224    LValue LV = EmitLValue(E->getSubExpr());
3225    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
3226
3227    // __real is valid on scalars.  This is a faster way of testing that.
3228    // __imag can only produce an rvalue on scalars.
3229    if (E->getOpcode() == UO_Real &&
3230        !LV.getAddress(*this).getElementType()->isStructTy()) {
3231      assert(E->getSubExpr()->getType()->isArithmeticType());
3232      return LV;
3233    }
3234
3235    QualType T = ExprTy->castAs<ComplexType>()->getElementType();
3236
3237    Address Component =
3238        (E->getOpcode() == UO_Real
3239             ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
3240             : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
3241    LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
3242                                   CGM.getTBAAInfoForSubobject(LV, T));
3243    ElemLV.getQuals().addQualifiers(LV.getQuals());
3244    return ElemLV;
3245  }
3246  case UO_PreInc:
3247  case UO_PreDec: {
3248    LValue LV = EmitLValue(E->getSubExpr());
3249    bool isInc = E->getOpcode() == UO_PreInc;
3250
3251    if (E->getType()->isAnyComplexType())
3252      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
3253    else
3254      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
3255    return LV;
3256  }
3257  }
3258}
3259
3260LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
3261  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
3262                        E->getType(), AlignmentSource::Decl);
3263}
3264
3265LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
3266  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
3267                        E->getType(), AlignmentSource::Decl);
3268}
3269
3270LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
3271  auto SL = E->getFunctionName();
3272  assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
3273  StringRef FnName = CurFn->getName();
3274  if (FnName.starts_with("\01"))
3275    FnName = FnName.substr(1);
3276  StringRef NameItems[] = {
3277      PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
3278  std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
3279  if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
3280    std::string Name = std::string(SL->getString());
3281    if (!Name.empty()) {
3282      unsigned Discriminator =
3283          CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
3284      if (Discriminator)
3285        Name += "_" + Twine(Discriminator + 1).str();
3286      auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
3287      return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3288    } else {
3289      auto C =
3290          CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
3291      return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3292    }
3293  }
3294  auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
3295  return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3296}
3297
3298/// Emit a type description suitable for use by a runtime sanitizer library. The
3299/// format of a type descriptor is
3300///
3301/// \code
3302///   { i16 TypeKind, i16 TypeInfo }
3303/// \endcode
3304///
3305/// followed by an array of i8 containing the type name. TypeKind is 0 for an
3306/// integer, 1 for a floating point value, and -1 for anything else.
3307llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
3308  // Only emit each type's descriptor once.
3309  if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
3310    return C;
3311
3312  uint16_t TypeKind = -1;
3313  uint16_t TypeInfo = 0;
3314
3315  if (T->isIntegerType()) {
3316    TypeKind = 0;
3317    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
3318               (T->isSignedIntegerType() ? 1 : 0);
3319  } else if (T->isFloatingType()) {
3320    TypeKind = 1;
3321    TypeInfo = getContext().getTypeSize(T);
3322  }
3323
3324  // Format the type name as if for a diagnostic, including quotes and
3325  // optionally an 'aka'.
3326  SmallString<32> Buffer;
3327  CGM.getDiags().ConvertArgToString(
3328      DiagnosticsEngine::ak_qualtype, (intptr_t)T.getAsOpaquePtr(), StringRef(),
3329      StringRef(), std::nullopt, Buffer, std::nullopt);
3330
3331  llvm::Constant *Components[] = {
3332    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3333    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3334  };
3335  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3336
3337  auto *GV = new llvm::GlobalVariable(
3338      CGM.getModule(), Descriptor->getType(),
3339      /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3340  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3341  CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3342
3343  // Remember the descriptor for this type.
3344  CGM.setTypeDescriptorInMap(T, GV);
3345
3346  return GV;
3347}
3348
3349llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3350  llvm::Type *TargetTy = IntPtrTy;
3351
3352  if (V->getType() == TargetTy)
3353    return V;
3354
3355  // Floating-point types which fit into intptr_t are bitcast to integers
3356  // and then passed directly (after zero-extension, if necessary).
3357  if (V->getType()->isFloatingPointTy()) {
3358    unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedValue();
3359    if (Bits <= TargetTy->getIntegerBitWidth())
3360      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3361                                                         Bits));
3362  }
3363
3364  // Integers which fit in intptr_t are zero-extended and passed directly.
3365  if (V->getType()->isIntegerTy() &&
3366      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3367    return Builder.CreateZExt(V, TargetTy);
3368
3369  // Pointers are passed directly, everything else is passed by address.
3370  if (!V->getType()->isPointerTy()) {
3371    Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3372    Builder.CreateStore(V, Ptr);
3373    V = Ptr.getPointer();
3374  }
3375  return Builder.CreatePtrToInt(V, TargetTy);
3376}
3377
3378/// Emit a representation of a SourceLocation for passing to a handler
3379/// in a sanitizer runtime library. The format for this data is:
3380/// \code
3381///   struct SourceLocation {
3382///     const char *Filename;
3383///     int32_t Line, Column;
3384///   };
3385/// \endcode
3386/// For an invalid SourceLocation, the Filename pointer is null.
3387llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3388  llvm::Constant *Filename;
3389  int Line, Column;
3390
3391  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3392  if (PLoc.isValid()) {
3393    StringRef FilenameString = PLoc.getFilename();
3394
3395    int PathComponentsToStrip =
3396        CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3397    if (PathComponentsToStrip < 0) {
3398      assert(PathComponentsToStrip != INT_MIN);
3399      int PathComponentsToKeep = -PathComponentsToStrip;
3400      auto I = llvm::sys::path::rbegin(FilenameString);
3401      auto E = llvm::sys::path::rend(FilenameString);
3402      while (I != E && --PathComponentsToKeep)
3403        ++I;
3404
3405      FilenameString = FilenameString.substr(I - E);
3406    } else if (PathComponentsToStrip > 0) {
3407      auto I = llvm::sys::path::begin(FilenameString);
3408      auto E = llvm::sys::path::end(FilenameString);
3409      while (I != E && PathComponentsToStrip--)
3410        ++I;
3411
3412      if (I != E)
3413        FilenameString =
3414            FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3415      else
3416        FilenameString = llvm::sys::path::filename(FilenameString);
3417    }
3418
3419    auto FilenameGV =
3420        CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3421    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3422        cast<llvm::GlobalVariable>(
3423            FilenameGV.getPointer()->stripPointerCasts()));
3424    Filename = FilenameGV.getPointer();
3425    Line = PLoc.getLine();
3426    Column = PLoc.getColumn();
3427  } else {
3428    Filename = llvm::Constant::getNullValue(Int8PtrTy);
3429    Line = Column = 0;
3430  }
3431
3432  llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3433                            Builder.getInt32(Column)};
3434
3435  return llvm::ConstantStruct::getAnon(Data);
3436}
3437
3438namespace {
3439/// Specify under what conditions this check can be recovered
3440enum class CheckRecoverableKind {
3441  /// Always terminate program execution if this check fails.
3442  Unrecoverable,
3443  /// Check supports recovering, runtime has both fatal (noreturn) and
3444  /// non-fatal handlers for this check.
3445  Recoverable,
3446  /// Runtime conditionally aborts, always need to support recovery.
3447  AlwaysRecoverable
3448};
3449}
3450
3451static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3452  assert(Kind.countPopulation() == 1);
3453  if (Kind == SanitizerKind::Vptr)
3454    return CheckRecoverableKind::AlwaysRecoverable;
3455  else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3456    return CheckRecoverableKind::Unrecoverable;
3457  else
3458    return CheckRecoverableKind::Recoverable;
3459}
3460
3461namespace {
3462struct SanitizerHandlerInfo {
3463  char const *const Name;
3464  unsigned Version;
3465};
3466}
3467
3468const SanitizerHandlerInfo SanitizerHandlers[] = {
3469#define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3470    LIST_SANITIZER_CHECKS
3471#undef SANITIZER_CHECK
3472};
3473
3474static void emitCheckHandlerCall(CodeGenFunction &CGF,
3475                                 llvm::FunctionType *FnType,
3476                                 ArrayRef<llvm::Value *> FnArgs,
3477                                 SanitizerHandler CheckHandler,
3478                                 CheckRecoverableKind RecoverKind, bool IsFatal,
3479                                 llvm::BasicBlock *ContBB) {
3480  assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3481  std::optional<ApplyDebugLocation> DL;
3482  if (!CGF.Builder.getCurrentDebugLocation()) {
3483    // Ensure that the call has at least an artificial debug location.
3484    DL.emplace(CGF, SourceLocation());
3485  }
3486  bool NeedsAbortSuffix =
3487      IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3488  bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3489  const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3490  const StringRef CheckName = CheckInfo.Name;
3491  std::string FnName = "__ubsan_handle_" + CheckName.str();
3492  if (CheckInfo.Version && !MinimalRuntime)
3493    FnName += "_v" + llvm::utostr(CheckInfo.Version);
3494  if (MinimalRuntime)
3495    FnName += "_minimal";
3496  if (NeedsAbortSuffix)
3497    FnName += "_abort";
3498  bool MayReturn =
3499      !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3500
3501  llvm::AttrBuilder B(CGF.getLLVMContext());
3502  if (!MayReturn) {
3503    B.addAttribute(llvm::Attribute::NoReturn)
3504        .addAttribute(llvm::Attribute::NoUnwind);
3505  }
3506  B.addUWTableAttr(llvm::UWTableKind::Default);
3507
3508  llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3509      FnType, FnName,
3510      llvm::AttributeList::get(CGF.getLLVMContext(),
3511                               llvm::AttributeList::FunctionIndex, B),
3512      /*Local=*/true);
3513  llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3514  if (!MayReturn) {
3515    HandlerCall->setDoesNotReturn();
3516    CGF.Builder.CreateUnreachable();
3517  } else {
3518    CGF.Builder.CreateBr(ContBB);
3519  }
3520}
3521
3522void CodeGenFunction::EmitCheck(
3523    ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3524    SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3525    ArrayRef<llvm::Value *> DynamicArgs) {
3526  assert(IsSanitizerScope);
3527  assert(Checked.size() > 0);
3528  assert(CheckHandler >= 0 &&
3529         size_t(CheckHandler) < std::size(SanitizerHandlers));
3530  const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3531
3532  llvm::Value *FatalCond = nullptr;
3533  llvm::Value *RecoverableCond = nullptr;
3534  llvm::Value *TrapCond = nullptr;
3535  for (int i = 0, n = Checked.size(); i < n; ++i) {
3536    llvm::Value *Check = Checked[i].first;
3537    // -fsanitize-trap= overrides -fsanitize-recover=.
3538    llvm::Value *&Cond =
3539        CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3540            ? TrapCond
3541            : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3542                  ? RecoverableCond
3543                  : FatalCond;
3544    Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3545  }
3546
3547  if (TrapCond)
3548    EmitTrapCheck(TrapCond, CheckHandler);
3549  if (!FatalCond && !RecoverableCond)
3550    return;
3551
3552  llvm::Value *JointCond;
3553  if (FatalCond && RecoverableCond)
3554    JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3555  else
3556    JointCond = FatalCond ? FatalCond : RecoverableCond;
3557  assert(JointCond);
3558
3559  CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3560  assert(SanOpts.has(Checked[0].second));
3561#ifndef NDEBUG
3562  for (int i = 1, n = Checked.size(); i < n; ++i) {
3563    assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3564           "All recoverable kinds in a single check must be same!");
3565    assert(SanOpts.has(Checked[i].second));
3566  }
3567#endif
3568
3569  llvm::BasicBlock *Cont = createBasicBlock("cont");
3570  llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3571  llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3572  // Give hint that we very much don't expect to execute the handler
3573  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3574  llvm::MDBuilder MDHelper(getLLVMContext());
3575  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3576  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3577  EmitBlock(Handlers);
3578
3579  // Handler functions take an i8* pointing to the (handler-specific) static
3580  // information block, followed by a sequence of intptr_t arguments
3581  // representing operand values.
3582  SmallVector<llvm::Value *, 4> Args;
3583  SmallVector<llvm::Type *, 4> ArgTypes;
3584  if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3585    Args.reserve(DynamicArgs.size() + 1);
3586    ArgTypes.reserve(DynamicArgs.size() + 1);
3587
3588    // Emit handler arguments and create handler function type.
3589    if (!StaticArgs.empty()) {
3590      llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3591      auto *InfoPtr = new llvm::GlobalVariable(
3592          CGM.getModule(), Info->getType(), false,
3593          llvm::GlobalVariable::PrivateLinkage, Info, "", nullptr,
3594          llvm::GlobalVariable::NotThreadLocal,
3595          CGM.getDataLayout().getDefaultGlobalsAddressSpace());
3596      InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3597      CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3598      Args.push_back(InfoPtr);
3599      ArgTypes.push_back(Args.back()->getType());
3600    }
3601
3602    for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3603      Args.push_back(EmitCheckValue(DynamicArgs[i]));
3604      ArgTypes.push_back(IntPtrTy);
3605    }
3606  }
3607
3608  llvm::FunctionType *FnType =
3609    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3610
3611  if (!FatalCond || !RecoverableCond) {
3612    // Simple case: we need to generate a single handler call, either
3613    // fatal, or non-fatal.
3614    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3615                         (FatalCond != nullptr), Cont);
3616  } else {
3617    // Emit two handler calls: first one for set of unrecoverable checks,
3618    // another one for recoverable.
3619    llvm::BasicBlock *NonFatalHandlerBB =
3620        createBasicBlock("non_fatal." + CheckName);
3621    llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3622    Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3623    EmitBlock(FatalHandlerBB);
3624    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3625                         NonFatalHandlerBB);
3626    EmitBlock(NonFatalHandlerBB);
3627    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3628                         Cont);
3629  }
3630
3631  EmitBlock(Cont);
3632}
3633
3634void CodeGenFunction::EmitCfiSlowPathCheck(
3635    SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3636    llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3637  llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3638
3639  llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3640  llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3641
3642  llvm::MDBuilder MDHelper(getLLVMContext());
3643  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3644  BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3645
3646  EmitBlock(CheckBB);
3647
3648  bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3649
3650  llvm::CallInst *CheckCall;
3651  llvm::FunctionCallee SlowPathFn;
3652  if (WithDiag) {
3653    llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3654    auto *InfoPtr =
3655        new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3656                                 llvm::GlobalVariable::PrivateLinkage, Info);
3657    InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3658    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3659
3660    SlowPathFn = CGM.getModule().getOrInsertFunction(
3661        "__cfi_slowpath_diag",
3662        llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3663                                false));
3664    CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr, InfoPtr});
3665  } else {
3666    SlowPathFn = CGM.getModule().getOrInsertFunction(
3667        "__cfi_slowpath",
3668        llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3669    CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3670  }
3671
3672  CGM.setDSOLocal(
3673      cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3674  CheckCall->setDoesNotThrow();
3675
3676  EmitBlock(Cont);
3677}
3678
3679// Emit a stub for __cfi_check function so that the linker knows about this
3680// symbol in LTO mode.
3681void CodeGenFunction::EmitCfiCheckStub() {
3682  llvm::Module *M = &CGM.getModule();
3683  auto &Ctx = M->getContext();
3684  llvm::Function *F = llvm::Function::Create(
3685      llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3686      llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3687  F->setAlignment(llvm::Align(4096));
3688  CGM.setDSOLocal(F);
3689  llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3690  // CrossDSOCFI pass is not executed if there is no executable code.
3691  SmallVector<llvm::Value*> Args{F->getArg(2), F->getArg(1)};
3692  llvm::CallInst::Create(M->getFunction("__cfi_check_fail"), Args, "", BB);
3693  llvm::ReturnInst::Create(Ctx, nullptr, BB);
3694}
3695
3696// This function is basically a switch over the CFI failure kind, which is
3697// extracted from CFICheckFailData (1st function argument). Each case is either
3698// llvm.trap or a call to one of the two runtime handlers, based on
3699// -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3700// failure kind) traps, but this should really never happen.  CFICheckFailData
3701// can be nullptr if the calling module has -fsanitize-trap behavior for this
3702// check kind; in this case __cfi_check_fail traps as well.
3703void CodeGenFunction::EmitCfiCheckFail() {
3704  SanitizerScope SanScope(this);
3705  FunctionArgList Args;
3706  ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3707                            ImplicitParamKind::Other);
3708  ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3709                            ImplicitParamKind::Other);
3710  Args.push_back(&ArgData);
3711  Args.push_back(&ArgAddr);
3712
3713  const CGFunctionInfo &FI =
3714    CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3715
3716  llvm::Function *F = llvm::Function::Create(
3717      llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3718      llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3719
3720  CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3721  CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3722  F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3723
3724  StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3725                SourceLocation());
3726
3727  // This function is not affected by NoSanitizeList. This function does
3728  // not have a source location, but "src:*" would still apply. Revert any
3729  // changes to SanOpts made in StartFunction.
3730  SanOpts = CGM.getLangOpts().Sanitize;
3731
3732  llvm::Value *Data =
3733      EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3734                       CGM.getContext().VoidPtrTy, ArgData.getLocation());
3735  llvm::Value *Addr =
3736      EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3737                       CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3738
3739  // Data == nullptr means the calling module has trap behaviour for this check.
3740  llvm::Value *DataIsNotNullPtr =
3741      Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3742  EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3743
3744  llvm::StructType *SourceLocationTy =
3745      llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3746  llvm::StructType *CfiCheckFailDataTy =
3747      llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3748
3749  llvm::Value *V = Builder.CreateConstGEP2_32(
3750      CfiCheckFailDataTy,
3751      Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3752      0);
3753
3754  Address CheckKindAddr(V, Int8Ty, getIntAlign());
3755  llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3756
3757  llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3758      CGM.getLLVMContext(),
3759      llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3760  llvm::Value *ValidVtable = Builder.CreateZExt(
3761      Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3762                         {Addr, AllVtables}),
3763      IntPtrTy);
3764
3765  const std::pair<int, SanitizerMask> CheckKinds[] = {
3766      {CFITCK_VCall, SanitizerKind::CFIVCall},
3767      {CFITCK_NVCall, SanitizerKind::CFINVCall},
3768      {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3769      {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3770      {CFITCK_ICall, SanitizerKind::CFIICall}};
3771
3772  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3773  for (auto CheckKindMaskPair : CheckKinds) {
3774    int Kind = CheckKindMaskPair.first;
3775    SanitizerMask Mask = CheckKindMaskPair.second;
3776    llvm::Value *Cond =
3777        Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3778    if (CGM.getLangOpts().Sanitize.has(Mask))
3779      EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3780                {Data, Addr, ValidVtable});
3781    else
3782      EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3783  }
3784
3785  FinishFunction();
3786  // The only reference to this function will be created during LTO link.
3787  // Make sure it survives until then.
3788  CGM.addUsedGlobal(F);
3789}
3790
3791void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3792  if (SanOpts.has(SanitizerKind::Unreachable)) {
3793    SanitizerScope SanScope(this);
3794    EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3795                             SanitizerKind::Unreachable),
3796              SanitizerHandler::BuiltinUnreachable,
3797              EmitCheckSourceLocation(Loc), std::nullopt);
3798  }
3799  Builder.CreateUnreachable();
3800}
3801
3802void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3803                                    SanitizerHandler CheckHandlerID) {
3804  llvm::BasicBlock *Cont = createBasicBlock("cont");
3805
3806  // If we're optimizing, collapse all calls to trap down to just one per
3807  // check-type per function to save on code size.
3808  if (TrapBBs.size() <= CheckHandlerID)
3809    TrapBBs.resize(CheckHandlerID + 1);
3810
3811  llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3812
3813  if (!ClSanitizeDebugDeoptimization &&
3814      CGM.getCodeGenOpts().OptimizationLevel && TrapBB &&
3815      (!CurCodeDecl || !CurCodeDecl->hasAttr<OptimizeNoneAttr>())) {
3816    auto Call = TrapBB->begin();
3817    assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3818
3819    Call->applyMergedLocation(Call->getDebugLoc(),
3820                              Builder.getCurrentDebugLocation());
3821    Builder.CreateCondBr(Checked, Cont, TrapBB);
3822  } else {
3823    TrapBB = createBasicBlock("trap");
3824    Builder.CreateCondBr(Checked, Cont, TrapBB);
3825    EmitBlock(TrapBB);
3826
3827    llvm::CallInst *TrapCall = Builder.CreateCall(
3828        CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3829        llvm::ConstantInt::get(CGM.Int8Ty, ClSanitizeDebugDeoptimization
3830                                               ? TrapBB->getParent()->size()
3831                                               : CheckHandlerID));
3832
3833    if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3834      auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3835                                    CGM.getCodeGenOpts().TrapFuncName);
3836      TrapCall->addFnAttr(A);
3837    }
3838    TrapCall->setDoesNotReturn();
3839    TrapCall->setDoesNotThrow();
3840    Builder.CreateUnreachable();
3841  }
3842
3843  EmitBlock(Cont);
3844}
3845
3846llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3847  llvm::CallInst *TrapCall =
3848      Builder.CreateCall(CGM.getIntrinsic(IntrID));
3849
3850  if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3851    auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3852                                  CGM.getCodeGenOpts().TrapFuncName);
3853    TrapCall->addFnAttr(A);
3854  }
3855
3856  return TrapCall;
3857}
3858
3859Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3860                                                 LValueBaseInfo *BaseInfo,
3861                                                 TBAAAccessInfo *TBAAInfo) {
3862  assert(E->getType()->isArrayType() &&
3863         "Array to pointer decay must have array source type!");
3864
3865  // Expressions of array type can't be bitfields or vector elements.
3866  LValue LV = EmitLValue(E);
3867  Address Addr = LV.getAddress(*this);
3868
3869  // If the array type was an incomplete type, we need to make sure
3870  // the decay ends up being the right type.
3871  llvm::Type *NewTy = ConvertType(E->getType());
3872  Addr = Addr.withElementType(NewTy);
3873
3874  // Note that VLA pointers are always decayed, so we don't need to do
3875  // anything here.
3876  if (!E->getType()->isVariableArrayType()) {
3877    assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3878           "Expected pointer to array");
3879    Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3880  }
3881
3882  // The result of this decay conversion points to an array element within the
3883  // base lvalue. However, since TBAA currently does not support representing
3884  // accesses to elements of member arrays, we conservatively represent accesses
3885  // to the pointee object as if it had no any base lvalue specified.
3886  // TODO: Support TBAA for member arrays.
3887  QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3888  if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3889  if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3890
3891  return Addr.withElementType(ConvertTypeForMem(EltType));
3892}
3893
3894/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3895/// array to pointer, return the array subexpression.
3896static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3897  // If this isn't just an array->pointer decay, bail out.
3898  const auto *CE = dyn_cast<CastExpr>(E);
3899  if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3900    return nullptr;
3901
3902  // If this is a decay from variable width array, bail out.
3903  const Expr *SubExpr = CE->getSubExpr();
3904  if (SubExpr->getType()->isVariableArrayType())
3905    return nullptr;
3906
3907  return SubExpr;
3908}
3909
3910static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3911                                          llvm::Type *elemType,
3912                                          llvm::Value *ptr,
3913                                          ArrayRef<llvm::Value*> indices,
3914                                          bool inbounds,
3915                                          bool signedIndices,
3916                                          SourceLocation loc,
3917                                    const llvm::Twine &name = "arrayidx") {
3918  if (inbounds) {
3919    return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices,
3920                                      CodeGenFunction::NotSubtraction, loc,
3921                                      name);
3922  } else {
3923    return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3924  }
3925}
3926
3927static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3928                                      llvm::Value *idx,
3929                                      CharUnits eltSize) {
3930  // If we have a constant index, we can use the exact offset of the
3931  // element we're accessing.
3932  if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3933    CharUnits offset = constantIdx->getZExtValue() * eltSize;
3934    return arrayAlign.alignmentAtOffset(offset);
3935
3936  // Otherwise, use the worst-case alignment for any element.
3937  } else {
3938    return arrayAlign.alignmentOfArrayElement(eltSize);
3939  }
3940}
3941
3942static QualType getFixedSizeElementType(const ASTContext &ctx,
3943                                        const VariableArrayType *vla) {
3944  QualType eltType;
3945  do {
3946    eltType = vla->getElementType();
3947  } while ((vla = ctx.getAsVariableArrayType(eltType)));
3948  return eltType;
3949}
3950
3951static bool hasBPFPreserveStaticOffset(const RecordDecl *D) {
3952  return D && D->hasAttr<BPFPreserveStaticOffsetAttr>();
3953}
3954
3955static bool hasBPFPreserveStaticOffset(const Expr *E) {
3956  if (!E)
3957    return false;
3958  QualType PointeeType = E->getType()->getPointeeType();
3959  if (PointeeType.isNull())
3960    return false;
3961  if (const auto *BaseDecl = PointeeType->getAsRecordDecl())
3962    return hasBPFPreserveStaticOffset(BaseDecl);
3963  return false;
3964}
3965
3966// Wraps Addr with a call to llvm.preserve.static.offset intrinsic.
3967static Address wrapWithBPFPreserveStaticOffset(CodeGenFunction &CGF,
3968                                               Address &Addr) {
3969  if (!CGF.getTarget().getTriple().isBPF())
3970    return Addr;
3971
3972  llvm::Function *Fn =
3973      CGF.CGM.getIntrinsic(llvm::Intrinsic::preserve_static_offset);
3974  llvm::CallInst *Call = CGF.Builder.CreateCall(Fn, {Addr.getPointer()});
3975  return Address(Call, Addr.getElementType(), Addr.getAlignment());
3976}
3977
3978/// Given an array base, check whether its member access belongs to a record
3979/// with preserve_access_index attribute or not.
3980static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3981  if (!ArrayBase || !CGF.getDebugInfo())
3982    return false;
3983
3984  // Only support base as either a MemberExpr or DeclRefExpr.
3985  // DeclRefExpr to cover cases like:
3986  //    struct s { int a; int b[10]; };
3987  //    struct s *p;
3988  //    p[1].a
3989  // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3990  // p->b[5] is a MemberExpr example.
3991  const Expr *E = ArrayBase->IgnoreImpCasts();
3992  if (const auto *ME = dyn_cast<MemberExpr>(E))
3993    return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3994
3995  if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3996    const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3997    if (!VarDef)
3998      return false;
3999
4000    const auto *PtrT = VarDef->getType()->getAs<PointerType>();
4001    if (!PtrT)
4002      return false;
4003
4004    const auto *PointeeT = PtrT->getPointeeType()
4005                             ->getUnqualifiedDesugaredType();
4006    if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
4007      return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
4008    return false;
4009  }
4010
4011  return false;
4012}
4013
4014static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
4015                                     ArrayRef<llvm::Value *> indices,
4016                                     QualType eltType, bool inbounds,
4017                                     bool signedIndices, SourceLocation loc,
4018                                     QualType *arrayType = nullptr,
4019                                     const Expr *Base = nullptr,
4020                                     const llvm::Twine &name = "arrayidx") {
4021  // All the indices except that last must be zero.
4022#ifndef NDEBUG
4023  for (auto *idx : indices.drop_back())
4024    assert(isa<llvm::ConstantInt>(idx) &&
4025           cast<llvm::ConstantInt>(idx)->isZero());
4026#endif
4027
4028  // Determine the element size of the statically-sized base.  This is
4029  // the thing that the indices are expressed in terms of.
4030  if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
4031    eltType = getFixedSizeElementType(CGF.getContext(), vla);
4032  }
4033
4034  // We can use that to compute the best alignment of the element.
4035  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
4036  CharUnits eltAlign =
4037    getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
4038
4039  if (hasBPFPreserveStaticOffset(Base))
4040    addr = wrapWithBPFPreserveStaticOffset(CGF, addr);
4041
4042  llvm::Value *eltPtr;
4043  auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
4044  if (!LastIndex ||
4045      (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
4046    eltPtr = emitArraySubscriptGEP(
4047        CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
4048        signedIndices, loc, name);
4049  } else {
4050    // Remember the original array subscript for bpf target
4051    unsigned idx = LastIndex->getZExtValue();
4052    llvm::DIType *DbgInfo = nullptr;
4053    if (arrayType)
4054      DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
4055    eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
4056                                                        addr.getPointer(),
4057                                                        indices.size() - 1,
4058                                                        idx, DbgInfo);
4059  }
4060
4061  return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign);
4062}
4063
4064/// The offset of a field from the beginning of the record.
4065static bool getFieldOffsetInBits(CodeGenFunction &CGF, const RecordDecl *RD,
4066                                 const FieldDecl *FD, int64_t &Offset) {
4067  ASTContext &Ctx = CGF.getContext();
4068  const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
4069  unsigned FieldNo = 0;
4070
4071  for (const Decl *D : RD->decls()) {
4072    if (const auto *Record = dyn_cast<RecordDecl>(D))
4073      if (getFieldOffsetInBits(CGF, Record, FD, Offset)) {
4074        Offset += Layout.getFieldOffset(FieldNo);
4075        return true;
4076      }
4077
4078    if (const auto *Field = dyn_cast<FieldDecl>(D))
4079      if (FD == Field) {
4080        Offset += Layout.getFieldOffset(FieldNo);
4081        return true;
4082      }
4083
4084    if (isa<FieldDecl>(D))
4085      ++FieldNo;
4086  }
4087
4088  return false;
4089}
4090
4091/// Returns the relative offset difference between \p FD1 and \p FD2.
4092/// \code
4093///   offsetof(struct foo, FD1) - offsetof(struct foo, FD2)
4094/// \endcode
4095/// Both fields must be within the same struct.
4096static std::optional<int64_t> getOffsetDifferenceInBits(CodeGenFunction &CGF,
4097                                                        const FieldDecl *FD1,
4098                                                        const FieldDecl *FD2) {
4099  const RecordDecl *FD1OuterRec =
4100      FD1->getParent()->getOuterLexicalRecordContext();
4101  const RecordDecl *FD2OuterRec =
4102      FD2->getParent()->getOuterLexicalRecordContext();
4103
4104  if (FD1OuterRec != FD2OuterRec)
4105    // Fields must be within the same RecordDecl.
4106    return std::optional<int64_t>();
4107
4108  int64_t FD1Offset = 0;
4109  if (!getFieldOffsetInBits(CGF, FD1OuterRec, FD1, FD1Offset))
4110    return std::optional<int64_t>();
4111
4112  int64_t FD2Offset = 0;
4113  if (!getFieldOffsetInBits(CGF, FD2OuterRec, FD2, FD2Offset))
4114    return std::optional<int64_t>();
4115
4116  return std::make_optional<int64_t>(FD1Offset - FD2Offset);
4117}
4118
4119LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
4120                                               bool Accessed) {
4121  // The index must always be an integer, which is not an aggregate.  Emit it
4122  // in lexical order (this complexity is, sadly, required by C++17).
4123  llvm::Value *IdxPre =
4124      (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
4125  bool SignedIndices = false;
4126  auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
4127    auto *Idx = IdxPre;
4128    if (E->getLHS() != E->getIdx()) {
4129      assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
4130      Idx = EmitScalarExpr(E->getIdx());
4131    }
4132
4133    QualType IdxTy = E->getIdx()->getType();
4134    bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
4135    SignedIndices |= IdxSigned;
4136
4137    if (SanOpts.has(SanitizerKind::ArrayBounds))
4138      EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
4139
4140    // Extend or truncate the index type to 32 or 64-bits.
4141    if (Promote && Idx->getType() != IntPtrTy)
4142      Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
4143
4144    return Idx;
4145  };
4146  IdxPre = nullptr;
4147
4148  // If the base is a vector type, then we are forming a vector element lvalue
4149  // with this subscript.
4150  if (E->getBase()->getType()->isVectorType() &&
4151      !isa<ExtVectorElementExpr>(E->getBase())) {
4152    // Emit the vector as an lvalue to get its address.
4153    LValue LHS = EmitLValue(E->getBase());
4154    auto *Idx = EmitIdxAfterBase(/*Promote*/false);
4155    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
4156    return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
4157                                 E->getBase()->getType(), LHS.getBaseInfo(),
4158                                 TBAAAccessInfo());
4159  }
4160
4161  // All the other cases basically behave like simple offsetting.
4162
4163  // Handle the extvector case we ignored above.
4164  if (isa<ExtVectorElementExpr>(E->getBase())) {
4165    LValue LV = EmitLValue(E->getBase());
4166    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4167    Address Addr = EmitExtVectorElementLValue(LV);
4168
4169    QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
4170    Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
4171                                 SignedIndices, E->getExprLoc());
4172    return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
4173                          CGM.getTBAAInfoForSubobject(LV, EltType));
4174  }
4175
4176  LValueBaseInfo EltBaseInfo;
4177  TBAAAccessInfo EltTBAAInfo;
4178  Address Addr = Address::invalid();
4179  if (const VariableArrayType *vla =
4180           getContext().getAsVariableArrayType(E->getType())) {
4181    // The base must be a pointer, which is not an aggregate.  Emit
4182    // it.  It needs to be emitted first in case it's what captures
4183    // the VLA bounds.
4184    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
4185    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4186
4187    // The element count here is the total number of non-VLA elements.
4188    llvm::Value *numElements = getVLASize(vla).NumElts;
4189
4190    // Effectively, the multiply by the VLA size is part of the GEP.
4191    // GEP indexes are signed, and scaling an index isn't permitted to
4192    // signed-overflow, so we use the same semantics for our explicit
4193    // multiply.  We suppress this if overflow is not undefined behavior.
4194    if (getLangOpts().isSignedOverflowDefined()) {
4195      Idx = Builder.CreateMul(Idx, numElements);
4196    } else {
4197      Idx = Builder.CreateNSWMul(Idx, numElements);
4198    }
4199
4200    Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
4201                                 !getLangOpts().isSignedOverflowDefined(),
4202                                 SignedIndices, E->getExprLoc());
4203
4204  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
4205    // Indexing over an interface, as in "NSString *P; P[4];"
4206
4207    // Emit the base pointer.
4208    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
4209    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4210
4211    CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
4212    llvm::Value *InterfaceSizeVal =
4213        llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
4214
4215    llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
4216
4217    // We don't necessarily build correct LLVM struct types for ObjC
4218    // interfaces, so we can't rely on GEP to do this scaling
4219    // correctly, so we need to cast to i8*.  FIXME: is this actually
4220    // true?  A lot of other things in the fragile ABI would break...
4221    llvm::Type *OrigBaseElemTy = Addr.getElementType();
4222
4223    // Do the GEP.
4224    CharUnits EltAlign =
4225      getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
4226    llvm::Value *EltPtr =
4227        emitArraySubscriptGEP(*this, Int8Ty, Addr.getPointer(), ScaledIdx,
4228                              false, SignedIndices, E->getExprLoc());
4229    Addr = Address(EltPtr, OrigBaseElemTy, EltAlign);
4230  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4231    // If this is A[i] where A is an array, the frontend will have decayed the
4232    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4233    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4234    // "gep x, i" here.  Emit one "gep A, 0, i".
4235    assert(Array->getType()->isArrayType() &&
4236           "Array to pointer decay must have array source type!");
4237    LValue ArrayLV;
4238    // For simple multidimensional array indexing, set the 'accessed' flag for
4239    // better bounds-checking of the base expression.
4240    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4241      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4242    else
4243      ArrayLV = EmitLValue(Array);
4244    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4245
4246    if (SanOpts.has(SanitizerKind::ArrayBounds)) {
4247      // If the array being accessed has a "counted_by" attribute, generate
4248      // bounds checking code. The "count" field is at the top level of the
4249      // struct or in an anonymous struct, that's also at the top level. Future
4250      // expansions may allow the "count" to reside at any place in the struct,
4251      // but the value of "counted_by" will be a "simple" path to the count,
4252      // i.e. "a.b.count", so we shouldn't need the full force of EmitLValue or
4253      // similar to emit the correct GEP.
4254      const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
4255          getLangOpts().getStrictFlexArraysLevel();
4256
4257      if (const auto *ME = dyn_cast<MemberExpr>(Array);
4258          ME &&
4259          ME->isFlexibleArrayMemberLike(getContext(), StrictFlexArraysLevel) &&
4260          ME->getMemberDecl()->hasAttr<CountedByAttr>()) {
4261        const FieldDecl *FAMDecl = dyn_cast<FieldDecl>(ME->getMemberDecl());
4262        if (const FieldDecl *CountFD = FindCountedByField(FAMDecl)) {
4263          if (std::optional<int64_t> Diff =
4264                  getOffsetDifferenceInBits(*this, CountFD, FAMDecl)) {
4265            CharUnits OffsetDiff = CGM.getContext().toCharUnitsFromBits(*Diff);
4266
4267            // Create a GEP with a byte offset between the FAM and count and
4268            // use that to load the count value.
4269            Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(
4270                ArrayLV.getAddress(*this), Int8PtrTy, Int8Ty);
4271
4272            llvm::Type *CountTy = ConvertType(CountFD->getType());
4273            llvm::Value *Res = Builder.CreateInBoundsGEP(
4274                Int8Ty, Addr.getPointer(),
4275                Builder.getInt32(OffsetDiff.getQuantity()), ".counted_by.gep");
4276            Res = Builder.CreateAlignedLoad(CountTy, Res, getIntAlign(),
4277                                            ".counted_by.load");
4278
4279            // Now emit the bounds checking.
4280            EmitBoundsCheckImpl(E, Res, Idx, E->getIdx()->getType(),
4281                                Array->getType(), Accessed);
4282          }
4283        }
4284      }
4285    }
4286
4287    // Propagate the alignment from the array itself to the result.
4288    QualType arrayType = Array->getType();
4289    Addr = emitArraySubscriptGEP(
4290        *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4291        E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
4292        E->getExprLoc(), &arrayType, E->getBase());
4293    EltBaseInfo = ArrayLV.getBaseInfo();
4294    EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
4295  } else {
4296    // The base must be a pointer; emit it with an estimate of its alignment.
4297    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
4298    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4299    QualType ptrType = E->getBase()->getType();
4300    Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
4301                                 !getLangOpts().isSignedOverflowDefined(),
4302                                 SignedIndices, E->getExprLoc(), &ptrType,
4303                                 E->getBase());
4304  }
4305
4306  LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
4307
4308  if (getLangOpts().ObjC &&
4309      getLangOpts().getGC() != LangOptions::NonGC) {
4310    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
4311    setObjCGCLValueClass(getContext(), E, LV);
4312  }
4313  return LV;
4314}
4315
4316LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
4317  assert(
4318      !E->isIncomplete() &&
4319      "incomplete matrix subscript expressions should be rejected during Sema");
4320  LValue Base = EmitLValue(E->getBase());
4321  llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
4322  llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
4323  llvm::Value *NumRows = Builder.getIntN(
4324      RowIdx->getType()->getScalarSizeInBits(),
4325      E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
4326  llvm::Value *FinalIdx =
4327      Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
4328  return LValue::MakeMatrixElt(
4329      MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
4330      E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
4331}
4332
4333static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
4334                                       LValueBaseInfo &BaseInfo,
4335                                       TBAAAccessInfo &TBAAInfo,
4336                                       QualType BaseTy, QualType ElTy,
4337                                       bool IsLowerBound) {
4338  LValue BaseLVal;
4339  if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
4340    BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
4341    if (BaseTy->isArrayType()) {
4342      Address Addr = BaseLVal.getAddress(CGF);
4343      BaseInfo = BaseLVal.getBaseInfo();
4344
4345      // If the array type was an incomplete type, we need to make sure
4346      // the decay ends up being the right type.
4347      llvm::Type *NewTy = CGF.ConvertType(BaseTy);
4348      Addr = Addr.withElementType(NewTy);
4349
4350      // Note that VLA pointers are always decayed, so we don't need to do
4351      // anything here.
4352      if (!BaseTy->isVariableArrayType()) {
4353        assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
4354               "Expected pointer to array");
4355        Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
4356      }
4357
4358      return Addr.withElementType(CGF.ConvertTypeForMem(ElTy));
4359    }
4360    LValueBaseInfo TypeBaseInfo;
4361    TBAAAccessInfo TypeTBAAInfo;
4362    CharUnits Align =
4363        CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
4364    BaseInfo.mergeForCast(TypeBaseInfo);
4365    TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
4366    return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)),
4367                   CGF.ConvertTypeForMem(ElTy), Align);
4368  }
4369  return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
4370}
4371
4372LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
4373                                                bool IsLowerBound) {
4374  QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
4375  QualType ResultExprTy;
4376  if (auto *AT = getContext().getAsArrayType(BaseTy))
4377    ResultExprTy = AT->getElementType();
4378  else
4379    ResultExprTy = BaseTy->getPointeeType();
4380  llvm::Value *Idx = nullptr;
4381  if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
4382    // Requesting lower bound or upper bound, but without provided length and
4383    // without ':' symbol for the default length -> length = 1.
4384    // Idx = LowerBound ?: 0;
4385    if (auto *LowerBound = E->getLowerBound()) {
4386      Idx = Builder.CreateIntCast(
4387          EmitScalarExpr(LowerBound), IntPtrTy,
4388          LowerBound->getType()->hasSignedIntegerRepresentation());
4389    } else
4390      Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
4391  } else {
4392    // Try to emit length or lower bound as constant. If this is possible, 1
4393    // is subtracted from constant length or lower bound. Otherwise, emit LLVM
4394    // IR (LB + Len) - 1.
4395    auto &C = CGM.getContext();
4396    auto *Length = E->getLength();
4397    llvm::APSInt ConstLength;
4398    if (Length) {
4399      // Idx = LowerBound + Length - 1;
4400      if (std::optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
4401        ConstLength = CL->zextOrTrunc(PointerWidthInBits);
4402        Length = nullptr;
4403      }
4404      auto *LowerBound = E->getLowerBound();
4405      llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
4406      if (LowerBound) {
4407        if (std::optional<llvm::APSInt> LB =
4408                LowerBound->getIntegerConstantExpr(C)) {
4409          ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
4410          LowerBound = nullptr;
4411        }
4412      }
4413      if (!Length)
4414        --ConstLength;
4415      else if (!LowerBound)
4416        --ConstLowerBound;
4417
4418      if (Length || LowerBound) {
4419        auto *LowerBoundVal =
4420            LowerBound
4421                ? Builder.CreateIntCast(
4422                      EmitScalarExpr(LowerBound), IntPtrTy,
4423                      LowerBound->getType()->hasSignedIntegerRepresentation())
4424                : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
4425        auto *LengthVal =
4426            Length
4427                ? Builder.CreateIntCast(
4428                      EmitScalarExpr(Length), IntPtrTy,
4429                      Length->getType()->hasSignedIntegerRepresentation())
4430                : llvm::ConstantInt::get(IntPtrTy, ConstLength);
4431        Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
4432                                /*HasNUW=*/false,
4433                                !getLangOpts().isSignedOverflowDefined());
4434        if (Length && LowerBound) {
4435          Idx = Builder.CreateSub(
4436              Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
4437              /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4438        }
4439      } else
4440        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
4441    } else {
4442      // Idx = ArraySize - 1;
4443      QualType ArrayTy = BaseTy->isPointerType()
4444                             ? E->getBase()->IgnoreParenImpCasts()->getType()
4445                             : BaseTy;
4446      if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
4447        Length = VAT->getSizeExpr();
4448        if (std::optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
4449          ConstLength = *L;
4450          Length = nullptr;
4451        }
4452      } else {
4453        auto *CAT = C.getAsConstantArrayType(ArrayTy);
4454        assert(CAT && "unexpected type for array initializer");
4455        ConstLength = CAT->getSize();
4456      }
4457      if (Length) {
4458        auto *LengthVal = Builder.CreateIntCast(
4459            EmitScalarExpr(Length), IntPtrTy,
4460            Length->getType()->hasSignedIntegerRepresentation());
4461        Idx = Builder.CreateSub(
4462            LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4463            /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4464      } else {
4465        ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4466        --ConstLength;
4467        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4468      }
4469    }
4470  }
4471  assert(Idx);
4472
4473  Address EltPtr = Address::invalid();
4474  LValueBaseInfo BaseInfo;
4475  TBAAAccessInfo TBAAInfo;
4476  if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4477    // The base must be a pointer, which is not an aggregate.  Emit
4478    // it.  It needs to be emitted first in case it's what captures
4479    // the VLA bounds.
4480    Address Base =
4481        emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4482                                BaseTy, VLA->getElementType(), IsLowerBound);
4483    // The element count here is the total number of non-VLA elements.
4484    llvm::Value *NumElements = getVLASize(VLA).NumElts;
4485
4486    // Effectively, the multiply by the VLA size is part of the GEP.
4487    // GEP indexes are signed, and scaling an index isn't permitted to
4488    // signed-overflow, so we use the same semantics for our explicit
4489    // multiply.  We suppress this if overflow is not undefined behavior.
4490    if (getLangOpts().isSignedOverflowDefined())
4491      Idx = Builder.CreateMul(Idx, NumElements);
4492    else
4493      Idx = Builder.CreateNSWMul(Idx, NumElements);
4494    EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4495                                   !getLangOpts().isSignedOverflowDefined(),
4496                                   /*signedIndices=*/false, E->getExprLoc());
4497  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4498    // If this is A[i] where A is an array, the frontend will have decayed the
4499    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4500    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4501    // "gep x, i" here.  Emit one "gep A, 0, i".
4502    assert(Array->getType()->isArrayType() &&
4503           "Array to pointer decay must have array source type!");
4504    LValue ArrayLV;
4505    // For simple multidimensional array indexing, set the 'accessed' flag for
4506    // better bounds-checking of the base expression.
4507    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4508      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4509    else
4510      ArrayLV = EmitLValue(Array);
4511
4512    // Propagate the alignment from the array itself to the result.
4513    EltPtr = emitArraySubscriptGEP(
4514        *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4515        ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4516        /*signedIndices=*/false, E->getExprLoc());
4517    BaseInfo = ArrayLV.getBaseInfo();
4518    TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4519  } else {
4520    Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4521                                           TBAAInfo, BaseTy, ResultExprTy,
4522                                           IsLowerBound);
4523    EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4524                                   !getLangOpts().isSignedOverflowDefined(),
4525                                   /*signedIndices=*/false, E->getExprLoc());
4526  }
4527
4528  return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4529}
4530
4531LValue CodeGenFunction::
4532EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4533  // Emit the base vector as an l-value.
4534  LValue Base;
4535
4536  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4537  if (E->isArrow()) {
4538    // If it is a pointer to a vector, emit the address and form an lvalue with
4539    // it.
4540    LValueBaseInfo BaseInfo;
4541    TBAAAccessInfo TBAAInfo;
4542    Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4543    const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4544    Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4545    Base.getQuals().removeObjCGCAttr();
4546  } else if (E->getBase()->isGLValue()) {
4547    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4548    // emit the base as an lvalue.
4549    assert(E->getBase()->getType()->isVectorType());
4550    Base = EmitLValue(E->getBase());
4551  } else {
4552    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4553    assert(E->getBase()->getType()->isVectorType() &&
4554           "Result must be a vector");
4555    llvm::Value *Vec = EmitScalarExpr(E->getBase());
4556
4557    // Store the vector to memory (because LValue wants an address).
4558    Address VecMem = CreateMemTemp(E->getBase()->getType());
4559    Builder.CreateStore(Vec, VecMem);
4560    Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4561                          AlignmentSource::Decl);
4562  }
4563
4564  QualType type =
4565    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4566
4567  // Encode the element access list into a vector of unsigned indices.
4568  SmallVector<uint32_t, 4> Indices;
4569  E->getEncodedElementAccess(Indices);
4570
4571  if (Base.isSimple()) {
4572    llvm::Constant *CV =
4573        llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4574    return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4575                                    Base.getBaseInfo(), TBAAAccessInfo());
4576  }
4577  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4578
4579  llvm::Constant *BaseElts = Base.getExtVectorElts();
4580  SmallVector<llvm::Constant *, 4> CElts;
4581
4582  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4583    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4584  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4585  return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4586                                  Base.getBaseInfo(), TBAAAccessInfo());
4587}
4588
4589LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4590  if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4591    EmitIgnoredExpr(E->getBase());
4592    return EmitDeclRefLValue(DRE);
4593  }
4594
4595  Expr *BaseExpr = E->getBase();
4596  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4597  LValue BaseLV;
4598  if (E->isArrow()) {
4599    LValueBaseInfo BaseInfo;
4600    TBAAAccessInfo TBAAInfo;
4601    Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4602    QualType PtrTy = BaseExpr->getType()->getPointeeType();
4603    SanitizerSet SkippedChecks;
4604    bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4605    if (IsBaseCXXThis)
4606      SkippedChecks.set(SanitizerKind::Alignment, true);
4607    if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4608      SkippedChecks.set(SanitizerKind::Null, true);
4609    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4610                  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4611    BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4612  } else
4613    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4614
4615  NamedDecl *ND = E->getMemberDecl();
4616  if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4617    LValue LV = EmitLValueForField(BaseLV, Field);
4618    setObjCGCLValueClass(getContext(), E, LV);
4619    if (getLangOpts().OpenMP) {
4620      // If the member was explicitly marked as nontemporal, mark it as
4621      // nontemporal. If the base lvalue is marked as nontemporal, mark access
4622      // to children as nontemporal too.
4623      if ((IsWrappedCXXThis(BaseExpr) &&
4624           CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4625          BaseLV.isNontemporal())
4626        LV.setNontemporal(/*Value=*/true);
4627    }
4628    return LV;
4629  }
4630
4631  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4632    return EmitFunctionDeclLValue(*this, E, FD);
4633
4634  llvm_unreachable("Unhandled member declaration!");
4635}
4636
4637/// Given that we are currently emitting a lambda, emit an l-value for
4638/// one of its members.
4639///
4640LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field,
4641                                                 llvm::Value *ThisValue) {
4642  bool HasExplicitObjectParameter = false;
4643  if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(CurCodeDecl)) {
4644    HasExplicitObjectParameter = MD->isExplicitObjectMemberFunction();
4645    assert(MD->getParent()->isLambda());
4646    assert(MD->getParent() == Field->getParent());
4647  }
4648  LValue LambdaLV;
4649  if (HasExplicitObjectParameter) {
4650    const VarDecl *D = cast<CXXMethodDecl>(CurCodeDecl)->getParamDecl(0);
4651    auto It = LocalDeclMap.find(D);
4652    assert(It != LocalDeclMap.end() && "explicit parameter not loaded?");
4653    Address AddrOfExplicitObject = It->getSecond();
4654    if (D->getType()->isReferenceType())
4655      LambdaLV = EmitLoadOfReferenceLValue(AddrOfExplicitObject, D->getType(),
4656                                           AlignmentSource::Decl);
4657    else
4658      LambdaLV = MakeNaturalAlignAddrLValue(AddrOfExplicitObject.getPointer(),
4659                                            D->getType().getNonReferenceType());
4660  } else {
4661    QualType LambdaTagType = getContext().getTagDeclType(Field->getParent());
4662    LambdaLV = MakeNaturalAlignAddrLValue(ThisValue, LambdaTagType);
4663  }
4664  return EmitLValueForField(LambdaLV, Field);
4665}
4666
4667LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4668  return EmitLValueForLambdaField(Field, CXXABIThisValue);
4669}
4670
4671/// Get the field index in the debug info. The debug info structure/union
4672/// will ignore the unnamed bitfields.
4673unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4674                                             unsigned FieldIndex) {
4675  unsigned I = 0, Skipped = 0;
4676
4677  for (auto *F : Rec->getDefinition()->fields()) {
4678    if (I == FieldIndex)
4679      break;
4680    if (F->isUnnamedBitfield())
4681      Skipped++;
4682    I++;
4683  }
4684
4685  return FieldIndex - Skipped;
4686}
4687
4688/// Get the address of a zero-sized field within a record. The resulting
4689/// address doesn't necessarily have the right type.
4690static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4691                                       const FieldDecl *Field) {
4692  CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4693      CGF.getContext().getFieldOffset(Field));
4694  if (Offset.isZero())
4695    return Base;
4696  Base = Base.withElementType(CGF.Int8Ty);
4697  return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4698}
4699
4700/// Drill down to the storage of a field without walking into
4701/// reference types.
4702///
4703/// The resulting address doesn't necessarily have the right type.
4704static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4705                                      const FieldDecl *field) {
4706  if (field->isZeroSize(CGF.getContext()))
4707    return emitAddrOfZeroSizeField(CGF, base, field);
4708
4709  const RecordDecl *rec = field->getParent();
4710
4711  unsigned idx =
4712    CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4713
4714  return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4715}
4716
4717static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4718                                        Address addr, const FieldDecl *field) {
4719  const RecordDecl *rec = field->getParent();
4720  llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4721      base.getType(), rec->getLocation());
4722
4723  unsigned idx =
4724      CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4725
4726  return CGF.Builder.CreatePreserveStructAccessIndex(
4727      addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4728}
4729
4730static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4731  const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4732  if (!RD)
4733    return false;
4734
4735  if (RD->isDynamicClass())
4736    return true;
4737
4738  for (const auto &Base : RD->bases())
4739    if (hasAnyVptr(Base.getType(), Context))
4740      return true;
4741
4742  for (const FieldDecl *Field : RD->fields())
4743    if (hasAnyVptr(Field->getType(), Context))
4744      return true;
4745
4746  return false;
4747}
4748
4749LValue CodeGenFunction::EmitLValueForField(LValue base,
4750                                           const FieldDecl *field) {
4751  LValueBaseInfo BaseInfo = base.getBaseInfo();
4752
4753  if (field->isBitField()) {
4754    const CGRecordLayout &RL =
4755        CGM.getTypes().getCGRecordLayout(field->getParent());
4756    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4757    const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4758                             CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4759                             Info.VolatileStorageSize != 0 &&
4760                             field->getType()
4761                                 .withCVRQualifiers(base.getVRQualifiers())
4762                                 .isVolatileQualified();
4763    Address Addr = base.getAddress(*this);
4764    unsigned Idx = RL.getLLVMFieldNo(field);
4765    const RecordDecl *rec = field->getParent();
4766    if (hasBPFPreserveStaticOffset(rec))
4767      Addr = wrapWithBPFPreserveStaticOffset(*this, Addr);
4768    if (!UseVolatile) {
4769      if (!IsInPreservedAIRegion &&
4770          (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4771        if (Idx != 0)
4772          // For structs, we GEP to the field that the record layout suggests.
4773          Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4774      } else {
4775        llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4776            getContext().getRecordType(rec), rec->getLocation());
4777        Addr = Builder.CreatePreserveStructAccessIndex(
4778            Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4779            DbgInfo);
4780      }
4781    }
4782    const unsigned SS =
4783        UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4784    // Get the access type.
4785    llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4786    Addr = Addr.withElementType(FieldIntTy);
4787    if (UseVolatile) {
4788      const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4789      if (VolatileOffset)
4790        Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4791    }
4792
4793    QualType fieldType =
4794        field->getType().withCVRQualifiers(base.getVRQualifiers());
4795    // TODO: Support TBAA for bit fields.
4796    LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4797    return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4798                                TBAAAccessInfo());
4799  }
4800
4801  // Fields of may-alias structures are may-alias themselves.
4802  // FIXME: this should get propagated down through anonymous structs
4803  // and unions.
4804  QualType FieldType = field->getType();
4805  const RecordDecl *rec = field->getParent();
4806  AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4807  LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4808  TBAAAccessInfo FieldTBAAInfo;
4809  if (base.getTBAAInfo().isMayAlias() ||
4810          rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4811    FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4812  } else if (rec->isUnion()) {
4813    // TODO: Support TBAA for unions.
4814    FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4815  } else {
4816    // If no base type been assigned for the base access, then try to generate
4817    // one for this base lvalue.
4818    FieldTBAAInfo = base.getTBAAInfo();
4819    if (!FieldTBAAInfo.BaseType) {
4820        FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4821        assert(!FieldTBAAInfo.Offset &&
4822               "Nonzero offset for an access with no base type!");
4823    }
4824
4825    // Adjust offset to be relative to the base type.
4826    const ASTRecordLayout &Layout =
4827        getContext().getASTRecordLayout(field->getParent());
4828    unsigned CharWidth = getContext().getCharWidth();
4829    if (FieldTBAAInfo.BaseType)
4830      FieldTBAAInfo.Offset +=
4831          Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4832
4833    // Update the final access type and size.
4834    FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4835    FieldTBAAInfo.Size =
4836        getContext().getTypeSizeInChars(FieldType).getQuantity();
4837  }
4838
4839  Address addr = base.getAddress(*this);
4840  if (hasBPFPreserveStaticOffset(rec))
4841    addr = wrapWithBPFPreserveStaticOffset(*this, addr);
4842  if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4843    if (CGM.getCodeGenOpts().StrictVTablePointers &&
4844        ClassDef->isDynamicClass()) {
4845      // Getting to any field of dynamic object requires stripping dynamic
4846      // information provided by invariant.group.  This is because accessing
4847      // fields may leak the real address of dynamic object, which could result
4848      // in miscompilation when leaked pointer would be compared.
4849      auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4850      addr = Address(stripped, addr.getElementType(), addr.getAlignment());
4851    }
4852  }
4853
4854  unsigned RecordCVR = base.getVRQualifiers();
4855  if (rec->isUnion()) {
4856    // For unions, there is no pointer adjustment.
4857    if (CGM.getCodeGenOpts().StrictVTablePointers &&
4858        hasAnyVptr(FieldType, getContext()))
4859      // Because unions can easily skip invariant.barriers, we need to add
4860      // a barrier every time CXXRecord field with vptr is referenced.
4861      addr = Builder.CreateLaunderInvariantGroup(addr);
4862
4863    if (IsInPreservedAIRegion ||
4864        (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4865      // Remember the original union field index
4866      llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4867          rec->getLocation());
4868      addr = Address(
4869          Builder.CreatePreserveUnionAccessIndex(
4870              addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4871          addr.getElementType(), addr.getAlignment());
4872    }
4873
4874    if (FieldType->isReferenceType())
4875      addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType));
4876  } else {
4877    if (!IsInPreservedAIRegion &&
4878        (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4879      // For structs, we GEP to the field that the record layout suggests.
4880      addr = emitAddrOfFieldStorage(*this, addr, field);
4881    else
4882      // Remember the original struct field index
4883      addr = emitPreserveStructAccess(*this, base, addr, field);
4884  }
4885
4886  // If this is a reference field, load the reference right now.
4887  if (FieldType->isReferenceType()) {
4888    LValue RefLVal =
4889        MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4890    if (RecordCVR & Qualifiers::Volatile)
4891      RefLVal.getQuals().addVolatile();
4892    addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4893
4894    // Qualifiers on the struct don't apply to the referencee.
4895    RecordCVR = 0;
4896    FieldType = FieldType->getPointeeType();
4897  }
4898
4899  // Make sure that the address is pointing to the right type.  This is critical
4900  // for both unions and structs.
4901  addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType));
4902
4903  if (field->hasAttr<AnnotateAttr>())
4904    addr = EmitFieldAnnotations(field, addr);
4905
4906  LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4907  LV.getQuals().addCVRQualifiers(RecordCVR);
4908
4909  // __weak attribute on a field is ignored.
4910  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4911    LV.getQuals().removeObjCGCAttr();
4912
4913  return LV;
4914}
4915
4916LValue
4917CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4918                                                  const FieldDecl *Field) {
4919  QualType FieldType = Field->getType();
4920
4921  if (!FieldType->isReferenceType())
4922    return EmitLValueForField(Base, Field);
4923
4924  Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4925
4926  // Make sure that the address is pointing to the right type.
4927  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4928  V = V.withElementType(llvmType);
4929
4930  // TODO: Generate TBAA information that describes this access as a structure
4931  // member access and not just an access to an object of the field's type. This
4932  // should be similar to what we do in EmitLValueForField().
4933  LValueBaseInfo BaseInfo = Base.getBaseInfo();
4934  AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4935  LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4936  return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4937                        CGM.getTBAAInfoForSubobject(Base, FieldType));
4938}
4939
4940LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4941  if (E->isFileScope()) {
4942    ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4943    return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4944  }
4945  if (E->getType()->isVariablyModifiedType())
4946    // make sure to emit the VLA size.
4947    EmitVariablyModifiedType(E->getType());
4948
4949  Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4950  const Expr *InitExpr = E->getInitializer();
4951  LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4952
4953  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4954                   /*Init*/ true);
4955
4956  // Block-scope compound literals are destroyed at the end of the enclosing
4957  // scope in C.
4958  if (!getLangOpts().CPlusPlus)
4959    if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4960      pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4961                                  E->getType(), getDestroyer(DtorKind),
4962                                  DtorKind & EHCleanup);
4963
4964  return Result;
4965}
4966
4967LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4968  if (!E->isGLValue())
4969    // Initializing an aggregate temporary in C++11: T{...}.
4970    return EmitAggExprToLValue(E);
4971
4972  // An lvalue initializer list must be initializing a reference.
4973  assert(E->isTransparent() && "non-transparent glvalue init list");
4974  return EmitLValue(E->getInit(0));
4975}
4976
4977/// Emit the operand of a glvalue conditional operator. This is either a glvalue
4978/// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4979/// LValue is returned and the current block has been terminated.
4980static std::optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4981                                                         const Expr *Operand) {
4982  if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4983    CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4984    return std::nullopt;
4985  }
4986
4987  return CGF.EmitLValue(Operand);
4988}
4989
4990namespace {
4991// Handle the case where the condition is a constant evaluatable simple integer,
4992// which means we don't have to separately handle the true/false blocks.
4993std::optional<LValue> HandleConditionalOperatorLValueSimpleCase(
4994    CodeGenFunction &CGF, const AbstractConditionalOperator *E) {
4995  const Expr *condExpr = E->getCond();
4996  bool CondExprBool;
4997  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4998    const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr();
4999    if (!CondExprBool)
5000      std::swap(Live, Dead);
5001
5002    if (!CGF.ContainsLabel(Dead)) {
5003      // If the true case is live, we need to track its region.
5004      if (CondExprBool)
5005        CGF.incrementProfileCounter(E);
5006      // If a throw expression we emit it and return an undefined lvalue
5007      // because it can't be used.
5008      if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) {
5009        CGF.EmitCXXThrowExpr(ThrowExpr);
5010        llvm::Type *ElemTy = CGF.ConvertType(Dead->getType());
5011        llvm::Type *Ty = CGF.UnqualPtrTy;
5012        return CGF.MakeAddrLValue(
5013            Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()),
5014            Dead->getType());
5015      }
5016      return CGF.EmitLValue(Live);
5017    }
5018  }
5019  return std::nullopt;
5020}
5021struct ConditionalInfo {
5022  llvm::BasicBlock *lhsBlock, *rhsBlock;
5023  std::optional<LValue> LHS, RHS;
5024};
5025
5026// Create and generate the 3 blocks for a conditional operator.
5027// Leaves the 'current block' in the continuation basic block.
5028template<typename FuncTy>
5029ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF,
5030                                      const AbstractConditionalOperator *E,
5031                                      const FuncTy &BranchGenFunc) {
5032  ConditionalInfo Info{CGF.createBasicBlock("cond.true"),
5033                       CGF.createBasicBlock("cond.false"), std::nullopt,
5034                       std::nullopt};
5035  llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end");
5036
5037  CodeGenFunction::ConditionalEvaluation eval(CGF);
5038  CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock,
5039                           CGF.getProfileCount(E));
5040
5041  // Any temporaries created here are conditional.
5042  CGF.EmitBlock(Info.lhsBlock);
5043  CGF.incrementProfileCounter(E);
5044  eval.begin(CGF);
5045  Info.LHS = BranchGenFunc(CGF, E->getTrueExpr());
5046  eval.end(CGF);
5047  Info.lhsBlock = CGF.Builder.GetInsertBlock();
5048
5049  if (Info.LHS)
5050    CGF.Builder.CreateBr(endBlock);
5051
5052  // Any temporaries created here are conditional.
5053  CGF.EmitBlock(Info.rhsBlock);
5054  eval.begin(CGF);
5055  Info.RHS = BranchGenFunc(CGF, E->getFalseExpr());
5056  eval.end(CGF);
5057  Info.rhsBlock = CGF.Builder.GetInsertBlock();
5058  CGF.EmitBlock(endBlock);
5059
5060  return Info;
5061}
5062} // namespace
5063
5064void CodeGenFunction::EmitIgnoredConditionalOperator(
5065    const AbstractConditionalOperator *E) {
5066  if (!E->isGLValue()) {
5067    // ?: here should be an aggregate.
5068    assert(hasAggregateEvaluationKind(E->getType()) &&
5069           "Unexpected conditional operator!");
5070    return (void)EmitAggExprToLValue(E);
5071  }
5072
5073  OpaqueValueMapping binding(*this, E);
5074  if (HandleConditionalOperatorLValueSimpleCase(*this, E))
5075    return;
5076
5077  EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) {
5078    CGF.EmitIgnoredExpr(E);
5079    return LValue{};
5080  });
5081}
5082LValue CodeGenFunction::EmitConditionalOperatorLValue(
5083    const AbstractConditionalOperator *expr) {
5084  if (!expr->isGLValue()) {
5085    // ?: here should be an aggregate.
5086    assert(hasAggregateEvaluationKind(expr->getType()) &&
5087           "Unexpected conditional operator!");
5088    return EmitAggExprToLValue(expr);
5089  }
5090
5091  OpaqueValueMapping binding(*this, expr);
5092  if (std::optional<LValue> Res =
5093          HandleConditionalOperatorLValueSimpleCase(*this, expr))
5094    return *Res;
5095
5096  ConditionalInfo Info = EmitConditionalBlocks(
5097      *this, expr, [](CodeGenFunction &CGF, const Expr *E) {
5098        return EmitLValueOrThrowExpression(CGF, E);
5099      });
5100
5101  if ((Info.LHS && !Info.LHS->isSimple()) ||
5102      (Info.RHS && !Info.RHS->isSimple()))
5103    return EmitUnsupportedLValue(expr, "conditional operator");
5104
5105  if (Info.LHS && Info.RHS) {
5106    Address lhsAddr = Info.LHS->getAddress(*this);
5107    Address rhsAddr = Info.RHS->getAddress(*this);
5108    llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue");
5109    phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock);
5110    phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock);
5111    Address result(phi, lhsAddr.getElementType(),
5112                   std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment()));
5113    AlignmentSource alignSource =
5114        std::max(Info.LHS->getBaseInfo().getAlignmentSource(),
5115                 Info.RHS->getBaseInfo().getAlignmentSource());
5116    TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
5117        Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo());
5118    return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
5119                          TBAAInfo);
5120  } else {
5121    assert((Info.LHS || Info.RHS) &&
5122           "both operands of glvalue conditional are throw-expressions?");
5123    return Info.LHS ? *Info.LHS : *Info.RHS;
5124  }
5125}
5126
5127/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
5128/// type. If the cast is to a reference, we can have the usual lvalue result,
5129/// otherwise if a cast is needed by the code generator in an lvalue context,
5130/// then it must mean that we need the address of an aggregate in order to
5131/// access one of its members.  This can happen for all the reasons that casts
5132/// are permitted with aggregate result, including noop aggregate casts, and
5133/// cast from scalar to union.
5134LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
5135  switch (E->getCastKind()) {
5136  case CK_ToVoid:
5137  case CK_BitCast:
5138  case CK_LValueToRValueBitCast:
5139  case CK_ArrayToPointerDecay:
5140  case CK_FunctionToPointerDecay:
5141  case CK_NullToMemberPointer:
5142  case CK_NullToPointer:
5143  case CK_IntegralToPointer:
5144  case CK_PointerToIntegral:
5145  case CK_PointerToBoolean:
5146  case CK_IntegralCast:
5147  case CK_BooleanToSignedIntegral:
5148  case CK_IntegralToBoolean:
5149  case CK_IntegralToFloating:
5150  case CK_FloatingToIntegral:
5151  case CK_FloatingToBoolean:
5152  case CK_FloatingCast:
5153  case CK_FloatingRealToComplex:
5154  case CK_FloatingComplexToReal:
5155  case CK_FloatingComplexToBoolean:
5156  case CK_FloatingComplexCast:
5157  case CK_FloatingComplexToIntegralComplex:
5158  case CK_IntegralRealToComplex:
5159  case CK_IntegralComplexToReal:
5160  case CK_IntegralComplexToBoolean:
5161  case CK_IntegralComplexCast:
5162  case CK_IntegralComplexToFloatingComplex:
5163  case CK_DerivedToBaseMemberPointer:
5164  case CK_BaseToDerivedMemberPointer:
5165  case CK_MemberPointerToBoolean:
5166  case CK_ReinterpretMemberPointer:
5167  case CK_AnyPointerToBlockPointerCast:
5168  case CK_ARCProduceObject:
5169  case CK_ARCConsumeObject:
5170  case CK_ARCReclaimReturnedObject:
5171  case CK_ARCExtendBlockObject:
5172  case CK_CopyAndAutoreleaseBlockObject:
5173  case CK_IntToOCLSampler:
5174  case CK_FloatingToFixedPoint:
5175  case CK_FixedPointToFloating:
5176  case CK_FixedPointCast:
5177  case CK_FixedPointToBoolean:
5178  case CK_FixedPointToIntegral:
5179  case CK_IntegralToFixedPoint:
5180  case CK_MatrixCast:
5181    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
5182
5183  case CK_Dependent:
5184    llvm_unreachable("dependent cast kind in IR gen!");
5185
5186  case CK_BuiltinFnToFnPtr:
5187    llvm_unreachable("builtin functions are handled elsewhere");
5188
5189  // These are never l-values; just use the aggregate emission code.
5190  case CK_NonAtomicToAtomic:
5191  case CK_AtomicToNonAtomic:
5192    return EmitAggExprToLValue(E);
5193
5194  case CK_Dynamic: {
5195    LValue LV = EmitLValue(E->getSubExpr());
5196    Address V = LV.getAddress(*this);
5197    const auto *DCE = cast<CXXDynamicCastExpr>(E);
5198    return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
5199  }
5200
5201  case CK_ConstructorConversion:
5202  case CK_UserDefinedConversion:
5203  case CK_CPointerToObjCPointerCast:
5204  case CK_BlockPointerToObjCPointerCast:
5205  case CK_LValueToRValue:
5206    return EmitLValue(E->getSubExpr());
5207
5208  case CK_NoOp: {
5209    // CK_NoOp can model a qualification conversion, which can remove an array
5210    // bound and change the IR type.
5211    // FIXME: Once pointee types are removed from IR, remove this.
5212    LValue LV = EmitLValue(E->getSubExpr());
5213    // Propagate the volatile qualifer to LValue, if exist in E.
5214    if (E->changesVolatileQualification())
5215      LV.getQuals() = E->getType().getQualifiers();
5216    if (LV.isSimple()) {
5217      Address V = LV.getAddress(*this);
5218      if (V.isValid()) {
5219        llvm::Type *T = ConvertTypeForMem(E->getType());
5220        if (V.getElementType() != T)
5221          LV.setAddress(V.withElementType(T));
5222      }
5223    }
5224    return LV;
5225  }
5226
5227  case CK_UncheckedDerivedToBase:
5228  case CK_DerivedToBase: {
5229    const auto *DerivedClassTy =
5230        E->getSubExpr()->getType()->castAs<RecordType>();
5231    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
5232
5233    LValue LV = EmitLValue(E->getSubExpr());
5234    Address This = LV.getAddress(*this);
5235
5236    // Perform the derived-to-base conversion
5237    Address Base = GetAddressOfBaseClass(
5238        This, DerivedClassDecl, E->path_begin(), E->path_end(),
5239        /*NullCheckValue=*/false, E->getExprLoc());
5240
5241    // TODO: Support accesses to members of base classes in TBAA. For now, we
5242    // conservatively pretend that the complete object is of the base class
5243    // type.
5244    return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
5245                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
5246  }
5247  case CK_ToUnion:
5248    return EmitAggExprToLValue(E);
5249  case CK_BaseToDerived: {
5250    const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
5251    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
5252
5253    LValue LV = EmitLValue(E->getSubExpr());
5254
5255    // Perform the base-to-derived conversion
5256    Address Derived = GetAddressOfDerivedClass(
5257        LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
5258        /*NullCheckValue=*/false);
5259
5260    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
5261    // performed and the object is not of the derived type.
5262    if (sanitizePerformTypeCheck())
5263      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
5264                    Derived.getPointer(), E->getType());
5265
5266    if (SanOpts.has(SanitizerKind::CFIDerivedCast))
5267      EmitVTablePtrCheckForCast(E->getType(), Derived,
5268                                /*MayBeNull=*/false, CFITCK_DerivedCast,
5269                                E->getBeginLoc());
5270
5271    return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
5272                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
5273  }
5274  case CK_LValueBitCast: {
5275    // This must be a reinterpret_cast (or c-style equivalent).
5276    const auto *CE = cast<ExplicitCastExpr>(E);
5277
5278    CGM.EmitExplicitCastExprType(CE, this);
5279    LValue LV = EmitLValue(E->getSubExpr());
5280    Address V = LV.getAddress(*this).withElementType(
5281        ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType()));
5282
5283    if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
5284      EmitVTablePtrCheckForCast(E->getType(), V,
5285                                /*MayBeNull=*/false, CFITCK_UnrelatedCast,
5286                                E->getBeginLoc());
5287
5288    return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
5289                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
5290  }
5291  case CK_AddressSpaceConversion: {
5292    LValue LV = EmitLValue(E->getSubExpr());
5293    QualType DestTy = getContext().getPointerType(E->getType());
5294    llvm::Value *V = getTargetHooks().performAddrSpaceCast(
5295        *this, LV.getPointer(*this),
5296        E->getSubExpr()->getType().getAddressSpace(),
5297        E->getType().getAddressSpace(), ConvertType(DestTy));
5298    return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()),
5299                                  LV.getAddress(*this).getAlignment()),
5300                          E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
5301  }
5302  case CK_ObjCObjectLValueCast: {
5303    LValue LV = EmitLValue(E->getSubExpr());
5304    Address V = LV.getAddress(*this).withElementType(ConvertType(E->getType()));
5305    return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
5306                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
5307  }
5308  case CK_ZeroToOCLOpaqueType:
5309    llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
5310
5311  case CK_VectorSplat: {
5312    // LValue results of vector splats are only supported in HLSL.
5313    if (!getLangOpts().HLSL)
5314      return EmitUnsupportedLValue(E, "unexpected cast lvalue");
5315    return EmitLValue(E->getSubExpr());
5316  }
5317  }
5318
5319  llvm_unreachable("Unhandled lvalue cast kind?");
5320}
5321
5322LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
5323  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
5324  return getOrCreateOpaqueLValueMapping(e);
5325}
5326
5327LValue
5328CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
5329  assert(OpaqueValueMapping::shouldBindAsLValue(e));
5330
5331  llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
5332      it = OpaqueLValues.find(e);
5333
5334  if (it != OpaqueLValues.end())
5335    return it->second;
5336
5337  assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
5338  return EmitLValue(e->getSourceExpr());
5339}
5340
5341RValue
5342CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
5343  assert(!OpaqueValueMapping::shouldBindAsLValue(e));
5344
5345  llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
5346      it = OpaqueRValues.find(e);
5347
5348  if (it != OpaqueRValues.end())
5349    return it->second;
5350
5351  assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
5352  return EmitAnyExpr(e->getSourceExpr());
5353}
5354
5355RValue CodeGenFunction::EmitRValueForField(LValue LV,
5356                                           const FieldDecl *FD,
5357                                           SourceLocation Loc) {
5358  QualType FT = FD->getType();
5359  LValue FieldLV = EmitLValueForField(LV, FD);
5360  switch (getEvaluationKind(FT)) {
5361  case TEK_Complex:
5362    return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
5363  case TEK_Aggregate:
5364    return FieldLV.asAggregateRValue(*this);
5365  case TEK_Scalar:
5366    // This routine is used to load fields one-by-one to perform a copy, so
5367    // don't load reference fields.
5368    if (FD->getType()->isReferenceType())
5369      return RValue::get(FieldLV.getPointer(*this));
5370    // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
5371    // primitive load.
5372    if (FieldLV.isBitField())
5373      return EmitLoadOfLValue(FieldLV, Loc);
5374    return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
5375  }
5376  llvm_unreachable("bad evaluation kind");
5377}
5378
5379//===--------------------------------------------------------------------===//
5380//                             Expression Emission
5381//===--------------------------------------------------------------------===//
5382
5383RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
5384                                     ReturnValueSlot ReturnValue) {
5385  // Builtins never have block type.
5386  if (E->getCallee()->getType()->isBlockPointerType())
5387    return EmitBlockCallExpr(E, ReturnValue);
5388
5389  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
5390    return EmitCXXMemberCallExpr(CE, ReturnValue);
5391
5392  if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
5393    return EmitCUDAKernelCallExpr(CE, ReturnValue);
5394
5395  // A CXXOperatorCallExpr is created even for explicit object methods, but
5396  // these should be treated like static function call.
5397  if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
5398    if (const auto *MD =
5399            dyn_cast_if_present<CXXMethodDecl>(CE->getCalleeDecl());
5400        MD && MD->isImplicitObjectMemberFunction())
5401      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
5402
5403  CGCallee callee = EmitCallee(E->getCallee());
5404
5405  if (callee.isBuiltin()) {
5406    return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
5407                           E, ReturnValue);
5408  }
5409
5410  if (callee.isPseudoDestructor()) {
5411    return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
5412  }
5413
5414  return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
5415}
5416
5417/// Emit a CallExpr without considering whether it might be a subclass.
5418RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
5419                                           ReturnValueSlot ReturnValue) {
5420  CGCallee Callee = EmitCallee(E->getCallee());
5421  return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
5422}
5423
5424// Detect the unusual situation where an inline version is shadowed by a
5425// non-inline version. In that case we should pick the external one
5426// everywhere. That's GCC behavior too.
5427static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) {
5428  for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl())
5429    if (!PD->isInlineBuiltinDeclaration())
5430      return false;
5431  return true;
5432}
5433
5434static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
5435  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
5436
5437  if (auto builtinID = FD->getBuiltinID()) {
5438    std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str();
5439    std::string NoBuiltins = "no-builtins";
5440
5441    StringRef Ident = CGF.CGM.getMangledName(GD);
5442    std::string FDInlineName = (Ident + ".inline").str();
5443
5444    bool IsPredefinedLibFunction =
5445        CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID);
5446    bool HasAttributeNoBuiltin =
5447        CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) ||
5448        CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins);
5449
5450    // When directing calling an inline builtin, call it through it's mangled
5451    // name to make it clear it's not the actual builtin.
5452    if (CGF.CurFn->getName() != FDInlineName &&
5453        OnlyHasInlineBuiltinDeclaration(FD)) {
5454      llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5455      llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
5456      llvm::Module *M = Fn->getParent();
5457      llvm::Function *Clone = M->getFunction(FDInlineName);
5458      if (!Clone) {
5459        Clone = llvm::Function::Create(Fn->getFunctionType(),
5460                                       llvm::GlobalValue::InternalLinkage,
5461                                       Fn->getAddressSpace(), FDInlineName, M);
5462        Clone->addFnAttr(llvm::Attribute::AlwaysInline);
5463      }
5464      return CGCallee::forDirect(Clone, GD);
5465    }
5466
5467    // Replaceable builtins provide their own implementation of a builtin. If we
5468    // are in an inline builtin implementation, avoid trivial infinite
5469    // recursion. Honor __attribute__((no_builtin("foo"))) or
5470    // __attribute__((no_builtin)) on the current function unless foo is
5471    // not a predefined library function which means we must generate the
5472    // builtin no matter what.
5473    else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin)
5474      return CGCallee::forBuiltin(builtinID, FD);
5475  }
5476
5477  llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5478  if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
5479      FD->hasAttr<CUDAGlobalAttr>())
5480    CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
5481        cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
5482
5483  return CGCallee::forDirect(CalleePtr, GD);
5484}
5485
5486CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
5487  E = E->IgnoreParens();
5488
5489  // Look through function-to-pointer decay.
5490  if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
5491    if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
5492        ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
5493      return EmitCallee(ICE->getSubExpr());
5494    }
5495
5496  // Resolve direct calls.
5497  } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
5498    if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
5499      return EmitDirectCallee(*this, FD);
5500    }
5501  } else if (auto ME = dyn_cast<MemberExpr>(E)) {
5502    if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
5503      EmitIgnoredExpr(ME->getBase());
5504      return EmitDirectCallee(*this, FD);
5505    }
5506
5507  // Look through template substitutions.
5508  } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
5509    return EmitCallee(NTTP->getReplacement());
5510
5511  // Treat pseudo-destructor calls differently.
5512  } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
5513    return CGCallee::forPseudoDestructor(PDE);
5514  }
5515
5516  // Otherwise, we have an indirect reference.
5517  llvm::Value *calleePtr;
5518  QualType functionType;
5519  if (auto ptrType = E->getType()->getAs<PointerType>()) {
5520    calleePtr = EmitScalarExpr(E);
5521    functionType = ptrType->getPointeeType();
5522  } else {
5523    functionType = E->getType();
5524    calleePtr = EmitLValue(E, KnownNonNull).getPointer(*this);
5525  }
5526  assert(functionType->isFunctionType());
5527
5528  GlobalDecl GD;
5529  if (const auto *VD =
5530          dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
5531    GD = GlobalDecl(VD);
5532
5533  CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
5534  CGCallee callee(calleeInfo, calleePtr);
5535  return callee;
5536}
5537
5538LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
5539  // Comma expressions just emit their LHS then their RHS as an l-value.
5540  if (E->getOpcode() == BO_Comma) {
5541    EmitIgnoredExpr(E->getLHS());
5542    EnsureInsertPoint();
5543    return EmitLValue(E->getRHS());
5544  }
5545
5546  if (E->getOpcode() == BO_PtrMemD ||
5547      E->getOpcode() == BO_PtrMemI)
5548    return EmitPointerToDataMemberBinaryExpr(E);
5549
5550  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
5551
5552  // Note that in all of these cases, __block variables need the RHS
5553  // evaluated first just in case the variable gets moved by the RHS.
5554
5555  switch (getEvaluationKind(E->getType())) {
5556  case TEK_Scalar: {
5557    switch (E->getLHS()->getType().getObjCLifetime()) {
5558    case Qualifiers::OCL_Strong:
5559      return EmitARCStoreStrong(E, /*ignored*/ false).first;
5560
5561    case Qualifiers::OCL_Autoreleasing:
5562      return EmitARCStoreAutoreleasing(E).first;
5563
5564    // No reason to do any of these differently.
5565    case Qualifiers::OCL_None:
5566    case Qualifiers::OCL_ExplicitNone:
5567    case Qualifiers::OCL_Weak:
5568      break;
5569    }
5570
5571    RValue RV = EmitAnyExpr(E->getRHS());
5572    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5573    if (RV.isScalar())
5574      EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5575    EmitStoreThroughLValue(RV, LV);
5576    if (getLangOpts().OpenMP)
5577      CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5578                                                                E->getLHS());
5579    return LV;
5580  }
5581
5582  case TEK_Complex:
5583    return EmitComplexAssignmentLValue(E);
5584
5585  case TEK_Aggregate:
5586    return EmitAggExprToLValue(E);
5587  }
5588  llvm_unreachable("bad evaluation kind");
5589}
5590
5591LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5592  RValue RV = EmitCallExpr(E);
5593
5594  if (!RV.isScalar())
5595    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5596                          AlignmentSource::Decl);
5597
5598  assert(E->getCallReturnType(getContext())->isReferenceType() &&
5599         "Can't have a scalar return unless the return type is a "
5600         "reference type!");
5601
5602  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5603}
5604
5605LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5606  // FIXME: This shouldn't require another copy.
5607  return EmitAggExprToLValue(E);
5608}
5609
5610LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5611  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5612         && "binding l-value to type which needs a temporary");
5613  AggValueSlot Slot = CreateAggTemp(E->getType());
5614  EmitCXXConstructExpr(E, Slot);
5615  return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5616}
5617
5618LValue
5619CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5620  return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5621}
5622
5623Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5624  return CGM.GetAddrOfMSGuidDecl(E->getGuidDecl())
5625      .withElementType(ConvertType(E->getType()));
5626}
5627
5628LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5629  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5630                        AlignmentSource::Decl);
5631}
5632
5633LValue
5634CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5635  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5636  Slot.setExternallyDestructed();
5637  EmitAggExpr(E->getSubExpr(), Slot);
5638  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5639  return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5640}
5641
5642LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5643  RValue RV = EmitObjCMessageExpr(E);
5644
5645  if (!RV.isScalar())
5646    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5647                          AlignmentSource::Decl);
5648
5649  assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5650         "Can't have a scalar return unless the return type is a "
5651         "reference type!");
5652
5653  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5654}
5655
5656LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5657  Address V =
5658    CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5659  return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5660}
5661
5662llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5663                                             const ObjCIvarDecl *Ivar) {
5664  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5665}
5666
5667llvm::Value *
5668CodeGenFunction::EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
5669                                             const ObjCIvarDecl *Ivar) {
5670  llvm::Value *OffsetValue = EmitIvarOffset(Interface, Ivar);
5671  QualType PointerDiffType = getContext().getPointerDiffType();
5672  return Builder.CreateZExtOrTrunc(OffsetValue,
5673                                   getTypes().ConvertType(PointerDiffType));
5674}
5675
5676LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5677                                          llvm::Value *BaseValue,
5678                                          const ObjCIvarDecl *Ivar,
5679                                          unsigned CVRQualifiers) {
5680  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5681                                                   Ivar, CVRQualifiers);
5682}
5683
5684LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5685  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5686  llvm::Value *BaseValue = nullptr;
5687  const Expr *BaseExpr = E->getBase();
5688  Qualifiers BaseQuals;
5689  QualType ObjectTy;
5690  if (E->isArrow()) {
5691    BaseValue = EmitScalarExpr(BaseExpr);
5692    ObjectTy = BaseExpr->getType()->getPointeeType();
5693    BaseQuals = ObjectTy.getQualifiers();
5694  } else {
5695    LValue BaseLV = EmitLValue(BaseExpr);
5696    BaseValue = BaseLV.getPointer(*this);
5697    ObjectTy = BaseExpr->getType();
5698    BaseQuals = ObjectTy.getQualifiers();
5699  }
5700
5701  LValue LV =
5702    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5703                      BaseQuals.getCVRQualifiers());
5704  setObjCGCLValueClass(getContext(), E, LV);
5705  return LV;
5706}
5707
5708LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5709  // Can only get l-value for message expression returning aggregate type
5710  RValue RV = EmitAnyExprToTemp(E);
5711  return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5712                        AlignmentSource::Decl);
5713}
5714
5715RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5716                                 const CallExpr *E, ReturnValueSlot ReturnValue,
5717                                 llvm::Value *Chain) {
5718  // Get the actual function type. The callee type will always be a pointer to
5719  // function type or a block pointer type.
5720  assert(CalleeType->isFunctionPointerType() &&
5721         "Call must have function pointer type!");
5722
5723  const Decl *TargetDecl =
5724      OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5725
5726  assert((!isa_and_present<FunctionDecl>(TargetDecl) ||
5727          !cast<FunctionDecl>(TargetDecl)->isImmediateFunction()) &&
5728         "trying to emit a call to an immediate function");
5729
5730  CalleeType = getContext().getCanonicalType(CalleeType);
5731
5732  auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5733
5734  CGCallee Callee = OrigCallee;
5735
5736  if (SanOpts.has(SanitizerKind::Function) &&
5737      (!TargetDecl || !isa<FunctionDecl>(TargetDecl)) &&
5738      !isa<FunctionNoProtoType>(PointeeType)) {
5739    if (llvm::Constant *PrefixSig =
5740            CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5741      SanitizerScope SanScope(this);
5742      auto *TypeHash = getUBSanFunctionTypeHash(PointeeType);
5743
5744      llvm::Type *PrefixSigType = PrefixSig->getType();
5745      llvm::StructType *PrefixStructTy = llvm::StructType::get(
5746          CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5747
5748      llvm::Value *CalleePtr = Callee.getFunctionPointer();
5749
5750      // On 32-bit Arm, the low bit of a function pointer indicates whether
5751      // it's using the Arm or Thumb instruction set. The actual first
5752      // instruction lives at the same address either way, so we must clear
5753      // that low bit before using the function address to find the prefix
5754      // structure.
5755      //
5756      // This applies to both Arm and Thumb target triples, because
5757      // either one could be used in an interworking context where it
5758      // might be passed function pointers of both types.
5759      llvm::Value *AlignedCalleePtr;
5760      if (CGM.getTriple().isARM() || CGM.getTriple().isThumb()) {
5761        llvm::Value *CalleeAddress =
5762            Builder.CreatePtrToInt(CalleePtr, IntPtrTy);
5763        llvm::Value *Mask = llvm::ConstantInt::get(IntPtrTy, ~1);
5764        llvm::Value *AlignedCalleeAddress =
5765            Builder.CreateAnd(CalleeAddress, Mask);
5766        AlignedCalleePtr =
5767            Builder.CreateIntToPtr(AlignedCalleeAddress, CalleePtr->getType());
5768      } else {
5769        AlignedCalleePtr = CalleePtr;
5770      }
5771
5772      llvm::Value *CalleePrefixStruct = AlignedCalleePtr;
5773      llvm::Value *CalleeSigPtr =
5774          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 0);
5775      llvm::Value *CalleeSig =
5776          Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5777      llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5778
5779      llvm::BasicBlock *Cont = createBasicBlock("cont");
5780      llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5781      Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5782
5783      EmitBlock(TypeCheck);
5784      llvm::Value *CalleeTypeHash = Builder.CreateAlignedLoad(
5785          Int32Ty,
5786          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 1),
5787          getPointerAlign());
5788      llvm::Value *CalleeTypeHashMatch =
5789          Builder.CreateICmpEQ(CalleeTypeHash, TypeHash);
5790      llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5791                                      EmitCheckTypeDescriptor(CalleeType)};
5792      EmitCheck(std::make_pair(CalleeTypeHashMatch, SanitizerKind::Function),
5793                SanitizerHandler::FunctionTypeMismatch, StaticData,
5794                {CalleePtr});
5795
5796      Builder.CreateBr(Cont);
5797      EmitBlock(Cont);
5798    }
5799  }
5800
5801  const auto *FnType = cast<FunctionType>(PointeeType);
5802
5803  // If we are checking indirect calls and this call is indirect, check that the
5804  // function pointer is a member of the bit set for the function type.
5805  if (SanOpts.has(SanitizerKind::CFIICall) &&
5806      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5807    SanitizerScope SanScope(this);
5808    EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5809
5810    llvm::Metadata *MD;
5811    if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5812      MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5813    else
5814      MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5815
5816    llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5817
5818    llvm::Value *CalleePtr = Callee.getFunctionPointer();
5819    llvm::Value *TypeTest = Builder.CreateCall(
5820        CGM.getIntrinsic(llvm::Intrinsic::type_test), {CalleePtr, TypeId});
5821
5822    auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5823    llvm::Constant *StaticData[] = {
5824        llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5825        EmitCheckSourceLocation(E->getBeginLoc()),
5826        EmitCheckTypeDescriptor(QualType(FnType, 0)),
5827    };
5828    if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5829      EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5830                           CalleePtr, StaticData);
5831    } else {
5832      EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5833                SanitizerHandler::CFICheckFail, StaticData,
5834                {CalleePtr, llvm::UndefValue::get(IntPtrTy)});
5835    }
5836  }
5837
5838  CallArgList Args;
5839  if (Chain)
5840    Args.add(RValue::get(Chain), CGM.getContext().VoidPtrTy);
5841
5842  // C++17 requires that we evaluate arguments to a call using assignment syntax
5843  // right-to-left, and that we evaluate arguments to certain other operators
5844  // left-to-right. Note that we allow this to override the order dictated by
5845  // the calling convention on the MS ABI, which means that parameter
5846  // destruction order is not necessarily reverse construction order.
5847  // FIXME: Revisit this based on C++ committee response to unimplementability.
5848  EvaluationOrder Order = EvaluationOrder::Default;
5849  bool StaticOperator = false;
5850  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5851    if (OCE->isAssignmentOp())
5852      Order = EvaluationOrder::ForceRightToLeft;
5853    else {
5854      switch (OCE->getOperator()) {
5855      case OO_LessLess:
5856      case OO_GreaterGreater:
5857      case OO_AmpAmp:
5858      case OO_PipePipe:
5859      case OO_Comma:
5860      case OO_ArrowStar:
5861        Order = EvaluationOrder::ForceLeftToRight;
5862        break;
5863      default:
5864        break;
5865      }
5866    }
5867
5868    if (const auto *MD =
5869            dyn_cast_if_present<CXXMethodDecl>(OCE->getCalleeDecl());
5870        MD && MD->isStatic())
5871      StaticOperator = true;
5872  }
5873
5874  auto Arguments = E->arguments();
5875  if (StaticOperator) {
5876    // If we're calling a static operator, we need to emit the object argument
5877    // and ignore it.
5878    EmitIgnoredExpr(E->getArg(0));
5879    Arguments = drop_begin(Arguments, 1);
5880  }
5881  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), Arguments,
5882               E->getDirectCallee(), /*ParamsToSkip=*/0, Order);
5883
5884  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5885      Args, FnType, /*ChainCall=*/Chain);
5886
5887  // C99 6.5.2.2p6:
5888  //   If the expression that denotes the called function has a type
5889  //   that does not include a prototype, [the default argument
5890  //   promotions are performed]. If the number of arguments does not
5891  //   equal the number of parameters, the behavior is undefined. If
5892  //   the function is defined with a type that includes a prototype,
5893  //   and either the prototype ends with an ellipsis (, ...) or the
5894  //   types of the arguments after promotion are not compatible with
5895  //   the types of the parameters, the behavior is undefined. If the
5896  //   function is defined with a type that does not include a
5897  //   prototype, and the types of the arguments after promotion are
5898  //   not compatible with those of the parameters after promotion,
5899  //   the behavior is undefined [except in some trivial cases].
5900  // That is, in the general case, we should assume that a call
5901  // through an unprototyped function type works like a *non-variadic*
5902  // call.  The way we make this work is to cast to the exact type
5903  // of the promoted arguments.
5904  //
5905  // Chain calls use this same code path to add the invisible chain parameter
5906  // to the function type.
5907  if (isa<FunctionNoProtoType>(FnType) || Chain) {
5908    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5909    int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5910    CalleeTy = CalleeTy->getPointerTo(AS);
5911
5912    llvm::Value *CalleePtr = Callee.getFunctionPointer();
5913    CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5914    Callee.setFunctionPointer(CalleePtr);
5915  }
5916
5917  // HIP function pointer contains kernel handle when it is used in triple
5918  // chevron. The kernel stub needs to be loaded from kernel handle and used
5919  // as callee.
5920  if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5921      isa<CUDAKernelCallExpr>(E) &&
5922      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5923    llvm::Value *Handle = Callee.getFunctionPointer();
5924    auto *Stub = Builder.CreateLoad(
5925        Address(Handle, Handle->getType(), CGM.getPointerAlign()));
5926    Callee.setFunctionPointer(Stub);
5927  }
5928  llvm::CallBase *CallOrInvoke = nullptr;
5929  RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5930                         E == MustTailCall, E->getExprLoc());
5931
5932  // Generate function declaration DISuprogram in order to be used
5933  // in debug info about call sites.
5934  if (CGDebugInfo *DI = getDebugInfo()) {
5935    if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5936      FunctionArgList Args;
5937      QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
5938      DI->EmitFuncDeclForCallSite(CallOrInvoke,
5939                                  DI->getFunctionType(CalleeDecl, ResTy, Args),
5940                                  CalleeDecl);
5941    }
5942  }
5943
5944  return Call;
5945}
5946
5947LValue CodeGenFunction::
5948EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5949  Address BaseAddr = Address::invalid();
5950  if (E->getOpcode() == BO_PtrMemI) {
5951    BaseAddr = EmitPointerWithAlignment(E->getLHS());
5952  } else {
5953    BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5954  }
5955
5956  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5957  const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5958
5959  LValueBaseInfo BaseInfo;
5960  TBAAAccessInfo TBAAInfo;
5961  Address MemberAddr =
5962    EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5963                                    &TBAAInfo);
5964
5965  return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5966}
5967
5968/// Given the address of a temporary variable, produce an r-value of
5969/// its type.
5970RValue CodeGenFunction::convertTempToRValue(Address addr,
5971                                            QualType type,
5972                                            SourceLocation loc) {
5973  LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5974  switch (getEvaluationKind(type)) {
5975  case TEK_Complex:
5976    return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5977  case TEK_Aggregate:
5978    return lvalue.asAggregateRValue(*this);
5979  case TEK_Scalar:
5980    return RValue::get(EmitLoadOfScalar(lvalue, loc));
5981  }
5982  llvm_unreachable("bad evaluation kind");
5983}
5984
5985void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5986  assert(Val->getType()->isFPOrFPVectorTy());
5987  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5988    return;
5989
5990  llvm::MDBuilder MDHelper(getLLVMContext());
5991  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5992
5993  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5994}
5995
5996void CodeGenFunction::SetSqrtFPAccuracy(llvm::Value *Val) {
5997  llvm::Type *EltTy = Val->getType()->getScalarType();
5998  if (!EltTy->isFloatTy())
5999    return;
6000
6001  if ((getLangOpts().OpenCL &&
6002       !CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
6003      (getLangOpts().HIP && getLangOpts().CUDAIsDevice &&
6004       !CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
6005    // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 3ulp
6006    //
6007    // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
6008    // build option allows an application to specify that single precision
6009    // floating-point divide (x/y and 1/x) and sqrt used in the program
6010    // source are correctly rounded.
6011    //
6012    // TODO: CUDA has a prec-sqrt flag
6013    SetFPAccuracy(Val, 3.0f);
6014  }
6015}
6016
6017void CodeGenFunction::SetDivFPAccuracy(llvm::Value *Val) {
6018  llvm::Type *EltTy = Val->getType()->getScalarType();
6019  if (!EltTy->isFloatTy())
6020    return;
6021
6022  if ((getLangOpts().OpenCL &&
6023       !CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
6024      (getLangOpts().HIP && getLangOpts().CUDAIsDevice &&
6025       !CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
6026    // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
6027    //
6028    // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
6029    // build option allows an application to specify that single precision
6030    // floating-point divide (x/y and 1/x) and sqrt used in the program
6031    // source are correctly rounded.
6032    //
6033    // TODO: CUDA has a prec-div flag
6034    SetFPAccuracy(Val, 2.5f);
6035  }
6036}
6037
6038namespace {
6039  struct LValueOrRValue {
6040    LValue LV;
6041    RValue RV;
6042  };
6043}
6044
6045static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
6046                                           const PseudoObjectExpr *E,
6047                                           bool forLValue,
6048                                           AggValueSlot slot) {
6049  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
6050
6051  // Find the result expression, if any.
6052  const Expr *resultExpr = E->getResultExpr();
6053  LValueOrRValue result;
6054
6055  for (PseudoObjectExpr::const_semantics_iterator
6056         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
6057    const Expr *semantic = *i;
6058
6059    // If this semantic expression is an opaque value, bind it
6060    // to the result of its source expression.
6061    if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
6062      // Skip unique OVEs.
6063      if (ov->isUnique()) {
6064        assert(ov != resultExpr &&
6065               "A unique OVE cannot be used as the result expression");
6066        continue;
6067      }
6068
6069      // If this is the result expression, we may need to evaluate
6070      // directly into the slot.
6071      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
6072      OVMA opaqueData;
6073      if (ov == resultExpr && ov->isPRValue() && !forLValue &&
6074          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
6075        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
6076        LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
6077                                       AlignmentSource::Decl);
6078        opaqueData = OVMA::bind(CGF, ov, LV);
6079        result.RV = slot.asRValue();
6080
6081      // Otherwise, emit as normal.
6082      } else {
6083        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
6084
6085        // If this is the result, also evaluate the result now.
6086        if (ov == resultExpr) {
6087          if (forLValue)
6088            result.LV = CGF.EmitLValue(ov);
6089          else
6090            result.RV = CGF.EmitAnyExpr(ov, slot);
6091        }
6092      }
6093
6094      opaques.push_back(opaqueData);
6095
6096    // Otherwise, if the expression is the result, evaluate it
6097    // and remember the result.
6098    } else if (semantic == resultExpr) {
6099      if (forLValue)
6100        result.LV = CGF.EmitLValue(semantic);
6101      else
6102        result.RV = CGF.EmitAnyExpr(semantic, slot);
6103
6104    // Otherwise, evaluate the expression in an ignored context.
6105    } else {
6106      CGF.EmitIgnoredExpr(semantic);
6107    }
6108  }
6109
6110  // Unbind all the opaques now.
6111  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
6112    opaques[i].unbind(CGF);
6113
6114  return result;
6115}
6116
6117RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
6118                                               AggValueSlot slot) {
6119  return emitPseudoObjectExpr(*this, E, false, slot).RV;
6120}
6121
6122LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
6123  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
6124}
6125