1//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Decl nodes as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGBlocks.h"
14#include "CGCXXABI.h"
15#include "CGCleanup.h"
16#include "CGDebugInfo.h"
17#include "CGOpenCLRuntime.h"
18#include "CGOpenMPRuntime.h"
19#include "CodeGenFunction.h"
20#include "CodeGenModule.h"
21#include "ConstantEmitter.h"
22#include "PatternInit.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/Attr.h"
26#include "clang/AST/CharUnits.h"
27#include "clang/AST/Decl.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/DeclOpenMP.h"
30#include "clang/Basic/CodeGenOptions.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33#include "clang/CodeGen/CGFunctionInfo.h"
34#include "clang/Sema/Sema.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/GlobalVariable.h"
38#include "llvm/IR/Intrinsics.h"
39#include "llvm/IR/Type.h"
40#include <optional>
41
42using namespace clang;
43using namespace CodeGen;
44
45static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
46              "Clang max alignment greater than what LLVM supports?");
47
48void CodeGenFunction::EmitDecl(const Decl &D) {
49  switch (D.getKind()) {
50  case Decl::BuiltinTemplate:
51  case Decl::TranslationUnit:
52  case Decl::ExternCContext:
53  case Decl::Namespace:
54  case Decl::UnresolvedUsingTypename:
55  case Decl::ClassTemplateSpecialization:
56  case Decl::ClassTemplatePartialSpecialization:
57  case Decl::VarTemplateSpecialization:
58  case Decl::VarTemplatePartialSpecialization:
59  case Decl::TemplateTypeParm:
60  case Decl::UnresolvedUsingValue:
61  case Decl::NonTypeTemplateParm:
62  case Decl::CXXDeductionGuide:
63  case Decl::CXXMethod:
64  case Decl::CXXConstructor:
65  case Decl::CXXDestructor:
66  case Decl::CXXConversion:
67  case Decl::Field:
68  case Decl::MSProperty:
69  case Decl::IndirectField:
70  case Decl::ObjCIvar:
71  case Decl::ObjCAtDefsField:
72  case Decl::ParmVar:
73  case Decl::ImplicitParam:
74  case Decl::ClassTemplate:
75  case Decl::VarTemplate:
76  case Decl::FunctionTemplate:
77  case Decl::TypeAliasTemplate:
78  case Decl::TemplateTemplateParm:
79  case Decl::ObjCMethod:
80  case Decl::ObjCCategory:
81  case Decl::ObjCProtocol:
82  case Decl::ObjCInterface:
83  case Decl::ObjCCategoryImpl:
84  case Decl::ObjCImplementation:
85  case Decl::ObjCProperty:
86  case Decl::ObjCCompatibleAlias:
87  case Decl::PragmaComment:
88  case Decl::PragmaDetectMismatch:
89  case Decl::AccessSpec:
90  case Decl::LinkageSpec:
91  case Decl::Export:
92  case Decl::ObjCPropertyImpl:
93  case Decl::FileScopeAsm:
94  case Decl::TopLevelStmt:
95  case Decl::Friend:
96  case Decl::FriendTemplate:
97  case Decl::Block:
98  case Decl::Captured:
99  case Decl::UsingShadow:
100  case Decl::ConstructorUsingShadow:
101  case Decl::ObjCTypeParam:
102  case Decl::Binding:
103  case Decl::UnresolvedUsingIfExists:
104  case Decl::HLSLBuffer:
105    llvm_unreachable("Declaration should not be in declstmts!");
106  case Decl::Record:    // struct/union/class X;
107  case Decl::CXXRecord: // struct/union/class X; [C++]
108    if (CGDebugInfo *DI = getDebugInfo())
109      if (cast<RecordDecl>(D).getDefinition())
110        DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(&D)));
111    return;
112  case Decl::Enum:      // enum X;
113    if (CGDebugInfo *DI = getDebugInfo())
114      if (cast<EnumDecl>(D).getDefinition())
115        DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(&D)));
116    return;
117  case Decl::Function:     // void X();
118  case Decl::EnumConstant: // enum ? { X = ? }
119  case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
120  case Decl::Label:        // __label__ x;
121  case Decl::Import:
122  case Decl::MSGuid:    // __declspec(uuid("..."))
123  case Decl::UnnamedGlobalConstant:
124  case Decl::TemplateParamObject:
125  case Decl::OMPThreadPrivate:
126  case Decl::OMPAllocate:
127  case Decl::OMPCapturedExpr:
128  case Decl::OMPRequires:
129  case Decl::Empty:
130  case Decl::Concept:
131  case Decl::ImplicitConceptSpecialization:
132  case Decl::LifetimeExtendedTemporary:
133  case Decl::RequiresExprBody:
134    // None of these decls require codegen support.
135    return;
136
137  case Decl::NamespaceAlias:
138    if (CGDebugInfo *DI = getDebugInfo())
139        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
140    return;
141  case Decl::Using:          // using X; [C++]
142    if (CGDebugInfo *DI = getDebugInfo())
143        DI->EmitUsingDecl(cast<UsingDecl>(D));
144    return;
145  case Decl::UsingEnum: // using enum X; [C++]
146    if (CGDebugInfo *DI = getDebugInfo())
147      DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(D));
148    return;
149  case Decl::UsingPack:
150    for (auto *Using : cast<UsingPackDecl>(D).expansions())
151      EmitDecl(*Using);
152    return;
153  case Decl::UsingDirective: // using namespace X; [C++]
154    if (CGDebugInfo *DI = getDebugInfo())
155      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
156    return;
157  case Decl::Var:
158  case Decl::Decomposition: {
159    const VarDecl &VD = cast<VarDecl>(D);
160    assert(VD.isLocalVarDecl() &&
161           "Should not see file-scope variables inside a function!");
162    EmitVarDecl(VD);
163    if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
164      for (auto *B : DD->bindings())
165        if (auto *HD = B->getHoldingVar())
166          EmitVarDecl(*HD);
167    return;
168  }
169
170  case Decl::OMPDeclareReduction:
171    return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
172
173  case Decl::OMPDeclareMapper:
174    return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
175
176  case Decl::Typedef:      // typedef int X;
177  case Decl::TypeAlias: {  // using X = int; [C++0x]
178    QualType Ty = cast<TypedefNameDecl>(D).getUnderlyingType();
179    if (CGDebugInfo *DI = getDebugInfo())
180      DI->EmitAndRetainType(Ty);
181    if (Ty->isVariablyModifiedType())
182      EmitVariablyModifiedType(Ty);
183    return;
184  }
185  }
186}
187
188/// EmitVarDecl - This method handles emission of any variable declaration
189/// inside a function, including static vars etc.
190void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
191  if (D.hasExternalStorage())
192    // Don't emit it now, allow it to be emitted lazily on its first use.
193    return;
194
195  // Some function-scope variable does not have static storage but still
196  // needs to be emitted like a static variable, e.g. a function-scope
197  // variable in constant address space in OpenCL.
198  if (D.getStorageDuration() != SD_Automatic) {
199    // Static sampler variables translated to function calls.
200    if (D.getType()->isSamplerT())
201      return;
202
203    llvm::GlobalValue::LinkageTypes Linkage =
204        CGM.getLLVMLinkageVarDefinition(&D);
205
206    // FIXME: We need to force the emission/use of a guard variable for
207    // some variables even if we can constant-evaluate them because
208    // we can't guarantee every translation unit will constant-evaluate them.
209
210    return EmitStaticVarDecl(D, Linkage);
211  }
212
213  if (D.getType().getAddressSpace() == LangAS::opencl_local)
214    return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
215
216  assert(D.hasLocalStorage());
217  return EmitAutoVarDecl(D);
218}
219
220static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
221  if (CGM.getLangOpts().CPlusPlus)
222    return CGM.getMangledName(&D).str();
223
224  // If this isn't C++, we don't need a mangled name, just a pretty one.
225  assert(!D.isExternallyVisible() && "name shouldn't matter");
226  std::string ContextName;
227  const DeclContext *DC = D.getDeclContext();
228  if (auto *CD = dyn_cast<CapturedDecl>(DC))
229    DC = cast<DeclContext>(CD->getNonClosureContext());
230  if (const auto *FD = dyn_cast<FunctionDecl>(DC))
231    ContextName = std::string(CGM.getMangledName(FD));
232  else if (const auto *BD = dyn_cast<BlockDecl>(DC))
233    ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
234  else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
235    ContextName = OMD->getSelector().getAsString();
236  else
237    llvm_unreachable("Unknown context for static var decl");
238
239  ContextName += "." + D.getNameAsString();
240  return ContextName;
241}
242
243llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
244    const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
245  // In general, we don't always emit static var decls once before we reference
246  // them. It is possible to reference them before emitting the function that
247  // contains them, and it is possible to emit the containing function multiple
248  // times.
249  if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
250    return ExistingGV;
251
252  QualType Ty = D.getType();
253  assert(Ty->isConstantSizeType() && "VLAs can't be static");
254
255  // Use the label if the variable is renamed with the asm-label extension.
256  std::string Name;
257  if (D.hasAttr<AsmLabelAttr>())
258    Name = std::string(getMangledName(&D));
259  else
260    Name = getStaticDeclName(*this, D);
261
262  llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
263  LangAS AS = GetGlobalVarAddressSpace(&D);
264  unsigned TargetAS = getContext().getTargetAddressSpace(AS);
265
266  // OpenCL variables in local address space and CUDA shared
267  // variables cannot have an initializer.
268  llvm::Constant *Init = nullptr;
269  if (Ty.getAddressSpace() == LangAS::opencl_local ||
270      D.hasAttr<CUDASharedAttr>() || D.hasAttr<LoaderUninitializedAttr>())
271    Init = llvm::UndefValue::get(LTy);
272  else
273    Init = EmitNullConstant(Ty);
274
275  llvm::GlobalVariable *GV = new llvm::GlobalVariable(
276      getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
277      nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
278  GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
279
280  if (supportsCOMDAT() && GV->isWeakForLinker())
281    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
282
283  if (D.getTLSKind())
284    setTLSMode(GV, D);
285
286  setGVProperties(GV, &D);
287
288  // Make sure the result is of the correct type.
289  LangAS ExpectedAS = Ty.getAddressSpace();
290  llvm::Constant *Addr = GV;
291  if (AS != ExpectedAS) {
292    Addr = getTargetCodeGenInfo().performAddrSpaceCast(
293        *this, GV, AS, ExpectedAS,
294        llvm::PointerType::get(getLLVMContext(),
295                               getContext().getTargetAddressSpace(ExpectedAS)));
296  }
297
298  setStaticLocalDeclAddress(&D, Addr);
299
300  // Ensure that the static local gets initialized by making sure the parent
301  // function gets emitted eventually.
302  const Decl *DC = cast<Decl>(D.getDeclContext());
303
304  // We can't name blocks or captured statements directly, so try to emit their
305  // parents.
306  if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
307    DC = DC->getNonClosureContext();
308    // FIXME: Ensure that global blocks get emitted.
309    if (!DC)
310      return Addr;
311  }
312
313  GlobalDecl GD;
314  if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
315    GD = GlobalDecl(CD, Ctor_Base);
316  else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
317    GD = GlobalDecl(DD, Dtor_Base);
318  else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
319    GD = GlobalDecl(FD);
320  else {
321    // Don't do anything for Obj-C method decls or global closures. We should
322    // never defer them.
323    assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
324  }
325  if (GD.getDecl()) {
326    // Disable emission of the parent function for the OpenMP device codegen.
327    CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
328    (void)GetAddrOfGlobal(GD);
329  }
330
331  return Addr;
332}
333
334/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
335/// global variable that has already been created for it.  If the initializer
336/// has a different type than GV does, this may free GV and return a different
337/// one.  Otherwise it just returns GV.
338llvm::GlobalVariable *
339CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
340                                               llvm::GlobalVariable *GV) {
341  ConstantEmitter emitter(*this);
342  llvm::Constant *Init = emitter.tryEmitForInitializer(D);
343
344  // If constant emission failed, then this should be a C++ static
345  // initializer.
346  if (!Init) {
347    if (!getLangOpts().CPlusPlus)
348      CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
349    else if (D.hasFlexibleArrayInit(getContext()))
350      CGM.ErrorUnsupported(D.getInit(), "flexible array initializer");
351    else if (HaveInsertPoint()) {
352      // Since we have a static initializer, this global variable can't
353      // be constant.
354      GV->setConstant(false);
355
356      EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
357    }
358    return GV;
359  }
360
361#ifndef NDEBUG
362  CharUnits VarSize = CGM.getContext().getTypeSizeInChars(D.getType()) +
363                      D.getFlexibleArrayInitChars(getContext());
364  CharUnits CstSize = CharUnits::fromQuantity(
365      CGM.getDataLayout().getTypeAllocSize(Init->getType()));
366  assert(VarSize == CstSize && "Emitted constant has unexpected size");
367#endif
368
369  // The initializer may differ in type from the global. Rewrite
370  // the global to match the initializer.  (We have to do this
371  // because some types, like unions, can't be completely represented
372  // in the LLVM type system.)
373  if (GV->getValueType() != Init->getType()) {
374    llvm::GlobalVariable *OldGV = GV;
375
376    GV = new llvm::GlobalVariable(
377        CGM.getModule(), Init->getType(), OldGV->isConstant(),
378        OldGV->getLinkage(), Init, "",
379        /*InsertBefore*/ OldGV, OldGV->getThreadLocalMode(),
380        OldGV->getType()->getPointerAddressSpace());
381    GV->setVisibility(OldGV->getVisibility());
382    GV->setDSOLocal(OldGV->isDSOLocal());
383    GV->setComdat(OldGV->getComdat());
384
385    // Steal the name of the old global
386    GV->takeName(OldGV);
387
388    // Replace all uses of the old global with the new global
389    OldGV->replaceAllUsesWith(GV);
390
391    // Erase the old global, since it is no longer used.
392    OldGV->eraseFromParent();
393  }
394
395  bool NeedsDtor =
396      D.needsDestruction(getContext()) == QualType::DK_cxx_destructor;
397
398  GV->setConstant(
399      D.getType().isConstantStorage(getContext(), true, !NeedsDtor));
400  GV->setInitializer(Init);
401
402  emitter.finalize(GV);
403
404  if (NeedsDtor && HaveInsertPoint()) {
405    // We have a constant initializer, but a nontrivial destructor. We still
406    // need to perform a guarded "initialization" in order to register the
407    // destructor.
408    EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
409  }
410
411  return GV;
412}
413
414void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
415                                      llvm::GlobalValue::LinkageTypes Linkage) {
416  // Check to see if we already have a global variable for this
417  // declaration.  This can happen when double-emitting function
418  // bodies, e.g. with complete and base constructors.
419  llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
420  CharUnits alignment = getContext().getDeclAlign(&D);
421
422  // Store into LocalDeclMap before generating initializer to handle
423  // circular references.
424  llvm::Type *elemTy = ConvertTypeForMem(D.getType());
425  setAddrOfLocalVar(&D, Address(addr, elemTy, alignment));
426
427  // We can't have a VLA here, but we can have a pointer to a VLA,
428  // even though that doesn't really make any sense.
429  // Make sure to evaluate VLA bounds now so that we have them for later.
430  if (D.getType()->isVariablyModifiedType())
431    EmitVariablyModifiedType(D.getType());
432
433  // Save the type in case adding the initializer forces a type change.
434  llvm::Type *expectedType = addr->getType();
435
436  llvm::GlobalVariable *var =
437    cast<llvm::GlobalVariable>(addr->stripPointerCasts());
438
439  // CUDA's local and local static __shared__ variables should not
440  // have any non-empty initializers. This is ensured by Sema.
441  // Whatever initializer such variable may have when it gets here is
442  // a no-op and should not be emitted.
443  bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
444                         D.hasAttr<CUDASharedAttr>();
445  // If this value has an initializer, emit it.
446  if (D.getInit() && !isCudaSharedVar)
447    var = AddInitializerToStaticVarDecl(D, var);
448
449  var->setAlignment(alignment.getAsAlign());
450
451  if (D.hasAttr<AnnotateAttr>())
452    CGM.AddGlobalAnnotations(&D, var);
453
454  if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
455    var->addAttribute("bss-section", SA->getName());
456  if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
457    var->addAttribute("data-section", SA->getName());
458  if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
459    var->addAttribute("rodata-section", SA->getName());
460  if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
461    var->addAttribute("relro-section", SA->getName());
462
463  if (const SectionAttr *SA = D.getAttr<SectionAttr>())
464    var->setSection(SA->getName());
465
466  if (D.hasAttr<RetainAttr>())
467    CGM.addUsedGlobal(var);
468  else if (D.hasAttr<UsedAttr>())
469    CGM.addUsedOrCompilerUsedGlobal(var);
470
471  if (CGM.getCodeGenOpts().KeepPersistentStorageVariables)
472    CGM.addUsedOrCompilerUsedGlobal(var);
473
474  // We may have to cast the constant because of the initializer
475  // mismatch above.
476  //
477  // FIXME: It is really dangerous to store this in the map; if anyone
478  // RAUW's the GV uses of this constant will be invalid.
479  llvm::Constant *castedAddr =
480    llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
481  LocalDeclMap.find(&D)->second = Address(castedAddr, elemTy, alignment);
482  CGM.setStaticLocalDeclAddress(&D, castedAddr);
483
484  CGM.getSanitizerMetadata()->reportGlobal(var, D);
485
486  // Emit global variable debug descriptor for static vars.
487  CGDebugInfo *DI = getDebugInfo();
488  if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
489    DI->setLocation(D.getLocation());
490    DI->EmitGlobalVariable(var, &D);
491  }
492}
493
494namespace {
495  struct DestroyObject final : EHScopeStack::Cleanup {
496    DestroyObject(Address addr, QualType type,
497                  CodeGenFunction::Destroyer *destroyer,
498                  bool useEHCleanupForArray)
499      : addr(addr), type(type), destroyer(destroyer),
500        useEHCleanupForArray(useEHCleanupForArray) {}
501
502    Address addr;
503    QualType type;
504    CodeGenFunction::Destroyer *destroyer;
505    bool useEHCleanupForArray;
506
507    void Emit(CodeGenFunction &CGF, Flags flags) override {
508      // Don't use an EH cleanup recursively from an EH cleanup.
509      bool useEHCleanupForArray =
510        flags.isForNormalCleanup() && this->useEHCleanupForArray;
511
512      CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
513    }
514  };
515
516  template <class Derived>
517  struct DestroyNRVOVariable : EHScopeStack::Cleanup {
518    DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
519        : NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
520
521    llvm::Value *NRVOFlag;
522    Address Loc;
523    QualType Ty;
524
525    void Emit(CodeGenFunction &CGF, Flags flags) override {
526      // Along the exceptions path we always execute the dtor.
527      bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
528
529      llvm::BasicBlock *SkipDtorBB = nullptr;
530      if (NRVO) {
531        // If we exited via NRVO, we skip the destructor call.
532        llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
533        SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
534        llvm::Value *DidNRVO =
535          CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
536        CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
537        CGF.EmitBlock(RunDtorBB);
538      }
539
540      static_cast<Derived *>(this)->emitDestructorCall(CGF);
541
542      if (NRVO) CGF.EmitBlock(SkipDtorBB);
543    }
544
545    virtual ~DestroyNRVOVariable() = default;
546  };
547
548  struct DestroyNRVOVariableCXX final
549      : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
550    DestroyNRVOVariableCXX(Address addr, QualType type,
551                           const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
552        : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
553          Dtor(Dtor) {}
554
555    const CXXDestructorDecl *Dtor;
556
557    void emitDestructorCall(CodeGenFunction &CGF) {
558      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
559                                /*ForVirtualBase=*/false,
560                                /*Delegating=*/false, Loc, Ty);
561    }
562  };
563
564  struct DestroyNRVOVariableC final
565      : DestroyNRVOVariable<DestroyNRVOVariableC> {
566    DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
567        : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
568
569    void emitDestructorCall(CodeGenFunction &CGF) {
570      CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
571    }
572  };
573
574  struct CallStackRestore final : EHScopeStack::Cleanup {
575    Address Stack;
576    CallStackRestore(Address Stack) : Stack(Stack) {}
577    bool isRedundantBeforeReturn() override { return true; }
578    void Emit(CodeGenFunction &CGF, Flags flags) override {
579      llvm::Value *V = CGF.Builder.CreateLoad(Stack);
580      CGF.Builder.CreateStackRestore(V);
581    }
582  };
583
584  struct KmpcAllocFree final : EHScopeStack::Cleanup {
585    std::pair<llvm::Value *, llvm::Value *> AddrSizePair;
586    KmpcAllocFree(const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair)
587        : AddrSizePair(AddrSizePair) {}
588    void Emit(CodeGenFunction &CGF, Flags EmissionFlags) override {
589      auto &RT = CGF.CGM.getOpenMPRuntime();
590      RT.getKmpcFreeShared(CGF, AddrSizePair);
591    }
592  };
593
594  struct ExtendGCLifetime final : EHScopeStack::Cleanup {
595    const VarDecl &Var;
596    ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
597
598    void Emit(CodeGenFunction &CGF, Flags flags) override {
599      // Compute the address of the local variable, in case it's a
600      // byref or something.
601      DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
602                      Var.getType(), VK_LValue, SourceLocation());
603      llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
604                                                SourceLocation());
605      CGF.EmitExtendGCLifetime(value);
606    }
607  };
608
609  struct CallCleanupFunction final : EHScopeStack::Cleanup {
610    llvm::Constant *CleanupFn;
611    const CGFunctionInfo &FnInfo;
612    const VarDecl &Var;
613
614    CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
615                        const VarDecl *Var)
616      : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
617
618    void Emit(CodeGenFunction &CGF, Flags flags) override {
619      DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
620                      Var.getType(), VK_LValue, SourceLocation());
621      // Compute the address of the local variable, in case it's a byref
622      // or something.
623      llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
624
625      // In some cases, the type of the function argument will be different from
626      // the type of the pointer. An example of this is
627      // void f(void* arg);
628      // __attribute__((cleanup(f))) void *g;
629      //
630      // To fix this we insert a bitcast here.
631      QualType ArgTy = FnInfo.arg_begin()->type;
632      llvm::Value *Arg =
633        CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
634
635      CallArgList Args;
636      Args.add(RValue::get(Arg),
637               CGF.getContext().getPointerType(Var.getType()));
638      auto Callee = CGCallee::forDirect(CleanupFn);
639      CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
640    }
641  };
642} // end anonymous namespace
643
644/// EmitAutoVarWithLifetime - Does the setup required for an automatic
645/// variable with lifetime.
646static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
647                                    Address addr,
648                                    Qualifiers::ObjCLifetime lifetime) {
649  switch (lifetime) {
650  case Qualifiers::OCL_None:
651    llvm_unreachable("present but none");
652
653  case Qualifiers::OCL_ExplicitNone:
654    // nothing to do
655    break;
656
657  case Qualifiers::OCL_Strong: {
658    CodeGenFunction::Destroyer *destroyer =
659      (var.hasAttr<ObjCPreciseLifetimeAttr>()
660       ? CodeGenFunction::destroyARCStrongPrecise
661       : CodeGenFunction::destroyARCStrongImprecise);
662
663    CleanupKind cleanupKind = CGF.getARCCleanupKind();
664    CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
665                    cleanupKind & EHCleanup);
666    break;
667  }
668  case Qualifiers::OCL_Autoreleasing:
669    // nothing to do
670    break;
671
672  case Qualifiers::OCL_Weak:
673    // __weak objects always get EH cleanups; otherwise, exceptions
674    // could cause really nasty crashes instead of mere leaks.
675    CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
676                    CodeGenFunction::destroyARCWeak,
677                    /*useEHCleanup*/ true);
678    break;
679  }
680}
681
682static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
683  if (const Expr *e = dyn_cast<Expr>(s)) {
684    // Skip the most common kinds of expressions that make
685    // hierarchy-walking expensive.
686    s = e = e->IgnoreParenCasts();
687
688    if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
689      return (ref->getDecl() == &var);
690    if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
691      const BlockDecl *block = be->getBlockDecl();
692      for (const auto &I : block->captures()) {
693        if (I.getVariable() == &var)
694          return true;
695      }
696    }
697  }
698
699  for (const Stmt *SubStmt : s->children())
700    // SubStmt might be null; as in missing decl or conditional of an if-stmt.
701    if (SubStmt && isAccessedBy(var, SubStmt))
702      return true;
703
704  return false;
705}
706
707static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
708  if (!decl) return false;
709  if (!isa<VarDecl>(decl)) return false;
710  const VarDecl *var = cast<VarDecl>(decl);
711  return isAccessedBy(*var, e);
712}
713
714static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
715                                   const LValue &destLV, const Expr *init) {
716  bool needsCast = false;
717
718  while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
719    switch (castExpr->getCastKind()) {
720    // Look through casts that don't require representation changes.
721    case CK_NoOp:
722    case CK_BitCast:
723    case CK_BlockPointerToObjCPointerCast:
724      needsCast = true;
725      break;
726
727    // If we find an l-value to r-value cast from a __weak variable,
728    // emit this operation as a copy or move.
729    case CK_LValueToRValue: {
730      const Expr *srcExpr = castExpr->getSubExpr();
731      if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
732        return false;
733
734      // Emit the source l-value.
735      LValue srcLV = CGF.EmitLValue(srcExpr);
736
737      // Handle a formal type change to avoid asserting.
738      auto srcAddr = srcLV.getAddress(CGF);
739      if (needsCast) {
740        srcAddr =
741            srcAddr.withElementType(destLV.getAddress(CGF).getElementType());
742      }
743
744      // If it was an l-value, use objc_copyWeak.
745      if (srcExpr->isLValue()) {
746        CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
747      } else {
748        assert(srcExpr->isXValue());
749        CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
750      }
751      return true;
752    }
753
754    // Stop at anything else.
755    default:
756      return false;
757    }
758
759    init = castExpr->getSubExpr();
760  }
761  return false;
762}
763
764static void drillIntoBlockVariable(CodeGenFunction &CGF,
765                                   LValue &lvalue,
766                                   const VarDecl *var) {
767  lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
768}
769
770void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
771                                           SourceLocation Loc) {
772  if (!SanOpts.has(SanitizerKind::NullabilityAssign))
773    return;
774
775  auto Nullability = LHS.getType()->getNullability();
776  if (!Nullability || *Nullability != NullabilityKind::NonNull)
777    return;
778
779  // Check if the right hand side of the assignment is nonnull, if the left
780  // hand side must be nonnull.
781  SanitizerScope SanScope(this);
782  llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
783  llvm::Constant *StaticData[] = {
784      EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
785      llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
786      llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
787  EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
788            SanitizerHandler::TypeMismatch, StaticData, RHS);
789}
790
791void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
792                                     LValue lvalue, bool capturedByInit) {
793  Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
794  if (!lifetime) {
795    llvm::Value *value = EmitScalarExpr(init);
796    if (capturedByInit)
797      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
798    EmitNullabilityCheck(lvalue, value, init->getExprLoc());
799    EmitStoreThroughLValue(RValue::get(value), lvalue, true);
800    return;
801  }
802
803  if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
804    init = DIE->getExpr();
805
806  // If we're emitting a value with lifetime, we have to do the
807  // initialization *before* we leave the cleanup scopes.
808  if (auto *EWC = dyn_cast<ExprWithCleanups>(init)) {
809    CodeGenFunction::RunCleanupsScope Scope(*this);
810    return EmitScalarInit(EWC->getSubExpr(), D, lvalue, capturedByInit);
811  }
812
813  // We have to maintain the illusion that the variable is
814  // zero-initialized.  If the variable might be accessed in its
815  // initializer, zero-initialize before running the initializer, then
816  // actually perform the initialization with an assign.
817  bool accessedByInit = false;
818  if (lifetime != Qualifiers::OCL_ExplicitNone)
819    accessedByInit = (capturedByInit || isAccessedBy(D, init));
820  if (accessedByInit) {
821    LValue tempLV = lvalue;
822    // Drill down to the __block object if necessary.
823    if (capturedByInit) {
824      // We can use a simple GEP for this because it can't have been
825      // moved yet.
826      tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
827                                              cast<VarDecl>(D),
828                                              /*follow*/ false));
829    }
830
831    auto ty =
832        cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
833    llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
834
835    // If __weak, we want to use a barrier under certain conditions.
836    if (lifetime == Qualifiers::OCL_Weak)
837      EmitARCInitWeak(tempLV.getAddress(*this), zero);
838
839    // Otherwise just do a simple store.
840    else
841      EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
842  }
843
844  // Emit the initializer.
845  llvm::Value *value = nullptr;
846
847  switch (lifetime) {
848  case Qualifiers::OCL_None:
849    llvm_unreachable("present but none");
850
851  case Qualifiers::OCL_Strong: {
852    if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
853      value = EmitARCRetainScalarExpr(init);
854      break;
855    }
856    // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
857    // that we omit the retain, and causes non-autoreleased return values to be
858    // immediately released.
859    [[fallthrough]];
860  }
861
862  case Qualifiers::OCL_ExplicitNone:
863    value = EmitARCUnsafeUnretainedScalarExpr(init);
864    break;
865
866  case Qualifiers::OCL_Weak: {
867    // If it's not accessed by the initializer, try to emit the
868    // initialization with a copy or move.
869    if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
870      return;
871    }
872
873    // No way to optimize a producing initializer into this.  It's not
874    // worth optimizing for, because the value will immediately
875    // disappear in the common case.
876    value = EmitScalarExpr(init);
877
878    if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
879    if (accessedByInit)
880      EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
881    else
882      EmitARCInitWeak(lvalue.getAddress(*this), value);
883    return;
884  }
885
886  case Qualifiers::OCL_Autoreleasing:
887    value = EmitARCRetainAutoreleaseScalarExpr(init);
888    break;
889  }
890
891  if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
892
893  EmitNullabilityCheck(lvalue, value, init->getExprLoc());
894
895  // If the variable might have been accessed by its initializer, we
896  // might have to initialize with a barrier.  We have to do this for
897  // both __weak and __strong, but __weak got filtered out above.
898  if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
899    llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
900    EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
901    EmitARCRelease(oldValue, ARCImpreciseLifetime);
902    return;
903  }
904
905  EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
906}
907
908/// Decide whether we can emit the non-zero parts of the specified initializer
909/// with equal or fewer than NumStores scalar stores.
910static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
911                                               unsigned &NumStores) {
912  // Zero and Undef never requires any extra stores.
913  if (isa<llvm::ConstantAggregateZero>(Init) ||
914      isa<llvm::ConstantPointerNull>(Init) ||
915      isa<llvm::UndefValue>(Init))
916    return true;
917  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
918      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
919      isa<llvm::ConstantExpr>(Init))
920    return Init->isNullValue() || NumStores--;
921
922  // See if we can emit each element.
923  if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
924    for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
925      llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
926      if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
927        return false;
928    }
929    return true;
930  }
931
932  if (llvm::ConstantDataSequential *CDS =
933        dyn_cast<llvm::ConstantDataSequential>(Init)) {
934    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
935      llvm::Constant *Elt = CDS->getElementAsConstant(i);
936      if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
937        return false;
938    }
939    return true;
940  }
941
942  // Anything else is hard and scary.
943  return false;
944}
945
946/// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
947/// the scalar stores that would be required.
948static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
949                                        llvm::Constant *Init, Address Loc,
950                                        bool isVolatile, CGBuilderTy &Builder,
951                                        bool IsAutoInit) {
952  assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
953         "called emitStoresForInitAfterBZero for zero or undef value.");
954
955  if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
956      isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
957      isa<llvm::ConstantExpr>(Init)) {
958    auto *I = Builder.CreateStore(Init, Loc, isVolatile);
959    if (IsAutoInit)
960      I->addAnnotationMetadata("auto-init");
961    return;
962  }
963
964  if (llvm::ConstantDataSequential *CDS =
965          dyn_cast<llvm::ConstantDataSequential>(Init)) {
966    for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
967      llvm::Constant *Elt = CDS->getElementAsConstant(i);
968
969      // If necessary, get a pointer to the element and emit it.
970      if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
971        emitStoresForInitAfterBZero(
972            CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
973            Builder, IsAutoInit);
974    }
975    return;
976  }
977
978  assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
979         "Unknown value type!");
980
981  for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
982    llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
983
984    // If necessary, get a pointer to the element and emit it.
985    if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
986      emitStoresForInitAfterBZero(CGM, Elt,
987                                  Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
988                                  isVolatile, Builder, IsAutoInit);
989  }
990}
991
992/// Decide whether we should use bzero plus some stores to initialize a local
993/// variable instead of using a memcpy from a constant global.  It is beneficial
994/// to use bzero if the global is all zeros, or mostly zeros and large.
995static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
996                                                 uint64_t GlobalSize) {
997  // If a global is all zeros, always use a bzero.
998  if (isa<llvm::ConstantAggregateZero>(Init)) return true;
999
1000  // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
1001  // do it if it will require 6 or fewer scalar stores.
1002  // TODO: Should budget depends on the size?  Avoiding a large global warrants
1003  // plopping in more stores.
1004  unsigned StoreBudget = 6;
1005  uint64_t SizeLimit = 32;
1006
1007  return GlobalSize > SizeLimit &&
1008         canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
1009}
1010
1011/// Decide whether we should use memset to initialize a local variable instead
1012/// of using a memcpy from a constant global. Assumes we've already decided to
1013/// not user bzero.
1014/// FIXME We could be more clever, as we are for bzero above, and generate
1015///       memset followed by stores. It's unclear that's worth the effort.
1016static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
1017                                                uint64_t GlobalSize,
1018                                                const llvm::DataLayout &DL) {
1019  uint64_t SizeLimit = 32;
1020  if (GlobalSize <= SizeLimit)
1021    return nullptr;
1022  return llvm::isBytewiseValue(Init, DL);
1023}
1024
1025/// Decide whether we want to split a constant structure or array store into a
1026/// sequence of its fields' stores. This may cost us code size and compilation
1027/// speed, but plays better with store optimizations.
1028static bool shouldSplitConstantStore(CodeGenModule &CGM,
1029                                     uint64_t GlobalByteSize) {
1030  // Don't break things that occupy more than one cacheline.
1031  uint64_t ByteSizeLimit = 64;
1032  if (CGM.getCodeGenOpts().OptimizationLevel == 0)
1033    return false;
1034  if (GlobalByteSize <= ByteSizeLimit)
1035    return true;
1036  return false;
1037}
1038
1039enum class IsPattern { No, Yes };
1040
1041/// Generate a constant filled with either a pattern or zeroes.
1042static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
1043                                        llvm::Type *Ty) {
1044  if (isPattern == IsPattern::Yes)
1045    return initializationPatternFor(CGM, Ty);
1046  else
1047    return llvm::Constant::getNullValue(Ty);
1048}
1049
1050static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1051                                        llvm::Constant *constant);
1052
1053/// Helper function for constWithPadding() to deal with padding in structures.
1054static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
1055                                              IsPattern isPattern,
1056                                              llvm::StructType *STy,
1057                                              llvm::Constant *constant) {
1058  const llvm::DataLayout &DL = CGM.getDataLayout();
1059  const llvm::StructLayout *Layout = DL.getStructLayout(STy);
1060  llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
1061  unsigned SizeSoFar = 0;
1062  SmallVector<llvm::Constant *, 8> Values;
1063  bool NestedIntact = true;
1064  for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
1065    unsigned CurOff = Layout->getElementOffset(i);
1066    if (SizeSoFar < CurOff) {
1067      assert(!STy->isPacked());
1068      auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
1069      Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1070    }
1071    llvm::Constant *CurOp;
1072    if (constant->isZeroValue())
1073      CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
1074    else
1075      CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
1076    auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
1077    if (CurOp != NewOp)
1078      NestedIntact = false;
1079    Values.push_back(NewOp);
1080    SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
1081  }
1082  unsigned TotalSize = Layout->getSizeInBytes();
1083  if (SizeSoFar < TotalSize) {
1084    auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
1085    Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
1086  }
1087  if (NestedIntact && Values.size() == STy->getNumElements())
1088    return constant;
1089  return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
1090}
1091
1092/// Replace all padding bytes in a given constant with either a pattern byte or
1093/// 0x00.
1094static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
1095                                        llvm::Constant *constant) {
1096  llvm::Type *OrigTy = constant->getType();
1097  if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
1098    return constStructWithPadding(CGM, isPattern, STy, constant);
1099  if (auto *ArrayTy = dyn_cast<llvm::ArrayType>(OrigTy)) {
1100    llvm::SmallVector<llvm::Constant *, 8> Values;
1101    uint64_t Size = ArrayTy->getNumElements();
1102    if (!Size)
1103      return constant;
1104    llvm::Type *ElemTy = ArrayTy->getElementType();
1105    bool ZeroInitializer = constant->isNullValue();
1106    llvm::Constant *OpValue, *PaddedOp;
1107    if (ZeroInitializer) {
1108      OpValue = llvm::Constant::getNullValue(ElemTy);
1109      PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1110    }
1111    for (unsigned Op = 0; Op != Size; ++Op) {
1112      if (!ZeroInitializer) {
1113        OpValue = constant->getAggregateElement(Op);
1114        PaddedOp = constWithPadding(CGM, isPattern, OpValue);
1115      }
1116      Values.push_back(PaddedOp);
1117    }
1118    auto *NewElemTy = Values[0]->getType();
1119    if (NewElemTy == ElemTy)
1120      return constant;
1121    auto *NewArrayTy = llvm::ArrayType::get(NewElemTy, Size);
1122    return llvm::ConstantArray::get(NewArrayTy, Values);
1123  }
1124  // FIXME: Add handling for tail padding in vectors. Vectors don't
1125  // have padding between or inside elements, but the total amount of
1126  // data can be less than the allocated size.
1127  return constant;
1128}
1129
1130Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
1131                                               llvm::Constant *Constant,
1132                                               CharUnits Align) {
1133  auto FunctionName = [&](const DeclContext *DC) -> std::string {
1134    if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1135      if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
1136        return CC->getNameAsString();
1137      if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
1138        return CD->getNameAsString();
1139      return std::string(getMangledName(FD));
1140    } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
1141      return OM->getNameAsString();
1142    } else if (isa<BlockDecl>(DC)) {
1143      return "<block>";
1144    } else if (isa<CapturedDecl>(DC)) {
1145      return "<captured>";
1146    } else {
1147      llvm_unreachable("expected a function or method");
1148    }
1149  };
1150
1151  // Form a simple per-variable cache of these values in case we find we
1152  // want to reuse them.
1153  llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
1154  if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
1155    auto *Ty = Constant->getType();
1156    bool isConstant = true;
1157    llvm::GlobalVariable *InsertBefore = nullptr;
1158    unsigned AS =
1159        getContext().getTargetAddressSpace(GetGlobalConstantAddressSpace());
1160    std::string Name;
1161    if (D.hasGlobalStorage())
1162      Name = getMangledName(&D).str() + ".const";
1163    else if (const DeclContext *DC = D.getParentFunctionOrMethod())
1164      Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
1165    else
1166      llvm_unreachable("local variable has no parent function or method");
1167    llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1168        getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
1169        Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
1170    GV->setAlignment(Align.getAsAlign());
1171    GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1172    CacheEntry = GV;
1173  } else if (CacheEntry->getAlignment() < uint64_t(Align.getQuantity())) {
1174    CacheEntry->setAlignment(Align.getAsAlign());
1175  }
1176
1177  return Address(CacheEntry, CacheEntry->getValueType(), Align);
1178}
1179
1180static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
1181                                                const VarDecl &D,
1182                                                CGBuilderTy &Builder,
1183                                                llvm::Constant *Constant,
1184                                                CharUnits Align) {
1185  Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
1186  return SrcPtr.withElementType(CGM.Int8Ty);
1187}
1188
1189static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
1190                                  Address Loc, bool isVolatile,
1191                                  CGBuilderTy &Builder,
1192                                  llvm::Constant *constant, bool IsAutoInit) {
1193  auto *Ty = constant->getType();
1194  uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
1195  if (!ConstantSize)
1196    return;
1197
1198  bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
1199                          Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
1200  if (canDoSingleStore) {
1201    auto *I = Builder.CreateStore(constant, Loc, isVolatile);
1202    if (IsAutoInit)
1203      I->addAnnotationMetadata("auto-init");
1204    return;
1205  }
1206
1207  auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
1208
1209  // If the initializer is all or mostly the same, codegen with bzero / memset
1210  // then do a few stores afterward.
1211  if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
1212    auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0),
1213                                   SizeVal, isVolatile);
1214    if (IsAutoInit)
1215      I->addAnnotationMetadata("auto-init");
1216
1217    bool valueAlreadyCorrect =
1218        constant->isNullValue() || isa<llvm::UndefValue>(constant);
1219    if (!valueAlreadyCorrect) {
1220      Loc = Loc.withElementType(Ty);
1221      emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder,
1222                                  IsAutoInit);
1223    }
1224    return;
1225  }
1226
1227  // If the initializer is a repeated byte pattern, use memset.
1228  llvm::Value *Pattern =
1229      shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
1230  if (Pattern) {
1231    uint64_t Value = 0x00;
1232    if (!isa<llvm::UndefValue>(Pattern)) {
1233      const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
1234      assert(AP.getBitWidth() <= 8);
1235      Value = AP.getLimitedValue();
1236    }
1237    auto *I = Builder.CreateMemSet(
1238        Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal, isVolatile);
1239    if (IsAutoInit)
1240      I->addAnnotationMetadata("auto-init");
1241    return;
1242  }
1243
1244  // If the initializer is small or trivialAutoVarInit is set, use a handful of
1245  // stores.
1246  bool IsTrivialAutoVarInitPattern =
1247      CGM.getContext().getLangOpts().getTrivialAutoVarInit() ==
1248      LangOptions::TrivialAutoVarInitKind::Pattern;
1249  if (shouldSplitConstantStore(CGM, ConstantSize)) {
1250    if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
1251      if (STy == Loc.getElementType() ||
1252          (STy != Loc.getElementType() && IsTrivialAutoVarInitPattern)) {
1253        const llvm::StructLayout *Layout =
1254            CGM.getDataLayout().getStructLayout(STy);
1255        for (unsigned i = 0; i != constant->getNumOperands(); i++) {
1256          CharUnits CurOff =
1257              CharUnits::fromQuantity(Layout->getElementOffset(i));
1258          Address EltPtr = Builder.CreateConstInBoundsByteGEP(
1259              Loc.withElementType(CGM.Int8Ty), CurOff);
1260          emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder,
1261                                constant->getAggregateElement(i), IsAutoInit);
1262        }
1263        return;
1264      }
1265    } else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
1266      if (ATy == Loc.getElementType() ||
1267          (ATy != Loc.getElementType() && IsTrivialAutoVarInitPattern)) {
1268        for (unsigned i = 0; i != ATy->getNumElements(); i++) {
1269          Address EltPtr = Builder.CreateConstGEP(
1270              Loc.withElementType(ATy->getElementType()), i);
1271          emitStoresForConstant(CGM, D, EltPtr, isVolatile, Builder,
1272                                constant->getAggregateElement(i), IsAutoInit);
1273        }
1274        return;
1275      }
1276    }
1277  }
1278
1279  // Copy from a global.
1280  auto *I =
1281      Builder.CreateMemCpy(Loc,
1282                           createUnnamedGlobalForMemcpyFrom(
1283                               CGM, D, Builder, constant, Loc.getAlignment()),
1284                           SizeVal, isVolatile);
1285  if (IsAutoInit)
1286    I->addAnnotationMetadata("auto-init");
1287}
1288
1289static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
1290                                  Address Loc, bool isVolatile,
1291                                  CGBuilderTy &Builder) {
1292  llvm::Type *ElTy = Loc.getElementType();
1293  llvm::Constant *constant =
1294      constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
1295  emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1296                        /*IsAutoInit=*/true);
1297}
1298
1299static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
1300                                     Address Loc, bool isVolatile,
1301                                     CGBuilderTy &Builder) {
1302  llvm::Type *ElTy = Loc.getElementType();
1303  llvm::Constant *constant = constWithPadding(
1304      CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1305  assert(!isa<llvm::UndefValue>(constant));
1306  emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant,
1307                        /*IsAutoInit=*/true);
1308}
1309
1310static bool containsUndef(llvm::Constant *constant) {
1311  auto *Ty = constant->getType();
1312  if (isa<llvm::UndefValue>(constant))
1313    return true;
1314  if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
1315    for (llvm::Use &Op : constant->operands())
1316      if (containsUndef(cast<llvm::Constant>(Op)))
1317        return true;
1318  return false;
1319}
1320
1321static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
1322                                    llvm::Constant *constant) {
1323  auto *Ty = constant->getType();
1324  if (isa<llvm::UndefValue>(constant))
1325    return patternOrZeroFor(CGM, isPattern, Ty);
1326  if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
1327    return constant;
1328  if (!containsUndef(constant))
1329    return constant;
1330  llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
1331  for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
1332    auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
1333    Values[Op] = replaceUndef(CGM, isPattern, OpValue);
1334  }
1335  if (Ty->isStructTy())
1336    return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
1337  if (Ty->isArrayTy())
1338    return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
1339  assert(Ty->isVectorTy());
1340  return llvm::ConstantVector::get(Values);
1341}
1342
1343/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
1344/// variable declaration with auto, register, or no storage class specifier.
1345/// These turn into simple stack objects, or GlobalValues depending on target.
1346void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
1347  AutoVarEmission emission = EmitAutoVarAlloca(D);
1348  EmitAutoVarInit(emission);
1349  EmitAutoVarCleanups(emission);
1350}
1351
1352/// Emit a lifetime.begin marker if some criteria are satisfied.
1353/// \return a pointer to the temporary size Value if a marker was emitted, null
1354/// otherwise
1355llvm::Value *CodeGenFunction::EmitLifetimeStart(llvm::TypeSize Size,
1356                                                llvm::Value *Addr) {
1357  if (!ShouldEmitLifetimeMarkers)
1358    return nullptr;
1359
1360  assert(Addr->getType()->getPointerAddressSpace() ==
1361             CGM.getDataLayout().getAllocaAddrSpace() &&
1362         "Pointer should be in alloca address space");
1363  llvm::Value *SizeV = llvm::ConstantInt::get(
1364      Int64Ty, Size.isScalable() ? -1 : Size.getFixedValue());
1365  llvm::CallInst *C =
1366      Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
1367  C->setDoesNotThrow();
1368  return SizeV;
1369}
1370
1371void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
1372  assert(Addr->getType()->getPointerAddressSpace() ==
1373             CGM.getDataLayout().getAllocaAddrSpace() &&
1374         "Pointer should be in alloca address space");
1375  llvm::CallInst *C =
1376      Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
1377  C->setDoesNotThrow();
1378}
1379
1380void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
1381    CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
1382  // For each dimension stores its QualType and corresponding
1383  // size-expression Value.
1384  SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
1385  SmallVector<IdentifierInfo *, 4> VLAExprNames;
1386
1387  // Break down the array into individual dimensions.
1388  QualType Type1D = D.getType();
1389  while (getContext().getAsVariableArrayType(Type1D)) {
1390    auto VlaSize = getVLAElements1D(Type1D);
1391    if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1392      Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
1393    else {
1394      // Generate a locally unique name for the size expression.
1395      Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
1396      SmallString<12> Buffer;
1397      StringRef NameRef = Name.toStringRef(Buffer);
1398      auto &Ident = getContext().Idents.getOwn(NameRef);
1399      VLAExprNames.push_back(&Ident);
1400      auto SizeExprAddr =
1401          CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
1402      Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
1403      Dimensions.emplace_back(SizeExprAddr.getPointer(),
1404                              Type1D.getUnqualifiedType());
1405    }
1406    Type1D = VlaSize.Type;
1407  }
1408
1409  if (!EmitDebugInfo)
1410    return;
1411
1412  // Register each dimension's size-expression with a DILocalVariable,
1413  // so that it can be used by CGDebugInfo when instantiating a DISubrange
1414  // to describe this array.
1415  unsigned NameIdx = 0;
1416  for (auto &VlaSize : Dimensions) {
1417    llvm::Metadata *MD;
1418    if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
1419      MD = llvm::ConstantAsMetadata::get(C);
1420    else {
1421      // Create an artificial VarDecl to generate debug info for.
1422      IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
1423      auto QT = getContext().getIntTypeForBitwidth(
1424          SizeTy->getScalarSizeInBits(), false);
1425      auto *ArtificialDecl = VarDecl::Create(
1426          getContext(), const_cast<DeclContext *>(D.getDeclContext()),
1427          D.getLocation(), D.getLocation(), NameIdent, QT,
1428          getContext().CreateTypeSourceInfo(QT), SC_Auto);
1429      ArtificialDecl->setImplicit();
1430
1431      MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
1432                                         Builder);
1433    }
1434    assert(MD && "No Size expression debug node created");
1435    DI->registerVLASizeExpression(VlaSize.Type, MD);
1436  }
1437}
1438
1439/// EmitAutoVarAlloca - Emit the alloca and debug information for a
1440/// local variable.  Does not emit initialization or destruction.
1441CodeGenFunction::AutoVarEmission
1442CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
1443  QualType Ty = D.getType();
1444  assert(
1445      Ty.getAddressSpace() == LangAS::Default ||
1446      (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
1447
1448  AutoVarEmission emission(D);
1449
1450  bool isEscapingByRef = D.isEscapingByref();
1451  emission.IsEscapingByRef = isEscapingByRef;
1452
1453  CharUnits alignment = getContext().getDeclAlign(&D);
1454
1455  // If the type is variably-modified, emit all the VLA sizes for it.
1456  if (Ty->isVariablyModifiedType())
1457    EmitVariablyModifiedType(Ty);
1458
1459  auto *DI = getDebugInfo();
1460  bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
1461
1462  Address address = Address::invalid();
1463  Address AllocaAddr = Address::invalid();
1464  Address OpenMPLocalAddr = Address::invalid();
1465  if (CGM.getLangOpts().OpenMPIRBuilder)
1466    OpenMPLocalAddr = OMPBuilderCBHelpers::getAddressOfLocalVariable(*this, &D);
1467  else
1468    OpenMPLocalAddr =
1469        getLangOpts().OpenMP
1470            ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
1471            : Address::invalid();
1472
1473  bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
1474
1475  if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
1476    address = OpenMPLocalAddr;
1477    AllocaAddr = OpenMPLocalAddr;
1478  } else if (Ty->isConstantSizeType()) {
1479    // If this value is an array or struct with a statically determinable
1480    // constant initializer, there are optimizations we can do.
1481    //
1482    // TODO: We should constant-evaluate the initializer of any variable,
1483    // as long as it is initialized by a constant expression. Currently,
1484    // isConstantInitializer produces wrong answers for structs with
1485    // reference or bitfield members, and a few other cases, and checking
1486    // for POD-ness protects us from some of these.
1487    if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
1488        (D.isConstexpr() ||
1489         ((Ty.isPODType(getContext()) ||
1490           getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
1491          D.getInit()->isConstantInitializer(getContext(), false)))) {
1492
1493      // If the variable's a const type, and it's neither an NRVO
1494      // candidate nor a __block variable and has no mutable members,
1495      // emit it as a global instead.
1496      // Exception is if a variable is located in non-constant address space
1497      // in OpenCL.
1498      bool NeedsDtor =
1499          D.needsDestruction(getContext()) == QualType::DK_cxx_destructor;
1500      if ((!getLangOpts().OpenCL ||
1501           Ty.getAddressSpace() == LangAS::opencl_constant) &&
1502          (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
1503           !isEscapingByRef &&
1504           Ty.isConstantStorage(getContext(), true, !NeedsDtor))) {
1505        EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
1506
1507        // Signal this condition to later callbacks.
1508        emission.Addr = Address::invalid();
1509        assert(emission.wasEmittedAsGlobal());
1510        return emission;
1511      }
1512
1513      // Otherwise, tell the initialization code that we're in this case.
1514      emission.IsConstantAggregate = true;
1515    }
1516
1517    // A normal fixed sized variable becomes an alloca in the entry block,
1518    // unless:
1519    // - it's an NRVO variable.
1520    // - we are compiling OpenMP and it's an OpenMP local variable.
1521    if (NRVO) {
1522      // The named return value optimization: allocate this variable in the
1523      // return slot, so that we can elide the copy when returning this
1524      // variable (C++0x [class.copy]p34).
1525      address = ReturnValue;
1526      AllocaAddr = ReturnValue;
1527
1528      if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1529        const auto *RD = RecordTy->getDecl();
1530        const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1531        if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
1532            RD->isNonTrivialToPrimitiveDestroy()) {
1533          // Create a flag that is used to indicate when the NRVO was applied
1534          // to this variable. Set it to zero to indicate that NRVO was not
1535          // applied.
1536          llvm::Value *Zero = Builder.getFalse();
1537          Address NRVOFlag =
1538              CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
1539          EnsureInsertPoint();
1540          Builder.CreateStore(Zero, NRVOFlag);
1541
1542          // Record the NRVO flag for this variable.
1543          NRVOFlags[&D] = NRVOFlag.getPointer();
1544          emission.NRVOFlag = NRVOFlag.getPointer();
1545        }
1546      }
1547    } else {
1548      CharUnits allocaAlignment;
1549      llvm::Type *allocaTy;
1550      if (isEscapingByRef) {
1551        auto &byrefInfo = getBlockByrefInfo(&D);
1552        allocaTy = byrefInfo.Type;
1553        allocaAlignment = byrefInfo.ByrefAlignment;
1554      } else {
1555        allocaTy = ConvertTypeForMem(Ty);
1556        allocaAlignment = alignment;
1557      }
1558
1559      // Create the alloca.  Note that we set the name separately from
1560      // building the instruction so that it's there even in no-asserts
1561      // builds.
1562      address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
1563                                 /*ArraySize=*/nullptr, &AllocaAddr);
1564
1565      // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
1566      // the catch parameter starts in the catchpad instruction, and we can't
1567      // insert code in those basic blocks.
1568      bool IsMSCatchParam =
1569          D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
1570
1571      // Emit a lifetime intrinsic if meaningful. There's no point in doing this
1572      // if we don't have a valid insertion point (?).
1573      if (HaveInsertPoint() && !IsMSCatchParam) {
1574        // If there's a jump into the lifetime of this variable, its lifetime
1575        // gets broken up into several regions in IR, which requires more work
1576        // to handle correctly. For now, just omit the intrinsics; this is a
1577        // rare case, and it's better to just be conservatively correct.
1578        // PR28267.
1579        //
1580        // We have to do this in all language modes if there's a jump past the
1581        // declaration. We also have to do it in C if there's a jump to an
1582        // earlier point in the current block because non-VLA lifetimes begin as
1583        // soon as the containing block is entered, not when its variables
1584        // actually come into scope; suppressing the lifetime annotations
1585        // completely in this case is unnecessarily pessimistic, but again, this
1586        // is rare.
1587        if (!Bypasses.IsBypassed(&D) &&
1588            !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
1589          llvm::TypeSize Size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
1590          emission.SizeForLifetimeMarkers =
1591              EmitLifetimeStart(Size, AllocaAddr.getPointer());
1592        }
1593      } else {
1594        assert(!emission.useLifetimeMarkers());
1595      }
1596    }
1597  } else {
1598    EnsureInsertPoint();
1599
1600    // Delayed globalization for variable length declarations. This ensures that
1601    // the expression representing the length has been emitted and can be used
1602    // by the definition of the VLA. Since this is an escaped declaration, in
1603    // OpenMP we have to use a call to __kmpc_alloc_shared(). The matching
1604    // deallocation call to __kmpc_free_shared() is emitted later.
1605    bool VarAllocated = false;
1606    if (getLangOpts().OpenMPIsTargetDevice) {
1607      auto &RT = CGM.getOpenMPRuntime();
1608      if (RT.isDelayedVariableLengthDecl(*this, &D)) {
1609        // Emit call to __kmpc_alloc_shared() instead of the alloca.
1610        std::pair<llvm::Value *, llvm::Value *> AddrSizePair =
1611            RT.getKmpcAllocShared(*this, &D);
1612
1613        // Save the address of the allocation:
1614        LValue Base = MakeAddrLValue(AddrSizePair.first, D.getType(),
1615                                     CGM.getContext().getDeclAlign(&D),
1616                                     AlignmentSource::Decl);
1617        address = Base.getAddress(*this);
1618
1619        // Push a cleanup block to emit the call to __kmpc_free_shared in the
1620        // appropriate location at the end of the scope of the
1621        // __kmpc_alloc_shared functions:
1622        pushKmpcAllocFree(NormalCleanup, AddrSizePair);
1623
1624        // Mark variable as allocated:
1625        VarAllocated = true;
1626      }
1627    }
1628
1629    if (!VarAllocated) {
1630      if (!DidCallStackSave) {
1631        // Save the stack.
1632        Address Stack =
1633            CreateDefaultAlignTempAlloca(AllocaInt8PtrTy, "saved_stack");
1634
1635        llvm::Value *V = Builder.CreateStackSave();
1636        assert(V->getType() == AllocaInt8PtrTy);
1637        Builder.CreateStore(V, Stack);
1638
1639        DidCallStackSave = true;
1640
1641        // Push a cleanup block and restore the stack there.
1642        // FIXME: in general circumstances, this should be an EH cleanup.
1643        pushStackRestore(NormalCleanup, Stack);
1644      }
1645
1646      auto VlaSize = getVLASize(Ty);
1647      llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
1648
1649      // Allocate memory for the array.
1650      address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
1651                                 &AllocaAddr);
1652    }
1653
1654    // If we have debug info enabled, properly describe the VLA dimensions for
1655    // this type by registering the vla size expression for each of the
1656    // dimensions.
1657    EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
1658  }
1659
1660  setAddrOfLocalVar(&D, address);
1661  emission.Addr = address;
1662  emission.AllocaAddr = AllocaAddr;
1663
1664  // Emit debug info for local var declaration.
1665  if (EmitDebugInfo && HaveInsertPoint()) {
1666    Address DebugAddr = address;
1667    bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
1668    DI->setLocation(D.getLocation());
1669
1670    // If NRVO, use a pointer to the return address.
1671    if (UsePointerValue) {
1672      DebugAddr = ReturnValuePointer;
1673      AllocaAddr = ReturnValuePointer;
1674    }
1675    (void)DI->EmitDeclareOfAutoVariable(&D, AllocaAddr.getPointer(), Builder,
1676                                        UsePointerValue);
1677  }
1678
1679  if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
1680    EmitVarAnnotations(&D, address.getPointer());
1681
1682  // Make sure we call @llvm.lifetime.end.
1683  if (emission.useLifetimeMarkers())
1684    EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
1685                                         emission.getOriginalAllocatedAddress(),
1686                                         emission.getSizeForLifetimeMarkers());
1687
1688  return emission;
1689}
1690
1691static bool isCapturedBy(const VarDecl &, const Expr *);
1692
1693/// Determines whether the given __block variable is potentially
1694/// captured by the given statement.
1695static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
1696  if (const Expr *E = dyn_cast<Expr>(S))
1697    return isCapturedBy(Var, E);
1698  for (const Stmt *SubStmt : S->children())
1699    if (isCapturedBy(Var, SubStmt))
1700      return true;
1701  return false;
1702}
1703
1704/// Determines whether the given __block variable is potentially
1705/// captured by the given expression.
1706static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
1707  // Skip the most common kinds of expressions that make
1708  // hierarchy-walking expensive.
1709  E = E->IgnoreParenCasts();
1710
1711  if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
1712    const BlockDecl *Block = BE->getBlockDecl();
1713    for (const auto &I : Block->captures()) {
1714      if (I.getVariable() == &Var)
1715        return true;
1716    }
1717
1718    // No need to walk into the subexpressions.
1719    return false;
1720  }
1721
1722  if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
1723    const CompoundStmt *CS = SE->getSubStmt();
1724    for (const auto *BI : CS->body())
1725      if (const auto *BIE = dyn_cast<Expr>(BI)) {
1726        if (isCapturedBy(Var, BIE))
1727          return true;
1728      }
1729      else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1730          // special case declarations
1731          for (const auto *I : DS->decls()) {
1732              if (const auto *VD = dyn_cast<VarDecl>((I))) {
1733                const Expr *Init = VD->getInit();
1734                if (Init && isCapturedBy(Var, Init))
1735                  return true;
1736              }
1737          }
1738      }
1739      else
1740        // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1741        // Later, provide code to poke into statements for capture analysis.
1742        return true;
1743    return false;
1744  }
1745
1746  for (const Stmt *SubStmt : E->children())
1747    if (isCapturedBy(Var, SubStmt))
1748      return true;
1749
1750  return false;
1751}
1752
1753/// Determine whether the given initializer is trivial in the sense
1754/// that it requires no code to be generated.
1755bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1756  if (!Init)
1757    return true;
1758
1759  if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1760    if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1761      if (Constructor->isTrivial() &&
1762          Constructor->isDefaultConstructor() &&
1763          !Construct->requiresZeroInitialization())
1764        return true;
1765
1766  return false;
1767}
1768
1769void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
1770                                                      const VarDecl &D,
1771                                                      Address Loc) {
1772  auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
1773  auto trivialAutoVarInitMaxSize =
1774      getContext().getLangOpts().TrivialAutoVarInitMaxSize;
1775  CharUnits Size = getContext().getTypeSizeInChars(type);
1776  bool isVolatile = type.isVolatileQualified();
1777  if (!Size.isZero()) {
1778    // We skip auto-init variables by their alloc size. Take this as an example:
1779    // "struct Foo {int x; char buff[1024];}" Assume the max-size flag is 1023.
1780    // All Foo type variables will be skipped. Ideally, we only skip the buff
1781    // array and still auto-init X in this example.
1782    // TODO: Improve the size filtering to by member size.
1783    auto allocSize = CGM.getDataLayout().getTypeAllocSize(Loc.getElementType());
1784    switch (trivialAutoVarInit) {
1785    case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1786      llvm_unreachable("Uninitialized handled by caller");
1787    case LangOptions::TrivialAutoVarInitKind::Zero:
1788      if (CGM.stopAutoInit())
1789        return;
1790      if (trivialAutoVarInitMaxSize > 0 &&
1791          allocSize > trivialAutoVarInitMaxSize)
1792        return;
1793      emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
1794      break;
1795    case LangOptions::TrivialAutoVarInitKind::Pattern:
1796      if (CGM.stopAutoInit())
1797        return;
1798      if (trivialAutoVarInitMaxSize > 0 &&
1799          allocSize > trivialAutoVarInitMaxSize)
1800        return;
1801      emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
1802      break;
1803    }
1804    return;
1805  }
1806
1807  // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
1808  // them, so emit a memcpy with the VLA size to initialize each element.
1809  // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
1810  // will catch that code, but there exists code which generates zero-sized
1811  // VLAs. Be nice and initialize whatever they requested.
1812  const auto *VlaType = getContext().getAsVariableArrayType(type);
1813  if (!VlaType)
1814    return;
1815  auto VlaSize = getVLASize(VlaType);
1816  auto SizeVal = VlaSize.NumElts;
1817  CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
1818  switch (trivialAutoVarInit) {
1819  case LangOptions::TrivialAutoVarInitKind::Uninitialized:
1820    llvm_unreachable("Uninitialized handled by caller");
1821
1822  case LangOptions::TrivialAutoVarInitKind::Zero: {
1823    if (CGM.stopAutoInit())
1824      return;
1825    if (!EltSize.isOne())
1826      SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1827    auto *I = Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0),
1828                                   SizeVal, isVolatile);
1829    I->addAnnotationMetadata("auto-init");
1830    break;
1831  }
1832
1833  case LangOptions::TrivialAutoVarInitKind::Pattern: {
1834    if (CGM.stopAutoInit())
1835      return;
1836    llvm::Type *ElTy = Loc.getElementType();
1837    llvm::Constant *Constant = constWithPadding(
1838        CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
1839    CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
1840    llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
1841    llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
1842    llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
1843    llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
1844        SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
1845        "vla.iszerosized");
1846    Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
1847    EmitBlock(SetupBB);
1848    if (!EltSize.isOne())
1849      SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
1850    llvm::Value *BaseSizeInChars =
1851        llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
1852    Address Begin = Loc.withElementType(Int8Ty);
1853    llvm::Value *End = Builder.CreateInBoundsGEP(
1854        Begin.getElementType(), Begin.getPointer(), SizeVal, "vla.end");
1855    llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
1856    EmitBlock(LoopBB);
1857    llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
1858    Cur->addIncoming(Begin.getPointer(), OriginBB);
1859    CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
1860    auto *I =
1861        Builder.CreateMemCpy(Address(Cur, Int8Ty, CurAlign),
1862                             createUnnamedGlobalForMemcpyFrom(
1863                                 CGM, D, Builder, Constant, ConstantAlign),
1864                             BaseSizeInChars, isVolatile);
1865    I->addAnnotationMetadata("auto-init");
1866    llvm::Value *Next =
1867        Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
1868    llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
1869    Builder.CreateCondBr(Done, ContBB, LoopBB);
1870    Cur->addIncoming(Next, LoopBB);
1871    EmitBlock(ContBB);
1872  } break;
1873  }
1874}
1875
1876void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1877  assert(emission.Variable && "emission was not valid!");
1878
1879  // If this was emitted as a global constant, we're done.
1880  if (emission.wasEmittedAsGlobal()) return;
1881
1882  const VarDecl &D = *emission.Variable;
1883  auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1884  QualType type = D.getType();
1885
1886  // If this local has an initializer, emit it now.
1887  const Expr *Init = D.getInit();
1888
1889  // If we are at an unreachable point, we don't need to emit the initializer
1890  // unless it contains a label.
1891  if (!HaveInsertPoint()) {
1892    if (!Init || !ContainsLabel(Init)) return;
1893    EnsureInsertPoint();
1894  }
1895
1896  // Initialize the structure of a __block variable.
1897  if (emission.IsEscapingByRef)
1898    emitByrefStructureInit(emission);
1899
1900  // Initialize the variable here if it doesn't have a initializer and it is a
1901  // C struct that is non-trivial to initialize or an array containing such a
1902  // struct.
1903  if (!Init &&
1904      type.isNonTrivialToPrimitiveDefaultInitialize() ==
1905          QualType::PDIK_Struct) {
1906    LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
1907    if (emission.IsEscapingByRef)
1908      drillIntoBlockVariable(*this, Dst, &D);
1909    defaultInitNonTrivialCStructVar(Dst);
1910    return;
1911  }
1912
1913  // Check whether this is a byref variable that's potentially
1914  // captured and moved by its own initializer.  If so, we'll need to
1915  // emit the initializer first, then copy into the variable.
1916  bool capturedByInit =
1917      Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
1918
1919  bool locIsByrefHeader = !capturedByInit;
1920  const Address Loc =
1921      locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
1922
1923  // Note: constexpr already initializes everything correctly.
1924  LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
1925      (D.isConstexpr()
1926           ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1927           : (D.getAttr<UninitializedAttr>()
1928                  ? LangOptions::TrivialAutoVarInitKind::Uninitialized
1929                  : getContext().getLangOpts().getTrivialAutoVarInit()));
1930
1931  auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
1932    if (trivialAutoVarInit ==
1933        LangOptions::TrivialAutoVarInitKind::Uninitialized)
1934      return;
1935
1936    // Only initialize a __block's storage: we always initialize the header.
1937    if (emission.IsEscapingByRef && !locIsByrefHeader)
1938      Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
1939
1940    return emitZeroOrPatternForAutoVarInit(type, D, Loc);
1941  };
1942
1943  if (isTrivialInitializer(Init))
1944    return initializeWhatIsTechnicallyUninitialized(Loc);
1945
1946  llvm::Constant *constant = nullptr;
1947  if (emission.IsConstantAggregate ||
1948      D.mightBeUsableInConstantExpressions(getContext())) {
1949    assert(!capturedByInit && "constant init contains a capturing block?");
1950    constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
1951    if (constant && !constant->isZeroValue() &&
1952        (trivialAutoVarInit !=
1953         LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
1954      IsPattern isPattern =
1955          (trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
1956              ? IsPattern::Yes
1957              : IsPattern::No;
1958      // C guarantees that brace-init with fewer initializers than members in
1959      // the aggregate will initialize the rest of the aggregate as-if it were
1960      // static initialization. In turn static initialization guarantees that
1961      // padding is initialized to zero bits. We could instead pattern-init if D
1962      // has any ImplicitValueInitExpr, but that seems to be unintuitive
1963      // behavior.
1964      constant = constWithPadding(CGM, IsPattern::No,
1965                                  replaceUndef(CGM, isPattern, constant));
1966    }
1967  }
1968
1969  if (!constant) {
1970    initializeWhatIsTechnicallyUninitialized(Loc);
1971    LValue lv = MakeAddrLValue(Loc, type);
1972    lv.setNonGC(true);
1973    return EmitExprAsInit(Init, &D, lv, capturedByInit);
1974  }
1975
1976  if (!emission.IsConstantAggregate) {
1977    // For simple scalar/complex initialization, store the value directly.
1978    LValue lv = MakeAddrLValue(Loc, type);
1979    lv.setNonGC(true);
1980    return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1981  }
1982
1983  emitStoresForConstant(CGM, D, Loc.withElementType(CGM.Int8Ty),
1984                        type.isVolatileQualified(), Builder, constant,
1985                        /*IsAutoInit=*/false);
1986}
1987
1988/// Emit an expression as an initializer for an object (variable, field, etc.)
1989/// at the given location.  The expression is not necessarily the normal
1990/// initializer for the object, and the address is not necessarily
1991/// its normal location.
1992///
1993/// \param init the initializing expression
1994/// \param D the object to act as if we're initializing
1995/// \param lvalue the lvalue to initialize
1996/// \param capturedByInit true if \p D is a __block variable
1997///   whose address is potentially changed by the initializer
1998void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1999                                     LValue lvalue, bool capturedByInit) {
2000  QualType type = D->getType();
2001
2002  if (type->isReferenceType()) {
2003    RValue rvalue = EmitReferenceBindingToExpr(init);
2004    if (capturedByInit)
2005      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
2006    EmitStoreThroughLValue(rvalue, lvalue, true);
2007    return;
2008  }
2009  switch (getEvaluationKind(type)) {
2010  case TEK_Scalar:
2011    EmitScalarInit(init, D, lvalue, capturedByInit);
2012    return;
2013  case TEK_Complex: {
2014    ComplexPairTy complex = EmitComplexExpr(init);
2015    if (capturedByInit)
2016      drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
2017    EmitStoreOfComplex(complex, lvalue, /*init*/ true);
2018    return;
2019  }
2020  case TEK_Aggregate:
2021    if (type->isAtomicType()) {
2022      EmitAtomicInit(const_cast<Expr*>(init), lvalue);
2023    } else {
2024      AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
2025      if (isa<VarDecl>(D))
2026        Overlap = AggValueSlot::DoesNotOverlap;
2027      else if (auto *FD = dyn_cast<FieldDecl>(D))
2028        Overlap = getOverlapForFieldInit(FD);
2029      // TODO: how can we delay here if D is captured by its initializer?
2030      EmitAggExpr(init, AggValueSlot::forLValue(
2031                            lvalue, *this, AggValueSlot::IsDestructed,
2032                            AggValueSlot::DoesNotNeedGCBarriers,
2033                            AggValueSlot::IsNotAliased, Overlap));
2034    }
2035    return;
2036  }
2037  llvm_unreachable("bad evaluation kind");
2038}
2039
2040/// Enter a destroy cleanup for the given local variable.
2041void CodeGenFunction::emitAutoVarTypeCleanup(
2042                            const CodeGenFunction::AutoVarEmission &emission,
2043                            QualType::DestructionKind dtorKind) {
2044  assert(dtorKind != QualType::DK_none);
2045
2046  // Note that for __block variables, we want to destroy the
2047  // original stack object, not the possibly forwarded object.
2048  Address addr = emission.getObjectAddress(*this);
2049
2050  const VarDecl *var = emission.Variable;
2051  QualType type = var->getType();
2052
2053  CleanupKind cleanupKind = NormalAndEHCleanup;
2054  CodeGenFunction::Destroyer *destroyer = nullptr;
2055
2056  switch (dtorKind) {
2057  case QualType::DK_none:
2058    llvm_unreachable("no cleanup for trivially-destructible variable");
2059
2060  case QualType::DK_cxx_destructor:
2061    // If there's an NRVO flag on the emission, we need a different
2062    // cleanup.
2063    if (emission.NRVOFlag) {
2064      assert(!type->isArrayType());
2065      CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
2066      EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
2067                                                  emission.NRVOFlag);
2068      return;
2069    }
2070    break;
2071
2072  case QualType::DK_objc_strong_lifetime:
2073    // Suppress cleanups for pseudo-strong variables.
2074    if (var->isARCPseudoStrong()) return;
2075
2076    // Otherwise, consider whether to use an EH cleanup or not.
2077    cleanupKind = getARCCleanupKind();
2078
2079    // Use the imprecise destroyer by default.
2080    if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
2081      destroyer = CodeGenFunction::destroyARCStrongImprecise;
2082    break;
2083
2084  case QualType::DK_objc_weak_lifetime:
2085    break;
2086
2087  case QualType::DK_nontrivial_c_struct:
2088    destroyer = CodeGenFunction::destroyNonTrivialCStruct;
2089    if (emission.NRVOFlag) {
2090      assert(!type->isArrayType());
2091      EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
2092                                                emission.NRVOFlag, type);
2093      return;
2094    }
2095    break;
2096  }
2097
2098  // If we haven't chosen a more specific destroyer, use the default.
2099  if (!destroyer) destroyer = getDestroyer(dtorKind);
2100
2101  // Use an EH cleanup in array destructors iff the destructor itself
2102  // is being pushed as an EH cleanup.
2103  bool useEHCleanup = (cleanupKind & EHCleanup);
2104  EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
2105                                     useEHCleanup);
2106}
2107
2108void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
2109  assert(emission.Variable && "emission was not valid!");
2110
2111  // If this was emitted as a global constant, we're done.
2112  if (emission.wasEmittedAsGlobal()) return;
2113
2114  // If we don't have an insertion point, we're done.  Sema prevents
2115  // us from jumping into any of these scopes anyway.
2116  if (!HaveInsertPoint()) return;
2117
2118  const VarDecl &D = *emission.Variable;
2119
2120  // Check the type for a cleanup.
2121  if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
2122    emitAutoVarTypeCleanup(emission, dtorKind);
2123
2124  // In GC mode, honor objc_precise_lifetime.
2125  if (getLangOpts().getGC() != LangOptions::NonGC &&
2126      D.hasAttr<ObjCPreciseLifetimeAttr>()) {
2127    EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
2128  }
2129
2130  // Handle the cleanup attribute.
2131  if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
2132    const FunctionDecl *FD = CA->getFunctionDecl();
2133
2134    llvm::Constant *F = CGM.GetAddrOfFunction(FD);
2135    assert(F && "Could not find function!");
2136
2137    const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
2138    EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
2139  }
2140
2141  // If this is a block variable, call _Block_object_destroy
2142  // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
2143  // mode.
2144  if (emission.IsEscapingByRef &&
2145      CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
2146    BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2147    if (emission.Variable->getType().isObjCGCWeak())
2148      Flags |= BLOCK_FIELD_IS_WEAK;
2149    enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
2150                      /*LoadBlockVarAddr*/ false,
2151                      cxxDestructorCanThrow(emission.Variable->getType()));
2152  }
2153}
2154
2155CodeGenFunction::Destroyer *
2156CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
2157  switch (kind) {
2158  case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
2159  case QualType::DK_cxx_destructor:
2160    return destroyCXXObject;
2161  case QualType::DK_objc_strong_lifetime:
2162    return destroyARCStrongPrecise;
2163  case QualType::DK_objc_weak_lifetime:
2164    return destroyARCWeak;
2165  case QualType::DK_nontrivial_c_struct:
2166    return destroyNonTrivialCStruct;
2167  }
2168  llvm_unreachable("Unknown DestructionKind");
2169}
2170
2171/// pushEHDestroy - Push the standard destructor for the given type as
2172/// an EH-only cleanup.
2173void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
2174                                    Address addr, QualType type) {
2175  assert(dtorKind && "cannot push destructor for trivial type");
2176  assert(needsEHCleanup(dtorKind));
2177
2178  pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
2179}
2180
2181/// pushDestroy - Push the standard destructor for the given type as
2182/// at least a normal cleanup.
2183void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
2184                                  Address addr, QualType type) {
2185  assert(dtorKind && "cannot push destructor for trivial type");
2186
2187  CleanupKind cleanupKind = getCleanupKind(dtorKind);
2188  pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
2189              cleanupKind & EHCleanup);
2190}
2191
2192void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
2193                                  QualType type, Destroyer *destroyer,
2194                                  bool useEHCleanupForArray) {
2195  pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
2196                                     destroyer, useEHCleanupForArray);
2197}
2198
2199void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
2200  EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
2201}
2202
2203void CodeGenFunction::pushKmpcAllocFree(
2204    CleanupKind Kind, std::pair<llvm::Value *, llvm::Value *> AddrSizePair) {
2205  EHStack.pushCleanup<KmpcAllocFree>(Kind, AddrSizePair);
2206}
2207
2208void CodeGenFunction::pushLifetimeExtendedDestroy(CleanupKind cleanupKind,
2209                                                  Address addr, QualType type,
2210                                                  Destroyer *destroyer,
2211                                                  bool useEHCleanupForArray) {
2212  // If we're not in a conditional branch, we don't need to bother generating a
2213  // conditional cleanup.
2214  if (!isInConditionalBranch()) {
2215    // Push an EH-only cleanup for the object now.
2216    // FIXME: When popping normal cleanups, we need to keep this EH cleanup
2217    // around in case a temporary's destructor throws an exception.
2218    if (cleanupKind & EHCleanup)
2219      EHStack.pushCleanup<DestroyObject>(
2220          static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
2221          destroyer, useEHCleanupForArray);
2222
2223    return pushCleanupAfterFullExprWithActiveFlag<DestroyObject>(
2224        cleanupKind, Address::invalid(), addr, type, destroyer, useEHCleanupForArray);
2225  }
2226
2227  // Otherwise, we should only destroy the object if it's been initialized.
2228  // Re-use the active flag and saved address across both the EH and end of
2229  // scope cleanups.
2230
2231  using SavedType = typename DominatingValue<Address>::saved_type;
2232  using ConditionalCleanupType =
2233      EHScopeStack::ConditionalCleanup<DestroyObject, Address, QualType,
2234                                       Destroyer *, bool>;
2235
2236  Address ActiveFlag = createCleanupActiveFlag();
2237  SavedType SavedAddr = saveValueInCond(addr);
2238
2239  if (cleanupKind & EHCleanup) {
2240    EHStack.pushCleanup<ConditionalCleanupType>(
2241        static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), SavedAddr, type,
2242        destroyer, useEHCleanupForArray);
2243    initFullExprCleanupWithFlag(ActiveFlag);
2244  }
2245
2246  pushCleanupAfterFullExprWithActiveFlag<ConditionalCleanupType>(
2247      cleanupKind, ActiveFlag, SavedAddr, type, destroyer,
2248      useEHCleanupForArray);
2249}
2250
2251/// emitDestroy - Immediately perform the destruction of the given
2252/// object.
2253///
2254/// \param addr - the address of the object; a type*
2255/// \param type - the type of the object; if an array type, all
2256///   objects are destroyed in reverse order
2257/// \param destroyer - the function to call to destroy individual
2258///   elements
2259/// \param useEHCleanupForArray - whether an EH cleanup should be
2260///   used when destroying array elements, in case one of the
2261///   destructions throws an exception
2262void CodeGenFunction::emitDestroy(Address addr, QualType type,
2263                                  Destroyer *destroyer,
2264                                  bool useEHCleanupForArray) {
2265  const ArrayType *arrayType = getContext().getAsArrayType(type);
2266  if (!arrayType)
2267    return destroyer(*this, addr, type);
2268
2269  llvm::Value *length = emitArrayLength(arrayType, type, addr);
2270
2271  CharUnits elementAlign =
2272    addr.getAlignment()
2273        .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2274
2275  // Normally we have to check whether the array is zero-length.
2276  bool checkZeroLength = true;
2277
2278  // But if the array length is constant, we can suppress that.
2279  if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
2280    // ...and if it's constant zero, we can just skip the entire thing.
2281    if (constLength->isZero()) return;
2282    checkZeroLength = false;
2283  }
2284
2285  llvm::Value *begin = addr.getPointer();
2286  llvm::Value *end =
2287      Builder.CreateInBoundsGEP(addr.getElementType(), begin, length);
2288  emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2289                   checkZeroLength, useEHCleanupForArray);
2290}
2291
2292/// emitArrayDestroy - Destroys all the elements of the given array,
2293/// beginning from last to first.  The array cannot be zero-length.
2294///
2295/// \param begin - a type* denoting the first element of the array
2296/// \param end - a type* denoting one past the end of the array
2297/// \param elementType - the element type of the array
2298/// \param destroyer - the function to call to destroy elements
2299/// \param useEHCleanup - whether to push an EH cleanup to destroy
2300///   the remaining elements in case the destruction of a single
2301///   element throws
2302void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
2303                                       llvm::Value *end,
2304                                       QualType elementType,
2305                                       CharUnits elementAlign,
2306                                       Destroyer *destroyer,
2307                                       bool checkZeroLength,
2308                                       bool useEHCleanup) {
2309  assert(!elementType->isArrayType());
2310
2311  // The basic structure here is a do-while loop, because we don't
2312  // need to check for the zero-element case.
2313  llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
2314  llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
2315
2316  if (checkZeroLength) {
2317    llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
2318                                                "arraydestroy.isempty");
2319    Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
2320  }
2321
2322  // Enter the loop body, making that address the current address.
2323  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2324  EmitBlock(bodyBB);
2325  llvm::PHINode *elementPast =
2326    Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
2327  elementPast->addIncoming(end, entryBB);
2328
2329  // Shift the address back by one element.
2330  llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
2331  llvm::Type *llvmElementType = ConvertTypeForMem(elementType);
2332  llvm::Value *element = Builder.CreateInBoundsGEP(
2333      llvmElementType, elementPast, negativeOne, "arraydestroy.element");
2334
2335  if (useEHCleanup)
2336    pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
2337                                   destroyer);
2338
2339  // Perform the actual destruction there.
2340  destroyer(*this, Address(element, llvmElementType, elementAlign),
2341            elementType);
2342
2343  if (useEHCleanup)
2344    PopCleanupBlock();
2345
2346  // Check whether we've reached the end.
2347  llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
2348  Builder.CreateCondBr(done, doneBB, bodyBB);
2349  elementPast->addIncoming(element, Builder.GetInsertBlock());
2350
2351  // Done.
2352  EmitBlock(doneBB);
2353}
2354
2355/// Perform partial array destruction as if in an EH cleanup.  Unlike
2356/// emitArrayDestroy, the element type here may still be an array type.
2357static void emitPartialArrayDestroy(CodeGenFunction &CGF,
2358                                    llvm::Value *begin, llvm::Value *end,
2359                                    QualType type, CharUnits elementAlign,
2360                                    CodeGenFunction::Destroyer *destroyer) {
2361  llvm::Type *elemTy = CGF.ConvertTypeForMem(type);
2362
2363  // If the element type is itself an array, drill down.
2364  unsigned arrayDepth = 0;
2365  while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
2366    // VLAs don't require a GEP index to walk into.
2367    if (!isa<VariableArrayType>(arrayType))
2368      arrayDepth++;
2369    type = arrayType->getElementType();
2370  }
2371
2372  if (arrayDepth) {
2373    llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
2374
2375    SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
2376    begin = CGF.Builder.CreateInBoundsGEP(
2377        elemTy, begin, gepIndices, "pad.arraybegin");
2378    end = CGF.Builder.CreateInBoundsGEP(
2379        elemTy, end, gepIndices, "pad.arrayend");
2380  }
2381
2382  // Destroy the array.  We don't ever need an EH cleanup because we
2383  // assume that we're in an EH cleanup ourselves, so a throwing
2384  // destructor causes an immediate terminate.
2385  CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
2386                       /*checkZeroLength*/ true, /*useEHCleanup*/ false);
2387}
2388
2389namespace {
2390  /// RegularPartialArrayDestroy - a cleanup which performs a partial
2391  /// array destroy where the end pointer is regularly determined and
2392  /// does not need to be loaded from a local.
2393  class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2394    llvm::Value *ArrayBegin;
2395    llvm::Value *ArrayEnd;
2396    QualType ElementType;
2397    CodeGenFunction::Destroyer *Destroyer;
2398    CharUnits ElementAlign;
2399  public:
2400    RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
2401                               QualType elementType, CharUnits elementAlign,
2402                               CodeGenFunction::Destroyer *destroyer)
2403      : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
2404        ElementType(elementType), Destroyer(destroyer),
2405        ElementAlign(elementAlign) {}
2406
2407    void Emit(CodeGenFunction &CGF, Flags flags) override {
2408      emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
2409                              ElementType, ElementAlign, Destroyer);
2410    }
2411  };
2412
2413  /// IrregularPartialArrayDestroy - a cleanup which performs a
2414  /// partial array destroy where the end pointer is irregularly
2415  /// determined and must be loaded from a local.
2416  class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
2417    llvm::Value *ArrayBegin;
2418    Address ArrayEndPointer;
2419    QualType ElementType;
2420    CodeGenFunction::Destroyer *Destroyer;
2421    CharUnits ElementAlign;
2422  public:
2423    IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
2424                                 Address arrayEndPointer,
2425                                 QualType elementType,
2426                                 CharUnits elementAlign,
2427                                 CodeGenFunction::Destroyer *destroyer)
2428      : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
2429        ElementType(elementType), Destroyer(destroyer),
2430        ElementAlign(elementAlign) {}
2431
2432    void Emit(CodeGenFunction &CGF, Flags flags) override {
2433      llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
2434      emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
2435                              ElementType, ElementAlign, Destroyer);
2436    }
2437  };
2438} // end anonymous namespace
2439
2440/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
2441/// already-constructed elements of the given array.  The cleanup
2442/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2443///
2444/// \param elementType - the immediate element type of the array;
2445///   possibly still an array type
2446void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2447                                                       Address arrayEndPointer,
2448                                                       QualType elementType,
2449                                                       CharUnits elementAlign,
2450                                                       Destroyer *destroyer) {
2451  pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
2452                                                    arrayBegin, arrayEndPointer,
2453                                                    elementType, elementAlign,
2454                                                    destroyer);
2455}
2456
2457/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
2458/// already-constructed elements of the given array.  The cleanup
2459/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
2460///
2461/// \param elementType - the immediate element type of the array;
2462///   possibly still an array type
2463void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2464                                                     llvm::Value *arrayEnd,
2465                                                     QualType elementType,
2466                                                     CharUnits elementAlign,
2467                                                     Destroyer *destroyer) {
2468  pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
2469                                                  arrayBegin, arrayEnd,
2470                                                  elementType, elementAlign,
2471                                                  destroyer);
2472}
2473
2474/// Lazily declare the @llvm.lifetime.start intrinsic.
2475llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
2476  if (LifetimeStartFn)
2477    return LifetimeStartFn;
2478  LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
2479    llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
2480  return LifetimeStartFn;
2481}
2482
2483/// Lazily declare the @llvm.lifetime.end intrinsic.
2484llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
2485  if (LifetimeEndFn)
2486    return LifetimeEndFn;
2487  LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
2488    llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
2489  return LifetimeEndFn;
2490}
2491
2492namespace {
2493  /// A cleanup to perform a release of an object at the end of a
2494  /// function.  This is used to balance out the incoming +1 of a
2495  /// ns_consumed argument when we can't reasonably do that just by
2496  /// not doing the initial retain for a __block argument.
2497  struct ConsumeARCParameter final : EHScopeStack::Cleanup {
2498    ConsumeARCParameter(llvm::Value *param,
2499                        ARCPreciseLifetime_t precise)
2500      : Param(param), Precise(precise) {}
2501
2502    llvm::Value *Param;
2503    ARCPreciseLifetime_t Precise;
2504
2505    void Emit(CodeGenFunction &CGF, Flags flags) override {
2506      CGF.EmitARCRelease(Param, Precise);
2507    }
2508  };
2509} // end anonymous namespace
2510
2511/// Emit an alloca (or GlobalValue depending on target)
2512/// for the specified parameter and set up LocalDeclMap.
2513void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
2514                                   unsigned ArgNo) {
2515  bool NoDebugInfo = false;
2516  // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
2517  assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
2518         "Invalid argument to EmitParmDecl");
2519
2520  // Set the name of the parameter's initial value to make IR easier to
2521  // read. Don't modify the names of globals.
2522  if (!isa<llvm::GlobalValue>(Arg.getAnyValue()))
2523    Arg.getAnyValue()->setName(D.getName());
2524
2525  QualType Ty = D.getType();
2526
2527  // Use better IR generation for certain implicit parameters.
2528  if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
2529    // The only implicit argument a block has is its literal.
2530    // This may be passed as an inalloca'ed value on Windows x86.
2531    if (BlockInfo) {
2532      llvm::Value *V = Arg.isIndirect()
2533                           ? Builder.CreateLoad(Arg.getIndirectAddress())
2534                           : Arg.getDirectValue();
2535      setBlockContextParameter(IPD, ArgNo, V);
2536      return;
2537    }
2538    // Suppressing debug info for ThreadPrivateVar parameters, else it hides
2539    // debug info of TLS variables.
2540    NoDebugInfo =
2541        (IPD->getParameterKind() == ImplicitParamKind::ThreadPrivateVar);
2542  }
2543
2544  Address DeclPtr = Address::invalid();
2545  Address AllocaPtr = Address::invalid();
2546  bool DoStore = false;
2547  bool IsScalar = hasScalarEvaluationKind(Ty);
2548  bool UseIndirectDebugAddress = false;
2549
2550  // If we already have a pointer to the argument, reuse the input pointer.
2551  if (Arg.isIndirect()) {
2552    DeclPtr = Arg.getIndirectAddress();
2553    DeclPtr = DeclPtr.withElementType(ConvertTypeForMem(Ty));
2554    // Indirect argument is in alloca address space, which may be different
2555    // from the default address space.
2556    auto AllocaAS = CGM.getASTAllocaAddressSpace();
2557    auto *V = DeclPtr.getPointer();
2558    AllocaPtr = DeclPtr;
2559
2560    // For truly ABI indirect arguments -- those that are not `byval` -- store
2561    // the address of the argument on the stack to preserve debug information.
2562    ABIArgInfo ArgInfo = CurFnInfo->arguments()[ArgNo - 1].info;
2563    if (ArgInfo.isIndirect())
2564      UseIndirectDebugAddress = !ArgInfo.getIndirectByVal();
2565    if (UseIndirectDebugAddress) {
2566      auto PtrTy = getContext().getPointerType(Ty);
2567      AllocaPtr = CreateMemTemp(PtrTy, getContext().getTypeAlignInChars(PtrTy),
2568                                D.getName() + ".indirect_addr");
2569      EmitStoreOfScalar(V, AllocaPtr, /* Volatile */ false, PtrTy);
2570    }
2571
2572    auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
2573    auto DestLangAS =
2574        getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
2575    if (SrcLangAS != DestLangAS) {
2576      assert(getContext().getTargetAddressSpace(SrcLangAS) ==
2577             CGM.getDataLayout().getAllocaAddrSpace());
2578      auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
2579      auto *T = llvm::PointerType::get(getLLVMContext(), DestAS);
2580      DeclPtr =
2581          DeclPtr.withPointer(getTargetHooks().performAddrSpaceCast(
2582                                  *this, V, SrcLangAS, DestLangAS, T, true),
2583                              DeclPtr.isKnownNonNull());
2584    }
2585
2586    // Push a destructor cleanup for this parameter if the ABI requires it.
2587    // Don't push a cleanup in a thunk for a method that will also emit a
2588    // cleanup.
2589    if (Ty->isRecordType() && !CurFuncIsThunk &&
2590        Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
2591      if (QualType::DestructionKind DtorKind =
2592              D.needsDestruction(getContext())) {
2593        assert((DtorKind == QualType::DK_cxx_destructor ||
2594                DtorKind == QualType::DK_nontrivial_c_struct) &&
2595               "unexpected destructor type");
2596        pushDestroy(DtorKind, DeclPtr, Ty);
2597        CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
2598            EHStack.stable_begin();
2599      }
2600    }
2601  } else {
2602    // Check if the parameter address is controlled by OpenMP runtime.
2603    Address OpenMPLocalAddr =
2604        getLangOpts().OpenMP
2605            ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
2606            : Address::invalid();
2607    if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
2608      DeclPtr = OpenMPLocalAddr;
2609      AllocaPtr = DeclPtr;
2610    } else {
2611      // Otherwise, create a temporary to hold the value.
2612      DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
2613                              D.getName() + ".addr", &AllocaPtr);
2614    }
2615    DoStore = true;
2616  }
2617
2618  llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
2619
2620  LValue lv = MakeAddrLValue(DeclPtr, Ty);
2621  if (IsScalar) {
2622    Qualifiers qs = Ty.getQualifiers();
2623    if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
2624      // We honor __attribute__((ns_consumed)) for types with lifetime.
2625      // For __strong, it's handled by just skipping the initial retain;
2626      // otherwise we have to balance out the initial +1 with an extra
2627      // cleanup to do the release at the end of the function.
2628      bool isConsumed = D.hasAttr<NSConsumedAttr>();
2629
2630      // If a parameter is pseudo-strong then we can omit the implicit retain.
2631      if (D.isARCPseudoStrong()) {
2632        assert(lt == Qualifiers::OCL_Strong &&
2633               "pseudo-strong variable isn't strong?");
2634        assert(qs.hasConst() && "pseudo-strong variable should be const!");
2635        lt = Qualifiers::OCL_ExplicitNone;
2636      }
2637
2638      // Load objects passed indirectly.
2639      if (Arg.isIndirect() && !ArgVal)
2640        ArgVal = Builder.CreateLoad(DeclPtr);
2641
2642      if (lt == Qualifiers::OCL_Strong) {
2643        if (!isConsumed) {
2644          if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2645            // use objc_storeStrong(&dest, value) for retaining the
2646            // object. But first, store a null into 'dest' because
2647            // objc_storeStrong attempts to release its old value.
2648            llvm::Value *Null = CGM.EmitNullConstant(D.getType());
2649            EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
2650            EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
2651            DoStore = false;
2652          }
2653          else
2654          // Don't use objc_retainBlock for block pointers, because we
2655          // don't want to Block_copy something just because we got it
2656          // as a parameter.
2657            ArgVal = EmitARCRetainNonBlock(ArgVal);
2658        }
2659      } else {
2660        // Push the cleanup for a consumed parameter.
2661        if (isConsumed) {
2662          ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
2663                                ? ARCPreciseLifetime : ARCImpreciseLifetime);
2664          EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
2665                                                   precise);
2666        }
2667
2668        if (lt == Qualifiers::OCL_Weak) {
2669          EmitARCInitWeak(DeclPtr, ArgVal);
2670          DoStore = false; // The weak init is a store, no need to do two.
2671        }
2672      }
2673
2674      // Enter the cleanup scope.
2675      EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
2676    }
2677  }
2678
2679  // Store the initial value into the alloca.
2680  if (DoStore)
2681    EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
2682
2683  setAddrOfLocalVar(&D, DeclPtr);
2684
2685  // Emit debug info for param declarations in non-thunk functions.
2686  if (CGDebugInfo *DI = getDebugInfo()) {
2687    if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk &&
2688        !NoDebugInfo) {
2689      llvm::DILocalVariable *DILocalVar = DI->EmitDeclareOfArgVariable(
2690          &D, AllocaPtr.getPointer(), ArgNo, Builder, UseIndirectDebugAddress);
2691      if (const auto *Var = dyn_cast_or_null<ParmVarDecl>(&D))
2692        DI->getParamDbgMappings().insert({Var, DILocalVar});
2693    }
2694  }
2695
2696  if (D.hasAttr<AnnotateAttr>())
2697    EmitVarAnnotations(&D, DeclPtr.getPointer());
2698
2699  // We can only check return value nullability if all arguments to the
2700  // function satisfy their nullability preconditions. This makes it necessary
2701  // to emit null checks for args in the function body itself.
2702  if (requiresReturnValueNullabilityCheck()) {
2703    auto Nullability = Ty->getNullability();
2704    if (Nullability && *Nullability == NullabilityKind::NonNull) {
2705      SanitizerScope SanScope(this);
2706      RetValNullabilityPrecondition =
2707          Builder.CreateAnd(RetValNullabilityPrecondition,
2708                            Builder.CreateIsNotNull(Arg.getAnyValue()));
2709    }
2710  }
2711}
2712
2713void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
2714                                            CodeGenFunction *CGF) {
2715  if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
2716    return;
2717  getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
2718}
2719
2720void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
2721                                         CodeGenFunction *CGF) {
2722  if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
2723      (!LangOpts.EmitAllDecls && !D->isUsed()))
2724    return;
2725  getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
2726}
2727
2728void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
2729  getOpenMPRuntime().processRequiresDirective(D);
2730}
2731
2732void CodeGenModule::EmitOMPAllocateDecl(const OMPAllocateDecl *D) {
2733  for (const Expr *E : D->varlists()) {
2734    const auto *DE = cast<DeclRefExpr>(E);
2735    const auto *VD = cast<VarDecl>(DE->getDecl());
2736
2737    // Skip all but globals.
2738    if (!VD->hasGlobalStorage())
2739      continue;
2740
2741    // Check if the global has been materialized yet or not. If not, we are done
2742    // as any later generation will utilize the OMPAllocateDeclAttr. However, if
2743    // we already emitted the global we might have done so before the
2744    // OMPAllocateDeclAttr was attached, leading to the wrong address space
2745    // (potentially). While not pretty, common practise is to remove the old IR
2746    // global and generate a new one, so we do that here too. Uses are replaced
2747    // properly.
2748    StringRef MangledName = getMangledName(VD);
2749    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2750    if (!Entry)
2751      continue;
2752
2753    // We can also keep the existing global if the address space is what we
2754    // expect it to be, if not, it is replaced.
2755    QualType ASTTy = VD->getType();
2756    clang::LangAS GVAS = GetGlobalVarAddressSpace(VD);
2757    auto TargetAS = getContext().getTargetAddressSpace(GVAS);
2758    if (Entry->getType()->getAddressSpace() == TargetAS)
2759      continue;
2760
2761    // Make a new global with the correct type / address space.
2762    llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy);
2763    llvm::PointerType *PTy = llvm::PointerType::get(Ty, TargetAS);
2764
2765    // Replace all uses of the old global with a cast. Since we mutate the type
2766    // in place we neeed an intermediate that takes the spot of the old entry
2767    // until we can create the cast.
2768    llvm::GlobalVariable *DummyGV = new llvm::GlobalVariable(
2769        getModule(), Entry->getValueType(), false,
2770        llvm::GlobalValue::CommonLinkage, nullptr, "dummy", nullptr,
2771        llvm::GlobalVariable::NotThreadLocal, Entry->getAddressSpace());
2772    Entry->replaceAllUsesWith(DummyGV);
2773
2774    Entry->mutateType(PTy);
2775    llvm::Constant *NewPtrForOldDecl =
2776        llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2777            Entry, DummyGV->getType());
2778
2779    // Now we have a casted version of the changed global, the dummy can be
2780    // replaced and deleted.
2781    DummyGV->replaceAllUsesWith(NewPtrForOldDecl);
2782    DummyGV->eraseFromParent();
2783  }
2784}
2785
2786std::optional<CharUnits>
2787CodeGenModule::getOMPAllocateAlignment(const VarDecl *VD) {
2788  if (const auto *AA = VD->getAttr<OMPAllocateDeclAttr>()) {
2789    if (Expr *Alignment = AA->getAlignment()) {
2790      unsigned UserAlign =
2791          Alignment->EvaluateKnownConstInt(getContext()).getExtValue();
2792      CharUnits NaturalAlign =
2793          getNaturalTypeAlignment(VD->getType().getNonReferenceType());
2794
2795      // OpenMP5.1 pg 185 lines 7-10
2796      //   Each item in the align modifier list must be aligned to the maximum
2797      //   of the specified alignment and the type's natural alignment.
2798      return CharUnits::fromQuantity(
2799          std::max<unsigned>(UserAlign, NaturalAlign.getQuantity()));
2800    }
2801  }
2802  return std::nullopt;
2803}
2804