1//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Implements C++ name mangling according to the Itanium C++ ABI,
10// which is used in GCC 3.2 and newer (and many compilers that are
11// ABI-compatible with GCC):
12//
13//   http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling
14//
15//===----------------------------------------------------------------------===//
16
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/Attr.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclOpenMP.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprConcepts.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/Mangle.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/ABI.h"
31#include "clang/Basic/DiagnosticAST.h"
32#include "clang/Basic/Module.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35#include "clang/Basic/Thunk.h"
36#include "llvm/ADT/StringExtras.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/raw_ostream.h"
39#include "llvm/TargetParser/RISCVTargetParser.h"
40#include <optional>
41
42using namespace clang;
43
44namespace {
45
46static bool isLocalContainerContext(const DeclContext *DC) {
47  return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
48}
49
50static const FunctionDecl *getStructor(const FunctionDecl *fn) {
51  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
52    return ftd->getTemplatedDecl();
53
54  return fn;
55}
56
57static const NamedDecl *getStructor(const NamedDecl *decl) {
58  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
59  return (fn ? getStructor(fn) : decl);
60}
61
62static bool isLambda(const NamedDecl *ND) {
63  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
64  if (!Record)
65    return false;
66
67  return Record->isLambda();
68}
69
70static const unsigned UnknownArity = ~0U;
71
72class ItaniumMangleContextImpl : public ItaniumMangleContext {
73  typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
74  llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
75  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
76  const DiscriminatorOverrideTy DiscriminatorOverride = nullptr;
77  NamespaceDecl *StdNamespace = nullptr;
78
79  bool NeedsUniqueInternalLinkageNames = false;
80
81public:
82  explicit ItaniumMangleContextImpl(
83      ASTContext &Context, DiagnosticsEngine &Diags,
84      DiscriminatorOverrideTy DiscriminatorOverride, bool IsAux = false)
85      : ItaniumMangleContext(Context, Diags, IsAux),
86        DiscriminatorOverride(DiscriminatorOverride) {}
87
88  /// @name Mangler Entry Points
89  /// @{
90
91  bool shouldMangleCXXName(const NamedDecl *D) override;
92  bool shouldMangleStringLiteral(const StringLiteral *) override {
93    return false;
94  }
95
96  bool isUniqueInternalLinkageDecl(const NamedDecl *ND) override;
97  void needsUniqueInternalLinkageNames() override {
98    NeedsUniqueInternalLinkageNames = true;
99  }
100
101  void mangleCXXName(GlobalDecl GD, raw_ostream &) override;
102  void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
103                   raw_ostream &) override;
104  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
105                          const ThisAdjustment &ThisAdjustment,
106                          raw_ostream &) override;
107  void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
108                                raw_ostream &) override;
109  void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
110  void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
111  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
112                           const CXXRecordDecl *Type, raw_ostream &) override;
113  void mangleCXXRTTI(QualType T, raw_ostream &) override;
114  void mangleCXXRTTIName(QualType T, raw_ostream &,
115                         bool NormalizeIntegers) override;
116  void mangleCanonicalTypeName(QualType T, raw_ostream &,
117                               bool NormalizeIntegers) override;
118
119  void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
120  void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
121  void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
122  void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
123  void mangleDynamicAtExitDestructor(const VarDecl *D,
124                                     raw_ostream &Out) override;
125  void mangleDynamicStermFinalizer(const VarDecl *D, raw_ostream &Out) override;
126  void mangleSEHFilterExpression(GlobalDecl EnclosingDecl,
127                                 raw_ostream &Out) override;
128  void mangleSEHFinallyBlock(GlobalDecl EnclosingDecl,
129                             raw_ostream &Out) override;
130  void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
131  void mangleItaniumThreadLocalWrapper(const VarDecl *D,
132                                       raw_ostream &) override;
133
134  void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
135
136  void mangleLambdaSig(const CXXRecordDecl *Lambda, raw_ostream &) override;
137
138  void mangleModuleInitializer(const Module *Module, raw_ostream &) override;
139
140  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
141    // Lambda closure types are already numbered.
142    if (isLambda(ND))
143      return false;
144
145    // Anonymous tags are already numbered.
146    if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
147      if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
148        return false;
149    }
150
151    // Use the canonical number for externally visible decls.
152    if (ND->isExternallyVisible()) {
153      unsigned discriminator = getASTContext().getManglingNumber(ND, isAux());
154      if (discriminator == 1)
155        return false;
156      disc = discriminator - 2;
157      return true;
158    }
159
160    // Make up a reasonable number for internal decls.
161    unsigned &discriminator = Uniquifier[ND];
162    if (!discriminator) {
163      const DeclContext *DC = getEffectiveDeclContext(ND);
164      discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
165    }
166    if (discriminator == 1)
167      return false;
168    disc = discriminator-2;
169    return true;
170  }
171
172  std::string getLambdaString(const CXXRecordDecl *Lambda) override {
173    // This function matches the one in MicrosoftMangle, which returns
174    // the string that is used in lambda mangled names.
175    assert(Lambda->isLambda() && "RD must be a lambda!");
176    std::string Name("<lambda");
177    Decl *LambdaContextDecl = Lambda->getLambdaContextDecl();
178    unsigned LambdaManglingNumber = Lambda->getLambdaManglingNumber();
179    unsigned LambdaId;
180    const ParmVarDecl *Parm = dyn_cast_or_null<ParmVarDecl>(LambdaContextDecl);
181    const FunctionDecl *Func =
182        Parm ? dyn_cast<FunctionDecl>(Parm->getDeclContext()) : nullptr;
183
184    if (Func) {
185      unsigned DefaultArgNo =
186          Func->getNumParams() - Parm->getFunctionScopeIndex();
187      Name += llvm::utostr(DefaultArgNo);
188      Name += "_";
189    }
190
191    if (LambdaManglingNumber)
192      LambdaId = LambdaManglingNumber;
193    else
194      LambdaId = getAnonymousStructIdForDebugInfo(Lambda);
195
196    Name += llvm::utostr(LambdaId);
197    Name += '>';
198    return Name;
199  }
200
201  DiscriminatorOverrideTy getDiscriminatorOverride() const override {
202    return DiscriminatorOverride;
203  }
204
205  NamespaceDecl *getStdNamespace();
206
207  const DeclContext *getEffectiveDeclContext(const Decl *D);
208  const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
209    return getEffectiveDeclContext(cast<Decl>(DC));
210  }
211
212  bool isInternalLinkageDecl(const NamedDecl *ND);
213
214  /// @}
215};
216
217/// Manage the mangling of a single name.
218class CXXNameMangler {
219  ItaniumMangleContextImpl &Context;
220  raw_ostream &Out;
221  /// Normalize integer types for cross-language CFI support with other
222  /// languages that can't represent and encode C/C++ integer types.
223  bool NormalizeIntegers = false;
224
225  bool NullOut = false;
226  /// In the "DisableDerivedAbiTags" mode derived ABI tags are not calculated.
227  /// This mode is used when mangler creates another mangler recursively to
228  /// calculate ABI tags for the function return value or the variable type.
229  /// Also it is required to avoid infinite recursion in some cases.
230  bool DisableDerivedAbiTags = false;
231
232  /// The "structor" is the top-level declaration being mangled, if
233  /// that's not a template specialization; otherwise it's the pattern
234  /// for that specialization.
235  const NamedDecl *Structor;
236  unsigned StructorType = 0;
237
238  // An offset to add to all template parameter depths while mangling. Used
239  // when mangling a template parameter list to see if it matches a template
240  // template parameter exactly.
241  unsigned TemplateDepthOffset = 0;
242
243  /// The next substitution sequence number.
244  unsigned SeqID = 0;
245
246  class FunctionTypeDepthState {
247    unsigned Bits = 0;
248
249    enum { InResultTypeMask = 1 };
250
251  public:
252    FunctionTypeDepthState() = default;
253
254    /// The number of function types we're inside.
255    unsigned getDepth() const {
256      return Bits >> 1;
257    }
258
259    /// True if we're in the return type of the innermost function type.
260    bool isInResultType() const {
261      return Bits & InResultTypeMask;
262    }
263
264    FunctionTypeDepthState push() {
265      FunctionTypeDepthState tmp = *this;
266      Bits = (Bits & ~InResultTypeMask) + 2;
267      return tmp;
268    }
269
270    void enterResultType() {
271      Bits |= InResultTypeMask;
272    }
273
274    void leaveResultType() {
275      Bits &= ~InResultTypeMask;
276    }
277
278    void pop(FunctionTypeDepthState saved) {
279      assert(getDepth() == saved.getDepth() + 1);
280      Bits = saved.Bits;
281    }
282
283  } FunctionTypeDepth;
284
285  // abi_tag is a gcc attribute, taking one or more strings called "tags".
286  // The goal is to annotate against which version of a library an object was
287  // built and to be able to provide backwards compatibility ("dual abi").
288  // For more information see docs/ItaniumMangleAbiTags.rst.
289  typedef SmallVector<StringRef, 4> AbiTagList;
290
291  // State to gather all implicit and explicit tags used in a mangled name.
292  // Must always have an instance of this while emitting any name to keep
293  // track.
294  class AbiTagState final {
295  public:
296    explicit AbiTagState(AbiTagState *&Head) : LinkHead(Head) {
297      Parent = LinkHead;
298      LinkHead = this;
299    }
300
301    // No copy, no move.
302    AbiTagState(const AbiTagState &) = delete;
303    AbiTagState &operator=(const AbiTagState &) = delete;
304
305    ~AbiTagState() { pop(); }
306
307    void write(raw_ostream &Out, const NamedDecl *ND,
308               const AbiTagList *AdditionalAbiTags) {
309      ND = cast<NamedDecl>(ND->getCanonicalDecl());
310      if (!isa<FunctionDecl>(ND) && !isa<VarDecl>(ND)) {
311        assert(
312            !AdditionalAbiTags &&
313            "only function and variables need a list of additional abi tags");
314        if (const auto *NS = dyn_cast<NamespaceDecl>(ND)) {
315          if (const auto *AbiTag = NS->getAttr<AbiTagAttr>()) {
316            UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
317                               AbiTag->tags().end());
318          }
319          // Don't emit abi tags for namespaces.
320          return;
321        }
322      }
323
324      AbiTagList TagList;
325      if (const auto *AbiTag = ND->getAttr<AbiTagAttr>()) {
326        UsedAbiTags.insert(UsedAbiTags.end(), AbiTag->tags().begin(),
327                           AbiTag->tags().end());
328        TagList.insert(TagList.end(), AbiTag->tags().begin(),
329                       AbiTag->tags().end());
330      }
331
332      if (AdditionalAbiTags) {
333        UsedAbiTags.insert(UsedAbiTags.end(), AdditionalAbiTags->begin(),
334                           AdditionalAbiTags->end());
335        TagList.insert(TagList.end(), AdditionalAbiTags->begin(),
336                       AdditionalAbiTags->end());
337      }
338
339      llvm::sort(TagList);
340      TagList.erase(std::unique(TagList.begin(), TagList.end()), TagList.end());
341
342      writeSortedUniqueAbiTags(Out, TagList);
343    }
344
345    const AbiTagList &getUsedAbiTags() const { return UsedAbiTags; }
346    void setUsedAbiTags(const AbiTagList &AbiTags) {
347      UsedAbiTags = AbiTags;
348    }
349
350    const AbiTagList &getEmittedAbiTags() const {
351      return EmittedAbiTags;
352    }
353
354    const AbiTagList &getSortedUniqueUsedAbiTags() {
355      llvm::sort(UsedAbiTags);
356      UsedAbiTags.erase(std::unique(UsedAbiTags.begin(), UsedAbiTags.end()),
357                        UsedAbiTags.end());
358      return UsedAbiTags;
359    }
360
361  private:
362    //! All abi tags used implicitly or explicitly.
363    AbiTagList UsedAbiTags;
364    //! All explicit abi tags (i.e. not from namespace).
365    AbiTagList EmittedAbiTags;
366
367    AbiTagState *&LinkHead;
368    AbiTagState *Parent = nullptr;
369
370    void pop() {
371      assert(LinkHead == this &&
372             "abi tag link head must point to us on destruction");
373      if (Parent) {
374        Parent->UsedAbiTags.insert(Parent->UsedAbiTags.end(),
375                                   UsedAbiTags.begin(), UsedAbiTags.end());
376        Parent->EmittedAbiTags.insert(Parent->EmittedAbiTags.end(),
377                                      EmittedAbiTags.begin(),
378                                      EmittedAbiTags.end());
379      }
380      LinkHead = Parent;
381    }
382
383    void writeSortedUniqueAbiTags(raw_ostream &Out, const AbiTagList &AbiTags) {
384      for (const auto &Tag : AbiTags) {
385        EmittedAbiTags.push_back(Tag);
386        Out << "B";
387        Out << Tag.size();
388        Out << Tag;
389      }
390    }
391  };
392
393  AbiTagState *AbiTags = nullptr;
394  AbiTagState AbiTagsRoot;
395
396  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
397  llvm::DenseMap<StringRef, unsigned> ModuleSubstitutions;
398
399  ASTContext &getASTContext() const { return Context.getASTContext(); }
400
401  bool isCompatibleWith(LangOptions::ClangABI Ver) {
402    return Context.getASTContext().getLangOpts().getClangABICompat() <= Ver;
403  }
404
405  bool isStd(const NamespaceDecl *NS);
406  bool isStdNamespace(const DeclContext *DC);
407
408  const RecordDecl *GetLocalClassDecl(const Decl *D);
409  bool isSpecializedAs(QualType S, llvm::StringRef Name, QualType A);
410  bool isStdCharSpecialization(const ClassTemplateSpecializationDecl *SD,
411                               llvm::StringRef Name, bool HasAllocator);
412
413public:
414  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
415                 const NamedDecl *D = nullptr, bool NullOut_ = false)
416      : Context(C), Out(Out_), NullOut(NullOut_), Structor(getStructor(D)),
417        AbiTagsRoot(AbiTags) {
418    // These can't be mangled without a ctor type or dtor type.
419    assert(!D || (!isa<CXXDestructorDecl>(D) &&
420                  !isa<CXXConstructorDecl>(D)));
421  }
422  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
423                 const CXXConstructorDecl *D, CXXCtorType Type)
424      : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
425        AbiTagsRoot(AbiTags) {}
426  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
427                 const CXXDestructorDecl *D, CXXDtorType Type)
428      : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
429        AbiTagsRoot(AbiTags) {}
430
431  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
432                 bool NormalizeIntegers_)
433      : Context(C), Out(Out_), NormalizeIntegers(NormalizeIntegers_),
434        NullOut(false), Structor(nullptr), AbiTagsRoot(AbiTags) {}
435  CXXNameMangler(CXXNameMangler &Outer, raw_ostream &Out_)
436      : Context(Outer.Context), Out(Out_), Structor(Outer.Structor),
437        StructorType(Outer.StructorType), SeqID(Outer.SeqID),
438        FunctionTypeDepth(Outer.FunctionTypeDepth), AbiTagsRoot(AbiTags),
439        Substitutions(Outer.Substitutions),
440        ModuleSubstitutions(Outer.ModuleSubstitutions) {}
441
442  CXXNameMangler(CXXNameMangler &Outer, llvm::raw_null_ostream &Out_)
443      : CXXNameMangler(Outer, (raw_ostream &)Out_) {
444    NullOut = true;
445  }
446
447  struct WithTemplateDepthOffset { unsigned Offset; };
448  CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out,
449                 WithTemplateDepthOffset Offset)
450      : CXXNameMangler(C, Out) {
451    TemplateDepthOffset = Offset.Offset;
452  }
453
454  raw_ostream &getStream() { return Out; }
455
456  void disableDerivedAbiTags() { DisableDerivedAbiTags = true; }
457  static bool shouldHaveAbiTags(ItaniumMangleContextImpl &C, const VarDecl *VD);
458
459  void mangle(GlobalDecl GD);
460  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
461  void mangleNumber(const llvm::APSInt &I);
462  void mangleNumber(int64_t Number);
463  void mangleFloat(const llvm::APFloat &F);
464  void mangleFunctionEncoding(GlobalDecl GD);
465  void mangleSeqID(unsigned SeqID);
466  void mangleName(GlobalDecl GD);
467  void mangleType(QualType T);
468  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
469  void mangleLambdaSig(const CXXRecordDecl *Lambda);
470  void mangleModuleNamePrefix(StringRef Name, bool IsPartition = false);
471
472private:
473
474  bool mangleSubstitution(const NamedDecl *ND);
475  bool mangleSubstitution(NestedNameSpecifier *NNS);
476  bool mangleSubstitution(QualType T);
477  bool mangleSubstitution(TemplateName Template);
478  bool mangleSubstitution(uintptr_t Ptr);
479
480  void mangleExistingSubstitution(TemplateName name);
481
482  bool mangleStandardSubstitution(const NamedDecl *ND);
483
484  void addSubstitution(const NamedDecl *ND) {
485    ND = cast<NamedDecl>(ND->getCanonicalDecl());
486
487    addSubstitution(reinterpret_cast<uintptr_t>(ND));
488  }
489  void addSubstitution(NestedNameSpecifier *NNS) {
490    NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS);
491
492    addSubstitution(reinterpret_cast<uintptr_t>(NNS));
493  }
494  void addSubstitution(QualType T);
495  void addSubstitution(TemplateName Template);
496  void addSubstitution(uintptr_t Ptr);
497  // Destructive copy substitutions from other mangler.
498  void extendSubstitutions(CXXNameMangler* Other);
499
500  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
501                              bool recursive = false);
502  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
503                            DeclarationName name,
504                            const TemplateArgumentLoc *TemplateArgs,
505                            unsigned NumTemplateArgs,
506                            unsigned KnownArity = UnknownArity);
507
508  void mangleFunctionEncodingBareType(const FunctionDecl *FD);
509
510  void mangleNameWithAbiTags(GlobalDecl GD,
511                             const AbiTagList *AdditionalAbiTags);
512  void mangleModuleName(const NamedDecl *ND);
513  void mangleTemplateName(const TemplateDecl *TD,
514                          ArrayRef<TemplateArgument> Args);
515  void mangleUnqualifiedName(GlobalDecl GD, const DeclContext *DC,
516                             const AbiTagList *AdditionalAbiTags) {
517    mangleUnqualifiedName(GD, cast<NamedDecl>(GD.getDecl())->getDeclName(), DC,
518                          UnknownArity, AdditionalAbiTags);
519  }
520  void mangleUnqualifiedName(GlobalDecl GD, DeclarationName Name,
521                             const DeclContext *DC, unsigned KnownArity,
522                             const AbiTagList *AdditionalAbiTags);
523  void mangleUnscopedName(GlobalDecl GD, const DeclContext *DC,
524                          const AbiTagList *AdditionalAbiTags);
525  void mangleUnscopedTemplateName(GlobalDecl GD, const DeclContext *DC,
526                                  const AbiTagList *AdditionalAbiTags);
527  void mangleSourceName(const IdentifierInfo *II);
528  void mangleRegCallName(const IdentifierInfo *II);
529  void mangleDeviceStubName(const IdentifierInfo *II);
530  void mangleSourceNameWithAbiTags(
531      const NamedDecl *ND, const AbiTagList *AdditionalAbiTags = nullptr);
532  void mangleLocalName(GlobalDecl GD,
533                       const AbiTagList *AdditionalAbiTags);
534  void mangleBlockForPrefix(const BlockDecl *Block);
535  void mangleUnqualifiedBlock(const BlockDecl *Block);
536  void mangleTemplateParamDecl(const NamedDecl *Decl);
537  void mangleTemplateParameterList(const TemplateParameterList *Params);
538  void mangleTypeConstraint(const ConceptDecl *Concept,
539                            ArrayRef<TemplateArgument> Arguments);
540  void mangleTypeConstraint(const TypeConstraint *Constraint);
541  void mangleRequiresClause(const Expr *RequiresClause);
542  void mangleLambda(const CXXRecordDecl *Lambda);
543  void mangleNestedName(GlobalDecl GD, const DeclContext *DC,
544                        const AbiTagList *AdditionalAbiTags,
545                        bool NoFunction=false);
546  void mangleNestedName(const TemplateDecl *TD,
547                        ArrayRef<TemplateArgument> Args);
548  void mangleNestedNameWithClosurePrefix(GlobalDecl GD,
549                                         const NamedDecl *PrefixND,
550                                         const AbiTagList *AdditionalAbiTags);
551  void manglePrefix(NestedNameSpecifier *qualifier);
552  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
553  void manglePrefix(QualType type);
554  void mangleTemplatePrefix(GlobalDecl GD, bool NoFunction=false);
555  void mangleTemplatePrefix(TemplateName Template);
556  const NamedDecl *getClosurePrefix(const Decl *ND);
557  void mangleClosurePrefix(const NamedDecl *ND, bool NoFunction = false);
558  bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
559                                      StringRef Prefix = "");
560  void mangleOperatorName(DeclarationName Name, unsigned Arity);
561  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
562  void mangleVendorQualifier(StringRef qualifier);
563  void mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST = nullptr);
564  void mangleRefQualifier(RefQualifierKind RefQualifier);
565
566  void mangleObjCMethodName(const ObjCMethodDecl *MD);
567
568  // Declare manglers for every type class.
569#define ABSTRACT_TYPE(CLASS, PARENT)
570#define NON_CANONICAL_TYPE(CLASS, PARENT)
571#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
572#include "clang/AST/TypeNodes.inc"
573
574  void mangleType(const TagType*);
575  void mangleType(TemplateName);
576  static StringRef getCallingConvQualifierName(CallingConv CC);
577  void mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo info);
578  void mangleExtFunctionInfo(const FunctionType *T);
579  void mangleBareFunctionType(const FunctionProtoType *T, bool MangleReturnType,
580                              const FunctionDecl *FD = nullptr);
581  void mangleNeonVectorType(const VectorType *T);
582  void mangleNeonVectorType(const DependentVectorType *T);
583  void mangleAArch64NeonVectorType(const VectorType *T);
584  void mangleAArch64NeonVectorType(const DependentVectorType *T);
585  void mangleAArch64FixedSveVectorType(const VectorType *T);
586  void mangleAArch64FixedSveVectorType(const DependentVectorType *T);
587  void mangleRISCVFixedRVVVectorType(const VectorType *T);
588  void mangleRISCVFixedRVVVectorType(const DependentVectorType *T);
589
590  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
591  void mangleFloatLiteral(QualType T, const llvm::APFloat &V);
592  void mangleFixedPointLiteral();
593  void mangleNullPointer(QualType T);
594
595  void mangleMemberExprBase(const Expr *base, bool isArrow);
596  void mangleMemberExpr(const Expr *base, bool isArrow,
597                        NestedNameSpecifier *qualifier,
598                        NamedDecl *firstQualifierLookup,
599                        DeclarationName name,
600                        const TemplateArgumentLoc *TemplateArgs,
601                        unsigned NumTemplateArgs,
602                        unsigned knownArity);
603  void mangleCastExpression(const Expr *E, StringRef CastEncoding);
604  void mangleInitListElements(const InitListExpr *InitList);
605  void mangleRequirement(SourceLocation RequiresExprLoc,
606                         const concepts::Requirement *Req);
607  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity,
608                        bool AsTemplateArg = false);
609  void mangleCXXCtorType(CXXCtorType T, const CXXRecordDecl *InheritedFrom);
610  void mangleCXXDtorType(CXXDtorType T);
611
612  struct TemplateArgManglingInfo;
613  void mangleTemplateArgs(TemplateName TN,
614                          const TemplateArgumentLoc *TemplateArgs,
615                          unsigned NumTemplateArgs);
616  void mangleTemplateArgs(TemplateName TN, ArrayRef<TemplateArgument> Args);
617  void mangleTemplateArgs(TemplateName TN, const TemplateArgumentList &AL);
618  void mangleTemplateArg(TemplateArgManglingInfo &Info, unsigned Index,
619                         TemplateArgument A);
620  void mangleTemplateArg(TemplateArgument A, bool NeedExactType);
621  void mangleTemplateArgExpr(const Expr *E);
622  void mangleValueInTemplateArg(QualType T, const APValue &V, bool TopLevel,
623                                bool NeedExactType = false);
624
625  void mangleTemplateParameter(unsigned Depth, unsigned Index);
626
627  void mangleFunctionParam(const ParmVarDecl *parm);
628
629  void writeAbiTags(const NamedDecl *ND,
630                    const AbiTagList *AdditionalAbiTags);
631
632  // Returns sorted unique list of ABI tags.
633  AbiTagList makeFunctionReturnTypeTags(const FunctionDecl *FD);
634  // Returns sorted unique list of ABI tags.
635  AbiTagList makeVariableTypeTags(const VarDecl *VD);
636};
637
638}
639
640NamespaceDecl *ItaniumMangleContextImpl::getStdNamespace() {
641  if (!StdNamespace) {
642    StdNamespace = NamespaceDecl::Create(
643        getASTContext(), getASTContext().getTranslationUnitDecl(),
644        /*Inline=*/false, SourceLocation(), SourceLocation(),
645        &getASTContext().Idents.get("std"),
646        /*PrevDecl=*/nullptr, /*Nested=*/false);
647    StdNamespace->setImplicit();
648  }
649  return StdNamespace;
650}
651
652/// Retrieve the declaration context that should be used when mangling the given
653/// declaration.
654const DeclContext *
655ItaniumMangleContextImpl::getEffectiveDeclContext(const Decl *D) {
656  // The ABI assumes that lambda closure types that occur within
657  // default arguments live in the context of the function. However, due to
658  // the way in which Clang parses and creates function declarations, this is
659  // not the case: the lambda closure type ends up living in the context
660  // where the function itself resides, because the function declaration itself
661  // had not yet been created. Fix the context here.
662  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
663    if (RD->isLambda())
664      if (ParmVarDecl *ContextParam =
665              dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
666        return ContextParam->getDeclContext();
667  }
668
669  // Perform the same check for block literals.
670  if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
671    if (ParmVarDecl *ContextParam =
672            dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
673      return ContextParam->getDeclContext();
674  }
675
676  // On ARM and AArch64, the va_list tag is always mangled as if in the std
677  // namespace. We do not represent va_list as actually being in the std
678  // namespace in C because this would result in incorrect debug info in C,
679  // among other things. It is important for both languages to have the same
680  // mangling in order for -fsanitize=cfi-icall to work.
681  if (D == getASTContext().getVaListTagDecl()) {
682    const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
683    if (T.isARM() || T.isThumb() || T.isAArch64())
684      return getStdNamespace();
685  }
686
687  const DeclContext *DC = D->getDeclContext();
688  if (isa<CapturedDecl>(DC) || isa<OMPDeclareReductionDecl>(DC) ||
689      isa<OMPDeclareMapperDecl>(DC)) {
690    return getEffectiveDeclContext(cast<Decl>(DC));
691  }
692
693  if (const auto *VD = dyn_cast<VarDecl>(D))
694    if (VD->isExternC())
695      return getASTContext().getTranslationUnitDecl();
696
697  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
698    if (FD->isExternC())
699      return getASTContext().getTranslationUnitDecl();
700    // Member-like constrained friends are mangled as if they were members of
701    // the enclosing class.
702    if (FD->isMemberLikeConstrainedFriend() &&
703        getASTContext().getLangOpts().getClangABICompat() >
704            LangOptions::ClangABI::Ver17)
705      return D->getLexicalDeclContext()->getRedeclContext();
706  }
707
708  return DC->getRedeclContext();
709}
710
711bool ItaniumMangleContextImpl::isInternalLinkageDecl(const NamedDecl *ND) {
712  if (ND && ND->getFormalLinkage() == Linkage::Internal &&
713      !ND->isExternallyVisible() &&
714      getEffectiveDeclContext(ND)->isFileContext() &&
715      !ND->isInAnonymousNamespace())
716    return true;
717  return false;
718}
719
720// Check if this Function Decl needs a unique internal linkage name.
721bool ItaniumMangleContextImpl::isUniqueInternalLinkageDecl(
722    const NamedDecl *ND) {
723  if (!NeedsUniqueInternalLinkageNames || !ND)
724    return false;
725
726  const auto *FD = dyn_cast<FunctionDecl>(ND);
727  if (!FD)
728    return false;
729
730  // For C functions without prototypes, return false as their
731  // names should not be mangled.
732  if (!FD->getType()->getAs<FunctionProtoType>())
733    return false;
734
735  if (isInternalLinkageDecl(ND))
736    return true;
737
738  return false;
739}
740
741bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
742  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
743    LanguageLinkage L = FD->getLanguageLinkage();
744    // Overloadable functions need mangling.
745    if (FD->hasAttr<OverloadableAttr>())
746      return true;
747
748    // "main" is not mangled.
749    if (FD->isMain())
750      return false;
751
752    // The Windows ABI expects that we would never mangle "typical"
753    // user-defined entry points regardless of visibility or freestanding-ness.
754    //
755    // N.B. This is distinct from asking about "main".  "main" has a lot of
756    // special rules associated with it in the standard while these
757    // user-defined entry points are outside of the purview of the standard.
758    // For example, there can be only one definition for "main" in a standards
759    // compliant program; however nothing forbids the existence of wmain and
760    // WinMain in the same translation unit.
761    if (FD->isMSVCRTEntryPoint())
762      return false;
763
764    // C++ functions and those whose names are not a simple identifier need
765    // mangling.
766    if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
767      return true;
768
769    // C functions are not mangled.
770    if (L == CLanguageLinkage)
771      return false;
772  }
773
774  // Otherwise, no mangling is done outside C++ mode.
775  if (!getASTContext().getLangOpts().CPlusPlus)
776    return false;
777
778  if (const auto *VD = dyn_cast<VarDecl>(D)) {
779    // Decompositions are mangled.
780    if (isa<DecompositionDecl>(VD))
781      return true;
782
783    // C variables are not mangled.
784    if (VD->isExternC())
785      return false;
786
787    // Variables at global scope are not mangled unless they have internal
788    // linkage or are specializations or are attached to a named module.
789    const DeclContext *DC = getEffectiveDeclContext(D);
790    // Check for extern variable declared locally.
791    if (DC->isFunctionOrMethod() && D->hasLinkage())
792      while (!DC->isFileContext())
793        DC = getEffectiveParentContext(DC);
794    if (DC->isTranslationUnit() && D->getFormalLinkage() != Linkage::Internal &&
795        !CXXNameMangler::shouldHaveAbiTags(*this, VD) &&
796        !isa<VarTemplateSpecializationDecl>(VD) &&
797        !VD->getOwningModuleForLinkage())
798      return false;
799  }
800
801  return true;
802}
803
804void CXXNameMangler::writeAbiTags(const NamedDecl *ND,
805                                  const AbiTagList *AdditionalAbiTags) {
806  assert(AbiTags && "require AbiTagState");
807  AbiTags->write(Out, ND, DisableDerivedAbiTags ? nullptr : AdditionalAbiTags);
808}
809
810void CXXNameMangler::mangleSourceNameWithAbiTags(
811    const NamedDecl *ND, const AbiTagList *AdditionalAbiTags) {
812  mangleSourceName(ND->getIdentifier());
813  writeAbiTags(ND, AdditionalAbiTags);
814}
815
816void CXXNameMangler::mangle(GlobalDecl GD) {
817  // <mangled-name> ::= _Z <encoding>
818  //            ::= <data name>
819  //            ::= <special-name>
820  Out << "_Z";
821  if (isa<FunctionDecl>(GD.getDecl()))
822    mangleFunctionEncoding(GD);
823  else if (isa<VarDecl, FieldDecl, MSGuidDecl, TemplateParamObjectDecl,
824               BindingDecl>(GD.getDecl()))
825    mangleName(GD);
826  else if (const IndirectFieldDecl *IFD =
827               dyn_cast<IndirectFieldDecl>(GD.getDecl()))
828    mangleName(IFD->getAnonField());
829  else
830    llvm_unreachable("unexpected kind of global decl");
831}
832
833void CXXNameMangler::mangleFunctionEncoding(GlobalDecl GD) {
834  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
835  // <encoding> ::= <function name> <bare-function-type>
836
837  // Don't mangle in the type if this isn't a decl we should typically mangle.
838  if (!Context.shouldMangleDeclName(FD)) {
839    mangleName(GD);
840    return;
841  }
842
843  AbiTagList ReturnTypeAbiTags = makeFunctionReturnTypeTags(FD);
844  if (ReturnTypeAbiTags.empty()) {
845    // There are no tags for return type, the simplest case. Enter the function
846    // parameter scope before mangling the name, because a template using
847    // constrained `auto` can have references to its parameters within its
848    // template argument list:
849    //
850    //   template<typename T> void f(T x, C<decltype(x)> auto)
851    // ... is mangled as ...
852    //   template<typename T, C<decltype(param 1)> U> void f(T, U)
853    FunctionTypeDepthState Saved = FunctionTypeDepth.push();
854    mangleName(GD);
855    FunctionTypeDepth.pop(Saved);
856    mangleFunctionEncodingBareType(FD);
857    return;
858  }
859
860  // Mangle function name and encoding to temporary buffer.
861  // We have to output name and encoding to the same mangler to get the same
862  // substitution as it will be in final mangling.
863  SmallString<256> FunctionEncodingBuf;
864  llvm::raw_svector_ostream FunctionEncodingStream(FunctionEncodingBuf);
865  CXXNameMangler FunctionEncodingMangler(*this, FunctionEncodingStream);
866  // Output name of the function.
867  FunctionEncodingMangler.disableDerivedAbiTags();
868
869  FunctionTypeDepthState Saved = FunctionTypeDepth.push();
870  FunctionEncodingMangler.mangleNameWithAbiTags(FD, nullptr);
871  FunctionTypeDepth.pop(Saved);
872
873  // Remember length of the function name in the buffer.
874  size_t EncodingPositionStart = FunctionEncodingStream.str().size();
875  FunctionEncodingMangler.mangleFunctionEncodingBareType(FD);
876
877  // Get tags from return type that are not present in function name or
878  // encoding.
879  const AbiTagList &UsedAbiTags =
880      FunctionEncodingMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
881  AbiTagList AdditionalAbiTags(ReturnTypeAbiTags.size());
882  AdditionalAbiTags.erase(
883      std::set_difference(ReturnTypeAbiTags.begin(), ReturnTypeAbiTags.end(),
884                          UsedAbiTags.begin(), UsedAbiTags.end(),
885                          AdditionalAbiTags.begin()),
886      AdditionalAbiTags.end());
887
888  // Output name with implicit tags and function encoding from temporary buffer.
889  Saved = FunctionTypeDepth.push();
890  mangleNameWithAbiTags(FD, &AdditionalAbiTags);
891  FunctionTypeDepth.pop(Saved);
892  Out << FunctionEncodingStream.str().substr(EncodingPositionStart);
893
894  // Function encoding could create new substitutions so we have to add
895  // temp mangled substitutions to main mangler.
896  extendSubstitutions(&FunctionEncodingMangler);
897}
898
899void CXXNameMangler::mangleFunctionEncodingBareType(const FunctionDecl *FD) {
900  if (FD->hasAttr<EnableIfAttr>()) {
901    FunctionTypeDepthState Saved = FunctionTypeDepth.push();
902    Out << "Ua9enable_ifI";
903    for (AttrVec::const_iterator I = FD->getAttrs().begin(),
904                                 E = FD->getAttrs().end();
905         I != E; ++I) {
906      EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
907      if (!EIA)
908        continue;
909      if (isCompatibleWith(LangOptions::ClangABI::Ver11)) {
910        // Prior to Clang 12, we hardcoded the X/E around enable-if's argument,
911        // even though <template-arg> should not include an X/E around
912        // <expr-primary>.
913        Out << 'X';
914        mangleExpression(EIA->getCond());
915        Out << 'E';
916      } else {
917        mangleTemplateArgExpr(EIA->getCond());
918      }
919    }
920    Out << 'E';
921    FunctionTypeDepth.pop(Saved);
922  }
923
924  // When mangling an inheriting constructor, the bare function type used is
925  // that of the inherited constructor.
926  if (auto *CD = dyn_cast<CXXConstructorDecl>(FD))
927    if (auto Inherited = CD->getInheritedConstructor())
928      FD = Inherited.getConstructor();
929
930  // Whether the mangling of a function type includes the return type depends on
931  // the context and the nature of the function. The rules for deciding whether
932  // the return type is included are:
933  //
934  //   1. Template functions (names or types) have return types encoded, with
935  //   the exceptions listed below.
936  //   2. Function types not appearing as part of a function name mangling,
937  //   e.g. parameters, pointer types, etc., have return type encoded, with the
938  //   exceptions listed below.
939  //   3. Non-template function names do not have return types encoded.
940  //
941  // The exceptions mentioned in (1) and (2) above, for which the return type is
942  // never included, are
943  //   1. Constructors.
944  //   2. Destructors.
945  //   3. Conversion operator functions, e.g. operator int.
946  bool MangleReturnType = false;
947  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
948    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
949          isa<CXXConversionDecl>(FD)))
950      MangleReturnType = true;
951
952    // Mangle the type of the primary template.
953    FD = PrimaryTemplate->getTemplatedDecl();
954  }
955
956  mangleBareFunctionType(FD->getType()->castAs<FunctionProtoType>(),
957                         MangleReturnType, FD);
958}
959
960/// Return whether a given namespace is the 'std' namespace.
961bool CXXNameMangler::isStd(const NamespaceDecl *NS) {
962  if (!Context.getEffectiveParentContext(NS)->isTranslationUnit())
963    return false;
964
965  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
966  return II && II->isStr("std");
967}
968
969// isStdNamespace - Return whether a given decl context is a toplevel 'std'
970// namespace.
971bool CXXNameMangler::isStdNamespace(const DeclContext *DC) {
972  if (!DC->isNamespace())
973    return false;
974
975  return isStd(cast<NamespaceDecl>(DC));
976}
977
978static const GlobalDecl
979isTemplate(GlobalDecl GD, const TemplateArgumentList *&TemplateArgs) {
980  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
981  // Check if we have a function template.
982  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
983    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
984      TemplateArgs = FD->getTemplateSpecializationArgs();
985      return GD.getWithDecl(TD);
986    }
987  }
988
989  // Check if we have a class template.
990  if (const ClassTemplateSpecializationDecl *Spec =
991        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
992    TemplateArgs = &Spec->getTemplateArgs();
993    return GD.getWithDecl(Spec->getSpecializedTemplate());
994  }
995
996  // Check if we have a variable template.
997  if (const VarTemplateSpecializationDecl *Spec =
998          dyn_cast<VarTemplateSpecializationDecl>(ND)) {
999    TemplateArgs = &Spec->getTemplateArgs();
1000    return GD.getWithDecl(Spec->getSpecializedTemplate());
1001  }
1002
1003  return GlobalDecl();
1004}
1005
1006static TemplateName asTemplateName(GlobalDecl GD) {
1007  const TemplateDecl *TD = dyn_cast_or_null<TemplateDecl>(GD.getDecl());
1008  return TemplateName(const_cast<TemplateDecl*>(TD));
1009}
1010
1011void CXXNameMangler::mangleName(GlobalDecl GD) {
1012  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1013  if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1014    // Variables should have implicit tags from its type.
1015    AbiTagList VariableTypeAbiTags = makeVariableTypeTags(VD);
1016    if (VariableTypeAbiTags.empty()) {
1017      // Simple case no variable type tags.
1018      mangleNameWithAbiTags(VD, nullptr);
1019      return;
1020    }
1021
1022    // Mangle variable name to null stream to collect tags.
1023    llvm::raw_null_ostream NullOutStream;
1024    CXXNameMangler VariableNameMangler(*this, NullOutStream);
1025    VariableNameMangler.disableDerivedAbiTags();
1026    VariableNameMangler.mangleNameWithAbiTags(VD, nullptr);
1027
1028    // Get tags from variable type that are not present in its name.
1029    const AbiTagList &UsedAbiTags =
1030        VariableNameMangler.AbiTagsRoot.getSortedUniqueUsedAbiTags();
1031    AbiTagList AdditionalAbiTags(VariableTypeAbiTags.size());
1032    AdditionalAbiTags.erase(
1033        std::set_difference(VariableTypeAbiTags.begin(),
1034                            VariableTypeAbiTags.end(), UsedAbiTags.begin(),
1035                            UsedAbiTags.end(), AdditionalAbiTags.begin()),
1036        AdditionalAbiTags.end());
1037
1038    // Output name with implicit tags.
1039    mangleNameWithAbiTags(VD, &AdditionalAbiTags);
1040  } else {
1041    mangleNameWithAbiTags(GD, nullptr);
1042  }
1043}
1044
1045const RecordDecl *CXXNameMangler::GetLocalClassDecl(const Decl *D) {
1046  const DeclContext *DC = Context.getEffectiveDeclContext(D);
1047  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
1048    if (isLocalContainerContext(DC))
1049      return dyn_cast<RecordDecl>(D);
1050    D = cast<Decl>(DC);
1051    DC = Context.getEffectiveDeclContext(D);
1052  }
1053  return nullptr;
1054}
1055
1056void CXXNameMangler::mangleNameWithAbiTags(GlobalDecl GD,
1057                                           const AbiTagList *AdditionalAbiTags) {
1058  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1059  //  <name> ::= [<module-name>] <nested-name>
1060  //         ::= [<module-name>] <unscoped-name>
1061  //         ::= [<module-name>] <unscoped-template-name> <template-args>
1062  //         ::= <local-name>
1063  //
1064  const DeclContext *DC = Context.getEffectiveDeclContext(ND);
1065
1066  // If this is an extern variable declared locally, the relevant DeclContext
1067  // is that of the containing namespace, or the translation unit.
1068  // FIXME: This is a hack; extern variables declared locally should have
1069  // a proper semantic declaration context!
1070  if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
1071    while (!DC->isNamespace() && !DC->isTranslationUnit())
1072      DC = Context.getEffectiveParentContext(DC);
1073  else if (GetLocalClassDecl(ND)) {
1074    mangleLocalName(GD, AdditionalAbiTags);
1075    return;
1076  }
1077
1078  assert(!isa<LinkageSpecDecl>(DC) && "context cannot be LinkageSpecDecl");
1079
1080  if (isLocalContainerContext(DC)) {
1081    mangleLocalName(GD, AdditionalAbiTags);
1082    return;
1083  }
1084
1085  // Closures can require a nested-name mangling even if they're semantically
1086  // in the global namespace.
1087  if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
1088    mangleNestedNameWithClosurePrefix(GD, PrefixND, AdditionalAbiTags);
1089    return;
1090  }
1091
1092  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1093    // Check if we have a template.
1094    const TemplateArgumentList *TemplateArgs = nullptr;
1095    if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1096      mangleUnscopedTemplateName(TD, DC, AdditionalAbiTags);
1097      mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1098      return;
1099    }
1100
1101    mangleUnscopedName(GD, DC, AdditionalAbiTags);
1102    return;
1103  }
1104
1105  mangleNestedName(GD, DC, AdditionalAbiTags);
1106}
1107
1108void CXXNameMangler::mangleModuleName(const NamedDecl *ND) {
1109  if (ND->isExternallyVisible())
1110    if (Module *M = ND->getOwningModuleForLinkage())
1111      mangleModuleNamePrefix(M->getPrimaryModuleInterfaceName());
1112}
1113
1114// <module-name> ::= <module-subname>
1115//		 ::= <module-name> <module-subname>
1116//	 	 ::= <substitution>
1117// <module-subname> ::= W <source-name>
1118//		    ::= W P <source-name>
1119void CXXNameMangler::mangleModuleNamePrefix(StringRef Name, bool IsPartition) {
1120  //  <substitution> ::= S <seq-id> _
1121  auto It = ModuleSubstitutions.find(Name);
1122  if (It != ModuleSubstitutions.end()) {
1123    Out << 'S';
1124    mangleSeqID(It->second);
1125    return;
1126  }
1127
1128  // FIXME: Preserve hierarchy in module names rather than flattening
1129  // them to strings; use Module*s as substitution keys.
1130  auto Parts = Name.rsplit('.');
1131  if (Parts.second.empty())
1132    Parts.second = Parts.first;
1133  else {
1134    mangleModuleNamePrefix(Parts.first, IsPartition);
1135    IsPartition = false;
1136  }
1137
1138  Out << 'W';
1139  if (IsPartition)
1140    Out << 'P';
1141  Out << Parts.second.size() << Parts.second;
1142  ModuleSubstitutions.insert({Name, SeqID++});
1143}
1144
1145void CXXNameMangler::mangleTemplateName(const TemplateDecl *TD,
1146                                        ArrayRef<TemplateArgument> Args) {
1147  const DeclContext *DC = Context.getEffectiveDeclContext(TD);
1148
1149  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
1150    mangleUnscopedTemplateName(TD, DC, nullptr);
1151    mangleTemplateArgs(asTemplateName(TD), Args);
1152  } else {
1153    mangleNestedName(TD, Args);
1154  }
1155}
1156
1157void CXXNameMangler::mangleUnscopedName(GlobalDecl GD, const DeclContext *DC,
1158                                        const AbiTagList *AdditionalAbiTags) {
1159  //  <unscoped-name> ::= <unqualified-name>
1160  //                  ::= St <unqualified-name>   # ::std::
1161
1162  assert(!isa<LinkageSpecDecl>(DC) && "unskipped LinkageSpecDecl");
1163  if (isStdNamespace(DC))
1164    Out << "St";
1165
1166  mangleUnqualifiedName(GD, DC, AdditionalAbiTags);
1167}
1168
1169void CXXNameMangler::mangleUnscopedTemplateName(
1170    GlobalDecl GD, const DeclContext *DC, const AbiTagList *AdditionalAbiTags) {
1171  const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
1172  //     <unscoped-template-name> ::= <unscoped-name>
1173  //                              ::= <substitution>
1174  if (mangleSubstitution(ND))
1175    return;
1176
1177  // <template-template-param> ::= <template-param>
1178  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1179    assert(!AdditionalAbiTags &&
1180           "template template param cannot have abi tags");
1181    mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
1182  } else if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND)) {
1183    mangleUnscopedName(GD, DC, AdditionalAbiTags);
1184  } else {
1185    mangleUnscopedName(GD.getWithDecl(ND->getTemplatedDecl()), DC,
1186                       AdditionalAbiTags);
1187  }
1188
1189  addSubstitution(ND);
1190}
1191
1192void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
1193  // ABI:
1194  //   Floating-point literals are encoded using a fixed-length
1195  //   lowercase hexadecimal string corresponding to the internal
1196  //   representation (IEEE on Itanium), high-order bytes first,
1197  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
1198  //   on Itanium.
1199  // The 'without leading zeroes' thing seems to be an editorial
1200  // mistake; see the discussion on cxx-abi-dev beginning on
1201  // 2012-01-16.
1202
1203  // Our requirements here are just barely weird enough to justify
1204  // using a custom algorithm instead of post-processing APInt::toString().
1205
1206  llvm::APInt valueBits = f.bitcastToAPInt();
1207  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
1208  assert(numCharacters != 0);
1209
1210  // Allocate a buffer of the right number of characters.
1211  SmallVector<char, 20> buffer(numCharacters);
1212
1213  // Fill the buffer left-to-right.
1214  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
1215    // The bit-index of the next hex digit.
1216    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
1217
1218    // Project out 4 bits starting at 'digitIndex'.
1219    uint64_t hexDigit = valueBits.getRawData()[digitBitIndex / 64];
1220    hexDigit >>= (digitBitIndex % 64);
1221    hexDigit &= 0xF;
1222
1223    // Map that over to a lowercase hex digit.
1224    static const char charForHex[16] = {
1225      '0', '1', '2', '3', '4', '5', '6', '7',
1226      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
1227    };
1228    buffer[stringIndex] = charForHex[hexDigit];
1229  }
1230
1231  Out.write(buffer.data(), numCharacters);
1232}
1233
1234void CXXNameMangler::mangleFloatLiteral(QualType T, const llvm::APFloat &V) {
1235  Out << 'L';
1236  mangleType(T);
1237  mangleFloat(V);
1238  Out << 'E';
1239}
1240
1241void CXXNameMangler::mangleFixedPointLiteral() {
1242  DiagnosticsEngine &Diags = Context.getDiags();
1243  unsigned DiagID = Diags.getCustomDiagID(
1244      DiagnosticsEngine::Error, "cannot mangle fixed point literals yet");
1245  Diags.Report(DiagID);
1246}
1247
1248void CXXNameMangler::mangleNullPointer(QualType T) {
1249  //  <expr-primary> ::= L <type> 0 E
1250  Out << 'L';
1251  mangleType(T);
1252  Out << "0E";
1253}
1254
1255void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
1256  if (Value.isSigned() && Value.isNegative()) {
1257    Out << 'n';
1258    Value.abs().print(Out, /*signed*/ false);
1259  } else {
1260    Value.print(Out, /*signed*/ false);
1261  }
1262}
1263
1264void CXXNameMangler::mangleNumber(int64_t Number) {
1265  //  <number> ::= [n] <non-negative decimal integer>
1266  if (Number < 0) {
1267    Out << 'n';
1268    Number = -Number;
1269  }
1270
1271  Out << Number;
1272}
1273
1274void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
1275  //  <call-offset>  ::= h <nv-offset> _
1276  //                 ::= v <v-offset> _
1277  //  <nv-offset>    ::= <offset number>        # non-virtual base override
1278  //  <v-offset>     ::= <offset number> _ <virtual offset number>
1279  //                      # virtual base override, with vcall offset
1280  if (!Virtual) {
1281    Out << 'h';
1282    mangleNumber(NonVirtual);
1283    Out << '_';
1284    return;
1285  }
1286
1287  Out << 'v';
1288  mangleNumber(NonVirtual);
1289  Out << '_';
1290  mangleNumber(Virtual);
1291  Out << '_';
1292}
1293
1294void CXXNameMangler::manglePrefix(QualType type) {
1295  if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
1296    if (!mangleSubstitution(QualType(TST, 0))) {
1297      mangleTemplatePrefix(TST->getTemplateName());
1298
1299      // FIXME: GCC does not appear to mangle the template arguments when
1300      // the template in question is a dependent template name. Should we
1301      // emulate that badness?
1302      mangleTemplateArgs(TST->getTemplateName(), TST->template_arguments());
1303      addSubstitution(QualType(TST, 0));
1304    }
1305  } else if (const auto *DTST =
1306                 type->getAs<DependentTemplateSpecializationType>()) {
1307    if (!mangleSubstitution(QualType(DTST, 0))) {
1308      TemplateName Template = getASTContext().getDependentTemplateName(
1309          DTST->getQualifier(), DTST->getIdentifier());
1310      mangleTemplatePrefix(Template);
1311
1312      // FIXME: GCC does not appear to mangle the template arguments when
1313      // the template in question is a dependent template name. Should we
1314      // emulate that badness?
1315      mangleTemplateArgs(Template, DTST->template_arguments());
1316      addSubstitution(QualType(DTST, 0));
1317    }
1318  } else {
1319    // We use the QualType mangle type variant here because it handles
1320    // substitutions.
1321    mangleType(type);
1322  }
1323}
1324
1325/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
1326///
1327/// \param recursive - true if this is being called recursively,
1328///   i.e. if there is more prefix "to the right".
1329void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
1330                                            bool recursive) {
1331
1332  // x, ::x
1333  // <unresolved-name> ::= [gs] <base-unresolved-name>
1334
1335  // T::x / decltype(p)::x
1336  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
1337
1338  // T::N::x /decltype(p)::N::x
1339  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
1340  //                       <base-unresolved-name>
1341
1342  // A::x, N::y, A<T>::z; "gs" means leading "::"
1343  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
1344  //                       <base-unresolved-name>
1345
1346  switch (qualifier->getKind()) {
1347  case NestedNameSpecifier::Global:
1348    Out << "gs";
1349
1350    // We want an 'sr' unless this is the entire NNS.
1351    if (recursive)
1352      Out << "sr";
1353
1354    // We never want an 'E' here.
1355    return;
1356
1357  case NestedNameSpecifier::Super:
1358    llvm_unreachable("Can't mangle __super specifier");
1359
1360  case NestedNameSpecifier::Namespace:
1361    if (qualifier->getPrefix())
1362      mangleUnresolvedPrefix(qualifier->getPrefix(),
1363                             /*recursive*/ true);
1364    else
1365      Out << "sr";
1366    mangleSourceNameWithAbiTags(qualifier->getAsNamespace());
1367    break;
1368  case NestedNameSpecifier::NamespaceAlias:
1369    if (qualifier->getPrefix())
1370      mangleUnresolvedPrefix(qualifier->getPrefix(),
1371                             /*recursive*/ true);
1372    else
1373      Out << "sr";
1374    mangleSourceNameWithAbiTags(qualifier->getAsNamespaceAlias());
1375    break;
1376
1377  case NestedNameSpecifier::TypeSpec:
1378  case NestedNameSpecifier::TypeSpecWithTemplate: {
1379    const Type *type = qualifier->getAsType();
1380
1381    // We only want to use an unresolved-type encoding if this is one of:
1382    //   - a decltype
1383    //   - a template type parameter
1384    //   - a template template parameter with arguments
1385    // In all of these cases, we should have no prefix.
1386    if (qualifier->getPrefix()) {
1387      mangleUnresolvedPrefix(qualifier->getPrefix(),
1388                             /*recursive*/ true);
1389    } else {
1390      // Otherwise, all the cases want this.
1391      Out << "sr";
1392    }
1393
1394    if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
1395      return;
1396
1397    break;
1398  }
1399
1400  case NestedNameSpecifier::Identifier:
1401    // Member expressions can have these without prefixes.
1402    if (qualifier->getPrefix())
1403      mangleUnresolvedPrefix(qualifier->getPrefix(),
1404                             /*recursive*/ true);
1405    else
1406      Out << "sr";
1407
1408    mangleSourceName(qualifier->getAsIdentifier());
1409    // An Identifier has no type information, so we can't emit abi tags for it.
1410    break;
1411  }
1412
1413  // If this was the innermost part of the NNS, and we fell out to
1414  // here, append an 'E'.
1415  if (!recursive)
1416    Out << 'E';
1417}
1418
1419/// Mangle an unresolved-name, which is generally used for names which
1420/// weren't resolved to specific entities.
1421void CXXNameMangler::mangleUnresolvedName(
1422    NestedNameSpecifier *qualifier, DeclarationName name,
1423    const TemplateArgumentLoc *TemplateArgs, unsigned NumTemplateArgs,
1424    unsigned knownArity) {
1425  if (qualifier) mangleUnresolvedPrefix(qualifier);
1426  switch (name.getNameKind()) {
1427    // <base-unresolved-name> ::= <simple-id>
1428    case DeclarationName::Identifier:
1429      mangleSourceName(name.getAsIdentifierInfo());
1430      break;
1431    // <base-unresolved-name> ::= dn <destructor-name>
1432    case DeclarationName::CXXDestructorName:
1433      Out << "dn";
1434      mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
1435      break;
1436    // <base-unresolved-name> ::= on <operator-name>
1437    case DeclarationName::CXXConversionFunctionName:
1438    case DeclarationName::CXXLiteralOperatorName:
1439    case DeclarationName::CXXOperatorName:
1440      Out << "on";
1441      mangleOperatorName(name, knownArity);
1442      break;
1443    case DeclarationName::CXXConstructorName:
1444      llvm_unreachable("Can't mangle a constructor name!");
1445    case DeclarationName::CXXUsingDirective:
1446      llvm_unreachable("Can't mangle a using directive name!");
1447    case DeclarationName::CXXDeductionGuideName:
1448      llvm_unreachable("Can't mangle a deduction guide name!");
1449    case DeclarationName::ObjCMultiArgSelector:
1450    case DeclarationName::ObjCOneArgSelector:
1451    case DeclarationName::ObjCZeroArgSelector:
1452      llvm_unreachable("Can't mangle Objective-C selector names here!");
1453  }
1454
1455  // The <simple-id> and on <operator-name> productions end in an optional
1456  // <template-args>.
1457  if (TemplateArgs)
1458    mangleTemplateArgs(TemplateName(), TemplateArgs, NumTemplateArgs);
1459}
1460
1461void CXXNameMangler::mangleUnqualifiedName(
1462    GlobalDecl GD, DeclarationName Name, const DeclContext *DC,
1463    unsigned KnownArity, const AbiTagList *AdditionalAbiTags) {
1464  const NamedDecl *ND = cast_or_null<NamedDecl>(GD.getDecl());
1465  //  <unqualified-name> ::= [<module-name>] [F] <operator-name>
1466  //                     ::= <ctor-dtor-name>
1467  //                     ::= [<module-name>] [F] <source-name>
1468  //                     ::= [<module-name>] DC <source-name>* E
1469
1470  if (ND && DC && DC->isFileContext())
1471    mangleModuleName(ND);
1472
1473  // A member-like constrained friend is mangled with a leading 'F'.
1474  // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24.
1475  auto *FD = dyn_cast<FunctionDecl>(ND);
1476  auto *FTD = dyn_cast<FunctionTemplateDecl>(ND);
1477  if ((FD && FD->isMemberLikeConstrainedFriend()) ||
1478      (FTD && FTD->getTemplatedDecl()->isMemberLikeConstrainedFriend())) {
1479    if (!isCompatibleWith(LangOptions::ClangABI::Ver17))
1480      Out << 'F';
1481  }
1482
1483  unsigned Arity = KnownArity;
1484  switch (Name.getNameKind()) {
1485  case DeclarationName::Identifier: {
1486    const IdentifierInfo *II = Name.getAsIdentifierInfo();
1487
1488    // We mangle decomposition declarations as the names of their bindings.
1489    if (auto *DD = dyn_cast<DecompositionDecl>(ND)) {
1490      // FIXME: Non-standard mangling for decomposition declarations:
1491      //
1492      //  <unqualified-name> ::= DC <source-name>* E
1493      //
1494      // Proposed on cxx-abi-dev on 2016-08-12
1495      Out << "DC";
1496      for (auto *BD : DD->bindings())
1497        mangleSourceName(BD->getDeclName().getAsIdentifierInfo());
1498      Out << 'E';
1499      writeAbiTags(ND, AdditionalAbiTags);
1500      break;
1501    }
1502
1503    if (auto *GD = dyn_cast<MSGuidDecl>(ND)) {
1504      // We follow MSVC in mangling GUID declarations as if they were variables
1505      // with a particular reserved name. Continue the pretense here.
1506      SmallString<sizeof("_GUID_12345678_1234_1234_1234_1234567890ab")> GUID;
1507      llvm::raw_svector_ostream GUIDOS(GUID);
1508      Context.mangleMSGuidDecl(GD, GUIDOS);
1509      Out << GUID.size() << GUID;
1510      break;
1511    }
1512
1513    if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
1514      // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
1515      Out << "TA";
1516      mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
1517                               TPO->getValue(), /*TopLevel=*/true);
1518      break;
1519    }
1520
1521    if (II) {
1522      // Match GCC's naming convention for internal linkage symbols, for
1523      // symbols that are not actually visible outside of this TU. GCC
1524      // distinguishes between internal and external linkage symbols in
1525      // its mangling, to support cases like this that were valid C++ prior
1526      // to DR426:
1527      //
1528      //   void test() { extern void foo(); }
1529      //   static void foo();
1530      //
1531      // Don't bother with the L marker for names in anonymous namespaces; the
1532      // 12_GLOBAL__N_1 mangling is quite sufficient there, and this better
1533      // matches GCC anyway, because GCC does not treat anonymous namespaces as
1534      // implying internal linkage.
1535      if (Context.isInternalLinkageDecl(ND))
1536        Out << 'L';
1537
1538      bool IsRegCall = FD &&
1539                       FD->getType()->castAs<FunctionType>()->getCallConv() ==
1540                           clang::CC_X86RegCall;
1541      bool IsDeviceStub =
1542          FD && FD->hasAttr<CUDAGlobalAttr>() &&
1543          GD.getKernelReferenceKind() == KernelReferenceKind::Stub;
1544      if (IsDeviceStub)
1545        mangleDeviceStubName(II);
1546      else if (IsRegCall)
1547        mangleRegCallName(II);
1548      else
1549        mangleSourceName(II);
1550
1551      writeAbiTags(ND, AdditionalAbiTags);
1552      break;
1553    }
1554
1555    // Otherwise, an anonymous entity.  We must have a declaration.
1556    assert(ND && "mangling empty name without declaration");
1557
1558    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1559      if (NS->isAnonymousNamespace()) {
1560        // This is how gcc mangles these names.
1561        Out << "12_GLOBAL__N_1";
1562        break;
1563      }
1564    }
1565
1566    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1567      // We must have an anonymous union or struct declaration.
1568      const RecordDecl *RD = VD->getType()->castAs<RecordType>()->getDecl();
1569
1570      // Itanium C++ ABI 5.1.2:
1571      //
1572      //   For the purposes of mangling, the name of an anonymous union is
1573      //   considered to be the name of the first named data member found by a
1574      //   pre-order, depth-first, declaration-order walk of the data members of
1575      //   the anonymous union. If there is no such data member (i.e., if all of
1576      //   the data members in the union are unnamed), then there is no way for
1577      //   a program to refer to the anonymous union, and there is therefore no
1578      //   need to mangle its name.
1579      assert(RD->isAnonymousStructOrUnion()
1580             && "Expected anonymous struct or union!");
1581      const FieldDecl *FD = RD->findFirstNamedDataMember();
1582
1583      // It's actually possible for various reasons for us to get here
1584      // with an empty anonymous struct / union.  Fortunately, it
1585      // doesn't really matter what name we generate.
1586      if (!FD) break;
1587      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1588
1589      mangleSourceName(FD->getIdentifier());
1590      // Not emitting abi tags: internal name anyway.
1591      break;
1592    }
1593
1594    // Class extensions have no name as a category, and it's possible
1595    // for them to be the semantic parent of certain declarations
1596    // (primarily, tag decls defined within declarations).  Such
1597    // declarations will always have internal linkage, so the name
1598    // doesn't really matter, but we shouldn't crash on them.  For
1599    // safety, just handle all ObjC containers here.
1600    if (isa<ObjCContainerDecl>(ND))
1601      break;
1602
1603    // We must have an anonymous struct.
1604    const TagDecl *TD = cast<TagDecl>(ND);
1605    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1606      assert(TD->getDeclContext() == D->getDeclContext() &&
1607             "Typedef should not be in another decl context!");
1608      assert(D->getDeclName().getAsIdentifierInfo() &&
1609             "Typedef was not named!");
1610      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1611      assert(!AdditionalAbiTags && "Type cannot have additional abi tags");
1612      // Explicit abi tags are still possible; take from underlying type, not
1613      // from typedef.
1614      writeAbiTags(TD, nullptr);
1615      break;
1616    }
1617
1618    // <unnamed-type-name> ::= <closure-type-name>
1619    //
1620    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1621    // <lambda-sig> ::= <template-param-decl>* <parameter-type>+
1622    //     # Parameter types or 'v' for 'void'.
1623    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1624      std::optional<unsigned> DeviceNumber =
1625          Context.getDiscriminatorOverride()(Context.getASTContext(), Record);
1626
1627      // If we have a device-number via the discriminator, use that to mangle
1628      // the lambda, otherwise use the typical lambda-mangling-number. In either
1629      // case, a '0' should be mangled as a normal unnamed class instead of as a
1630      // lambda.
1631      if (Record->isLambda() &&
1632          ((DeviceNumber && *DeviceNumber > 0) ||
1633           (!DeviceNumber && Record->getLambdaManglingNumber() > 0))) {
1634        assert(!AdditionalAbiTags &&
1635               "Lambda type cannot have additional abi tags");
1636        mangleLambda(Record);
1637        break;
1638      }
1639    }
1640
1641    if (TD->isExternallyVisible()) {
1642      unsigned UnnamedMangle =
1643          getASTContext().getManglingNumber(TD, Context.isAux());
1644      Out << "Ut";
1645      if (UnnamedMangle > 1)
1646        Out << UnnamedMangle - 2;
1647      Out << '_';
1648      writeAbiTags(TD, AdditionalAbiTags);
1649      break;
1650    }
1651
1652    // Get a unique id for the anonymous struct. If it is not a real output
1653    // ID doesn't matter so use fake one.
1654    unsigned AnonStructId =
1655        NullOut ? 0
1656                : Context.getAnonymousStructId(TD, dyn_cast<FunctionDecl>(DC));
1657
1658    // Mangle it as a source name in the form
1659    // [n] $_<id>
1660    // where n is the length of the string.
1661    SmallString<8> Str;
1662    Str += "$_";
1663    Str += llvm::utostr(AnonStructId);
1664
1665    Out << Str.size();
1666    Out << Str;
1667    break;
1668  }
1669
1670  case DeclarationName::ObjCZeroArgSelector:
1671  case DeclarationName::ObjCOneArgSelector:
1672  case DeclarationName::ObjCMultiArgSelector:
1673    llvm_unreachable("Can't mangle Objective-C selector names here!");
1674
1675  case DeclarationName::CXXConstructorName: {
1676    const CXXRecordDecl *InheritedFrom = nullptr;
1677    TemplateName InheritedTemplateName;
1678    const TemplateArgumentList *InheritedTemplateArgs = nullptr;
1679    if (auto Inherited =
1680            cast<CXXConstructorDecl>(ND)->getInheritedConstructor()) {
1681      InheritedFrom = Inherited.getConstructor()->getParent();
1682      InheritedTemplateName =
1683          TemplateName(Inherited.getConstructor()->getPrimaryTemplate());
1684      InheritedTemplateArgs =
1685          Inherited.getConstructor()->getTemplateSpecializationArgs();
1686    }
1687
1688    if (ND == Structor)
1689      // If the named decl is the C++ constructor we're mangling, use the type
1690      // we were given.
1691      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType), InheritedFrom);
1692    else
1693      // Otherwise, use the complete constructor name. This is relevant if a
1694      // class with a constructor is declared within a constructor.
1695      mangleCXXCtorType(Ctor_Complete, InheritedFrom);
1696
1697    // FIXME: The template arguments are part of the enclosing prefix or
1698    // nested-name, but it's more convenient to mangle them here.
1699    if (InheritedTemplateArgs)
1700      mangleTemplateArgs(InheritedTemplateName, *InheritedTemplateArgs);
1701
1702    writeAbiTags(ND, AdditionalAbiTags);
1703    break;
1704  }
1705
1706  case DeclarationName::CXXDestructorName:
1707    if (ND == Structor)
1708      // If the named decl is the C++ destructor we're mangling, use the type we
1709      // were given.
1710      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1711    else
1712      // Otherwise, use the complete destructor name. This is relevant if a
1713      // class with a destructor is declared within a destructor.
1714      mangleCXXDtorType(Dtor_Complete);
1715    assert(ND);
1716    writeAbiTags(ND, AdditionalAbiTags);
1717    break;
1718
1719  case DeclarationName::CXXOperatorName:
1720    if (ND && Arity == UnknownArity) {
1721      Arity = cast<FunctionDecl>(ND)->getNumParams();
1722
1723      // If we have a member function, we need to include the 'this' pointer.
1724      if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1725        if (MD->isImplicitObjectMemberFunction())
1726          Arity++;
1727    }
1728    [[fallthrough]];
1729  case DeclarationName::CXXConversionFunctionName:
1730  case DeclarationName::CXXLiteralOperatorName:
1731    mangleOperatorName(Name, Arity);
1732    writeAbiTags(ND, AdditionalAbiTags);
1733    break;
1734
1735  case DeclarationName::CXXDeductionGuideName:
1736    llvm_unreachable("Can't mangle a deduction guide name!");
1737
1738  case DeclarationName::CXXUsingDirective:
1739    llvm_unreachable("Can't mangle a using directive name!");
1740  }
1741}
1742
1743void CXXNameMangler::mangleRegCallName(const IdentifierInfo *II) {
1744  // <source-name> ::= <positive length number> __regcall3__ <identifier>
1745  // <number> ::= [n] <non-negative decimal integer>
1746  // <identifier> ::= <unqualified source code identifier>
1747  if (getASTContext().getLangOpts().RegCall4)
1748    Out << II->getLength() + sizeof("__regcall4__") - 1 << "__regcall4__"
1749        << II->getName();
1750  else
1751    Out << II->getLength() + sizeof("__regcall3__") - 1 << "__regcall3__"
1752        << II->getName();
1753}
1754
1755void CXXNameMangler::mangleDeviceStubName(const IdentifierInfo *II) {
1756  // <source-name> ::= <positive length number> __device_stub__ <identifier>
1757  // <number> ::= [n] <non-negative decimal integer>
1758  // <identifier> ::= <unqualified source code identifier>
1759  Out << II->getLength() + sizeof("__device_stub__") - 1 << "__device_stub__"
1760      << II->getName();
1761}
1762
1763void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1764  // <source-name> ::= <positive length number> <identifier>
1765  // <number> ::= [n] <non-negative decimal integer>
1766  // <identifier> ::= <unqualified source code identifier>
1767  Out << II->getLength() << II->getName();
1768}
1769
1770void CXXNameMangler::mangleNestedName(GlobalDecl GD,
1771                                      const DeclContext *DC,
1772                                      const AbiTagList *AdditionalAbiTags,
1773                                      bool NoFunction) {
1774  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
1775  // <nested-name>
1776  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1777  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1778  //       <template-args> E
1779
1780  Out << 'N';
1781  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1782    Qualifiers MethodQuals = Method->getMethodQualifiers();
1783    // We do not consider restrict a distinguishing attribute for overloading
1784    // purposes so we must not mangle it.
1785    if (Method->isExplicitObjectMemberFunction())
1786      Out << 'H';
1787    MethodQuals.removeRestrict();
1788    mangleQualifiers(MethodQuals);
1789    mangleRefQualifier(Method->getRefQualifier());
1790  }
1791
1792  // Check if we have a template.
1793  const TemplateArgumentList *TemplateArgs = nullptr;
1794  if (GlobalDecl TD = isTemplate(GD, TemplateArgs)) {
1795    mangleTemplatePrefix(TD, NoFunction);
1796    mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
1797  } else {
1798    manglePrefix(DC, NoFunction);
1799    mangleUnqualifiedName(GD, DC, AdditionalAbiTags);
1800  }
1801
1802  Out << 'E';
1803}
1804void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1805                                      ArrayRef<TemplateArgument> Args) {
1806  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1807
1808  Out << 'N';
1809
1810  mangleTemplatePrefix(TD);
1811  mangleTemplateArgs(asTemplateName(TD), Args);
1812
1813  Out << 'E';
1814}
1815
1816void CXXNameMangler::mangleNestedNameWithClosurePrefix(
1817    GlobalDecl GD, const NamedDecl *PrefixND,
1818    const AbiTagList *AdditionalAbiTags) {
1819  // A <closure-prefix> represents a variable or field, not a regular
1820  // DeclContext, so needs special handling. In this case we're mangling a
1821  // limited form of <nested-name>:
1822  //
1823  // <nested-name> ::= N <closure-prefix> <closure-type-name> E
1824
1825  Out << 'N';
1826
1827  mangleClosurePrefix(PrefixND);
1828  mangleUnqualifiedName(GD, nullptr, AdditionalAbiTags);
1829
1830  Out << 'E';
1831}
1832
1833static GlobalDecl getParentOfLocalEntity(const DeclContext *DC) {
1834  GlobalDecl GD;
1835  // The Itanium spec says:
1836  // For entities in constructors and destructors, the mangling of the
1837  // complete object constructor or destructor is used as the base function
1838  // name, i.e. the C1 or D1 version.
1839  if (auto *CD = dyn_cast<CXXConstructorDecl>(DC))
1840    GD = GlobalDecl(CD, Ctor_Complete);
1841  else if (auto *DD = dyn_cast<CXXDestructorDecl>(DC))
1842    GD = GlobalDecl(DD, Dtor_Complete);
1843  else
1844    GD = GlobalDecl(cast<FunctionDecl>(DC));
1845  return GD;
1846}
1847
1848void CXXNameMangler::mangleLocalName(GlobalDecl GD,
1849                                     const AbiTagList *AdditionalAbiTags) {
1850  const Decl *D = GD.getDecl();
1851  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1852  //              := Z <function encoding> E s [<discriminator>]
1853  // <local-name> := Z <function encoding> E d [ <parameter number> ]
1854  //                 _ <entity name>
1855  // <discriminator> := _ <non-negative number>
1856  assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1857  const RecordDecl *RD = GetLocalClassDecl(D);
1858  const DeclContext *DC = Context.getEffectiveDeclContext(RD ? RD : D);
1859
1860  Out << 'Z';
1861
1862  {
1863    AbiTagState LocalAbiTags(AbiTags);
1864
1865    if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1866      mangleObjCMethodName(MD);
1867    else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1868      mangleBlockForPrefix(BD);
1869    else
1870      mangleFunctionEncoding(getParentOfLocalEntity(DC));
1871
1872    // Implicit ABI tags (from namespace) are not available in the following
1873    // entity; reset to actually emitted tags, which are available.
1874    LocalAbiTags.setUsedAbiTags(LocalAbiTags.getEmittedAbiTags());
1875  }
1876
1877  Out << 'E';
1878
1879  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
1880  // be a bug that is fixed in trunk.
1881
1882  if (RD) {
1883    // The parameter number is omitted for the last parameter, 0 for the
1884    // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1885    // <entity name> will of course contain a <closure-type-name>: Its
1886    // numbering will be local to the particular argument in which it appears
1887    // -- other default arguments do not affect its encoding.
1888    const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1889    if (CXXRD && CXXRD->isLambda()) {
1890      if (const ParmVarDecl *Parm
1891              = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1892        if (const FunctionDecl *Func
1893              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1894          Out << 'd';
1895          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1896          if (Num > 1)
1897            mangleNumber(Num - 2);
1898          Out << '_';
1899        }
1900      }
1901    }
1902
1903    // Mangle the name relative to the closest enclosing function.
1904    // equality ok because RD derived from ND above
1905    if (D == RD)  {
1906      mangleUnqualifiedName(RD, DC, AdditionalAbiTags);
1907    } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1908      if (const NamedDecl *PrefixND = getClosurePrefix(BD))
1909        mangleClosurePrefix(PrefixND, true /*NoFunction*/);
1910      else
1911        manglePrefix(Context.getEffectiveDeclContext(BD), true /*NoFunction*/);
1912      assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1913      mangleUnqualifiedBlock(BD);
1914    } else {
1915      const NamedDecl *ND = cast<NamedDecl>(D);
1916      mangleNestedName(GD, Context.getEffectiveDeclContext(ND),
1917                       AdditionalAbiTags, true /*NoFunction*/);
1918    }
1919  } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1920    // Mangle a block in a default parameter; see above explanation for
1921    // lambdas.
1922    if (const ParmVarDecl *Parm
1923            = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1924      if (const FunctionDecl *Func
1925            = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1926        Out << 'd';
1927        unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1928        if (Num > 1)
1929          mangleNumber(Num - 2);
1930        Out << '_';
1931      }
1932    }
1933
1934    assert(!AdditionalAbiTags && "Block cannot have additional abi tags");
1935    mangleUnqualifiedBlock(BD);
1936  } else {
1937    mangleUnqualifiedName(GD, DC, AdditionalAbiTags);
1938  }
1939
1940  if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1941    unsigned disc;
1942    if (Context.getNextDiscriminator(ND, disc)) {
1943      if (disc < 10)
1944        Out << '_' << disc;
1945      else
1946        Out << "__" << disc << '_';
1947    }
1948  }
1949}
1950
1951void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1952  if (GetLocalClassDecl(Block)) {
1953    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1954    return;
1955  }
1956  const DeclContext *DC = Context.getEffectiveDeclContext(Block);
1957  if (isLocalContainerContext(DC)) {
1958    mangleLocalName(Block, /* AdditionalAbiTags */ nullptr);
1959    return;
1960  }
1961  if (const NamedDecl *PrefixND = getClosurePrefix(Block))
1962    mangleClosurePrefix(PrefixND);
1963  else
1964    manglePrefix(DC);
1965  mangleUnqualifiedBlock(Block);
1966}
1967
1968void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1969  // When trying to be ABI-compatibility with clang 12 and before, mangle a
1970  // <data-member-prefix> now, with no substitutions and no <template-args>.
1971  if (Decl *Context = Block->getBlockManglingContextDecl()) {
1972    if (isCompatibleWith(LangOptions::ClangABI::Ver12) &&
1973        (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1974        Context->getDeclContext()->isRecord()) {
1975      const auto *ND = cast<NamedDecl>(Context);
1976      if (ND->getIdentifier()) {
1977        mangleSourceNameWithAbiTags(ND);
1978        Out << 'M';
1979      }
1980    }
1981  }
1982
1983  // If we have a block mangling number, use it.
1984  unsigned Number = Block->getBlockManglingNumber();
1985  // Otherwise, just make up a number. It doesn't matter what it is because
1986  // the symbol in question isn't externally visible.
1987  if (!Number)
1988    Number = Context.getBlockId(Block, false);
1989  else {
1990    // Stored mangling numbers are 1-based.
1991    --Number;
1992  }
1993  Out << "Ub";
1994  if (Number > 0)
1995    Out << Number - 1;
1996  Out << '_';
1997}
1998
1999// <template-param-decl>
2000//   ::= Ty                                  # template type parameter
2001//   ::= Tk <concept name> [<template-args>] # constrained type parameter
2002//   ::= Tn <type>                           # template non-type parameter
2003//   ::= Tt <template-param-decl>* E [Q <requires-clause expr>]
2004//                                           # template template parameter
2005//   ::= Tp <template-param-decl>            # template parameter pack
2006void CXXNameMangler::mangleTemplateParamDecl(const NamedDecl *Decl) {
2007  // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
2008  if (auto *Ty = dyn_cast<TemplateTypeParmDecl>(Decl)) {
2009    if (Ty->isParameterPack())
2010      Out << "Tp";
2011    const TypeConstraint *Constraint = Ty->getTypeConstraint();
2012    if (Constraint && !isCompatibleWith(LangOptions::ClangABI::Ver17)) {
2013      // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24.
2014      Out << "Tk";
2015      mangleTypeConstraint(Constraint);
2016    } else {
2017      Out << "Ty";
2018    }
2019  } else if (auto *Tn = dyn_cast<NonTypeTemplateParmDecl>(Decl)) {
2020    if (Tn->isExpandedParameterPack()) {
2021      for (unsigned I = 0, N = Tn->getNumExpansionTypes(); I != N; ++I) {
2022        Out << "Tn";
2023        mangleType(Tn->getExpansionType(I));
2024      }
2025    } else {
2026      QualType T = Tn->getType();
2027      if (Tn->isParameterPack()) {
2028        Out << "Tp";
2029        if (auto *PackExpansion = T->getAs<PackExpansionType>())
2030          T = PackExpansion->getPattern();
2031      }
2032      Out << "Tn";
2033      mangleType(T);
2034    }
2035  } else if (auto *Tt = dyn_cast<TemplateTemplateParmDecl>(Decl)) {
2036    if (Tt->isExpandedParameterPack()) {
2037      for (unsigned I = 0, N = Tt->getNumExpansionTemplateParameters(); I != N;
2038           ++I)
2039        mangleTemplateParameterList(Tt->getExpansionTemplateParameters(I));
2040    } else {
2041      if (Tt->isParameterPack())
2042        Out << "Tp";
2043      mangleTemplateParameterList(Tt->getTemplateParameters());
2044    }
2045  }
2046}
2047
2048void CXXNameMangler::mangleTemplateParameterList(
2049    const TemplateParameterList *Params) {
2050  Out << "Tt";
2051  for (auto *Param : *Params)
2052    mangleTemplateParamDecl(Param);
2053  mangleRequiresClause(Params->getRequiresClause());
2054  Out << "E";
2055}
2056
2057void CXXNameMangler::mangleTypeConstraint(
2058    const ConceptDecl *Concept, ArrayRef<TemplateArgument> Arguments) {
2059  const DeclContext *DC = Context.getEffectiveDeclContext(Concept);
2060  if (!Arguments.empty())
2061    mangleTemplateName(Concept, Arguments);
2062  else if (DC->isTranslationUnit() || isStdNamespace(DC))
2063    mangleUnscopedName(Concept, DC, nullptr);
2064  else
2065    mangleNestedName(Concept, DC, nullptr);
2066}
2067
2068void CXXNameMangler::mangleTypeConstraint(const TypeConstraint *Constraint) {
2069  llvm::SmallVector<TemplateArgument, 8> Args;
2070  if (Constraint->getTemplateArgsAsWritten()) {
2071    for (const TemplateArgumentLoc &ArgLoc :
2072         Constraint->getTemplateArgsAsWritten()->arguments())
2073      Args.push_back(ArgLoc.getArgument());
2074  }
2075  return mangleTypeConstraint(Constraint->getNamedConcept(), Args);
2076}
2077
2078void CXXNameMangler::mangleRequiresClause(const Expr *RequiresClause) {
2079  // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24.
2080  if (RequiresClause && !isCompatibleWith(LangOptions::ClangABI::Ver17)) {
2081    Out << 'Q';
2082    mangleExpression(RequiresClause);
2083  }
2084}
2085
2086void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
2087  // When trying to be ABI-compatibility with clang 12 and before, mangle a
2088  // <data-member-prefix> now, with no substitutions.
2089  if (Decl *Context = Lambda->getLambdaContextDecl()) {
2090    if (isCompatibleWith(LangOptions::ClangABI::Ver12) &&
2091        (isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
2092        !isa<ParmVarDecl>(Context)) {
2093      if (const IdentifierInfo *Name
2094            = cast<NamedDecl>(Context)->getIdentifier()) {
2095        mangleSourceName(Name);
2096        const TemplateArgumentList *TemplateArgs = nullptr;
2097        if (GlobalDecl TD = isTemplate(cast<NamedDecl>(Context), TemplateArgs))
2098          mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2099        Out << 'M';
2100      }
2101    }
2102  }
2103
2104  Out << "Ul";
2105  mangleLambdaSig(Lambda);
2106  Out << "E";
2107
2108  // The number is omitted for the first closure type with a given
2109  // <lambda-sig> in a given context; it is n-2 for the nth closure type
2110  // (in lexical order) with that same <lambda-sig> and context.
2111  //
2112  // The AST keeps track of the number for us.
2113  //
2114  // In CUDA/HIP, to ensure the consistent lamba numbering between the device-
2115  // and host-side compilations, an extra device mangle context may be created
2116  // if the host-side CXX ABI has different numbering for lambda. In such case,
2117  // if the mangle context is that device-side one, use the device-side lambda
2118  // mangling number for this lambda.
2119  std::optional<unsigned> DeviceNumber =
2120      Context.getDiscriminatorOverride()(Context.getASTContext(), Lambda);
2121  unsigned Number =
2122      DeviceNumber ? *DeviceNumber : Lambda->getLambdaManglingNumber();
2123
2124  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
2125  if (Number > 1)
2126    mangleNumber(Number - 2);
2127  Out << '_';
2128}
2129
2130void CXXNameMangler::mangleLambdaSig(const CXXRecordDecl *Lambda) {
2131  // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/31.
2132  for (auto *D : Lambda->getLambdaExplicitTemplateParameters())
2133    mangleTemplateParamDecl(D);
2134
2135  // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24.
2136  if (auto *TPL = Lambda->getGenericLambdaTemplateParameterList())
2137    mangleRequiresClause(TPL->getRequiresClause());
2138
2139  auto *Proto =
2140      Lambda->getLambdaTypeInfo()->getType()->castAs<FunctionProtoType>();
2141  mangleBareFunctionType(Proto, /*MangleReturnType=*/false,
2142                         Lambda->getLambdaStaticInvoker());
2143}
2144
2145void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
2146  switch (qualifier->getKind()) {
2147  case NestedNameSpecifier::Global:
2148    // nothing
2149    return;
2150
2151  case NestedNameSpecifier::Super:
2152    llvm_unreachable("Can't mangle __super specifier");
2153
2154  case NestedNameSpecifier::Namespace:
2155    mangleName(qualifier->getAsNamespace());
2156    return;
2157
2158  case NestedNameSpecifier::NamespaceAlias:
2159    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
2160    return;
2161
2162  case NestedNameSpecifier::TypeSpec:
2163  case NestedNameSpecifier::TypeSpecWithTemplate:
2164    manglePrefix(QualType(qualifier->getAsType(), 0));
2165    return;
2166
2167  case NestedNameSpecifier::Identifier:
2168    // Clang 14 and before did not consider this substitutable.
2169    bool Clang14Compat = isCompatibleWith(LangOptions::ClangABI::Ver14);
2170    if (!Clang14Compat && mangleSubstitution(qualifier))
2171      return;
2172
2173    // Member expressions can have these without prefixes, but that
2174    // should end up in mangleUnresolvedPrefix instead.
2175    assert(qualifier->getPrefix());
2176    manglePrefix(qualifier->getPrefix());
2177
2178    mangleSourceName(qualifier->getAsIdentifier());
2179
2180    if (!Clang14Compat)
2181      addSubstitution(qualifier);
2182    return;
2183  }
2184
2185  llvm_unreachable("unexpected nested name specifier");
2186}
2187
2188void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
2189  //  <prefix> ::= <prefix> <unqualified-name>
2190  //           ::= <template-prefix> <template-args>
2191  //           ::= <closure-prefix>
2192  //           ::= <template-param>
2193  //           ::= # empty
2194  //           ::= <substitution>
2195
2196  assert(!isa<LinkageSpecDecl>(DC) && "prefix cannot be LinkageSpecDecl");
2197
2198  if (DC->isTranslationUnit())
2199    return;
2200
2201  if (NoFunction && isLocalContainerContext(DC))
2202    return;
2203
2204  assert(!isLocalContainerContext(DC));
2205
2206  const NamedDecl *ND = cast<NamedDecl>(DC);
2207  if (mangleSubstitution(ND))
2208    return;
2209
2210  // Check if we have a template-prefix or a closure-prefix.
2211  const TemplateArgumentList *TemplateArgs = nullptr;
2212  if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2213    mangleTemplatePrefix(TD);
2214    mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2215  } else if (const NamedDecl *PrefixND = getClosurePrefix(ND)) {
2216    mangleClosurePrefix(PrefixND, NoFunction);
2217    mangleUnqualifiedName(ND, nullptr, nullptr);
2218  } else {
2219    const DeclContext *DC = Context.getEffectiveDeclContext(ND);
2220    manglePrefix(DC, NoFunction);
2221    mangleUnqualifiedName(ND, DC, nullptr);
2222  }
2223
2224  addSubstitution(ND);
2225}
2226
2227void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
2228  // <template-prefix> ::= <prefix> <template unqualified-name>
2229  //                   ::= <template-param>
2230  //                   ::= <substitution>
2231  if (TemplateDecl *TD = Template.getAsTemplateDecl())
2232    return mangleTemplatePrefix(TD);
2233
2234  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
2235  assert(Dependent && "unexpected template name kind");
2236
2237  // Clang 11 and before mangled the substitution for a dependent template name
2238  // after already having emitted (a substitution for) the prefix.
2239  bool Clang11Compat = isCompatibleWith(LangOptions::ClangABI::Ver11);
2240  if (!Clang11Compat && mangleSubstitution(Template))
2241    return;
2242
2243  if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
2244    manglePrefix(Qualifier);
2245
2246  if (Clang11Compat && mangleSubstitution(Template))
2247    return;
2248
2249  if (const IdentifierInfo *Id = Dependent->getIdentifier())
2250    mangleSourceName(Id);
2251  else
2252    mangleOperatorName(Dependent->getOperator(), UnknownArity);
2253
2254  addSubstitution(Template);
2255}
2256
2257void CXXNameMangler::mangleTemplatePrefix(GlobalDecl GD,
2258                                          bool NoFunction) {
2259  const TemplateDecl *ND = cast<TemplateDecl>(GD.getDecl());
2260  // <template-prefix> ::= <prefix> <template unqualified-name>
2261  //                   ::= <template-param>
2262  //                   ::= <substitution>
2263  // <template-template-param> ::= <template-param>
2264  //                               <substitution>
2265
2266  if (mangleSubstitution(ND))
2267    return;
2268
2269  // <template-template-param> ::= <template-param>
2270  if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
2271    mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2272  } else {
2273    const DeclContext *DC = Context.getEffectiveDeclContext(ND);
2274    manglePrefix(DC, NoFunction);
2275    if (isa<BuiltinTemplateDecl>(ND) || isa<ConceptDecl>(ND))
2276      mangleUnqualifiedName(GD, DC, nullptr);
2277    else
2278      mangleUnqualifiedName(GD.getWithDecl(ND->getTemplatedDecl()), DC,
2279                            nullptr);
2280  }
2281
2282  addSubstitution(ND);
2283}
2284
2285const NamedDecl *CXXNameMangler::getClosurePrefix(const Decl *ND) {
2286  if (isCompatibleWith(LangOptions::ClangABI::Ver12))
2287    return nullptr;
2288
2289  const NamedDecl *Context = nullptr;
2290  if (auto *Block = dyn_cast<BlockDecl>(ND)) {
2291    Context = dyn_cast_or_null<NamedDecl>(Block->getBlockManglingContextDecl());
2292  } else if (auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
2293    if (RD->isLambda())
2294      Context = dyn_cast_or_null<NamedDecl>(RD->getLambdaContextDecl());
2295  }
2296  if (!Context)
2297    return nullptr;
2298
2299  // Only lambdas within the initializer of a non-local variable or non-static
2300  // data member get a <closure-prefix>.
2301  if ((isa<VarDecl>(Context) && cast<VarDecl>(Context)->hasGlobalStorage()) ||
2302      isa<FieldDecl>(Context))
2303    return Context;
2304
2305  return nullptr;
2306}
2307
2308void CXXNameMangler::mangleClosurePrefix(const NamedDecl *ND, bool NoFunction) {
2309  //  <closure-prefix> ::= [ <prefix> ] <unqualified-name> M
2310  //                   ::= <template-prefix> <template-args> M
2311  if (mangleSubstitution(ND))
2312    return;
2313
2314  const TemplateArgumentList *TemplateArgs = nullptr;
2315  if (GlobalDecl TD = isTemplate(ND, TemplateArgs)) {
2316    mangleTemplatePrefix(TD, NoFunction);
2317    mangleTemplateArgs(asTemplateName(TD), *TemplateArgs);
2318  } else {
2319    const auto *DC = Context.getEffectiveDeclContext(ND);
2320    manglePrefix(DC, NoFunction);
2321    mangleUnqualifiedName(ND, DC, nullptr);
2322  }
2323
2324  Out << 'M';
2325
2326  addSubstitution(ND);
2327}
2328
2329/// Mangles a template name under the production <type>.  Required for
2330/// template template arguments.
2331///   <type> ::= <class-enum-type>
2332///          ::= <template-param>
2333///          ::= <substitution>
2334void CXXNameMangler::mangleType(TemplateName TN) {
2335  if (mangleSubstitution(TN))
2336    return;
2337
2338  TemplateDecl *TD = nullptr;
2339
2340  switch (TN.getKind()) {
2341  case TemplateName::QualifiedTemplate:
2342  case TemplateName::UsingTemplate:
2343  case TemplateName::Template:
2344    TD = TN.getAsTemplateDecl();
2345    goto HaveDecl;
2346
2347  HaveDecl:
2348    if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(TD))
2349      mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
2350    else
2351      mangleName(TD);
2352    break;
2353
2354  case TemplateName::OverloadedTemplate:
2355  case TemplateName::AssumedTemplate:
2356    llvm_unreachable("can't mangle an overloaded template name as a <type>");
2357
2358  case TemplateName::DependentTemplate: {
2359    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
2360    assert(Dependent->isIdentifier());
2361
2362    // <class-enum-type> ::= <name>
2363    // <name> ::= <nested-name>
2364    mangleUnresolvedPrefix(Dependent->getQualifier());
2365    mangleSourceName(Dependent->getIdentifier());
2366    break;
2367  }
2368
2369  case TemplateName::SubstTemplateTemplateParm: {
2370    // Substituted template parameters are mangled as the substituted
2371    // template.  This will check for the substitution twice, which is
2372    // fine, but we have to return early so that we don't try to *add*
2373    // the substitution twice.
2374    SubstTemplateTemplateParmStorage *subst
2375      = TN.getAsSubstTemplateTemplateParm();
2376    mangleType(subst->getReplacement());
2377    return;
2378  }
2379
2380  case TemplateName::SubstTemplateTemplateParmPack: {
2381    // FIXME: not clear how to mangle this!
2382    // template <template <class> class T...> class A {
2383    //   template <template <class> class U...> void foo(B<T,U> x...);
2384    // };
2385    Out << "_SUBSTPACK_";
2386    break;
2387  }
2388  }
2389
2390  addSubstitution(TN);
2391}
2392
2393bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
2394                                                    StringRef Prefix) {
2395  // Only certain other types are valid as prefixes;  enumerate them.
2396  switch (Ty->getTypeClass()) {
2397  case Type::Builtin:
2398  case Type::Complex:
2399  case Type::Adjusted:
2400  case Type::Decayed:
2401  case Type::Pointer:
2402  case Type::BlockPointer:
2403  case Type::LValueReference:
2404  case Type::RValueReference:
2405  case Type::MemberPointer:
2406  case Type::ConstantArray:
2407  case Type::IncompleteArray:
2408  case Type::VariableArray:
2409  case Type::DependentSizedArray:
2410  case Type::DependentAddressSpace:
2411  case Type::DependentVector:
2412  case Type::DependentSizedExtVector:
2413  case Type::Vector:
2414  case Type::ExtVector:
2415  case Type::ConstantMatrix:
2416  case Type::DependentSizedMatrix:
2417  case Type::FunctionProto:
2418  case Type::FunctionNoProto:
2419  case Type::Paren:
2420  case Type::Attributed:
2421  case Type::BTFTagAttributed:
2422  case Type::Auto:
2423  case Type::DeducedTemplateSpecialization:
2424  case Type::PackExpansion:
2425  case Type::ObjCObject:
2426  case Type::ObjCInterface:
2427  case Type::ObjCObjectPointer:
2428  case Type::ObjCTypeParam:
2429  case Type::Atomic:
2430  case Type::Pipe:
2431  case Type::MacroQualified:
2432  case Type::BitInt:
2433  case Type::DependentBitInt:
2434    llvm_unreachable("type is illegal as a nested name specifier");
2435
2436  case Type::SubstTemplateTypeParmPack:
2437    // FIXME: not clear how to mangle this!
2438    // template <class T...> class A {
2439    //   template <class U...> void foo(decltype(T::foo(U())) x...);
2440    // };
2441    Out << "_SUBSTPACK_";
2442    break;
2443
2444  // <unresolved-type> ::= <template-param>
2445  //                   ::= <decltype>
2446  //                   ::= <template-template-param> <template-args>
2447  // (this last is not official yet)
2448  case Type::TypeOfExpr:
2449  case Type::TypeOf:
2450  case Type::Decltype:
2451  case Type::TemplateTypeParm:
2452  case Type::UnaryTransform:
2453  case Type::SubstTemplateTypeParm:
2454  unresolvedType:
2455    // Some callers want a prefix before the mangled type.
2456    Out << Prefix;
2457
2458    // This seems to do everything we want.  It's not really
2459    // sanctioned for a substituted template parameter, though.
2460    mangleType(Ty);
2461
2462    // We never want to print 'E' directly after an unresolved-type,
2463    // so we return directly.
2464    return true;
2465
2466  case Type::Typedef:
2467    mangleSourceNameWithAbiTags(cast<TypedefType>(Ty)->getDecl());
2468    break;
2469
2470  case Type::UnresolvedUsing:
2471    mangleSourceNameWithAbiTags(
2472        cast<UnresolvedUsingType>(Ty)->getDecl());
2473    break;
2474
2475  case Type::Enum:
2476  case Type::Record:
2477    mangleSourceNameWithAbiTags(cast<TagType>(Ty)->getDecl());
2478    break;
2479
2480  case Type::TemplateSpecialization: {
2481    const TemplateSpecializationType *TST =
2482        cast<TemplateSpecializationType>(Ty);
2483    TemplateName TN = TST->getTemplateName();
2484    switch (TN.getKind()) {
2485    case TemplateName::Template:
2486    case TemplateName::QualifiedTemplate: {
2487      TemplateDecl *TD = TN.getAsTemplateDecl();
2488
2489      // If the base is a template template parameter, this is an
2490      // unresolved type.
2491      assert(TD && "no template for template specialization type");
2492      if (isa<TemplateTemplateParmDecl>(TD))
2493        goto unresolvedType;
2494
2495      mangleSourceNameWithAbiTags(TD);
2496      break;
2497    }
2498
2499    case TemplateName::OverloadedTemplate:
2500    case TemplateName::AssumedTemplate:
2501    case TemplateName::DependentTemplate:
2502      llvm_unreachable("invalid base for a template specialization type");
2503
2504    case TemplateName::SubstTemplateTemplateParm: {
2505      SubstTemplateTemplateParmStorage *subst =
2506          TN.getAsSubstTemplateTemplateParm();
2507      mangleExistingSubstitution(subst->getReplacement());
2508      break;
2509    }
2510
2511    case TemplateName::SubstTemplateTemplateParmPack: {
2512      // FIXME: not clear how to mangle this!
2513      // template <template <class U> class T...> class A {
2514      //   template <class U...> void foo(decltype(T<U>::foo) x...);
2515      // };
2516      Out << "_SUBSTPACK_";
2517      break;
2518    }
2519    case TemplateName::UsingTemplate: {
2520      TemplateDecl *TD = TN.getAsTemplateDecl();
2521      assert(TD && !isa<TemplateTemplateParmDecl>(TD));
2522      mangleSourceNameWithAbiTags(TD);
2523      break;
2524    }
2525    }
2526
2527    // Note: we don't pass in the template name here. We are mangling the
2528    // original source-level template arguments, so we shouldn't consider
2529    // conversions to the corresponding template parameter.
2530    // FIXME: Other compilers mangle partially-resolved template arguments in
2531    // unresolved-qualifier-levels.
2532    mangleTemplateArgs(TemplateName(), TST->template_arguments());
2533    break;
2534  }
2535
2536  case Type::InjectedClassName:
2537    mangleSourceNameWithAbiTags(
2538        cast<InjectedClassNameType>(Ty)->getDecl());
2539    break;
2540
2541  case Type::DependentName:
2542    mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
2543    break;
2544
2545  case Type::DependentTemplateSpecialization: {
2546    const DependentTemplateSpecializationType *DTST =
2547        cast<DependentTemplateSpecializationType>(Ty);
2548    TemplateName Template = getASTContext().getDependentTemplateName(
2549        DTST->getQualifier(), DTST->getIdentifier());
2550    mangleSourceName(DTST->getIdentifier());
2551    mangleTemplateArgs(Template, DTST->template_arguments());
2552    break;
2553  }
2554
2555  case Type::Using:
2556    return mangleUnresolvedTypeOrSimpleId(cast<UsingType>(Ty)->desugar(),
2557                                          Prefix);
2558  case Type::Elaborated:
2559    return mangleUnresolvedTypeOrSimpleId(
2560        cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
2561  }
2562
2563  return false;
2564}
2565
2566void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
2567  switch (Name.getNameKind()) {
2568  case DeclarationName::CXXConstructorName:
2569  case DeclarationName::CXXDestructorName:
2570  case DeclarationName::CXXDeductionGuideName:
2571  case DeclarationName::CXXUsingDirective:
2572  case DeclarationName::Identifier:
2573  case DeclarationName::ObjCMultiArgSelector:
2574  case DeclarationName::ObjCOneArgSelector:
2575  case DeclarationName::ObjCZeroArgSelector:
2576    llvm_unreachable("Not an operator name");
2577
2578  case DeclarationName::CXXConversionFunctionName:
2579    // <operator-name> ::= cv <type>    # (cast)
2580    Out << "cv";
2581    mangleType(Name.getCXXNameType());
2582    break;
2583
2584  case DeclarationName::CXXLiteralOperatorName:
2585    Out << "li";
2586    mangleSourceName(Name.getCXXLiteralIdentifier());
2587    return;
2588
2589  case DeclarationName::CXXOperatorName:
2590    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
2591    break;
2592  }
2593}
2594
2595void
2596CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
2597  switch (OO) {
2598  // <operator-name> ::= nw     # new
2599  case OO_New: Out << "nw"; break;
2600  //              ::= na        # new[]
2601  case OO_Array_New: Out << "na"; break;
2602  //              ::= dl        # delete
2603  case OO_Delete: Out << "dl"; break;
2604  //              ::= da        # delete[]
2605  case OO_Array_Delete: Out << "da"; break;
2606  //              ::= ps        # + (unary)
2607  //              ::= pl        # + (binary or unknown)
2608  case OO_Plus:
2609    Out << (Arity == 1? "ps" : "pl"); break;
2610  //              ::= ng        # - (unary)
2611  //              ::= mi        # - (binary or unknown)
2612  case OO_Minus:
2613    Out << (Arity == 1? "ng" : "mi"); break;
2614  //              ::= ad        # & (unary)
2615  //              ::= an        # & (binary or unknown)
2616  case OO_Amp:
2617    Out << (Arity == 1? "ad" : "an"); break;
2618  //              ::= de        # * (unary)
2619  //              ::= ml        # * (binary or unknown)
2620  case OO_Star:
2621    // Use binary when unknown.
2622    Out << (Arity == 1? "de" : "ml"); break;
2623  //              ::= co        # ~
2624  case OO_Tilde: Out << "co"; break;
2625  //              ::= dv        # /
2626  case OO_Slash: Out << "dv"; break;
2627  //              ::= rm        # %
2628  case OO_Percent: Out << "rm"; break;
2629  //              ::= or        # |
2630  case OO_Pipe: Out << "or"; break;
2631  //              ::= eo        # ^
2632  case OO_Caret: Out << "eo"; break;
2633  //              ::= aS        # =
2634  case OO_Equal: Out << "aS"; break;
2635  //              ::= pL        # +=
2636  case OO_PlusEqual: Out << "pL"; break;
2637  //              ::= mI        # -=
2638  case OO_MinusEqual: Out << "mI"; break;
2639  //              ::= mL        # *=
2640  case OO_StarEqual: Out << "mL"; break;
2641  //              ::= dV        # /=
2642  case OO_SlashEqual: Out << "dV"; break;
2643  //              ::= rM        # %=
2644  case OO_PercentEqual: Out << "rM"; break;
2645  //              ::= aN        # &=
2646  case OO_AmpEqual: Out << "aN"; break;
2647  //              ::= oR        # |=
2648  case OO_PipeEqual: Out << "oR"; break;
2649  //              ::= eO        # ^=
2650  case OO_CaretEqual: Out << "eO"; break;
2651  //              ::= ls        # <<
2652  case OO_LessLess: Out << "ls"; break;
2653  //              ::= rs        # >>
2654  case OO_GreaterGreater: Out << "rs"; break;
2655  //              ::= lS        # <<=
2656  case OO_LessLessEqual: Out << "lS"; break;
2657  //              ::= rS        # >>=
2658  case OO_GreaterGreaterEqual: Out << "rS"; break;
2659  //              ::= eq        # ==
2660  case OO_EqualEqual: Out << "eq"; break;
2661  //              ::= ne        # !=
2662  case OO_ExclaimEqual: Out << "ne"; break;
2663  //              ::= lt        # <
2664  case OO_Less: Out << "lt"; break;
2665  //              ::= gt        # >
2666  case OO_Greater: Out << "gt"; break;
2667  //              ::= le        # <=
2668  case OO_LessEqual: Out << "le"; break;
2669  //              ::= ge        # >=
2670  case OO_GreaterEqual: Out << "ge"; break;
2671  //              ::= nt        # !
2672  case OO_Exclaim: Out << "nt"; break;
2673  //              ::= aa        # &&
2674  case OO_AmpAmp: Out << "aa"; break;
2675  //              ::= oo        # ||
2676  case OO_PipePipe: Out << "oo"; break;
2677  //              ::= pp        # ++
2678  case OO_PlusPlus: Out << "pp"; break;
2679  //              ::= mm        # --
2680  case OO_MinusMinus: Out << "mm"; break;
2681  //              ::= cm        # ,
2682  case OO_Comma: Out << "cm"; break;
2683  //              ::= pm        # ->*
2684  case OO_ArrowStar: Out << "pm"; break;
2685  //              ::= pt        # ->
2686  case OO_Arrow: Out << "pt"; break;
2687  //              ::= cl        # ()
2688  case OO_Call: Out << "cl"; break;
2689  //              ::= ix        # []
2690  case OO_Subscript: Out << "ix"; break;
2691
2692  //              ::= qu        # ?
2693  // The conditional operator can't be overloaded, but we still handle it when
2694  // mangling expressions.
2695  case OO_Conditional: Out << "qu"; break;
2696  // Proposal on cxx-abi-dev, 2015-10-21.
2697  //              ::= aw        # co_await
2698  case OO_Coawait: Out << "aw"; break;
2699  // Proposed in cxx-abi github issue 43.
2700  //              ::= ss        # <=>
2701  case OO_Spaceship: Out << "ss"; break;
2702
2703  case OO_None:
2704  case NUM_OVERLOADED_OPERATORS:
2705    llvm_unreachable("Not an overloaded operator");
2706  }
2707}
2708
2709void CXXNameMangler::mangleQualifiers(Qualifiers Quals, const DependentAddressSpaceType *DAST) {
2710  // Vendor qualifiers come first and if they are order-insensitive they must
2711  // be emitted in reversed alphabetical order, see Itanium ABI 5.1.5.
2712
2713  // <type> ::= U <addrspace-expr>
2714  if (DAST) {
2715    Out << "U2ASI";
2716    mangleExpression(DAST->getAddrSpaceExpr());
2717    Out << "E";
2718  }
2719
2720  // Address space qualifiers start with an ordinary letter.
2721  if (Quals.hasAddressSpace()) {
2722    // Address space extension:
2723    //
2724    //   <type> ::= U <target-addrspace>
2725    //   <type> ::= U <OpenCL-addrspace>
2726    //   <type> ::= U <CUDA-addrspace>
2727
2728    SmallString<64> ASString;
2729    LangAS AS = Quals.getAddressSpace();
2730
2731    if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
2732      //  <target-addrspace> ::= "AS" <address-space-number>
2733      unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
2734      if (TargetAS != 0 ||
2735          Context.getASTContext().getTargetAddressSpace(LangAS::Default) != 0)
2736        ASString = "AS" + llvm::utostr(TargetAS);
2737    } else {
2738      switch (AS) {
2739      default: llvm_unreachable("Not a language specific address space");
2740      //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" |
2741      //                                "private"| "generic" | "device" |
2742      //                                "host" ]
2743      case LangAS::opencl_global:
2744        ASString = "CLglobal";
2745        break;
2746      case LangAS::opencl_global_device:
2747        ASString = "CLdevice";
2748        break;
2749      case LangAS::opencl_global_host:
2750        ASString = "CLhost";
2751        break;
2752      case LangAS::opencl_local:
2753        ASString = "CLlocal";
2754        break;
2755      case LangAS::opencl_constant:
2756        ASString = "CLconstant";
2757        break;
2758      case LangAS::opencl_private:
2759        ASString = "CLprivate";
2760        break;
2761      case LangAS::opencl_generic:
2762        ASString = "CLgeneric";
2763        break;
2764      //  <SYCL-addrspace> ::= "SY" [ "global" | "local" | "private" |
2765      //                              "device" | "host" ]
2766      case LangAS::sycl_global:
2767        ASString = "SYglobal";
2768        break;
2769      case LangAS::sycl_global_device:
2770        ASString = "SYdevice";
2771        break;
2772      case LangAS::sycl_global_host:
2773        ASString = "SYhost";
2774        break;
2775      case LangAS::sycl_local:
2776        ASString = "SYlocal";
2777        break;
2778      case LangAS::sycl_private:
2779        ASString = "SYprivate";
2780        break;
2781      //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
2782      case LangAS::cuda_device:
2783        ASString = "CUdevice";
2784        break;
2785      case LangAS::cuda_constant:
2786        ASString = "CUconstant";
2787        break;
2788      case LangAS::cuda_shared:
2789        ASString = "CUshared";
2790        break;
2791      //  <ptrsize-addrspace> ::= [ "ptr32_sptr" | "ptr32_uptr" | "ptr64" ]
2792      case LangAS::ptr32_sptr:
2793        ASString = "ptr32_sptr";
2794        break;
2795      case LangAS::ptr32_uptr:
2796        ASString = "ptr32_uptr";
2797        break;
2798      case LangAS::ptr64:
2799        ASString = "ptr64";
2800        break;
2801      }
2802    }
2803    if (!ASString.empty())
2804      mangleVendorQualifier(ASString);
2805  }
2806
2807  // The ARC ownership qualifiers start with underscores.
2808  // Objective-C ARC Extension:
2809  //
2810  //   <type> ::= U "__strong"
2811  //   <type> ::= U "__weak"
2812  //   <type> ::= U "__autoreleasing"
2813  //
2814  // Note: we emit __weak first to preserve the order as
2815  // required by the Itanium ABI.
2816  if (Quals.getObjCLifetime() == Qualifiers::OCL_Weak)
2817    mangleVendorQualifier("__weak");
2818
2819  // __unaligned (from -fms-extensions)
2820  if (Quals.hasUnaligned())
2821    mangleVendorQualifier("__unaligned");
2822
2823  // Remaining ARC ownership qualifiers.
2824  switch (Quals.getObjCLifetime()) {
2825  case Qualifiers::OCL_None:
2826    break;
2827
2828  case Qualifiers::OCL_Weak:
2829    // Do nothing as we already handled this case above.
2830    break;
2831
2832  case Qualifiers::OCL_Strong:
2833    mangleVendorQualifier("__strong");
2834    break;
2835
2836  case Qualifiers::OCL_Autoreleasing:
2837    mangleVendorQualifier("__autoreleasing");
2838    break;
2839
2840  case Qualifiers::OCL_ExplicitNone:
2841    // The __unsafe_unretained qualifier is *not* mangled, so that
2842    // __unsafe_unretained types in ARC produce the same manglings as the
2843    // equivalent (but, naturally, unqualified) types in non-ARC, providing
2844    // better ABI compatibility.
2845    //
2846    // It's safe to do this because unqualified 'id' won't show up
2847    // in any type signatures that need to be mangled.
2848    break;
2849  }
2850
2851  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
2852  if (Quals.hasRestrict())
2853    Out << 'r';
2854  if (Quals.hasVolatile())
2855    Out << 'V';
2856  if (Quals.hasConst())
2857    Out << 'K';
2858}
2859
2860void CXXNameMangler::mangleVendorQualifier(StringRef name) {
2861  Out << 'U' << name.size() << name;
2862}
2863
2864void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
2865  // <ref-qualifier> ::= R                # lvalue reference
2866  //                 ::= O                # rvalue-reference
2867  switch (RefQualifier) {
2868  case RQ_None:
2869    break;
2870
2871  case RQ_LValue:
2872    Out << 'R';
2873    break;
2874
2875  case RQ_RValue:
2876    Out << 'O';
2877    break;
2878  }
2879}
2880
2881void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
2882  Context.mangleObjCMethodNameAsSourceName(MD, Out);
2883}
2884
2885static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty,
2886                                ASTContext &Ctx) {
2887  if (Quals)
2888    return true;
2889  if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
2890    return true;
2891  if (Ty->isOpenCLSpecificType())
2892    return true;
2893  // From Clang 18.0 we correctly treat SVE types as substitution candidates.
2894  if (Ty->isSVESizelessBuiltinType() &&
2895      Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver17)
2896    return true;
2897  if (Ty->isBuiltinType())
2898    return false;
2899  // Through to Clang 6.0, we accidentally treated undeduced auto types as
2900  // substitution candidates.
2901  if (Ctx.getLangOpts().getClangABICompat() > LangOptions::ClangABI::Ver6 &&
2902      isa<AutoType>(Ty))
2903    return false;
2904  // A placeholder type for class template deduction is substitutable with
2905  // its corresponding template name; this is handled specially when mangling
2906  // the type.
2907  if (auto *DeducedTST = Ty->getAs<DeducedTemplateSpecializationType>())
2908    if (DeducedTST->getDeducedType().isNull())
2909      return false;
2910  return true;
2911}
2912
2913void CXXNameMangler::mangleType(QualType T) {
2914  // If our type is instantiation-dependent but not dependent, we mangle
2915  // it as it was written in the source, removing any top-level sugar.
2916  // Otherwise, use the canonical type.
2917  //
2918  // FIXME: This is an approximation of the instantiation-dependent name
2919  // mangling rules, since we should really be using the type as written and
2920  // augmented via semantic analysis (i.e., with implicit conversions and
2921  // default template arguments) for any instantiation-dependent type.
2922  // Unfortunately, that requires several changes to our AST:
2923  //   - Instantiation-dependent TemplateSpecializationTypes will need to be
2924  //     uniqued, so that we can handle substitutions properly
2925  //   - Default template arguments will need to be represented in the
2926  //     TemplateSpecializationType, since they need to be mangled even though
2927  //     they aren't written.
2928  //   - Conversions on non-type template arguments need to be expressed, since
2929  //     they can affect the mangling of sizeof/alignof.
2930  //
2931  // FIXME: This is wrong when mapping to the canonical type for a dependent
2932  // type discards instantiation-dependent portions of the type, such as for:
2933  //
2934  //   template<typename T, int N> void f(T (&)[sizeof(N)]);
2935  //   template<typename T> void f(T() throw(typename T::type)); (pre-C++17)
2936  //
2937  // It's also wrong in the opposite direction when instantiation-dependent,
2938  // canonically-equivalent types differ in some irrelevant portion of inner
2939  // type sugar. In such cases, we fail to form correct substitutions, eg:
2940  //
2941  //   template<int N> void f(A<sizeof(N)> *, A<sizeof(N)> (*));
2942  //
2943  // We should instead canonicalize the non-instantiation-dependent parts,
2944  // regardless of whether the type as a whole is dependent or instantiation
2945  // dependent.
2946  if (!T->isInstantiationDependentType() || T->isDependentType())
2947    T = T.getCanonicalType();
2948  else {
2949    // Desugar any types that are purely sugar.
2950    do {
2951      // Don't desugar through template specialization types that aren't
2952      // type aliases. We need to mangle the template arguments as written.
2953      if (const TemplateSpecializationType *TST
2954                                      = dyn_cast<TemplateSpecializationType>(T))
2955        if (!TST->isTypeAlias())
2956          break;
2957
2958      // FIXME: We presumably shouldn't strip off ElaboratedTypes with
2959      // instantation-dependent qualifiers. See
2960      // https://github.com/itanium-cxx-abi/cxx-abi/issues/114.
2961
2962      QualType Desugared
2963        = T.getSingleStepDesugaredType(Context.getASTContext());
2964      if (Desugared == T)
2965        break;
2966
2967      T = Desugared;
2968    } while (true);
2969  }
2970  SplitQualType split = T.split();
2971  Qualifiers quals = split.Quals;
2972  const Type *ty = split.Ty;
2973
2974  bool isSubstitutable =
2975    isTypeSubstitutable(quals, ty, Context.getASTContext());
2976  if (isSubstitutable && mangleSubstitution(T))
2977    return;
2978
2979  // If we're mangling a qualified array type, push the qualifiers to
2980  // the element type.
2981  if (quals && isa<ArrayType>(T)) {
2982    ty = Context.getASTContext().getAsArrayType(T);
2983    quals = Qualifiers();
2984
2985    // Note that we don't update T: we want to add the
2986    // substitution at the original type.
2987  }
2988
2989  if (quals || ty->isDependentAddressSpaceType()) {
2990    if (const DependentAddressSpaceType *DAST =
2991        dyn_cast<DependentAddressSpaceType>(ty)) {
2992      SplitQualType splitDAST = DAST->getPointeeType().split();
2993      mangleQualifiers(splitDAST.Quals, DAST);
2994      mangleType(QualType(splitDAST.Ty, 0));
2995    } else {
2996      mangleQualifiers(quals);
2997
2998      // Recurse:  even if the qualified type isn't yet substitutable,
2999      // the unqualified type might be.
3000      mangleType(QualType(ty, 0));
3001    }
3002  } else {
3003    switch (ty->getTypeClass()) {
3004#define ABSTRACT_TYPE(CLASS, PARENT)
3005#define NON_CANONICAL_TYPE(CLASS, PARENT) \
3006    case Type::CLASS: \
3007      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
3008      return;
3009#define TYPE(CLASS, PARENT) \
3010    case Type::CLASS: \
3011      mangleType(static_cast<const CLASS##Type*>(ty)); \
3012      break;
3013#include "clang/AST/TypeNodes.inc"
3014    }
3015  }
3016
3017  // Add the substitution.
3018  if (isSubstitutable)
3019    addSubstitution(T);
3020}
3021
3022void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
3023  if (!mangleStandardSubstitution(ND))
3024    mangleName(ND);
3025}
3026
3027void CXXNameMangler::mangleType(const BuiltinType *T) {
3028  //  <type>         ::= <builtin-type>
3029  //  <builtin-type> ::= v  # void
3030  //                 ::= w  # wchar_t
3031  //                 ::= b  # bool
3032  //                 ::= c  # char
3033  //                 ::= a  # signed char
3034  //                 ::= h  # unsigned char
3035  //                 ::= s  # short
3036  //                 ::= t  # unsigned short
3037  //                 ::= i  # int
3038  //                 ::= j  # unsigned int
3039  //                 ::= l  # long
3040  //                 ::= m  # unsigned long
3041  //                 ::= x  # long long, __int64
3042  //                 ::= y  # unsigned long long, __int64
3043  //                 ::= n  # __int128
3044  //                 ::= o  # unsigned __int128
3045  //                 ::= f  # float
3046  //                 ::= d  # double
3047  //                 ::= e  # long double, __float80
3048  //                 ::= g  # __float128
3049  //                 ::= g  # __ibm128
3050  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
3051  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
3052  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
3053  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
3054  //                 ::= DF <number> _ # ISO/IEC TS 18661 binary floating point type _FloatN (N bits);
3055  //                 ::= Di # char32_t
3056  //                 ::= Ds # char16_t
3057  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
3058  //                 ::= [DS] DA  # N1169 fixed-point [_Sat] T _Accum
3059  //                 ::= [DS] DR  # N1169 fixed-point [_Sat] T _Fract
3060  //                 ::= u <source-name>    # vendor extended type
3061  //
3062  //  <fixed-point-size>
3063  //                 ::= s # short
3064  //                 ::= t # unsigned short
3065  //                 ::= i # plain
3066  //                 ::= j # unsigned
3067  //                 ::= l # long
3068  //                 ::= m # unsigned long
3069  std::string type_name;
3070  // Normalize integer types as vendor extended types:
3071  // u<length>i<type size>
3072  // u<length>u<type size>
3073  if (NormalizeIntegers && T->isInteger()) {
3074    if (T->isSignedInteger()) {
3075      switch (getASTContext().getTypeSize(T)) {
3076      case 8:
3077        // Pick a representative for each integer size in the substitution
3078        // dictionary. (Its actual defined size is not relevant.)
3079        if (mangleSubstitution(BuiltinType::SChar))
3080          break;
3081        Out << "u2i8";
3082        addSubstitution(BuiltinType::SChar);
3083        break;
3084      case 16:
3085        if (mangleSubstitution(BuiltinType::Short))
3086          break;
3087        Out << "u3i16";
3088        addSubstitution(BuiltinType::Short);
3089        break;
3090      case 32:
3091        if (mangleSubstitution(BuiltinType::Int))
3092          break;
3093        Out << "u3i32";
3094        addSubstitution(BuiltinType::Int);
3095        break;
3096      case 64:
3097        if (mangleSubstitution(BuiltinType::Long))
3098          break;
3099        Out << "u3i64";
3100        addSubstitution(BuiltinType::Long);
3101        break;
3102      case 128:
3103        if (mangleSubstitution(BuiltinType::Int128))
3104          break;
3105        Out << "u4i128";
3106        addSubstitution(BuiltinType::Int128);
3107        break;
3108      default:
3109        llvm_unreachable("Unknown integer size for normalization");
3110      }
3111    } else {
3112      switch (getASTContext().getTypeSize(T)) {
3113      case 8:
3114        if (mangleSubstitution(BuiltinType::UChar))
3115          break;
3116        Out << "u2u8";
3117        addSubstitution(BuiltinType::UChar);
3118        break;
3119      case 16:
3120        if (mangleSubstitution(BuiltinType::UShort))
3121          break;
3122        Out << "u3u16";
3123        addSubstitution(BuiltinType::UShort);
3124        break;
3125      case 32:
3126        if (mangleSubstitution(BuiltinType::UInt))
3127          break;
3128        Out << "u3u32";
3129        addSubstitution(BuiltinType::UInt);
3130        break;
3131      case 64:
3132        if (mangleSubstitution(BuiltinType::ULong))
3133          break;
3134        Out << "u3u64";
3135        addSubstitution(BuiltinType::ULong);
3136        break;
3137      case 128:
3138        if (mangleSubstitution(BuiltinType::UInt128))
3139          break;
3140        Out << "u4u128";
3141        addSubstitution(BuiltinType::UInt128);
3142        break;
3143      default:
3144        llvm_unreachable("Unknown integer size for normalization");
3145      }
3146    }
3147    return;
3148  }
3149  switch (T->getKind()) {
3150  case BuiltinType::Void:
3151    Out << 'v';
3152    break;
3153  case BuiltinType::Bool:
3154    Out << 'b';
3155    break;
3156  case BuiltinType::Char_U:
3157  case BuiltinType::Char_S:
3158    Out << 'c';
3159    break;
3160  case BuiltinType::UChar:
3161    Out << 'h';
3162    break;
3163  case BuiltinType::UShort:
3164    Out << 't';
3165    break;
3166  case BuiltinType::UInt:
3167    Out << 'j';
3168    break;
3169  case BuiltinType::ULong:
3170    Out << 'm';
3171    break;
3172  case BuiltinType::ULongLong:
3173    Out << 'y';
3174    break;
3175  case BuiltinType::UInt128:
3176    Out << 'o';
3177    break;
3178  case BuiltinType::SChar:
3179    Out << 'a';
3180    break;
3181  case BuiltinType::WChar_S:
3182  case BuiltinType::WChar_U:
3183    Out << 'w';
3184    break;
3185  case BuiltinType::Char8:
3186    Out << "Du";
3187    break;
3188  case BuiltinType::Char16:
3189    Out << "Ds";
3190    break;
3191  case BuiltinType::Char32:
3192    Out << "Di";
3193    break;
3194  case BuiltinType::Short:
3195    Out << 's';
3196    break;
3197  case BuiltinType::Int:
3198    Out << 'i';
3199    break;
3200  case BuiltinType::Long:
3201    Out << 'l';
3202    break;
3203  case BuiltinType::LongLong:
3204    Out << 'x';
3205    break;
3206  case BuiltinType::Int128:
3207    Out << 'n';
3208    break;
3209  case BuiltinType::Float16:
3210    Out << "DF16_";
3211    break;
3212  case BuiltinType::ShortAccum:
3213    Out << "DAs";
3214    break;
3215  case BuiltinType::Accum:
3216    Out << "DAi";
3217    break;
3218  case BuiltinType::LongAccum:
3219    Out << "DAl";
3220    break;
3221  case BuiltinType::UShortAccum:
3222    Out << "DAt";
3223    break;
3224  case BuiltinType::UAccum:
3225    Out << "DAj";
3226    break;
3227  case BuiltinType::ULongAccum:
3228    Out << "DAm";
3229    break;
3230  case BuiltinType::ShortFract:
3231    Out << "DRs";
3232    break;
3233  case BuiltinType::Fract:
3234    Out << "DRi";
3235    break;
3236  case BuiltinType::LongFract:
3237    Out << "DRl";
3238    break;
3239  case BuiltinType::UShortFract:
3240    Out << "DRt";
3241    break;
3242  case BuiltinType::UFract:
3243    Out << "DRj";
3244    break;
3245  case BuiltinType::ULongFract:
3246    Out << "DRm";
3247    break;
3248  case BuiltinType::SatShortAccum:
3249    Out << "DSDAs";
3250    break;
3251  case BuiltinType::SatAccum:
3252    Out << "DSDAi";
3253    break;
3254  case BuiltinType::SatLongAccum:
3255    Out << "DSDAl";
3256    break;
3257  case BuiltinType::SatUShortAccum:
3258    Out << "DSDAt";
3259    break;
3260  case BuiltinType::SatUAccum:
3261    Out << "DSDAj";
3262    break;
3263  case BuiltinType::SatULongAccum:
3264    Out << "DSDAm";
3265    break;
3266  case BuiltinType::SatShortFract:
3267    Out << "DSDRs";
3268    break;
3269  case BuiltinType::SatFract:
3270    Out << "DSDRi";
3271    break;
3272  case BuiltinType::SatLongFract:
3273    Out << "DSDRl";
3274    break;
3275  case BuiltinType::SatUShortFract:
3276    Out << "DSDRt";
3277    break;
3278  case BuiltinType::SatUFract:
3279    Out << "DSDRj";
3280    break;
3281  case BuiltinType::SatULongFract:
3282    Out << "DSDRm";
3283    break;
3284  case BuiltinType::Half:
3285    Out << "Dh";
3286    break;
3287  case BuiltinType::Float:
3288    Out << 'f';
3289    break;
3290  case BuiltinType::Double:
3291    Out << 'd';
3292    break;
3293  case BuiltinType::LongDouble: {
3294    const TargetInfo *TI =
3295        getASTContext().getLangOpts().OpenMP &&
3296                getASTContext().getLangOpts().OpenMPIsTargetDevice
3297            ? getASTContext().getAuxTargetInfo()
3298            : &getASTContext().getTargetInfo();
3299    Out << TI->getLongDoubleMangling();
3300    break;
3301  }
3302  case BuiltinType::Float128: {
3303    const TargetInfo *TI =
3304        getASTContext().getLangOpts().OpenMP &&
3305                getASTContext().getLangOpts().OpenMPIsTargetDevice
3306            ? getASTContext().getAuxTargetInfo()
3307            : &getASTContext().getTargetInfo();
3308    Out << TI->getFloat128Mangling();
3309    break;
3310  }
3311  case BuiltinType::BFloat16: {
3312    const TargetInfo *TI =
3313        ((getASTContext().getLangOpts().OpenMP &&
3314          getASTContext().getLangOpts().OpenMPIsTargetDevice) ||
3315         getASTContext().getLangOpts().SYCLIsDevice)
3316            ? getASTContext().getAuxTargetInfo()
3317            : &getASTContext().getTargetInfo();
3318    Out << TI->getBFloat16Mangling();
3319    break;
3320  }
3321  case BuiltinType::Ibm128: {
3322    const TargetInfo *TI = &getASTContext().getTargetInfo();
3323    Out << TI->getIbm128Mangling();
3324    break;
3325  }
3326  case BuiltinType::NullPtr:
3327    Out << "Dn";
3328    break;
3329
3330#define BUILTIN_TYPE(Id, SingletonId)
3331#define PLACEHOLDER_TYPE(Id, SingletonId) \
3332  case BuiltinType::Id:
3333#include "clang/AST/BuiltinTypes.def"
3334  case BuiltinType::Dependent:
3335    if (!NullOut)
3336      llvm_unreachable("mangling a placeholder type");
3337    break;
3338  case BuiltinType::ObjCId:
3339    Out << "11objc_object";
3340    break;
3341  case BuiltinType::ObjCClass:
3342    Out << "10objc_class";
3343    break;
3344  case BuiltinType::ObjCSel:
3345    Out << "13objc_selector";
3346    break;
3347#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3348  case BuiltinType::Id: \
3349    type_name = "ocl_" #ImgType "_" #Suffix; \
3350    Out << type_name.size() << type_name; \
3351    break;
3352#include "clang/Basic/OpenCLImageTypes.def"
3353  case BuiltinType::OCLSampler:
3354    Out << "11ocl_sampler";
3355    break;
3356  case BuiltinType::OCLEvent:
3357    Out << "9ocl_event";
3358    break;
3359  case BuiltinType::OCLClkEvent:
3360    Out << "12ocl_clkevent";
3361    break;
3362  case BuiltinType::OCLQueue:
3363    Out << "9ocl_queue";
3364    break;
3365  case BuiltinType::OCLReserveID:
3366    Out << "13ocl_reserveid";
3367    break;
3368#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3369  case BuiltinType::Id: \
3370    type_name = "ocl_" #ExtType; \
3371    Out << type_name.size() << type_name; \
3372    break;
3373#include "clang/Basic/OpenCLExtensionTypes.def"
3374  // The SVE types are effectively target-specific.  The mangling scheme
3375  // is defined in the appendices to the Procedure Call Standard for the
3376  // Arm Architecture.
3377#define SVE_VECTOR_TYPE(InternalName, MangledName, Id, SingletonId, NumEls,    \
3378                        ElBits, IsSigned, IsFP, IsBF)                          \
3379  case BuiltinType::Id:                                                        \
3380    if (T->getKind() == BuiltinType::SveBFloat16 &&                            \
3381        isCompatibleWith(LangOptions::ClangABI::Ver17)) {                      \
3382      /* Prior to Clang 18.0 we used this incorrect mangled name */            \
3383      type_name = "__SVBFloat16_t";                                            \
3384      Out << "u" << type_name.size() << type_name;                             \
3385    } else {                                                                   \
3386      type_name = MangledName;                                                 \
3387      Out << (type_name == InternalName ? "u" : "") << type_name.size()        \
3388          << type_name;                                                        \
3389    }                                                                          \
3390    break;
3391#define SVE_PREDICATE_TYPE(InternalName, MangledName, Id, SingletonId, NumEls) \
3392  case BuiltinType::Id:                                                        \
3393    type_name = MangledName;                                                   \
3394    Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
3395        << type_name;                                                          \
3396    break;
3397#define SVE_OPAQUE_TYPE(InternalName, MangledName, Id, SingletonId)            \
3398  case BuiltinType::Id:                                                        \
3399    type_name = MangledName;                                                   \
3400    Out << (type_name == InternalName ? "u" : "") << type_name.size()          \
3401        << type_name;                                                          \
3402    break;
3403#include "clang/Basic/AArch64SVEACLETypes.def"
3404#define PPC_VECTOR_TYPE(Name, Id, Size) \
3405  case BuiltinType::Id: \
3406    type_name = #Name; \
3407    Out << 'u' << type_name.size() << type_name; \
3408    break;
3409#include "clang/Basic/PPCTypes.def"
3410    // TODO: Check the mangling scheme for RISC-V V.
3411#define RVV_TYPE(Name, Id, SingletonId)                                        \
3412  case BuiltinType::Id:                                                        \
3413    type_name = Name;                                                          \
3414    Out << 'u' << type_name.size() << type_name;                               \
3415    break;
3416#include "clang/Basic/RISCVVTypes.def"
3417#define WASM_REF_TYPE(InternalName, MangledName, Id, SingletonId, AS)          \
3418  case BuiltinType::Id:                                                        \
3419    type_name = MangledName;                                                   \
3420    Out << 'u' << type_name.size() << type_name;                               \
3421    break;
3422#include "clang/Basic/WebAssemblyReferenceTypes.def"
3423  }
3424}
3425
3426StringRef CXXNameMangler::getCallingConvQualifierName(CallingConv CC) {
3427  switch (CC) {
3428  case CC_C:
3429    return "";
3430
3431  case CC_X86VectorCall:
3432  case CC_X86Pascal:
3433  case CC_X86RegCall:
3434  case CC_AAPCS:
3435  case CC_AAPCS_VFP:
3436  case CC_AArch64VectorCall:
3437  case CC_AArch64SVEPCS:
3438  case CC_AMDGPUKernelCall:
3439  case CC_IntelOclBicc:
3440  case CC_SpirFunction:
3441  case CC_OpenCLKernel:
3442  case CC_PreserveMost:
3443  case CC_PreserveAll:
3444  case CC_M68kRTD:
3445    // FIXME: we should be mangling all of the above.
3446    return "";
3447
3448  case CC_X86ThisCall:
3449    // FIXME: To match mingw GCC, thiscall should only be mangled in when it is
3450    // used explicitly. At this point, we don't have that much information in
3451    // the AST, since clang tends to bake the convention into the canonical
3452    // function type. thiscall only rarely used explicitly, so don't mangle it
3453    // for now.
3454    return "";
3455
3456  case CC_X86StdCall:
3457    return "stdcall";
3458  case CC_X86FastCall:
3459    return "fastcall";
3460  case CC_X86_64SysV:
3461    return "sysv_abi";
3462  case CC_Win64:
3463    return "ms_abi";
3464  case CC_Swift:
3465    return "swiftcall";
3466  case CC_SwiftAsync:
3467    return "swiftasynccall";
3468  }
3469  llvm_unreachable("bad calling convention");
3470}
3471
3472void CXXNameMangler::mangleExtFunctionInfo(const FunctionType *T) {
3473  // Fast path.
3474  if (T->getExtInfo() == FunctionType::ExtInfo())
3475    return;
3476
3477  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3478  // This will get more complicated in the future if we mangle other
3479  // things here; but for now, since we mangle ns_returns_retained as
3480  // a qualifier on the result type, we can get away with this:
3481  StringRef CCQualifier = getCallingConvQualifierName(T->getExtInfo().getCC());
3482  if (!CCQualifier.empty())
3483    mangleVendorQualifier(CCQualifier);
3484
3485  // FIXME: regparm
3486  // FIXME: noreturn
3487}
3488
3489void
3490CXXNameMangler::mangleExtParameterInfo(FunctionProtoType::ExtParameterInfo PI) {
3491  // Vendor-specific qualifiers are emitted in reverse alphabetical order.
3492
3493  // Note that these are *not* substitution candidates.  Demanglers might
3494  // have trouble with this if the parameter type is fully substituted.
3495
3496  switch (PI.getABI()) {
3497  case ParameterABI::Ordinary:
3498    break;
3499
3500  // All of these start with "swift", so they come before "ns_consumed".
3501  case ParameterABI::SwiftContext:
3502  case ParameterABI::SwiftAsyncContext:
3503  case ParameterABI::SwiftErrorResult:
3504  case ParameterABI::SwiftIndirectResult:
3505    mangleVendorQualifier(getParameterABISpelling(PI.getABI()));
3506    break;
3507  }
3508
3509  if (PI.isConsumed())
3510    mangleVendorQualifier("ns_consumed");
3511
3512  if (PI.isNoEscape())
3513    mangleVendorQualifier("noescape");
3514}
3515
3516// <type>          ::= <function-type>
3517// <function-type> ::= [<CV-qualifiers>] F [Y]
3518//                      <bare-function-type> [<ref-qualifier>] E
3519void CXXNameMangler::mangleType(const FunctionProtoType *T) {
3520  mangleExtFunctionInfo(T);
3521
3522  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
3523  // e.g. "const" in "int (A::*)() const".
3524  mangleQualifiers(T->getMethodQuals());
3525
3526  // Mangle instantiation-dependent exception-specification, if present,
3527  // per cxx-abi-dev proposal on 2016-10-11.
3528  if (T->hasInstantiationDependentExceptionSpec()) {
3529    if (isComputedNoexcept(T->getExceptionSpecType())) {
3530      Out << "DO";
3531      mangleExpression(T->getNoexceptExpr());
3532      Out << "E";
3533    } else {
3534      assert(T->getExceptionSpecType() == EST_Dynamic);
3535      Out << "Dw";
3536      for (auto ExceptTy : T->exceptions())
3537        mangleType(ExceptTy);
3538      Out << "E";
3539    }
3540  } else if (T->isNothrow()) {
3541    Out << "Do";
3542  }
3543
3544  Out << 'F';
3545
3546  // FIXME: We don't have enough information in the AST to produce the 'Y'
3547  // encoding for extern "C" function types.
3548  mangleBareFunctionType(T, /*MangleReturnType=*/true);
3549
3550  // Mangle the ref-qualifier, if present.
3551  mangleRefQualifier(T->getRefQualifier());
3552
3553  Out << 'E';
3554}
3555
3556void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
3557  // Function types without prototypes can arise when mangling a function type
3558  // within an overloadable function in C. We mangle these as the absence of any
3559  // parameter types (not even an empty parameter list).
3560  Out << 'F';
3561
3562  FunctionTypeDepthState saved = FunctionTypeDepth.push();
3563
3564  FunctionTypeDepth.enterResultType();
3565  mangleType(T->getReturnType());
3566  FunctionTypeDepth.leaveResultType();
3567
3568  FunctionTypeDepth.pop(saved);
3569  Out << 'E';
3570}
3571
3572void CXXNameMangler::mangleBareFunctionType(const FunctionProtoType *Proto,
3573                                            bool MangleReturnType,
3574                                            const FunctionDecl *FD) {
3575  // Record that we're in a function type.  See mangleFunctionParam
3576  // for details on what we're trying to achieve here.
3577  FunctionTypeDepthState saved = FunctionTypeDepth.push();
3578
3579  // <bare-function-type> ::= <signature type>+
3580  if (MangleReturnType) {
3581    FunctionTypeDepth.enterResultType();
3582
3583    // Mangle ns_returns_retained as an order-sensitive qualifier here.
3584    if (Proto->getExtInfo().getProducesResult() && FD == nullptr)
3585      mangleVendorQualifier("ns_returns_retained");
3586
3587    // Mangle the return type without any direct ARC ownership qualifiers.
3588    QualType ReturnTy = Proto->getReturnType();
3589    if (ReturnTy.getObjCLifetime()) {
3590      auto SplitReturnTy = ReturnTy.split();
3591      SplitReturnTy.Quals.removeObjCLifetime();
3592      ReturnTy = getASTContext().getQualifiedType(SplitReturnTy);
3593    }
3594    mangleType(ReturnTy);
3595
3596    FunctionTypeDepth.leaveResultType();
3597  }
3598
3599  if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
3600    //   <builtin-type> ::= v   # void
3601    Out << 'v';
3602  } else {
3603    assert(!FD || FD->getNumParams() == Proto->getNumParams());
3604    for (unsigned I = 0, E = Proto->getNumParams(); I != E; ++I) {
3605      // Mangle extended parameter info as order-sensitive qualifiers here.
3606      if (Proto->hasExtParameterInfos() && FD == nullptr) {
3607        mangleExtParameterInfo(Proto->getExtParameterInfo(I));
3608      }
3609
3610      // Mangle the type.
3611      QualType ParamTy = Proto->getParamType(I);
3612      mangleType(Context.getASTContext().getSignatureParameterType(ParamTy));
3613
3614      if (FD) {
3615        if (auto *Attr = FD->getParamDecl(I)->getAttr<PassObjectSizeAttr>()) {
3616          // Attr can only take 1 character, so we can hardcode the length
3617          // below.
3618          assert(Attr->getType() <= 9 && Attr->getType() >= 0);
3619          if (Attr->isDynamic())
3620            Out << "U25pass_dynamic_object_size" << Attr->getType();
3621          else
3622            Out << "U17pass_object_size" << Attr->getType();
3623        }
3624      }
3625    }
3626
3627    // <builtin-type>      ::= z  # ellipsis
3628    if (Proto->isVariadic())
3629      Out << 'z';
3630  }
3631
3632  if (FD) {
3633    FunctionTypeDepth.enterResultType();
3634    mangleRequiresClause(FD->getTrailingRequiresClause());
3635  }
3636
3637  FunctionTypeDepth.pop(saved);
3638}
3639
3640// <type>            ::= <class-enum-type>
3641// <class-enum-type> ::= <name>
3642void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
3643  mangleName(T->getDecl());
3644}
3645
3646// <type>            ::= <class-enum-type>
3647// <class-enum-type> ::= <name>
3648void CXXNameMangler::mangleType(const EnumType *T) {
3649  mangleType(static_cast<const TagType*>(T));
3650}
3651void CXXNameMangler::mangleType(const RecordType *T) {
3652  mangleType(static_cast<const TagType*>(T));
3653}
3654void CXXNameMangler::mangleType(const TagType *T) {
3655  mangleName(T->getDecl());
3656}
3657
3658// <type>       ::= <array-type>
3659// <array-type> ::= A <positive dimension number> _ <element type>
3660//              ::= A [<dimension expression>] _ <element type>
3661void CXXNameMangler::mangleType(const ConstantArrayType *T) {
3662  Out << 'A' << T->getSize() << '_';
3663  mangleType(T->getElementType());
3664}
3665void CXXNameMangler::mangleType(const VariableArrayType *T) {
3666  Out << 'A';
3667  // decayed vla types (size 0) will just be skipped.
3668  if (T->getSizeExpr())
3669    mangleExpression(T->getSizeExpr());
3670  Out << '_';
3671  mangleType(T->getElementType());
3672}
3673void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
3674  Out << 'A';
3675  // A DependentSizedArrayType might not have size expression as below
3676  //
3677  // template<int ...N> int arr[] = {N...};
3678  if (T->getSizeExpr())
3679    mangleExpression(T->getSizeExpr());
3680  Out << '_';
3681  mangleType(T->getElementType());
3682}
3683void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
3684  Out << "A_";
3685  mangleType(T->getElementType());
3686}
3687
3688// <type>                   ::= <pointer-to-member-type>
3689// <pointer-to-member-type> ::= M <class type> <member type>
3690void CXXNameMangler::mangleType(const MemberPointerType *T) {
3691  Out << 'M';
3692  mangleType(QualType(T->getClass(), 0));
3693  QualType PointeeType = T->getPointeeType();
3694  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
3695    mangleType(FPT);
3696
3697    // Itanium C++ ABI 5.1.8:
3698    //
3699    //   The type of a non-static member function is considered to be different,
3700    //   for the purposes of substitution, from the type of a namespace-scope or
3701    //   static member function whose type appears similar. The types of two
3702    //   non-static member functions are considered to be different, for the
3703    //   purposes of substitution, if the functions are members of different
3704    //   classes. In other words, for the purposes of substitution, the class of
3705    //   which the function is a member is considered part of the type of
3706    //   function.
3707
3708    // Given that we already substitute member function pointers as a
3709    // whole, the net effect of this rule is just to unconditionally
3710    // suppress substitution on the function type in a member pointer.
3711    // We increment the SeqID here to emulate adding an entry to the
3712    // substitution table.
3713    ++SeqID;
3714  } else
3715    mangleType(PointeeType);
3716}
3717
3718// <type>           ::= <template-param>
3719void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
3720  mangleTemplateParameter(T->getDepth(), T->getIndex());
3721}
3722
3723// <type>           ::= <template-param>
3724void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
3725  // FIXME: not clear how to mangle this!
3726  // template <class T...> class A {
3727  //   template <class U...> void foo(T(*)(U) x...);
3728  // };
3729  Out << "_SUBSTPACK_";
3730}
3731
3732// <type> ::= P <type>   # pointer-to
3733void CXXNameMangler::mangleType(const PointerType *T) {
3734  Out << 'P';
3735  mangleType(T->getPointeeType());
3736}
3737void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
3738  Out << 'P';
3739  mangleType(T->getPointeeType());
3740}
3741
3742// <type> ::= R <type>   # reference-to
3743void CXXNameMangler::mangleType(const LValueReferenceType *T) {
3744  Out << 'R';
3745  mangleType(T->getPointeeType());
3746}
3747
3748// <type> ::= O <type>   # rvalue reference-to (C++0x)
3749void CXXNameMangler::mangleType(const RValueReferenceType *T) {
3750  Out << 'O';
3751  mangleType(T->getPointeeType());
3752}
3753
3754// <type> ::= C <type>   # complex pair (C 2000)
3755void CXXNameMangler::mangleType(const ComplexType *T) {
3756  Out << 'C';
3757  mangleType(T->getElementType());
3758}
3759
3760// ARM's ABI for Neon vector types specifies that they should be mangled as
3761// if they are structs (to match ARM's initial implementation).  The
3762// vector type must be one of the special types predefined by ARM.
3763void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
3764  QualType EltType = T->getElementType();
3765  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3766  const char *EltName = nullptr;
3767  if (T->getVectorKind() == VectorKind::NeonPoly) {
3768    switch (cast<BuiltinType>(EltType)->getKind()) {
3769    case BuiltinType::SChar:
3770    case BuiltinType::UChar:
3771      EltName = "poly8_t";
3772      break;
3773    case BuiltinType::Short:
3774    case BuiltinType::UShort:
3775      EltName = "poly16_t";
3776      break;
3777    case BuiltinType::LongLong:
3778    case BuiltinType::ULongLong:
3779      EltName = "poly64_t";
3780      break;
3781    default: llvm_unreachable("unexpected Neon polynomial vector element type");
3782    }
3783  } else {
3784    switch (cast<BuiltinType>(EltType)->getKind()) {
3785    case BuiltinType::SChar:     EltName = "int8_t"; break;
3786    case BuiltinType::UChar:     EltName = "uint8_t"; break;
3787    case BuiltinType::Short:     EltName = "int16_t"; break;
3788    case BuiltinType::UShort:    EltName = "uint16_t"; break;
3789    case BuiltinType::Int:       EltName = "int32_t"; break;
3790    case BuiltinType::UInt:      EltName = "uint32_t"; break;
3791    case BuiltinType::LongLong:  EltName = "int64_t"; break;
3792    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
3793    case BuiltinType::Double:    EltName = "float64_t"; break;
3794    case BuiltinType::Float:     EltName = "float32_t"; break;
3795    case BuiltinType::Half:      EltName = "float16_t"; break;
3796    case BuiltinType::BFloat16:  EltName = "bfloat16_t"; break;
3797    default:
3798      llvm_unreachable("unexpected Neon vector element type");
3799    }
3800  }
3801  const char *BaseName = nullptr;
3802  unsigned BitSize = (T->getNumElements() *
3803                      getASTContext().getTypeSize(EltType));
3804  if (BitSize == 64)
3805    BaseName = "__simd64_";
3806  else {
3807    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
3808    BaseName = "__simd128_";
3809  }
3810  Out << strlen(BaseName) + strlen(EltName);
3811  Out << BaseName << EltName;
3812}
3813
3814void CXXNameMangler::mangleNeonVectorType(const DependentVectorType *T) {
3815  DiagnosticsEngine &Diags = Context.getDiags();
3816  unsigned DiagID = Diags.getCustomDiagID(
3817      DiagnosticsEngine::Error,
3818      "cannot mangle this dependent neon vector type yet");
3819  Diags.Report(T->getAttributeLoc(), DiagID);
3820}
3821
3822static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
3823  switch (EltType->getKind()) {
3824  case BuiltinType::SChar:
3825    return "Int8";
3826  case BuiltinType::Short:
3827    return "Int16";
3828  case BuiltinType::Int:
3829    return "Int32";
3830  case BuiltinType::Long:
3831  case BuiltinType::LongLong:
3832    return "Int64";
3833  case BuiltinType::UChar:
3834    return "Uint8";
3835  case BuiltinType::UShort:
3836    return "Uint16";
3837  case BuiltinType::UInt:
3838    return "Uint32";
3839  case BuiltinType::ULong:
3840  case BuiltinType::ULongLong:
3841    return "Uint64";
3842  case BuiltinType::Half:
3843    return "Float16";
3844  case BuiltinType::Float:
3845    return "Float32";
3846  case BuiltinType::Double:
3847    return "Float64";
3848  case BuiltinType::BFloat16:
3849    return "Bfloat16";
3850  default:
3851    llvm_unreachable("Unexpected vector element base type");
3852  }
3853}
3854
3855// AArch64's ABI for Neon vector types specifies that they should be mangled as
3856// the equivalent internal name. The vector type must be one of the special
3857// types predefined by ARM.
3858void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
3859  QualType EltType = T->getElementType();
3860  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
3861  unsigned BitSize =
3862      (T->getNumElements() * getASTContext().getTypeSize(EltType));
3863  (void)BitSize; // Silence warning.
3864
3865  assert((BitSize == 64 || BitSize == 128) &&
3866         "Neon vector type not 64 or 128 bits");
3867
3868  StringRef EltName;
3869  if (T->getVectorKind() == VectorKind::NeonPoly) {
3870    switch (cast<BuiltinType>(EltType)->getKind()) {
3871    case BuiltinType::UChar:
3872      EltName = "Poly8";
3873      break;
3874    case BuiltinType::UShort:
3875      EltName = "Poly16";
3876      break;
3877    case BuiltinType::ULong:
3878    case BuiltinType::ULongLong:
3879      EltName = "Poly64";
3880      break;
3881    default:
3882      llvm_unreachable("unexpected Neon polynomial vector element type");
3883    }
3884  } else
3885    EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
3886
3887  std::string TypeName =
3888      ("__" + EltName + "x" + Twine(T->getNumElements()) + "_t").str();
3889  Out << TypeName.length() << TypeName;
3890}
3891void CXXNameMangler::mangleAArch64NeonVectorType(const DependentVectorType *T) {
3892  DiagnosticsEngine &Diags = Context.getDiags();
3893  unsigned DiagID = Diags.getCustomDiagID(
3894      DiagnosticsEngine::Error,
3895      "cannot mangle this dependent neon vector type yet");
3896  Diags.Report(T->getAttributeLoc(), DiagID);
3897}
3898
3899// The AArch64 ACLE specifies that fixed-length SVE vector and predicate types
3900// defined with the 'arm_sve_vector_bits' attribute map to the same AAPCS64
3901// type as the sizeless variants.
3902//
3903// The mangling scheme for VLS types is implemented as a "pseudo" template:
3904//
3905//   '__SVE_VLS<<type>, <vector length>>'
3906//
3907// Combining the existing SVE type and a specific vector length (in bits).
3908// For example:
3909//
3910//   typedef __SVInt32_t foo __attribute__((arm_sve_vector_bits(512)));
3911//
3912// is described as '__SVE_VLS<__SVInt32_t, 512u>' and mangled as:
3913//
3914//   "9__SVE_VLSI" + base type mangling + "Lj" + __ARM_FEATURE_SVE_BITS + "EE"
3915//
3916//   i.e. 9__SVE_VLSIu11__SVInt32_tLj512EE
3917//
3918// The latest ACLE specification (00bet5) does not contain details of this
3919// mangling scheme, it will be specified in the next revision. The mangling
3920// scheme is otherwise defined in the appendices to the Procedure Call Standard
3921// for the Arm Architecture, see
3922// https://github.com/ARM-software/abi-aa/blob/main/aapcs64/aapcs64.rst#appendix-c-mangling
3923void CXXNameMangler::mangleAArch64FixedSveVectorType(const VectorType *T) {
3924  assert((T->getVectorKind() == VectorKind::SveFixedLengthData ||
3925          T->getVectorKind() == VectorKind::SveFixedLengthPredicate) &&
3926         "expected fixed-length SVE vector!");
3927
3928  QualType EltType = T->getElementType();
3929  assert(EltType->isBuiltinType() &&
3930         "expected builtin type for fixed-length SVE vector!");
3931
3932  StringRef TypeName;
3933  switch (cast<BuiltinType>(EltType)->getKind()) {
3934  case BuiltinType::SChar:
3935    TypeName = "__SVInt8_t";
3936    break;
3937  case BuiltinType::UChar: {
3938    if (T->getVectorKind() == VectorKind::SveFixedLengthData)
3939      TypeName = "__SVUint8_t";
3940    else
3941      TypeName = "__SVBool_t";
3942    break;
3943  }
3944  case BuiltinType::Short:
3945    TypeName = "__SVInt16_t";
3946    break;
3947  case BuiltinType::UShort:
3948    TypeName = "__SVUint16_t";
3949    break;
3950  case BuiltinType::Int:
3951    TypeName = "__SVInt32_t";
3952    break;
3953  case BuiltinType::UInt:
3954    TypeName = "__SVUint32_t";
3955    break;
3956  case BuiltinType::Long:
3957    TypeName = "__SVInt64_t";
3958    break;
3959  case BuiltinType::ULong:
3960    TypeName = "__SVUint64_t";
3961    break;
3962  case BuiltinType::Half:
3963    TypeName = "__SVFloat16_t";
3964    break;
3965  case BuiltinType::Float:
3966    TypeName = "__SVFloat32_t";
3967    break;
3968  case BuiltinType::Double:
3969    TypeName = "__SVFloat64_t";
3970    break;
3971  case BuiltinType::BFloat16:
3972    TypeName = "__SVBfloat16_t";
3973    break;
3974  default:
3975    llvm_unreachable("unexpected element type for fixed-length SVE vector!");
3976  }
3977
3978  unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
3979
3980  if (T->getVectorKind() == VectorKind::SveFixedLengthPredicate)
3981    VecSizeInBits *= 8;
3982
3983  Out << "9__SVE_VLSI" << 'u' << TypeName.size() << TypeName << "Lj"
3984      << VecSizeInBits << "EE";
3985}
3986
3987void CXXNameMangler::mangleAArch64FixedSveVectorType(
3988    const DependentVectorType *T) {
3989  DiagnosticsEngine &Diags = Context.getDiags();
3990  unsigned DiagID = Diags.getCustomDiagID(
3991      DiagnosticsEngine::Error,
3992      "cannot mangle this dependent fixed-length SVE vector type yet");
3993  Diags.Report(T->getAttributeLoc(), DiagID);
3994}
3995
3996void CXXNameMangler::mangleRISCVFixedRVVVectorType(const VectorType *T) {
3997  assert((T->getVectorKind() == VectorKind::RVVFixedLengthData ||
3998          T->getVectorKind() == VectorKind::RVVFixedLengthMask) &&
3999         "expected fixed-length RVV vector!");
4000
4001  QualType EltType = T->getElementType();
4002  assert(EltType->isBuiltinType() &&
4003         "expected builtin type for fixed-length RVV vector!");
4004
4005  SmallString<20> TypeNameStr;
4006  llvm::raw_svector_ostream TypeNameOS(TypeNameStr);
4007  TypeNameOS << "__rvv_";
4008  switch (cast<BuiltinType>(EltType)->getKind()) {
4009  case BuiltinType::SChar:
4010    TypeNameOS << "int8";
4011    break;
4012  case BuiltinType::UChar:
4013    if (T->getVectorKind() == VectorKind::RVVFixedLengthData)
4014      TypeNameOS << "uint8";
4015    else
4016      TypeNameOS << "bool";
4017    break;
4018  case BuiltinType::Short:
4019    TypeNameOS << "int16";
4020    break;
4021  case BuiltinType::UShort:
4022    TypeNameOS << "uint16";
4023    break;
4024  case BuiltinType::Int:
4025    TypeNameOS << "int32";
4026    break;
4027  case BuiltinType::UInt:
4028    TypeNameOS << "uint32";
4029    break;
4030  case BuiltinType::Long:
4031    TypeNameOS << "int64";
4032    break;
4033  case BuiltinType::ULong:
4034    TypeNameOS << "uint64";
4035    break;
4036  case BuiltinType::Float16:
4037    TypeNameOS << "float16";
4038    break;
4039  case BuiltinType::Float:
4040    TypeNameOS << "float32";
4041    break;
4042  case BuiltinType::Double:
4043    TypeNameOS << "float64";
4044    break;
4045  default:
4046    llvm_unreachable("unexpected element type for fixed-length RVV vector!");
4047  }
4048
4049  unsigned VecSizeInBits = getASTContext().getTypeInfo(T).Width;
4050
4051  // Apend the LMUL suffix.
4052  auto VScale = getASTContext().getTargetInfo().getVScaleRange(
4053      getASTContext().getLangOpts());
4054  unsigned VLen = VScale->first * llvm::RISCV::RVVBitsPerBlock;
4055
4056  if (T->getVectorKind() == VectorKind::RVVFixedLengthData) {
4057    TypeNameOS << 'm';
4058    if (VecSizeInBits >= VLen)
4059      TypeNameOS << (VecSizeInBits / VLen);
4060    else
4061      TypeNameOS << 'f' << (VLen / VecSizeInBits);
4062  } else {
4063    TypeNameOS << (VLen / VecSizeInBits);
4064  }
4065  TypeNameOS << "_t";
4066
4067  Out << "9__RVV_VLSI" << 'u' << TypeNameStr.size() << TypeNameStr << "Lj"
4068      << VecSizeInBits << "EE";
4069}
4070
4071void CXXNameMangler::mangleRISCVFixedRVVVectorType(
4072    const DependentVectorType *T) {
4073  DiagnosticsEngine &Diags = Context.getDiags();
4074  unsigned DiagID = Diags.getCustomDiagID(
4075      DiagnosticsEngine::Error,
4076      "cannot mangle this dependent fixed-length RVV vector type yet");
4077  Diags.Report(T->getAttributeLoc(), DiagID);
4078}
4079
4080// GNU extension: vector types
4081// <type>                  ::= <vector-type>
4082// <vector-type>           ::= Dv <positive dimension number> _
4083//                                    <extended element type>
4084//                         ::= Dv [<dimension expression>] _ <element type>
4085// <extended element type> ::= <element type>
4086//                         ::= p # AltiVec vector pixel
4087//                         ::= b # Altivec vector bool
4088void CXXNameMangler::mangleType(const VectorType *T) {
4089  if ((T->getVectorKind() == VectorKind::Neon ||
4090       T->getVectorKind() == VectorKind::NeonPoly)) {
4091    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
4092    llvm::Triple::ArchType Arch =
4093        getASTContext().getTargetInfo().getTriple().getArch();
4094    if ((Arch == llvm::Triple::aarch64 ||
4095         Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
4096      mangleAArch64NeonVectorType(T);
4097    else
4098      mangleNeonVectorType(T);
4099    return;
4100  } else if (T->getVectorKind() == VectorKind::SveFixedLengthData ||
4101             T->getVectorKind() == VectorKind::SveFixedLengthPredicate) {
4102    mangleAArch64FixedSveVectorType(T);
4103    return;
4104  } else if (T->getVectorKind() == VectorKind::RVVFixedLengthData ||
4105             T->getVectorKind() == VectorKind::RVVFixedLengthMask) {
4106    mangleRISCVFixedRVVVectorType(T);
4107    return;
4108  }
4109  Out << "Dv" << T->getNumElements() << '_';
4110  if (T->getVectorKind() == VectorKind::AltiVecPixel)
4111    Out << 'p';
4112  else if (T->getVectorKind() == VectorKind::AltiVecBool)
4113    Out << 'b';
4114  else
4115    mangleType(T->getElementType());
4116}
4117
4118void CXXNameMangler::mangleType(const DependentVectorType *T) {
4119  if ((T->getVectorKind() == VectorKind::Neon ||
4120       T->getVectorKind() == VectorKind::NeonPoly)) {
4121    llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
4122    llvm::Triple::ArchType Arch =
4123        getASTContext().getTargetInfo().getTriple().getArch();
4124    if ((Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) &&
4125        !Target.isOSDarwin())
4126      mangleAArch64NeonVectorType(T);
4127    else
4128      mangleNeonVectorType(T);
4129    return;
4130  } else if (T->getVectorKind() == VectorKind::SveFixedLengthData ||
4131             T->getVectorKind() == VectorKind::SveFixedLengthPredicate) {
4132    mangleAArch64FixedSveVectorType(T);
4133    return;
4134  } else if (T->getVectorKind() == VectorKind::RVVFixedLengthData) {
4135    mangleRISCVFixedRVVVectorType(T);
4136    return;
4137  }
4138
4139  Out << "Dv";
4140  mangleExpression(T->getSizeExpr());
4141  Out << '_';
4142  if (T->getVectorKind() == VectorKind::AltiVecPixel)
4143    Out << 'p';
4144  else if (T->getVectorKind() == VectorKind::AltiVecBool)
4145    Out << 'b';
4146  else
4147    mangleType(T->getElementType());
4148}
4149
4150void CXXNameMangler::mangleType(const ExtVectorType *T) {
4151  mangleType(static_cast<const VectorType*>(T));
4152}
4153void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
4154  Out << "Dv";
4155  mangleExpression(T->getSizeExpr());
4156  Out << '_';
4157  mangleType(T->getElementType());
4158}
4159
4160void CXXNameMangler::mangleType(const ConstantMatrixType *T) {
4161  // Mangle matrix types as a vendor extended type:
4162  // u<Len>matrix_typeI<Rows><Columns><element type>E
4163
4164  StringRef VendorQualifier = "matrix_type";
4165  Out << "u" << VendorQualifier.size() << VendorQualifier;
4166
4167  Out << "I";
4168  auto &ASTCtx = getASTContext();
4169  unsigned BitWidth = ASTCtx.getTypeSize(ASTCtx.getSizeType());
4170  llvm::APSInt Rows(BitWidth);
4171  Rows = T->getNumRows();
4172  mangleIntegerLiteral(ASTCtx.getSizeType(), Rows);
4173  llvm::APSInt Columns(BitWidth);
4174  Columns = T->getNumColumns();
4175  mangleIntegerLiteral(ASTCtx.getSizeType(), Columns);
4176  mangleType(T->getElementType());
4177  Out << "E";
4178}
4179
4180void CXXNameMangler::mangleType(const DependentSizedMatrixType *T) {
4181  // Mangle matrix types as a vendor extended type:
4182  // u<Len>matrix_typeI<row expr><column expr><element type>E
4183  StringRef VendorQualifier = "matrix_type";
4184  Out << "u" << VendorQualifier.size() << VendorQualifier;
4185
4186  Out << "I";
4187  mangleTemplateArgExpr(T->getRowExpr());
4188  mangleTemplateArgExpr(T->getColumnExpr());
4189  mangleType(T->getElementType());
4190  Out << "E";
4191}
4192
4193void CXXNameMangler::mangleType(const DependentAddressSpaceType *T) {
4194  SplitQualType split = T->getPointeeType().split();
4195  mangleQualifiers(split.Quals, T);
4196  mangleType(QualType(split.Ty, 0));
4197}
4198
4199void CXXNameMangler::mangleType(const PackExpansionType *T) {
4200  // <type>  ::= Dp <type>          # pack expansion (C++0x)
4201  Out << "Dp";
4202  mangleType(T->getPattern());
4203}
4204
4205void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
4206  mangleSourceName(T->getDecl()->getIdentifier());
4207}
4208
4209void CXXNameMangler::mangleType(const ObjCObjectType *T) {
4210  // Treat __kindof as a vendor extended type qualifier.
4211  if (T->isKindOfType())
4212    Out << "U8__kindof";
4213
4214  if (!T->qual_empty()) {
4215    // Mangle protocol qualifiers.
4216    SmallString<64> QualStr;
4217    llvm::raw_svector_ostream QualOS(QualStr);
4218    QualOS << "objcproto";
4219    for (const auto *I : T->quals()) {
4220      StringRef name = I->getName();
4221      QualOS << name.size() << name;
4222    }
4223    Out << 'U' << QualStr.size() << QualStr;
4224  }
4225
4226  mangleType(T->getBaseType());
4227
4228  if (T->isSpecialized()) {
4229    // Mangle type arguments as I <type>+ E
4230    Out << 'I';
4231    for (auto typeArg : T->getTypeArgs())
4232      mangleType(typeArg);
4233    Out << 'E';
4234  }
4235}
4236
4237void CXXNameMangler::mangleType(const BlockPointerType *T) {
4238  Out << "U13block_pointer";
4239  mangleType(T->getPointeeType());
4240}
4241
4242void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
4243  // Mangle injected class name types as if the user had written the
4244  // specialization out fully.  It may not actually be possible to see
4245  // this mangling, though.
4246  mangleType(T->getInjectedSpecializationType());
4247}
4248
4249void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
4250  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
4251    mangleTemplateName(TD, T->template_arguments());
4252  } else {
4253    if (mangleSubstitution(QualType(T, 0)))
4254      return;
4255
4256    mangleTemplatePrefix(T->getTemplateName());
4257
4258    // FIXME: GCC does not appear to mangle the template arguments when
4259    // the template in question is a dependent template name. Should we
4260    // emulate that badness?
4261    mangleTemplateArgs(T->getTemplateName(), T->template_arguments());
4262    addSubstitution(QualType(T, 0));
4263  }
4264}
4265
4266void CXXNameMangler::mangleType(const DependentNameType *T) {
4267  // Proposal by cxx-abi-dev, 2014-03-26
4268  // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
4269  //                                 # dependent elaborated type specifier using
4270  //                                 # 'typename'
4271  //                   ::= Ts <name> # dependent elaborated type specifier using
4272  //                                 # 'struct' or 'class'
4273  //                   ::= Tu <name> # dependent elaborated type specifier using
4274  //                                 # 'union'
4275  //                   ::= Te <name> # dependent elaborated type specifier using
4276  //                                 # 'enum'
4277  switch (T->getKeyword()) {
4278  case ElaboratedTypeKeyword::None:
4279  case ElaboratedTypeKeyword::Typename:
4280    break;
4281  case ElaboratedTypeKeyword::Struct:
4282  case ElaboratedTypeKeyword::Class:
4283  case ElaboratedTypeKeyword::Interface:
4284    Out << "Ts";
4285    break;
4286  case ElaboratedTypeKeyword::Union:
4287    Out << "Tu";
4288    break;
4289  case ElaboratedTypeKeyword::Enum:
4290    Out << "Te";
4291    break;
4292  }
4293  // Typename types are always nested
4294  Out << 'N';
4295  manglePrefix(T->getQualifier());
4296  mangleSourceName(T->getIdentifier());
4297  Out << 'E';
4298}
4299
4300void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
4301  // Dependently-scoped template types are nested if they have a prefix.
4302  Out << 'N';
4303
4304  // TODO: avoid making this TemplateName.
4305  TemplateName Prefix =
4306    getASTContext().getDependentTemplateName(T->getQualifier(),
4307                                             T->getIdentifier());
4308  mangleTemplatePrefix(Prefix);
4309
4310  // FIXME: GCC does not appear to mangle the template arguments when
4311  // the template in question is a dependent template name. Should we
4312  // emulate that badness?
4313  mangleTemplateArgs(Prefix, T->template_arguments());
4314  Out << 'E';
4315}
4316
4317void CXXNameMangler::mangleType(const TypeOfType *T) {
4318  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
4319  // "extension with parameters" mangling.
4320  Out << "u6typeof";
4321}
4322
4323void CXXNameMangler::mangleType(const TypeOfExprType *T) {
4324  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
4325  // "extension with parameters" mangling.
4326  Out << "u6typeof";
4327}
4328
4329void CXXNameMangler::mangleType(const DecltypeType *T) {
4330  Expr *E = T->getUnderlyingExpr();
4331
4332  // type ::= Dt <expression> E  # decltype of an id-expression
4333  //                             #   or class member access
4334  //      ::= DT <expression> E  # decltype of an expression
4335
4336  // This purports to be an exhaustive list of id-expressions and
4337  // class member accesses.  Note that we do not ignore parentheses;
4338  // parentheses change the semantics of decltype for these
4339  // expressions (and cause the mangler to use the other form).
4340  if (isa<DeclRefExpr>(E) ||
4341      isa<MemberExpr>(E) ||
4342      isa<UnresolvedLookupExpr>(E) ||
4343      isa<DependentScopeDeclRefExpr>(E) ||
4344      isa<CXXDependentScopeMemberExpr>(E) ||
4345      isa<UnresolvedMemberExpr>(E))
4346    Out << "Dt";
4347  else
4348    Out << "DT";
4349  mangleExpression(E);
4350  Out << 'E';
4351}
4352
4353void CXXNameMangler::mangleType(const UnaryTransformType *T) {
4354  // If this is dependent, we need to record that. If not, we simply
4355  // mangle it as the underlying type since they are equivalent.
4356  if (T->isDependentType()) {
4357    Out << "u";
4358
4359    StringRef BuiltinName;
4360    switch (T->getUTTKind()) {
4361#define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait)                                  \
4362  case UnaryTransformType::Enum:                                               \
4363    BuiltinName = "__" #Trait;                                                 \
4364    break;
4365#include "clang/Basic/TransformTypeTraits.def"
4366    }
4367    Out << BuiltinName.size() << BuiltinName;
4368  }
4369
4370  Out << "I";
4371  mangleType(T->getBaseType());
4372  Out << "E";
4373}
4374
4375void CXXNameMangler::mangleType(const AutoType *T) {
4376  assert(T->getDeducedType().isNull() &&
4377         "Deduced AutoType shouldn't be handled here!");
4378  assert(T->getKeyword() != AutoTypeKeyword::GNUAutoType &&
4379         "shouldn't need to mangle __auto_type!");
4380  // <builtin-type> ::= Da # auto
4381  //                ::= Dc # decltype(auto)
4382  //                ::= Dk # constrained auto
4383  //                ::= DK # constrained decltype(auto)
4384  if (T->isConstrained() && !isCompatibleWith(LangOptions::ClangABI::Ver17)) {
4385    Out << (T->isDecltypeAuto() ? "DK" : "Dk");
4386    mangleTypeConstraint(T->getTypeConstraintConcept(),
4387                         T->getTypeConstraintArguments());
4388  } else {
4389    Out << (T->isDecltypeAuto() ? "Dc" : "Da");
4390  }
4391}
4392
4393void CXXNameMangler::mangleType(const DeducedTemplateSpecializationType *T) {
4394  QualType Deduced = T->getDeducedType();
4395  if (!Deduced.isNull())
4396    return mangleType(Deduced);
4397
4398  TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl();
4399  assert(TD && "shouldn't form deduced TST unless we know we have a template");
4400
4401  if (mangleSubstitution(TD))
4402    return;
4403
4404  mangleName(GlobalDecl(TD));
4405  addSubstitution(TD);
4406}
4407
4408void CXXNameMangler::mangleType(const AtomicType *T) {
4409  // <type> ::= U <source-name> <type>  # vendor extended type qualifier
4410  // (Until there's a standardized mangling...)
4411  Out << "U7_Atomic";
4412  mangleType(T->getValueType());
4413}
4414
4415void CXXNameMangler::mangleType(const PipeType *T) {
4416  // Pipe type mangling rules are described in SPIR 2.0 specification
4417  // A.1 Data types and A.3 Summary of changes
4418  // <type> ::= 8ocl_pipe
4419  Out << "8ocl_pipe";
4420}
4421
4422void CXXNameMangler::mangleType(const BitIntType *T) {
4423  // 5.1.5.2 Builtin types
4424  // <type> ::= DB <number | instantiation-dependent expression> _
4425  //        ::= DU <number | instantiation-dependent expression> _
4426  Out << "D" << (T->isUnsigned() ? "U" : "B") << T->getNumBits() << "_";
4427}
4428
4429void CXXNameMangler::mangleType(const DependentBitIntType *T) {
4430  // 5.1.5.2 Builtin types
4431  // <type> ::= DB <number | instantiation-dependent expression> _
4432  //        ::= DU <number | instantiation-dependent expression> _
4433  Out << "D" << (T->isUnsigned() ? "U" : "B");
4434  mangleExpression(T->getNumBitsExpr());
4435  Out << "_";
4436}
4437
4438void CXXNameMangler::mangleIntegerLiteral(QualType T,
4439                                          const llvm::APSInt &Value) {
4440  //  <expr-primary> ::= L <type> <value number> E # integer literal
4441  Out << 'L';
4442
4443  mangleType(T);
4444  if (T->isBooleanType()) {
4445    // Boolean values are encoded as 0/1.
4446    Out << (Value.getBoolValue() ? '1' : '0');
4447  } else {
4448    mangleNumber(Value);
4449  }
4450  Out << 'E';
4451
4452}
4453
4454void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
4455  // Ignore member expressions involving anonymous unions.
4456  while (const auto *RT = Base->getType()->getAs<RecordType>()) {
4457    if (!RT->getDecl()->isAnonymousStructOrUnion())
4458      break;
4459    const auto *ME = dyn_cast<MemberExpr>(Base);
4460    if (!ME)
4461      break;
4462    Base = ME->getBase();
4463    IsArrow = ME->isArrow();
4464  }
4465
4466  if (Base->isImplicitCXXThis()) {
4467    // Note: GCC mangles member expressions to the implicit 'this' as
4468    // *this., whereas we represent them as this->. The Itanium C++ ABI
4469    // does not specify anything here, so we follow GCC.
4470    Out << "dtdefpT";
4471  } else {
4472    Out << (IsArrow ? "pt" : "dt");
4473    mangleExpression(Base);
4474  }
4475}
4476
4477/// Mangles a member expression.
4478void CXXNameMangler::mangleMemberExpr(const Expr *base,
4479                                      bool isArrow,
4480                                      NestedNameSpecifier *qualifier,
4481                                      NamedDecl *firstQualifierLookup,
4482                                      DeclarationName member,
4483                                      const TemplateArgumentLoc *TemplateArgs,
4484                                      unsigned NumTemplateArgs,
4485                                      unsigned arity) {
4486  // <expression> ::= dt <expression> <unresolved-name>
4487  //              ::= pt <expression> <unresolved-name>
4488  if (base)
4489    mangleMemberExprBase(base, isArrow);
4490  mangleUnresolvedName(qualifier, member, TemplateArgs, NumTemplateArgs, arity);
4491}
4492
4493/// Look at the callee of the given call expression and determine if
4494/// it's a parenthesized id-expression which would have triggered ADL
4495/// otherwise.
4496static bool isParenthesizedADLCallee(const CallExpr *call) {
4497  const Expr *callee = call->getCallee();
4498  const Expr *fn = callee->IgnoreParens();
4499
4500  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
4501  // too, but for those to appear in the callee, it would have to be
4502  // parenthesized.
4503  if (callee == fn) return false;
4504
4505  // Must be an unresolved lookup.
4506  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
4507  if (!lookup) return false;
4508
4509  assert(!lookup->requiresADL());
4510
4511  // Must be an unqualified lookup.
4512  if (lookup->getQualifier()) return false;
4513
4514  // Must not have found a class member.  Note that if one is a class
4515  // member, they're all class members.
4516  if (lookup->getNumDecls() > 0 &&
4517      (*lookup->decls_begin())->isCXXClassMember())
4518    return false;
4519
4520  // Otherwise, ADL would have been triggered.
4521  return true;
4522}
4523
4524void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
4525  const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
4526  Out << CastEncoding;
4527  mangleType(ECE->getType());
4528  mangleExpression(ECE->getSubExpr());
4529}
4530
4531void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
4532  if (auto *Syntactic = InitList->getSyntacticForm())
4533    InitList = Syntactic;
4534  for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
4535    mangleExpression(InitList->getInit(i));
4536}
4537
4538void CXXNameMangler::mangleRequirement(SourceLocation RequiresExprLoc,
4539                                       const concepts::Requirement *Req) {
4540  using concepts::Requirement;
4541
4542  // TODO: We can't mangle the result of a failed substitution. It's not clear
4543  // whether we should be mangling the original form prior to any substitution
4544  // instead. See https://lists.isocpp.org/core/2023/04/14118.php
4545  auto HandleSubstitutionFailure =
4546      [&](SourceLocation Loc) {
4547        DiagnosticsEngine &Diags = Context.getDiags();
4548        unsigned DiagID = Diags.getCustomDiagID(
4549            DiagnosticsEngine::Error, "cannot mangle this requires-expression "
4550                                      "containing a substitution failure");
4551        Diags.Report(Loc, DiagID);
4552        Out << 'F';
4553      };
4554
4555  switch (Req->getKind()) {
4556  case Requirement::RK_Type: {
4557    const auto *TR = cast<concepts::TypeRequirement>(Req);
4558    if (TR->isSubstitutionFailure())
4559      return HandleSubstitutionFailure(
4560          TR->getSubstitutionDiagnostic()->DiagLoc);
4561
4562    Out << 'T';
4563    mangleType(TR->getType()->getType());
4564    break;
4565  }
4566
4567  case Requirement::RK_Simple:
4568  case Requirement::RK_Compound: {
4569    const auto *ER = cast<concepts::ExprRequirement>(Req);
4570    if (ER->isExprSubstitutionFailure())
4571      return HandleSubstitutionFailure(
4572          ER->getExprSubstitutionDiagnostic()->DiagLoc);
4573
4574    Out << 'X';
4575    mangleExpression(ER->getExpr());
4576
4577    if (ER->hasNoexceptRequirement())
4578      Out << 'N';
4579
4580    if (!ER->getReturnTypeRequirement().isEmpty()) {
4581      if (ER->getReturnTypeRequirement().isSubstitutionFailure())
4582        return HandleSubstitutionFailure(ER->getReturnTypeRequirement()
4583                                             .getSubstitutionDiagnostic()
4584                                             ->DiagLoc);
4585
4586      Out << 'R';
4587      mangleTypeConstraint(ER->getReturnTypeRequirement().getTypeConstraint());
4588    }
4589    break;
4590  }
4591
4592  case Requirement::RK_Nested:
4593    const auto *NR = cast<concepts::NestedRequirement>(Req);
4594    if (NR->hasInvalidConstraint()) {
4595      // FIXME: NestedRequirement should track the location of its requires
4596      // keyword.
4597      return HandleSubstitutionFailure(RequiresExprLoc);
4598    }
4599
4600    Out << 'Q';
4601    mangleExpression(NR->getConstraintExpr());
4602    break;
4603  }
4604}
4605
4606void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity,
4607                                      bool AsTemplateArg) {
4608  // <expression> ::= <unary operator-name> <expression>
4609  //              ::= <binary operator-name> <expression> <expression>
4610  //              ::= <trinary operator-name> <expression> <expression> <expression>
4611  //              ::= cv <type> expression           # conversion with one argument
4612  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
4613  //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
4614  //              ::= sc <type> <expression>         # static_cast<type> (expression)
4615  //              ::= cc <type> <expression>         # const_cast<type> (expression)
4616  //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
4617  //              ::= st <type>                      # sizeof (a type)
4618  //              ::= at <type>                      # alignof (a type)
4619  //              ::= <template-param>
4620  //              ::= <function-param>
4621  //              ::= fpT                            # 'this' expression (part of <function-param>)
4622  //              ::= sr <type> <unqualified-name>                   # dependent name
4623  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
4624  //              ::= ds <expression> <expression>                   # expr.*expr
4625  //              ::= sZ <template-param>                            # size of a parameter pack
4626  //              ::= sZ <function-param>    # size of a function parameter pack
4627  //              ::= u <source-name> <template-arg>* E # vendor extended expression
4628  //              ::= <expr-primary>
4629  // <expr-primary> ::= L <type> <value number> E    # integer literal
4630  //                ::= L <type> <value float> E     # floating literal
4631  //                ::= L <type> <string type> E     # string literal
4632  //                ::= L <nullptr type> E           # nullptr literal "LDnE"
4633  //                ::= L <pointer type> 0 E         # null pointer template argument
4634  //                ::= L <type> <real-part float> _ <imag-part float> E    # complex floating point literal (C99); not used by clang
4635  //                ::= L <mangled-name> E           # external name
4636  QualType ImplicitlyConvertedToType;
4637
4638  // A top-level expression that's not <expr-primary> needs to be wrapped in
4639  // X...E in a template arg.
4640  bool IsPrimaryExpr = true;
4641  auto NotPrimaryExpr = [&] {
4642    if (AsTemplateArg && IsPrimaryExpr)
4643      Out << 'X';
4644    IsPrimaryExpr = false;
4645  };
4646
4647  auto MangleDeclRefExpr = [&](const NamedDecl *D) {
4648    switch (D->getKind()) {
4649    default:
4650      //  <expr-primary> ::= L <mangled-name> E # external name
4651      Out << 'L';
4652      mangle(D);
4653      Out << 'E';
4654      break;
4655
4656    case Decl::ParmVar:
4657      NotPrimaryExpr();
4658      mangleFunctionParam(cast<ParmVarDecl>(D));
4659      break;
4660
4661    case Decl::EnumConstant: {
4662      // <expr-primary>
4663      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
4664      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
4665      break;
4666    }
4667
4668    case Decl::NonTypeTemplateParm:
4669      NotPrimaryExpr();
4670      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
4671      mangleTemplateParameter(PD->getDepth(), PD->getIndex());
4672      break;
4673    }
4674  };
4675
4676  // 'goto recurse' is used when handling a simple "unwrapping" node which
4677  // produces no output, where ImplicitlyConvertedToType and AsTemplateArg need
4678  // to be preserved.
4679recurse:
4680  switch (E->getStmtClass()) {
4681  case Expr::NoStmtClass:
4682#define ABSTRACT_STMT(Type)
4683#define EXPR(Type, Base)
4684#define STMT(Type, Base) \
4685  case Expr::Type##Class:
4686#include "clang/AST/StmtNodes.inc"
4687    // fallthrough
4688
4689  // These all can only appear in local or variable-initialization
4690  // contexts and so should never appear in a mangling.
4691  case Expr::AddrLabelExprClass:
4692  case Expr::DesignatedInitUpdateExprClass:
4693  case Expr::ImplicitValueInitExprClass:
4694  case Expr::ArrayInitLoopExprClass:
4695  case Expr::ArrayInitIndexExprClass:
4696  case Expr::NoInitExprClass:
4697  case Expr::ParenListExprClass:
4698  case Expr::MSPropertyRefExprClass:
4699  case Expr::MSPropertySubscriptExprClass:
4700  case Expr::TypoExprClass: // This should no longer exist in the AST by now.
4701  case Expr::RecoveryExprClass:
4702  case Expr::OMPArraySectionExprClass:
4703  case Expr::OMPArrayShapingExprClass:
4704  case Expr::OMPIteratorExprClass:
4705  case Expr::CXXInheritedCtorInitExprClass:
4706  case Expr::CXXParenListInitExprClass:
4707    llvm_unreachable("unexpected statement kind");
4708
4709  case Expr::ConstantExprClass:
4710    E = cast<ConstantExpr>(E)->getSubExpr();
4711    goto recurse;
4712
4713  // FIXME: invent manglings for all these.
4714  case Expr::BlockExprClass:
4715  case Expr::ChooseExprClass:
4716  case Expr::CompoundLiteralExprClass:
4717  case Expr::ExtVectorElementExprClass:
4718  case Expr::GenericSelectionExprClass:
4719  case Expr::ObjCEncodeExprClass:
4720  case Expr::ObjCIsaExprClass:
4721  case Expr::ObjCIvarRefExprClass:
4722  case Expr::ObjCMessageExprClass:
4723  case Expr::ObjCPropertyRefExprClass:
4724  case Expr::ObjCProtocolExprClass:
4725  case Expr::ObjCSelectorExprClass:
4726  case Expr::ObjCStringLiteralClass:
4727  case Expr::ObjCBoxedExprClass:
4728  case Expr::ObjCArrayLiteralClass:
4729  case Expr::ObjCDictionaryLiteralClass:
4730  case Expr::ObjCSubscriptRefExprClass:
4731  case Expr::ObjCIndirectCopyRestoreExprClass:
4732  case Expr::ObjCAvailabilityCheckExprClass:
4733  case Expr::OffsetOfExprClass:
4734  case Expr::PredefinedExprClass:
4735  case Expr::ShuffleVectorExprClass:
4736  case Expr::ConvertVectorExprClass:
4737  case Expr::StmtExprClass:
4738  case Expr::ArrayTypeTraitExprClass:
4739  case Expr::ExpressionTraitExprClass:
4740  case Expr::VAArgExprClass:
4741  case Expr::CUDAKernelCallExprClass:
4742  case Expr::AsTypeExprClass:
4743  case Expr::PseudoObjectExprClass:
4744  case Expr::AtomicExprClass:
4745  case Expr::SourceLocExprClass:
4746  case Expr::BuiltinBitCastExprClass:
4747  {
4748    NotPrimaryExpr();
4749    if (!NullOut) {
4750      // As bad as this diagnostic is, it's better than crashing.
4751      DiagnosticsEngine &Diags = Context.getDiags();
4752      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
4753                                       "cannot yet mangle expression type %0");
4754      Diags.Report(E->getExprLoc(), DiagID)
4755        << E->getStmtClassName() << E->getSourceRange();
4756      return;
4757    }
4758    break;
4759  }
4760
4761  case Expr::CXXUuidofExprClass: {
4762    NotPrimaryExpr();
4763    const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
4764    // As of clang 12, uuidof uses the vendor extended expression
4765    // mangling. Previously, it used a special-cased nonstandard extension.
4766    if (!isCompatibleWith(LangOptions::ClangABI::Ver11)) {
4767      Out << "u8__uuidof";
4768      if (UE->isTypeOperand())
4769        mangleType(UE->getTypeOperand(Context.getASTContext()));
4770      else
4771        mangleTemplateArgExpr(UE->getExprOperand());
4772      Out << 'E';
4773    } else {
4774      if (UE->isTypeOperand()) {
4775        QualType UuidT = UE->getTypeOperand(Context.getASTContext());
4776        Out << "u8__uuidoft";
4777        mangleType(UuidT);
4778      } else {
4779        Expr *UuidExp = UE->getExprOperand();
4780        Out << "u8__uuidofz";
4781        mangleExpression(UuidExp);
4782      }
4783    }
4784    break;
4785  }
4786
4787  // Even gcc-4.5 doesn't mangle this.
4788  case Expr::BinaryConditionalOperatorClass: {
4789    NotPrimaryExpr();
4790    DiagnosticsEngine &Diags = Context.getDiags();
4791    unsigned DiagID =
4792      Diags.getCustomDiagID(DiagnosticsEngine::Error,
4793                "?: operator with omitted middle operand cannot be mangled");
4794    Diags.Report(E->getExprLoc(), DiagID)
4795      << E->getStmtClassName() << E->getSourceRange();
4796    return;
4797  }
4798
4799  // These are used for internal purposes and cannot be meaningfully mangled.
4800  case Expr::OpaqueValueExprClass:
4801    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
4802
4803  case Expr::InitListExprClass: {
4804    NotPrimaryExpr();
4805    Out << "il";
4806    mangleInitListElements(cast<InitListExpr>(E));
4807    Out << "E";
4808    break;
4809  }
4810
4811  case Expr::DesignatedInitExprClass: {
4812    NotPrimaryExpr();
4813    auto *DIE = cast<DesignatedInitExpr>(E);
4814    for (const auto &Designator : DIE->designators()) {
4815      if (Designator.isFieldDesignator()) {
4816        Out << "di";
4817        mangleSourceName(Designator.getFieldName());
4818      } else if (Designator.isArrayDesignator()) {
4819        Out << "dx";
4820        mangleExpression(DIE->getArrayIndex(Designator));
4821      } else {
4822        assert(Designator.isArrayRangeDesignator() &&
4823               "unknown designator kind");
4824        Out << "dX";
4825        mangleExpression(DIE->getArrayRangeStart(Designator));
4826        mangleExpression(DIE->getArrayRangeEnd(Designator));
4827      }
4828    }
4829    mangleExpression(DIE->getInit());
4830    break;
4831  }
4832
4833  case Expr::CXXDefaultArgExprClass:
4834    E = cast<CXXDefaultArgExpr>(E)->getExpr();
4835    goto recurse;
4836
4837  case Expr::CXXDefaultInitExprClass:
4838    E = cast<CXXDefaultInitExpr>(E)->getExpr();
4839    goto recurse;
4840
4841  case Expr::CXXStdInitializerListExprClass:
4842    E = cast<CXXStdInitializerListExpr>(E)->getSubExpr();
4843    goto recurse;
4844
4845  case Expr::SubstNonTypeTemplateParmExprClass: {
4846    // Mangle a substituted parameter the same way we mangle the template
4847    // argument.
4848    auto *SNTTPE = cast<SubstNonTypeTemplateParmExpr>(E);
4849    if (auto *CE = dyn_cast<ConstantExpr>(SNTTPE->getReplacement())) {
4850      // Pull out the constant value and mangle it as a template argument.
4851      QualType ParamType = SNTTPE->getParameterType(Context.getASTContext());
4852      assert(CE->hasAPValueResult() && "expected the NTTP to have an APValue");
4853      mangleValueInTemplateArg(ParamType, CE->getAPValueResult(), false,
4854                               /*NeedExactType=*/true);
4855      break;
4856    }
4857    // The remaining cases all happen to be substituted with expressions that
4858    // mangle the same as a corresponding template argument anyway.
4859    E = cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement();
4860    goto recurse;
4861  }
4862
4863  case Expr::UserDefinedLiteralClass:
4864    // We follow g++'s approach of mangling a UDL as a call to the literal
4865    // operator.
4866  case Expr::CXXMemberCallExprClass: // fallthrough
4867  case Expr::CallExprClass: {
4868    NotPrimaryExpr();
4869    const CallExpr *CE = cast<CallExpr>(E);
4870
4871    // <expression> ::= cp <simple-id> <expression>* E
4872    // We use this mangling only when the call would use ADL except
4873    // for being parenthesized.  Per discussion with David
4874    // Vandervoorde, 2011.04.25.
4875    if (isParenthesizedADLCallee(CE)) {
4876      Out << "cp";
4877      // The callee here is a parenthesized UnresolvedLookupExpr with
4878      // no qualifier and should always get mangled as a <simple-id>
4879      // anyway.
4880
4881    // <expression> ::= cl <expression>* E
4882    } else {
4883      Out << "cl";
4884    }
4885
4886    unsigned CallArity = CE->getNumArgs();
4887    for (const Expr *Arg : CE->arguments())
4888      if (isa<PackExpansionExpr>(Arg))
4889        CallArity = UnknownArity;
4890
4891    mangleExpression(CE->getCallee(), CallArity);
4892    for (const Expr *Arg : CE->arguments())
4893      mangleExpression(Arg);
4894    Out << 'E';
4895    break;
4896  }
4897
4898  case Expr::CXXNewExprClass: {
4899    NotPrimaryExpr();
4900    const CXXNewExpr *New = cast<CXXNewExpr>(E);
4901    if (New->isGlobalNew()) Out << "gs";
4902    Out << (New->isArray() ? "na" : "nw");
4903    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
4904           E = New->placement_arg_end(); I != E; ++I)
4905      mangleExpression(*I);
4906    Out << '_';
4907    mangleType(New->getAllocatedType());
4908    if (New->hasInitializer()) {
4909      if (New->getInitializationStyle() == CXXNewInitializationStyle::Braces)
4910        Out << "il";
4911      else
4912        Out << "pi";
4913      const Expr *Init = New->getInitializer();
4914      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
4915        // Directly inline the initializers.
4916        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
4917                                                  E = CCE->arg_end();
4918             I != E; ++I)
4919          mangleExpression(*I);
4920      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
4921        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
4922          mangleExpression(PLE->getExpr(i));
4923      } else if (New->getInitializationStyle() ==
4924                     CXXNewInitializationStyle::Braces &&
4925                 isa<InitListExpr>(Init)) {
4926        // Only take InitListExprs apart for list-initialization.
4927        mangleInitListElements(cast<InitListExpr>(Init));
4928      } else
4929        mangleExpression(Init);
4930    }
4931    Out << 'E';
4932    break;
4933  }
4934
4935  case Expr::CXXPseudoDestructorExprClass: {
4936    NotPrimaryExpr();
4937    const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
4938    if (const Expr *Base = PDE->getBase())
4939      mangleMemberExprBase(Base, PDE->isArrow());
4940    NestedNameSpecifier *Qualifier = PDE->getQualifier();
4941    if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
4942      if (Qualifier) {
4943        mangleUnresolvedPrefix(Qualifier,
4944                               /*recursive=*/true);
4945        mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
4946        Out << 'E';
4947      } else {
4948        Out << "sr";
4949        if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
4950          Out << 'E';
4951      }
4952    } else if (Qualifier) {
4953      mangleUnresolvedPrefix(Qualifier);
4954    }
4955    // <base-unresolved-name> ::= dn <destructor-name>
4956    Out << "dn";
4957    QualType DestroyedType = PDE->getDestroyedType();
4958    mangleUnresolvedTypeOrSimpleId(DestroyedType);
4959    break;
4960  }
4961
4962  case Expr::MemberExprClass: {
4963    NotPrimaryExpr();
4964    const MemberExpr *ME = cast<MemberExpr>(E);
4965    mangleMemberExpr(ME->getBase(), ME->isArrow(),
4966                     ME->getQualifier(), nullptr,
4967                     ME->getMemberDecl()->getDeclName(),
4968                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4969                     Arity);
4970    break;
4971  }
4972
4973  case Expr::UnresolvedMemberExprClass: {
4974    NotPrimaryExpr();
4975    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
4976    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4977                     ME->isArrow(), ME->getQualifier(), nullptr,
4978                     ME->getMemberName(),
4979                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4980                     Arity);
4981    break;
4982  }
4983
4984  case Expr::CXXDependentScopeMemberExprClass: {
4985    NotPrimaryExpr();
4986    const CXXDependentScopeMemberExpr *ME
4987      = cast<CXXDependentScopeMemberExpr>(E);
4988    mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
4989                     ME->isArrow(), ME->getQualifier(),
4990                     ME->getFirstQualifierFoundInScope(),
4991                     ME->getMember(),
4992                     ME->getTemplateArgs(), ME->getNumTemplateArgs(),
4993                     Arity);
4994    break;
4995  }
4996
4997  case Expr::UnresolvedLookupExprClass: {
4998    NotPrimaryExpr();
4999    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
5000    mangleUnresolvedName(ULE->getQualifier(), ULE->getName(),
5001                         ULE->getTemplateArgs(), ULE->getNumTemplateArgs(),
5002                         Arity);
5003    break;
5004  }
5005
5006  case Expr::CXXUnresolvedConstructExprClass: {
5007    NotPrimaryExpr();
5008    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
5009    unsigned N = CE->getNumArgs();
5010
5011    if (CE->isListInitialization()) {
5012      assert(N == 1 && "unexpected form for list initialization");
5013      auto *IL = cast<InitListExpr>(CE->getArg(0));
5014      Out << "tl";
5015      mangleType(CE->getType());
5016      mangleInitListElements(IL);
5017      Out << "E";
5018      break;
5019    }
5020
5021    Out << "cv";
5022    mangleType(CE->getType());
5023    if (N != 1) Out << '_';
5024    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
5025    if (N != 1) Out << 'E';
5026    break;
5027  }
5028
5029  case Expr::CXXConstructExprClass: {
5030    // An implicit cast is silent, thus may contain <expr-primary>.
5031    const auto *CE = cast<CXXConstructExpr>(E);
5032    if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
5033      assert(
5034          CE->getNumArgs() >= 1 &&
5035          (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
5036          "implicit CXXConstructExpr must have one argument");
5037      E = cast<CXXConstructExpr>(E)->getArg(0);
5038      goto recurse;
5039    }
5040    NotPrimaryExpr();
5041    Out << "il";
5042    for (auto *E : CE->arguments())
5043      mangleExpression(E);
5044    Out << "E";
5045    break;
5046  }
5047
5048  case Expr::CXXTemporaryObjectExprClass: {
5049    NotPrimaryExpr();
5050    const auto *CE = cast<CXXTemporaryObjectExpr>(E);
5051    unsigned N = CE->getNumArgs();
5052    bool List = CE->isListInitialization();
5053
5054    if (List)
5055      Out << "tl";
5056    else
5057      Out << "cv";
5058    mangleType(CE->getType());
5059    if (!List && N != 1)
5060      Out << '_';
5061    if (CE->isStdInitListInitialization()) {
5062      // We implicitly created a std::initializer_list<T> for the first argument
5063      // of a constructor of type U in an expression of the form U{a, b, c}.
5064      // Strip all the semantic gunk off the initializer list.
5065      auto *SILE =
5066          cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
5067      auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
5068      mangleInitListElements(ILE);
5069    } else {
5070      for (auto *E : CE->arguments())
5071        mangleExpression(E);
5072    }
5073    if (List || N != 1)
5074      Out << 'E';
5075    break;
5076  }
5077
5078  case Expr::CXXScalarValueInitExprClass:
5079    NotPrimaryExpr();
5080    Out << "cv";
5081    mangleType(E->getType());
5082    Out << "_E";
5083    break;
5084
5085  case Expr::CXXNoexceptExprClass:
5086    NotPrimaryExpr();
5087    Out << "nx";
5088    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
5089    break;
5090
5091  case Expr::UnaryExprOrTypeTraitExprClass: {
5092    // Non-instantiation-dependent traits are an <expr-primary> integer literal.
5093    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
5094
5095    if (!SAE->isInstantiationDependent()) {
5096      // Itanium C++ ABI:
5097      //   If the operand of a sizeof or alignof operator is not
5098      //   instantiation-dependent it is encoded as an integer literal
5099      //   reflecting the result of the operator.
5100      //
5101      //   If the result of the operator is implicitly converted to a known
5102      //   integer type, that type is used for the literal; otherwise, the type
5103      //   of std::size_t or std::ptrdiff_t is used.
5104      //
5105      // FIXME: We still include the operand in the profile in this case. This
5106      // can lead to mangling collisions between function templates that we
5107      // consider to be different.
5108      QualType T = (ImplicitlyConvertedToType.isNull() ||
5109                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
5110                                                    : ImplicitlyConvertedToType;
5111      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
5112      mangleIntegerLiteral(T, V);
5113      break;
5114    }
5115
5116    NotPrimaryExpr(); // But otherwise, they are not.
5117
5118    auto MangleAlignofSizeofArg = [&] {
5119      if (SAE->isArgumentType()) {
5120        Out << 't';
5121        mangleType(SAE->getArgumentType());
5122      } else {
5123        Out << 'z';
5124        mangleExpression(SAE->getArgumentExpr());
5125      }
5126    };
5127
5128    switch(SAE->getKind()) {
5129    case UETT_SizeOf:
5130      Out << 's';
5131      MangleAlignofSizeofArg();
5132      break;
5133    case UETT_PreferredAlignOf:
5134      // As of clang 12, we mangle __alignof__ differently than alignof. (They
5135      // have acted differently since Clang 8, but were previously mangled the
5136      // same.)
5137      if (!isCompatibleWith(LangOptions::ClangABI::Ver11)) {
5138        Out << "u11__alignof__";
5139        if (SAE->isArgumentType())
5140          mangleType(SAE->getArgumentType());
5141        else
5142          mangleTemplateArgExpr(SAE->getArgumentExpr());
5143        Out << 'E';
5144        break;
5145      }
5146      [[fallthrough]];
5147    case UETT_AlignOf:
5148      Out << 'a';
5149      MangleAlignofSizeofArg();
5150      break;
5151    case UETT_DataSizeOf: {
5152      DiagnosticsEngine &Diags = Context.getDiags();
5153      unsigned DiagID =
5154          Diags.getCustomDiagID(DiagnosticsEngine::Error,
5155                                "cannot yet mangle __datasizeof expression");
5156      Diags.Report(DiagID);
5157      return;
5158    }
5159    case UETT_VecStep: {
5160      DiagnosticsEngine &Diags = Context.getDiags();
5161      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
5162                                     "cannot yet mangle vec_step expression");
5163      Diags.Report(DiagID);
5164      return;
5165    }
5166    case UETT_OpenMPRequiredSimdAlign: {
5167      DiagnosticsEngine &Diags = Context.getDiags();
5168      unsigned DiagID = Diags.getCustomDiagID(
5169          DiagnosticsEngine::Error,
5170          "cannot yet mangle __builtin_omp_required_simd_align expression");
5171      Diags.Report(DiagID);
5172      return;
5173    }
5174    case UETT_VectorElements: {
5175      DiagnosticsEngine &Diags = Context.getDiags();
5176      unsigned DiagID = Diags.getCustomDiagID(
5177          DiagnosticsEngine::Error,
5178          "cannot yet mangle __builtin_vectorelements expression");
5179      Diags.Report(DiagID);
5180      return;
5181    }
5182    }
5183    break;
5184  }
5185
5186  case Expr::TypeTraitExprClass: {
5187    //  <expression> ::= u <source-name> <template-arg>* E # vendor extension
5188    const TypeTraitExpr *TTE = cast<TypeTraitExpr>(E);
5189    NotPrimaryExpr();
5190    Out << 'u';
5191    llvm::StringRef Spelling = getTraitSpelling(TTE->getTrait());
5192    Out << Spelling.size() << Spelling;
5193    for (TypeSourceInfo *TSI : TTE->getArgs()) {
5194      mangleType(TSI->getType());
5195    }
5196    Out << 'E';
5197    break;
5198  }
5199
5200  case Expr::CXXThrowExprClass: {
5201    NotPrimaryExpr();
5202    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
5203    //  <expression> ::= tw <expression>  # throw expression
5204    //               ::= tr               # rethrow
5205    if (TE->getSubExpr()) {
5206      Out << "tw";
5207      mangleExpression(TE->getSubExpr());
5208    } else {
5209      Out << "tr";
5210    }
5211    break;
5212  }
5213
5214  case Expr::CXXTypeidExprClass: {
5215    NotPrimaryExpr();
5216    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
5217    //  <expression> ::= ti <type>        # typeid (type)
5218    //               ::= te <expression>  # typeid (expression)
5219    if (TIE->isTypeOperand()) {
5220      Out << "ti";
5221      mangleType(TIE->getTypeOperand(Context.getASTContext()));
5222    } else {
5223      Out << "te";
5224      mangleExpression(TIE->getExprOperand());
5225    }
5226    break;
5227  }
5228
5229  case Expr::CXXDeleteExprClass: {
5230    NotPrimaryExpr();
5231    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
5232    //  <expression> ::= [gs] dl <expression>  # [::] delete expr
5233    //               ::= [gs] da <expression>  # [::] delete [] expr
5234    if (DE->isGlobalDelete()) Out << "gs";
5235    Out << (DE->isArrayForm() ? "da" : "dl");
5236    mangleExpression(DE->getArgument());
5237    break;
5238  }
5239
5240  case Expr::UnaryOperatorClass: {
5241    NotPrimaryExpr();
5242    const UnaryOperator *UO = cast<UnaryOperator>(E);
5243    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
5244                       /*Arity=*/1);
5245    mangleExpression(UO->getSubExpr());
5246    break;
5247  }
5248
5249  case Expr::ArraySubscriptExprClass: {
5250    NotPrimaryExpr();
5251    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
5252
5253    // Array subscript is treated as a syntactically weird form of
5254    // binary operator.
5255    Out << "ix";
5256    mangleExpression(AE->getLHS());
5257    mangleExpression(AE->getRHS());
5258    break;
5259  }
5260
5261  case Expr::MatrixSubscriptExprClass: {
5262    NotPrimaryExpr();
5263    const MatrixSubscriptExpr *ME = cast<MatrixSubscriptExpr>(E);
5264    Out << "ixix";
5265    mangleExpression(ME->getBase());
5266    mangleExpression(ME->getRowIdx());
5267    mangleExpression(ME->getColumnIdx());
5268    break;
5269  }
5270
5271  case Expr::CompoundAssignOperatorClass: // fallthrough
5272  case Expr::BinaryOperatorClass: {
5273    NotPrimaryExpr();
5274    const BinaryOperator *BO = cast<BinaryOperator>(E);
5275    if (BO->getOpcode() == BO_PtrMemD)
5276      Out << "ds";
5277    else
5278      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
5279                         /*Arity=*/2);
5280    mangleExpression(BO->getLHS());
5281    mangleExpression(BO->getRHS());
5282    break;
5283  }
5284
5285  case Expr::CXXRewrittenBinaryOperatorClass: {
5286    NotPrimaryExpr();
5287    // The mangled form represents the original syntax.
5288    CXXRewrittenBinaryOperator::DecomposedForm Decomposed =
5289        cast<CXXRewrittenBinaryOperator>(E)->getDecomposedForm();
5290    mangleOperatorName(BinaryOperator::getOverloadedOperator(Decomposed.Opcode),
5291                       /*Arity=*/2);
5292    mangleExpression(Decomposed.LHS);
5293    mangleExpression(Decomposed.RHS);
5294    break;
5295  }
5296
5297  case Expr::ConditionalOperatorClass: {
5298    NotPrimaryExpr();
5299    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
5300    mangleOperatorName(OO_Conditional, /*Arity=*/3);
5301    mangleExpression(CO->getCond());
5302    mangleExpression(CO->getLHS(), Arity);
5303    mangleExpression(CO->getRHS(), Arity);
5304    break;
5305  }
5306
5307  case Expr::ImplicitCastExprClass: {
5308    ImplicitlyConvertedToType = E->getType();
5309    E = cast<ImplicitCastExpr>(E)->getSubExpr();
5310    goto recurse;
5311  }
5312
5313  case Expr::ObjCBridgedCastExprClass: {
5314    NotPrimaryExpr();
5315    // Mangle ownership casts as a vendor extended operator __bridge,
5316    // __bridge_transfer, or __bridge_retain.
5317    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
5318    Out << "v1U" << Kind.size() << Kind;
5319    mangleCastExpression(E, "cv");
5320    break;
5321  }
5322
5323  case Expr::CStyleCastExprClass:
5324    NotPrimaryExpr();
5325    mangleCastExpression(E, "cv");
5326    break;
5327
5328  case Expr::CXXFunctionalCastExprClass: {
5329    NotPrimaryExpr();
5330    auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
5331    // FIXME: Add isImplicit to CXXConstructExpr.
5332    if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
5333      if (CCE->getParenOrBraceRange().isInvalid())
5334        Sub = CCE->getArg(0)->IgnoreImplicit();
5335    if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
5336      Sub = StdInitList->getSubExpr()->IgnoreImplicit();
5337    if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
5338      Out << "tl";
5339      mangleType(E->getType());
5340      mangleInitListElements(IL);
5341      Out << "E";
5342    } else {
5343      mangleCastExpression(E, "cv");
5344    }
5345    break;
5346  }
5347
5348  case Expr::CXXStaticCastExprClass:
5349    NotPrimaryExpr();
5350    mangleCastExpression(E, "sc");
5351    break;
5352  case Expr::CXXDynamicCastExprClass:
5353    NotPrimaryExpr();
5354    mangleCastExpression(E, "dc");
5355    break;
5356  case Expr::CXXReinterpretCastExprClass:
5357    NotPrimaryExpr();
5358    mangleCastExpression(E, "rc");
5359    break;
5360  case Expr::CXXConstCastExprClass:
5361    NotPrimaryExpr();
5362    mangleCastExpression(E, "cc");
5363    break;
5364  case Expr::CXXAddrspaceCastExprClass:
5365    NotPrimaryExpr();
5366    mangleCastExpression(E, "ac");
5367    break;
5368
5369  case Expr::CXXOperatorCallExprClass: {
5370    NotPrimaryExpr();
5371    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
5372    unsigned NumArgs = CE->getNumArgs();
5373    // A CXXOperatorCallExpr for OO_Arrow models only semantics, not syntax
5374    // (the enclosing MemberExpr covers the syntactic portion).
5375    if (CE->getOperator() != OO_Arrow)
5376      mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
5377    // Mangle the arguments.
5378    for (unsigned i = 0; i != NumArgs; ++i)
5379      mangleExpression(CE->getArg(i));
5380    break;
5381  }
5382
5383  case Expr::ParenExprClass:
5384    E = cast<ParenExpr>(E)->getSubExpr();
5385    goto recurse;
5386
5387  case Expr::ConceptSpecializationExprClass: {
5388    auto *CSE = cast<ConceptSpecializationExpr>(E);
5389    if (isCompatibleWith(LangOptions::ClangABI::Ver17)) {
5390      // Clang 17 and before mangled concept-ids as if they resolved to an
5391      // entity, meaning that references to enclosing template arguments don't
5392      // work.
5393      Out << "L_Z";
5394      mangleTemplateName(CSE->getNamedConcept(), CSE->getTemplateArguments());
5395      Out << 'E';
5396      break;
5397    }
5398    // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24.
5399    NotPrimaryExpr();
5400    mangleUnresolvedName(
5401        CSE->getNestedNameSpecifierLoc().getNestedNameSpecifier(),
5402        CSE->getConceptNameInfo().getName(),
5403        CSE->getTemplateArgsAsWritten()->getTemplateArgs(),
5404        CSE->getTemplateArgsAsWritten()->getNumTemplateArgs());
5405    break;
5406  }
5407
5408  case Expr::RequiresExprClass: {
5409    // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/24.
5410    auto *RE = cast<RequiresExpr>(E);
5411    // This is a primary-expression in the C++ grammar, but does not have an
5412    // <expr-primary> mangling (starting with 'L').
5413    NotPrimaryExpr();
5414    if (RE->getLParenLoc().isValid()) {
5415      Out << "rQ";
5416      FunctionTypeDepthState saved = FunctionTypeDepth.push();
5417      if (RE->getLocalParameters().empty()) {
5418        Out << 'v';
5419      } else {
5420        for (ParmVarDecl *Param : RE->getLocalParameters()) {
5421          mangleType(Context.getASTContext().getSignatureParameterType(
5422              Param->getType()));
5423        }
5424      }
5425      Out << '_';
5426
5427      // The rest of the mangling is in the immediate scope of the parameters.
5428      FunctionTypeDepth.enterResultType();
5429      for (const concepts::Requirement *Req : RE->getRequirements())
5430        mangleRequirement(RE->getExprLoc(), Req);
5431      FunctionTypeDepth.pop(saved);
5432      Out << 'E';
5433    } else {
5434      Out << "rq";
5435      for (const concepts::Requirement *Req : RE->getRequirements())
5436        mangleRequirement(RE->getExprLoc(), Req);
5437      Out << 'E';
5438    }
5439    break;
5440  }
5441
5442  case Expr::DeclRefExprClass:
5443    // MangleDeclRefExpr helper handles primary-vs-nonprimary
5444    MangleDeclRefExpr(cast<DeclRefExpr>(E)->getDecl());
5445    break;
5446
5447  case Expr::SubstNonTypeTemplateParmPackExprClass:
5448    NotPrimaryExpr();
5449    // FIXME: not clear how to mangle this!
5450    // template <unsigned N...> class A {
5451    //   template <class U...> void foo(U (&x)[N]...);
5452    // };
5453    Out << "_SUBSTPACK_";
5454    break;
5455
5456  case Expr::FunctionParmPackExprClass: {
5457    NotPrimaryExpr();
5458    // FIXME: not clear how to mangle this!
5459    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
5460    Out << "v110_SUBSTPACK";
5461    MangleDeclRefExpr(FPPE->getParameterPack());
5462    break;
5463  }
5464
5465  case Expr::DependentScopeDeclRefExprClass: {
5466    NotPrimaryExpr();
5467    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
5468    mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(),
5469                         DRE->getTemplateArgs(), DRE->getNumTemplateArgs(),
5470                         Arity);
5471    break;
5472  }
5473
5474  case Expr::CXXBindTemporaryExprClass:
5475    E = cast<CXXBindTemporaryExpr>(E)->getSubExpr();
5476    goto recurse;
5477
5478  case Expr::ExprWithCleanupsClass:
5479    E = cast<ExprWithCleanups>(E)->getSubExpr();
5480    goto recurse;
5481
5482  case Expr::FloatingLiteralClass: {
5483    // <expr-primary>
5484    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
5485    mangleFloatLiteral(FL->getType(), FL->getValue());
5486    break;
5487  }
5488
5489  case Expr::FixedPointLiteralClass:
5490    // Currently unimplemented -- might be <expr-primary> in future?
5491    mangleFixedPointLiteral();
5492    break;
5493
5494  case Expr::CharacterLiteralClass:
5495    // <expr-primary>
5496    Out << 'L';
5497    mangleType(E->getType());
5498    Out << cast<CharacterLiteral>(E)->getValue();
5499    Out << 'E';
5500    break;
5501
5502  // FIXME. __objc_yes/__objc_no are mangled same as true/false
5503  case Expr::ObjCBoolLiteralExprClass:
5504    // <expr-primary>
5505    Out << "Lb";
5506    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
5507    Out << 'E';
5508    break;
5509
5510  case Expr::CXXBoolLiteralExprClass:
5511    // <expr-primary>
5512    Out << "Lb";
5513    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
5514    Out << 'E';
5515    break;
5516
5517  case Expr::IntegerLiteralClass: {
5518    // <expr-primary>
5519    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
5520    if (E->getType()->isSignedIntegerType())
5521      Value.setIsSigned(true);
5522    mangleIntegerLiteral(E->getType(), Value);
5523    break;
5524  }
5525
5526  case Expr::ImaginaryLiteralClass: {
5527    // <expr-primary>
5528    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
5529    // Mangle as if a complex literal.
5530    // Proposal from David Vandevoorde, 2010.06.30.
5531    Out << 'L';
5532    mangleType(E->getType());
5533    if (const FloatingLiteral *Imag =
5534          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
5535      // Mangle a floating-point zero of the appropriate type.
5536      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
5537      Out << '_';
5538      mangleFloat(Imag->getValue());
5539    } else {
5540      Out << "0_";
5541      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
5542      if (IE->getSubExpr()->getType()->isSignedIntegerType())
5543        Value.setIsSigned(true);
5544      mangleNumber(Value);
5545    }
5546    Out << 'E';
5547    break;
5548  }
5549
5550  case Expr::StringLiteralClass: {
5551    // <expr-primary>
5552    // Revised proposal from David Vandervoorde, 2010.07.15.
5553    Out << 'L';
5554    assert(isa<ConstantArrayType>(E->getType()));
5555    mangleType(E->getType());
5556    Out << 'E';
5557    break;
5558  }
5559
5560  case Expr::GNUNullExprClass:
5561    // <expr-primary>
5562    // Mangle as if an integer literal 0.
5563    mangleIntegerLiteral(E->getType(), llvm::APSInt(32));
5564    break;
5565
5566  case Expr::CXXNullPtrLiteralExprClass: {
5567    // <expr-primary>
5568    Out << "LDnE";
5569    break;
5570  }
5571
5572  case Expr::LambdaExprClass: {
5573    // A lambda-expression can't appear in the signature of an
5574    // externally-visible declaration, so there's no standard mangling for
5575    // this, but mangling as a literal of the closure type seems reasonable.
5576    Out << "L";
5577    mangleType(Context.getASTContext().getRecordType(cast<LambdaExpr>(E)->getLambdaClass()));
5578    Out << "E";
5579    break;
5580  }
5581
5582  case Expr::PackExpansionExprClass:
5583    NotPrimaryExpr();
5584    Out << "sp";
5585    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
5586    break;
5587
5588  case Expr::SizeOfPackExprClass: {
5589    NotPrimaryExpr();
5590    auto *SPE = cast<SizeOfPackExpr>(E);
5591    if (SPE->isPartiallySubstituted()) {
5592      Out << "sP";
5593      for (const auto &A : SPE->getPartialArguments())
5594        mangleTemplateArg(A, false);
5595      Out << "E";
5596      break;
5597    }
5598
5599    Out << "sZ";
5600    const NamedDecl *Pack = SPE->getPack();
5601    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
5602      mangleTemplateParameter(TTP->getDepth(), TTP->getIndex());
5603    else if (const NonTypeTemplateParmDecl *NTTP
5604                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
5605      mangleTemplateParameter(NTTP->getDepth(), NTTP->getIndex());
5606    else if (const TemplateTemplateParmDecl *TempTP
5607                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
5608      mangleTemplateParameter(TempTP->getDepth(), TempTP->getIndex());
5609    else
5610      mangleFunctionParam(cast<ParmVarDecl>(Pack));
5611    break;
5612  }
5613
5614  case Expr::MaterializeTemporaryExprClass:
5615    E = cast<MaterializeTemporaryExpr>(E)->getSubExpr();
5616    goto recurse;
5617
5618  case Expr::CXXFoldExprClass: {
5619    NotPrimaryExpr();
5620    auto *FE = cast<CXXFoldExpr>(E);
5621    if (FE->isLeftFold())
5622      Out << (FE->getInit() ? "fL" : "fl");
5623    else
5624      Out << (FE->getInit() ? "fR" : "fr");
5625
5626    if (FE->getOperator() == BO_PtrMemD)
5627      Out << "ds";
5628    else
5629      mangleOperatorName(
5630          BinaryOperator::getOverloadedOperator(FE->getOperator()),
5631          /*Arity=*/2);
5632
5633    if (FE->getLHS())
5634      mangleExpression(FE->getLHS());
5635    if (FE->getRHS())
5636      mangleExpression(FE->getRHS());
5637    break;
5638  }
5639
5640  case Expr::CXXThisExprClass:
5641    NotPrimaryExpr();
5642    Out << "fpT";
5643    break;
5644
5645  case Expr::CoawaitExprClass:
5646    // FIXME: Propose a non-vendor mangling.
5647    NotPrimaryExpr();
5648    Out << "v18co_await";
5649    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5650    break;
5651
5652  case Expr::DependentCoawaitExprClass:
5653    // FIXME: Propose a non-vendor mangling.
5654    NotPrimaryExpr();
5655    Out << "v18co_await";
5656    mangleExpression(cast<DependentCoawaitExpr>(E)->getOperand());
5657    break;
5658
5659  case Expr::CoyieldExprClass:
5660    // FIXME: Propose a non-vendor mangling.
5661    NotPrimaryExpr();
5662    Out << "v18co_yield";
5663    mangleExpression(cast<CoawaitExpr>(E)->getOperand());
5664    break;
5665  case Expr::SYCLUniqueStableNameExprClass: {
5666    const auto *USN = cast<SYCLUniqueStableNameExpr>(E);
5667    NotPrimaryExpr();
5668
5669    Out << "u33__builtin_sycl_unique_stable_name";
5670    mangleType(USN->getTypeSourceInfo()->getType());
5671
5672    Out << "E";
5673    break;
5674  }
5675  }
5676
5677  if (AsTemplateArg && !IsPrimaryExpr)
5678    Out << 'E';
5679}
5680
5681/// Mangle an expression which refers to a parameter variable.
5682///
5683/// <expression>     ::= <function-param>
5684/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
5685/// <function-param> ::= fp <top-level CV-qualifiers>
5686///                      <parameter-2 non-negative number> _ # L == 0, I > 0
5687/// <function-param> ::= fL <L-1 non-negative number>
5688///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
5689/// <function-param> ::= fL <L-1 non-negative number>
5690///                      p <top-level CV-qualifiers>
5691///                      <I-1 non-negative number> _         # L > 0, I > 0
5692///
5693/// L is the nesting depth of the parameter, defined as 1 if the
5694/// parameter comes from the innermost function prototype scope
5695/// enclosing the current context, 2 if from the next enclosing
5696/// function prototype scope, and so on, with one special case: if
5697/// we've processed the full parameter clause for the innermost
5698/// function type, then L is one less.  This definition conveniently
5699/// makes it irrelevant whether a function's result type was written
5700/// trailing or leading, but is otherwise overly complicated; the
5701/// numbering was first designed without considering references to
5702/// parameter in locations other than return types, and then the
5703/// mangling had to be generalized without changing the existing
5704/// manglings.
5705///
5706/// I is the zero-based index of the parameter within its parameter
5707/// declaration clause.  Note that the original ABI document describes
5708/// this using 1-based ordinals.
5709void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
5710  unsigned parmDepth = parm->getFunctionScopeDepth();
5711  unsigned parmIndex = parm->getFunctionScopeIndex();
5712
5713  // Compute 'L'.
5714  // parmDepth does not include the declaring function prototype.
5715  // FunctionTypeDepth does account for that.
5716  assert(parmDepth < FunctionTypeDepth.getDepth());
5717  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
5718  if (FunctionTypeDepth.isInResultType())
5719    nestingDepth--;
5720
5721  if (nestingDepth == 0) {
5722    Out << "fp";
5723  } else {
5724    Out << "fL" << (nestingDepth - 1) << 'p';
5725  }
5726
5727  // Top-level qualifiers.  We don't have to worry about arrays here,
5728  // because parameters declared as arrays should already have been
5729  // transformed to have pointer type. FIXME: apparently these don't
5730  // get mangled if used as an rvalue of a known non-class type?
5731  assert(!parm->getType()->isArrayType()
5732         && "parameter's type is still an array type?");
5733
5734  if (const DependentAddressSpaceType *DAST =
5735      dyn_cast<DependentAddressSpaceType>(parm->getType())) {
5736    mangleQualifiers(DAST->getPointeeType().getQualifiers(), DAST);
5737  } else {
5738    mangleQualifiers(parm->getType().getQualifiers());
5739  }
5740
5741  // Parameter index.
5742  if (parmIndex != 0) {
5743    Out << (parmIndex - 1);
5744  }
5745  Out << '_';
5746}
5747
5748void CXXNameMangler::mangleCXXCtorType(CXXCtorType T,
5749                                       const CXXRecordDecl *InheritedFrom) {
5750  // <ctor-dtor-name> ::= C1  # complete object constructor
5751  //                  ::= C2  # base object constructor
5752  //                  ::= CI1 <type> # complete inheriting constructor
5753  //                  ::= CI2 <type> # base inheriting constructor
5754  //
5755  // In addition, C5 is a comdat name with C1 and C2 in it.
5756  Out << 'C';
5757  if (InheritedFrom)
5758    Out << 'I';
5759  switch (T) {
5760  case Ctor_Complete:
5761    Out << '1';
5762    break;
5763  case Ctor_Base:
5764    Out << '2';
5765    break;
5766  case Ctor_Comdat:
5767    Out << '5';
5768    break;
5769  case Ctor_DefaultClosure:
5770  case Ctor_CopyingClosure:
5771    llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
5772  }
5773  if (InheritedFrom)
5774    mangleName(InheritedFrom);
5775}
5776
5777void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
5778  // <ctor-dtor-name> ::= D0  # deleting destructor
5779  //                  ::= D1  # complete object destructor
5780  //                  ::= D2  # base object destructor
5781  //
5782  // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
5783  switch (T) {
5784  case Dtor_Deleting:
5785    Out << "D0";
5786    break;
5787  case Dtor_Complete:
5788    Out << "D1";
5789    break;
5790  case Dtor_Base:
5791    Out << "D2";
5792    break;
5793  case Dtor_Comdat:
5794    Out << "D5";
5795    break;
5796  }
5797}
5798
5799// Helper to provide ancillary information on a template used to mangle its
5800// arguments.
5801struct CXXNameMangler::TemplateArgManglingInfo {
5802  const CXXNameMangler &Mangler;
5803  TemplateDecl *ResolvedTemplate = nullptr;
5804  bool SeenPackExpansionIntoNonPack = false;
5805  const NamedDecl *UnresolvedExpandedPack = nullptr;
5806
5807  TemplateArgManglingInfo(const CXXNameMangler &Mangler, TemplateName TN)
5808      : Mangler(Mangler) {
5809    if (TemplateDecl *TD = TN.getAsTemplateDecl())
5810      ResolvedTemplate = TD;
5811  }
5812
5813  /// Information about how to mangle a template argument.
5814  struct Info {
5815    /// Do we need to mangle the template argument with an exactly correct type?
5816    bool NeedExactType;
5817    /// If we need to prefix the mangling with a mangling of the template
5818    /// parameter, the corresponding parameter.
5819    const NamedDecl *TemplateParameterToMangle;
5820  };
5821
5822  /// Determine whether the resolved template might be overloaded on its
5823  /// template parameter list. If so, the mangling needs to include enough
5824  /// information to reconstruct the template parameter list.
5825  bool isOverloadable() {
5826    // Function templates are generally overloadable. As a special case, a
5827    // member function template of a generic lambda is not overloadable.
5828    if (auto *FTD = dyn_cast_or_null<FunctionTemplateDecl>(ResolvedTemplate)) {
5829      auto *RD = dyn_cast<CXXRecordDecl>(FTD->getDeclContext());
5830      if (!RD || !RD->isGenericLambda())
5831        return true;
5832    }
5833
5834    // All other templates are not overloadable. Partial specializations would
5835    // be, but we never mangle them.
5836    return false;
5837  }
5838
5839  /// Determine whether we need to prefix this <template-arg> mangling with a
5840  /// <template-param-decl>. This happens if the natural template parameter for
5841  /// the argument mangling is not the same as the actual template parameter.
5842  bool needToMangleTemplateParam(const NamedDecl *Param,
5843                                 const TemplateArgument &Arg) {
5844    // For a template type parameter, the natural parameter is 'typename T'.
5845    // The actual parameter might be constrained.
5846    if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
5847      return TTP->hasTypeConstraint();
5848
5849    if (Arg.getKind() == TemplateArgument::Pack) {
5850      // For an empty pack, the natural parameter is `typename...`.
5851      if (Arg.pack_size() == 0)
5852        return true;
5853
5854      // For any other pack, we use the first argument to determine the natural
5855      // template parameter.
5856      return needToMangleTemplateParam(Param, *Arg.pack_begin());
5857    }
5858
5859    // For a non-type template parameter, the natural parameter is `T V` (for a
5860    // prvalue argument) or `T &V` (for a glvalue argument), where `T` is the
5861    // type of the argument, which we require to exactly match. If the actual
5862    // parameter has a deduced or instantiation-dependent type, it is not
5863    // equivalent to the natural parameter.
5864    if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param))
5865      return NTTP->getType()->isInstantiationDependentType() ||
5866             NTTP->getType()->getContainedDeducedType();
5867
5868    // For a template template parameter, the template-head might differ from
5869    // that of the template.
5870    auto *TTP = cast<TemplateTemplateParmDecl>(Param);
5871    TemplateName ArgTemplateName = Arg.getAsTemplateOrTemplatePattern();
5872    const TemplateDecl *ArgTemplate = ArgTemplateName.getAsTemplateDecl();
5873    if (!ArgTemplate)
5874      return true;
5875
5876    // Mangle the template parameter list of the parameter and argument to see
5877    // if they are the same. We can't use Profile for this, because it can't
5878    // model the depth difference between parameter and argument and might not
5879    // necessarily have the same definition of "identical" that we use here --
5880    // that is, same mangling.
5881    auto MangleTemplateParamListToString =
5882        [&](SmallVectorImpl<char> &Buffer, const TemplateParameterList *Params,
5883            unsigned DepthOffset) {
5884          llvm::raw_svector_ostream Stream(Buffer);
5885          CXXNameMangler(Mangler.Context, Stream,
5886                         WithTemplateDepthOffset{DepthOffset})
5887              .mangleTemplateParameterList(Params);
5888        };
5889    llvm::SmallString<128> ParamTemplateHead, ArgTemplateHead;
5890    MangleTemplateParamListToString(ParamTemplateHead,
5891                                    TTP->getTemplateParameters(), 0);
5892    // Add the depth of the parameter's template parameter list to all
5893    // parameters appearing in the argument to make the indexes line up
5894    // properly.
5895    MangleTemplateParamListToString(ArgTemplateHead,
5896                                    ArgTemplate->getTemplateParameters(),
5897                                    TTP->getTemplateParameters()->getDepth());
5898    return ParamTemplateHead != ArgTemplateHead;
5899  }
5900
5901  /// Determine information about how this template argument should be mangled.
5902  /// This should be called exactly once for each parameter / argument pair, in
5903  /// order.
5904  Info getArgInfo(unsigned ParamIdx, const TemplateArgument &Arg) {
5905    // We need correct types when the template-name is unresolved or when it
5906    // names a template that is able to be overloaded.
5907    if (!ResolvedTemplate || SeenPackExpansionIntoNonPack)
5908      return {true, nullptr};
5909
5910    // Move to the next parameter.
5911    const NamedDecl *Param = UnresolvedExpandedPack;
5912    if (!Param) {
5913      assert(ParamIdx < ResolvedTemplate->getTemplateParameters()->size() &&
5914             "no parameter for argument");
5915      Param = ResolvedTemplate->getTemplateParameters()->getParam(ParamIdx);
5916
5917      // If we reach a parameter pack whose argument isn't in pack form, that
5918      // means Sema couldn't or didn't figure out which arguments belonged to
5919      // it, because it contains a pack expansion or because Sema bailed out of
5920      // computing parameter / argument correspondence before this point. Track
5921      // the pack as the corresponding parameter for all further template
5922      // arguments until we hit a pack expansion, at which point we don't know
5923      // the correspondence between parameters and arguments at all.
5924      if (Param->isParameterPack() && Arg.getKind() != TemplateArgument::Pack) {
5925        UnresolvedExpandedPack = Param;
5926      }
5927    }
5928
5929    // If we encounter a pack argument that is expanded into a non-pack
5930    // parameter, we can no longer track parameter / argument correspondence,
5931    // and need to use exact types from this point onwards.
5932    if (Arg.isPackExpansion() &&
5933        (!Param->isParameterPack() || UnresolvedExpandedPack)) {
5934      SeenPackExpansionIntoNonPack = true;
5935      return {true, nullptr};
5936    }
5937
5938    // We need exact types for arguments of a template that might be overloaded
5939    // on template parameter type.
5940    if (isOverloadable())
5941      return {true, needToMangleTemplateParam(Param, Arg) ? Param : nullptr};
5942
5943    // Otherwise, we only need a correct type if the parameter has a deduced
5944    // type.
5945    //
5946    // Note: for an expanded parameter pack, getType() returns the type prior
5947    // to expansion. We could ask for the expanded type with getExpansionType(),
5948    // but it doesn't matter because substitution and expansion don't affect
5949    // whether a deduced type appears in the type.
5950    auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param);
5951    bool NeedExactType = NTTP && NTTP->getType()->getContainedDeducedType();
5952    return {NeedExactType, nullptr};
5953  }
5954
5955  /// Determine if we should mangle a requires-clause after the template
5956  /// argument list. If so, returns the expression to mangle.
5957  const Expr *getTrailingRequiresClauseToMangle() {
5958    if (!isOverloadable())
5959      return nullptr;
5960    return ResolvedTemplate->getTemplateParameters()->getRequiresClause();
5961  }
5962};
5963
5964void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5965                                        const TemplateArgumentLoc *TemplateArgs,
5966                                        unsigned NumTemplateArgs) {
5967  // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E
5968  Out << 'I';
5969  TemplateArgManglingInfo Info(*this, TN);
5970  for (unsigned i = 0; i != NumTemplateArgs; ++i) {
5971    mangleTemplateArg(Info, i, TemplateArgs[i].getArgument());
5972  }
5973  mangleRequiresClause(Info.getTrailingRequiresClauseToMangle());
5974  Out << 'E';
5975}
5976
5977void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5978                                        const TemplateArgumentList &AL) {
5979  // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E
5980  Out << 'I';
5981  TemplateArgManglingInfo Info(*this, TN);
5982  for (unsigned i = 0, e = AL.size(); i != e; ++i) {
5983    mangleTemplateArg(Info, i, AL[i]);
5984  }
5985  mangleRequiresClause(Info.getTrailingRequiresClauseToMangle());
5986  Out << 'E';
5987}
5988
5989void CXXNameMangler::mangleTemplateArgs(TemplateName TN,
5990                                        ArrayRef<TemplateArgument> Args) {
5991  // <template-args> ::= I <template-arg>+ [Q <requires-clause expr>] E
5992  Out << 'I';
5993  TemplateArgManglingInfo Info(*this, TN);
5994  for (unsigned i = 0; i != Args.size(); ++i) {
5995    mangleTemplateArg(Info, i, Args[i]);
5996  }
5997  mangleRequiresClause(Info.getTrailingRequiresClauseToMangle());
5998  Out << 'E';
5999}
6000
6001void CXXNameMangler::mangleTemplateArg(TemplateArgManglingInfo &Info,
6002                                       unsigned Index, TemplateArgument A) {
6003  TemplateArgManglingInfo::Info ArgInfo = Info.getArgInfo(Index, A);
6004
6005  // Proposed on https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
6006  if (ArgInfo.TemplateParameterToMangle &&
6007      !isCompatibleWith(LangOptions::ClangABI::Ver17)) {
6008    // The template parameter is mangled if the mangling would otherwise be
6009    // ambiguous.
6010    //
6011    // <template-arg> ::= <template-param-decl> <template-arg>
6012    //
6013    // Clang 17 and before did not do this.
6014    mangleTemplateParamDecl(ArgInfo.TemplateParameterToMangle);
6015  }
6016
6017  mangleTemplateArg(A, ArgInfo.NeedExactType);
6018}
6019
6020void CXXNameMangler::mangleTemplateArg(TemplateArgument A, bool NeedExactType) {
6021  // <template-arg> ::= <type>              # type or template
6022  //                ::= X <expression> E    # expression
6023  //                ::= <expr-primary>      # simple expressions
6024  //                ::= J <template-arg>* E # argument pack
6025  if (!A.isInstantiationDependent() || A.isDependent())
6026    A = Context.getASTContext().getCanonicalTemplateArgument(A);
6027
6028  switch (A.getKind()) {
6029  case TemplateArgument::Null:
6030    llvm_unreachable("Cannot mangle NULL template argument");
6031
6032  case TemplateArgument::Type:
6033    mangleType(A.getAsType());
6034    break;
6035  case TemplateArgument::Template:
6036    // This is mangled as <type>.
6037    mangleType(A.getAsTemplate());
6038    break;
6039  case TemplateArgument::TemplateExpansion:
6040    // <type>  ::= Dp <type>          # pack expansion (C++0x)
6041    Out << "Dp";
6042    mangleType(A.getAsTemplateOrTemplatePattern());
6043    break;
6044  case TemplateArgument::Expression:
6045    mangleTemplateArgExpr(A.getAsExpr());
6046    break;
6047  case TemplateArgument::Integral:
6048    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
6049    break;
6050  case TemplateArgument::Declaration: {
6051    //  <expr-primary> ::= L <mangled-name> E # external name
6052    ValueDecl *D = A.getAsDecl();
6053
6054    // Template parameter objects are modeled by reproducing a source form
6055    // produced as if by aggregate initialization.
6056    if (A.getParamTypeForDecl()->isRecordType()) {
6057      auto *TPO = cast<TemplateParamObjectDecl>(D);
6058      mangleValueInTemplateArg(TPO->getType().getUnqualifiedType(),
6059                               TPO->getValue(), /*TopLevel=*/true,
6060                               NeedExactType);
6061      break;
6062    }
6063
6064    ASTContext &Ctx = Context.getASTContext();
6065    APValue Value;
6066    if (D->isCXXInstanceMember())
6067      // Simple pointer-to-member with no conversion.
6068      Value = APValue(D, /*IsDerivedMember=*/false, /*Path=*/{});
6069    else if (D->getType()->isArrayType() &&
6070             Ctx.hasSimilarType(Ctx.getDecayedType(D->getType()),
6071                                A.getParamTypeForDecl()) &&
6072             !isCompatibleWith(LangOptions::ClangABI::Ver11))
6073      // Build a value corresponding to this implicit array-to-pointer decay.
6074      Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
6075                      {APValue::LValuePathEntry::ArrayIndex(0)},
6076                      /*OnePastTheEnd=*/false);
6077    else
6078      // Regular pointer or reference to a declaration.
6079      Value = APValue(APValue::LValueBase(D), CharUnits::Zero(),
6080                      ArrayRef<APValue::LValuePathEntry>(),
6081                      /*OnePastTheEnd=*/false);
6082    mangleValueInTemplateArg(A.getParamTypeForDecl(), Value, /*TopLevel=*/true,
6083                             NeedExactType);
6084    break;
6085  }
6086  case TemplateArgument::NullPtr: {
6087    mangleNullPointer(A.getNullPtrType());
6088    break;
6089  }
6090  case TemplateArgument::StructuralValue:
6091    mangleValueInTemplateArg(A.getStructuralValueType(),
6092                             A.getAsStructuralValue(),
6093                             /*TopLevel=*/true, NeedExactType);
6094    break;
6095  case TemplateArgument::Pack: {
6096    //  <template-arg> ::= J <template-arg>* E
6097    Out << 'J';
6098    for (const auto &P : A.pack_elements())
6099      mangleTemplateArg(P, NeedExactType);
6100    Out << 'E';
6101  }
6102  }
6103}
6104
6105void CXXNameMangler::mangleTemplateArgExpr(const Expr *E) {
6106  if (!isCompatibleWith(LangOptions::ClangABI::Ver11)) {
6107    mangleExpression(E, UnknownArity, /*AsTemplateArg=*/true);
6108    return;
6109  }
6110
6111  // Prior to Clang 12, we didn't omit the X .. E around <expr-primary>
6112  // correctly in cases where the template argument was
6113  // constructed from an expression rather than an already-evaluated
6114  // literal. In such a case, we would then e.g. emit 'XLi0EE' instead of
6115  // 'Li0E'.
6116  //
6117  // We did special-case DeclRefExpr to attempt to DTRT for that one
6118  // expression-kind, but while doing so, unfortunately handled ParmVarDecl
6119  // (subtype of VarDecl) _incorrectly_, and emitted 'L_Z .. E' instead of
6120  // the proper 'Xfp_E'.
6121  E = E->IgnoreParenImpCasts();
6122  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
6123    const ValueDecl *D = DRE->getDecl();
6124    if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
6125      Out << 'L';
6126      mangle(D);
6127      Out << 'E';
6128      return;
6129    }
6130  }
6131  Out << 'X';
6132  mangleExpression(E);
6133  Out << 'E';
6134}
6135
6136/// Determine whether a given value is equivalent to zero-initialization for
6137/// the purpose of discarding a trailing portion of a 'tl' mangling.
6138///
6139/// Note that this is not in general equivalent to determining whether the
6140/// value has an all-zeroes bit pattern.
6141static bool isZeroInitialized(QualType T, const APValue &V) {
6142  // FIXME: mangleValueInTemplateArg has quadratic time complexity in
6143  // pathological cases due to using this, but it's a little awkward
6144  // to do this in linear time in general.
6145  switch (V.getKind()) {
6146  case APValue::None:
6147  case APValue::Indeterminate:
6148  case APValue::AddrLabelDiff:
6149    return false;
6150
6151  case APValue::Struct: {
6152    const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6153    assert(RD && "unexpected type for record value");
6154    unsigned I = 0;
6155    for (const CXXBaseSpecifier &BS : RD->bases()) {
6156      if (!isZeroInitialized(BS.getType(), V.getStructBase(I)))
6157        return false;
6158      ++I;
6159    }
6160    I = 0;
6161    for (const FieldDecl *FD : RD->fields()) {
6162      if (!FD->isUnnamedBitfield() &&
6163          !isZeroInitialized(FD->getType(), V.getStructField(I)))
6164        return false;
6165      ++I;
6166    }
6167    return true;
6168  }
6169
6170  case APValue::Union: {
6171    const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6172    assert(RD && "unexpected type for union value");
6173    // Zero-initialization zeroes the first non-unnamed-bitfield field, if any.
6174    for (const FieldDecl *FD : RD->fields()) {
6175      if (!FD->isUnnamedBitfield())
6176        return V.getUnionField() && declaresSameEntity(FD, V.getUnionField()) &&
6177               isZeroInitialized(FD->getType(), V.getUnionValue());
6178    }
6179    // If there are no fields (other than unnamed bitfields), the value is
6180    // necessarily zero-initialized.
6181    return true;
6182  }
6183
6184  case APValue::Array: {
6185    QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
6186    for (unsigned I = 0, N = V.getArrayInitializedElts(); I != N; ++I)
6187      if (!isZeroInitialized(ElemT, V.getArrayInitializedElt(I)))
6188        return false;
6189    return !V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller());
6190  }
6191
6192  case APValue::Vector: {
6193    const VectorType *VT = T->castAs<VectorType>();
6194    for (unsigned I = 0, N = V.getVectorLength(); I != N; ++I)
6195      if (!isZeroInitialized(VT->getElementType(), V.getVectorElt(I)))
6196        return false;
6197    return true;
6198  }
6199
6200  case APValue::Int:
6201    return !V.getInt();
6202
6203  case APValue::Float:
6204    return V.getFloat().isPosZero();
6205
6206  case APValue::FixedPoint:
6207    return !V.getFixedPoint().getValue();
6208
6209  case APValue::ComplexFloat:
6210    return V.getComplexFloatReal().isPosZero() &&
6211           V.getComplexFloatImag().isPosZero();
6212
6213  case APValue::ComplexInt:
6214    return !V.getComplexIntReal() && !V.getComplexIntImag();
6215
6216  case APValue::LValue:
6217    return V.isNullPointer();
6218
6219  case APValue::MemberPointer:
6220    return !V.getMemberPointerDecl();
6221  }
6222
6223  llvm_unreachable("Unhandled APValue::ValueKind enum");
6224}
6225
6226static QualType getLValueType(ASTContext &Ctx, const APValue &LV) {
6227  QualType T = LV.getLValueBase().getType();
6228  for (APValue::LValuePathEntry E : LV.getLValuePath()) {
6229    if (const ArrayType *AT = Ctx.getAsArrayType(T))
6230      T = AT->getElementType();
6231    else if (const FieldDecl *FD =
6232                 dyn_cast<FieldDecl>(E.getAsBaseOrMember().getPointer()))
6233      T = FD->getType();
6234    else
6235      T = Ctx.getRecordType(
6236          cast<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()));
6237  }
6238  return T;
6239}
6240
6241static IdentifierInfo *getUnionInitName(SourceLocation UnionLoc,
6242                                        DiagnosticsEngine &Diags,
6243                                        const FieldDecl *FD) {
6244  // According to:
6245  // http://itanium-cxx-abi.github.io/cxx-abi/abi.html#mangling.anonymous
6246  // For the purposes of mangling, the name of an anonymous union is considered
6247  // to be the name of the first named data member found by a pre-order,
6248  // depth-first, declaration-order walk of the data members of the anonymous
6249  // union.
6250
6251  if (FD->getIdentifier())
6252    return FD->getIdentifier();
6253
6254  // The only cases where the identifer of a FieldDecl would be blank is if the
6255  // field represents an anonymous record type or if it is an unnamed bitfield.
6256  // There is no type to descend into in the case of a bitfield, so we can just
6257  // return nullptr in that case.
6258  if (FD->isBitField())
6259    return nullptr;
6260  const CXXRecordDecl *RD = FD->getType()->getAsCXXRecordDecl();
6261
6262  // Consider only the fields in declaration order, searched depth-first.  We
6263  // don't care about the active member of the union, as all we are doing is
6264  // looking for a valid name. We also don't check bases, due to guidance from
6265  // the Itanium ABI folks.
6266  for (const FieldDecl *RDField : RD->fields()) {
6267    if (IdentifierInfo *II = getUnionInitName(UnionLoc, Diags, RDField))
6268      return II;
6269  }
6270
6271  // According to the Itanium ABI: If there is no such data member (i.e., if all
6272  // of the data members in the union are unnamed), then there is no way for a
6273  // program to refer to the anonymous union, and there is therefore no need to
6274  // mangle its name. However, we should diagnose this anyway.
6275  unsigned DiagID = Diags.getCustomDiagID(
6276      DiagnosticsEngine::Error, "cannot mangle this unnamed union NTTP yet");
6277  Diags.Report(UnionLoc, DiagID);
6278
6279  return nullptr;
6280}
6281
6282void CXXNameMangler::mangleValueInTemplateArg(QualType T, const APValue &V,
6283                                              bool TopLevel,
6284                                              bool NeedExactType) {
6285  // Ignore all top-level cv-qualifiers, to match GCC.
6286  Qualifiers Quals;
6287  T = getASTContext().getUnqualifiedArrayType(T, Quals);
6288
6289  // A top-level expression that's not a primary expression is wrapped in X...E.
6290  bool IsPrimaryExpr = true;
6291  auto NotPrimaryExpr = [&] {
6292    if (TopLevel && IsPrimaryExpr)
6293      Out << 'X';
6294    IsPrimaryExpr = false;
6295  };
6296
6297  // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/63.
6298  switch (V.getKind()) {
6299  case APValue::None:
6300  case APValue::Indeterminate:
6301    Out << 'L';
6302    mangleType(T);
6303    Out << 'E';
6304    break;
6305
6306  case APValue::AddrLabelDiff:
6307    llvm_unreachable("unexpected value kind in template argument");
6308
6309  case APValue::Struct: {
6310    const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
6311    assert(RD && "unexpected type for record value");
6312
6313    // Drop trailing zero-initialized elements.
6314    llvm::SmallVector<const FieldDecl *, 16> Fields(RD->fields());
6315    while (
6316        !Fields.empty() &&
6317        (Fields.back()->isUnnamedBitfield() ||
6318         isZeroInitialized(Fields.back()->getType(),
6319                           V.getStructField(Fields.back()->getFieldIndex())))) {
6320      Fields.pop_back();
6321    }
6322    llvm::ArrayRef<CXXBaseSpecifier> Bases(RD->bases_begin(), RD->bases_end());
6323    if (Fields.empty()) {
6324      while (!Bases.empty() &&
6325             isZeroInitialized(Bases.back().getType(),
6326                               V.getStructBase(Bases.size() - 1)))
6327        Bases = Bases.drop_back();
6328    }
6329
6330    // <expression> ::= tl <type> <braced-expression>* E
6331    NotPrimaryExpr();
6332    Out << "tl";
6333    mangleType(T);
6334    for (unsigned I = 0, N = Bases.size(); I != N; ++I)
6335      mangleValueInTemplateArg(Bases[I].getType(), V.getStructBase(I), false);
6336    for (unsigned I = 0, N = Fields.size(); I != N; ++I) {
6337      if (Fields[I]->isUnnamedBitfield())
6338        continue;
6339      mangleValueInTemplateArg(Fields[I]->getType(),
6340                               V.getStructField(Fields[I]->getFieldIndex()),
6341                               false);
6342    }
6343    Out << 'E';
6344    break;
6345  }
6346
6347  case APValue::Union: {
6348    assert(T->getAsCXXRecordDecl() && "unexpected type for union value");
6349    const FieldDecl *FD = V.getUnionField();
6350
6351    if (!FD) {
6352      Out << 'L';
6353      mangleType(T);
6354      Out << 'E';
6355      break;
6356    }
6357
6358    // <braced-expression> ::= di <field source-name> <braced-expression>
6359    NotPrimaryExpr();
6360    Out << "tl";
6361    mangleType(T);
6362    if (!isZeroInitialized(T, V)) {
6363      Out << "di";
6364      IdentifierInfo *II = (getUnionInitName(
6365          T->getAsCXXRecordDecl()->getLocation(), Context.getDiags(), FD));
6366      if (II)
6367        mangleSourceName(II);
6368      mangleValueInTemplateArg(FD->getType(), V.getUnionValue(), false);
6369    }
6370    Out << 'E';
6371    break;
6372  }
6373
6374  case APValue::Array: {
6375    QualType ElemT(T->getArrayElementTypeNoTypeQual(), 0);
6376
6377    NotPrimaryExpr();
6378    Out << "tl";
6379    mangleType(T);
6380
6381    // Drop trailing zero-initialized elements.
6382    unsigned N = V.getArraySize();
6383    if (!V.hasArrayFiller() || isZeroInitialized(ElemT, V.getArrayFiller())) {
6384      N = V.getArrayInitializedElts();
6385      while (N && isZeroInitialized(ElemT, V.getArrayInitializedElt(N - 1)))
6386        --N;
6387    }
6388
6389    for (unsigned I = 0; I != N; ++I) {
6390      const APValue &Elem = I < V.getArrayInitializedElts()
6391                                ? V.getArrayInitializedElt(I)
6392                                : V.getArrayFiller();
6393      mangleValueInTemplateArg(ElemT, Elem, false);
6394    }
6395    Out << 'E';
6396    break;
6397  }
6398
6399  case APValue::Vector: {
6400    const VectorType *VT = T->castAs<VectorType>();
6401
6402    NotPrimaryExpr();
6403    Out << "tl";
6404    mangleType(T);
6405    unsigned N = V.getVectorLength();
6406    while (N && isZeroInitialized(VT->getElementType(), V.getVectorElt(N - 1)))
6407      --N;
6408    for (unsigned I = 0; I != N; ++I)
6409      mangleValueInTemplateArg(VT->getElementType(), V.getVectorElt(I), false);
6410    Out << 'E';
6411    break;
6412  }
6413
6414  case APValue::Int:
6415    mangleIntegerLiteral(T, V.getInt());
6416    break;
6417
6418  case APValue::Float:
6419    mangleFloatLiteral(T, V.getFloat());
6420    break;
6421
6422  case APValue::FixedPoint:
6423    mangleFixedPointLiteral();
6424    break;
6425
6426  case APValue::ComplexFloat: {
6427    const ComplexType *CT = T->castAs<ComplexType>();
6428    NotPrimaryExpr();
6429    Out << "tl";
6430    mangleType(T);
6431    if (!V.getComplexFloatReal().isPosZero() ||
6432        !V.getComplexFloatImag().isPosZero())
6433      mangleFloatLiteral(CT->getElementType(), V.getComplexFloatReal());
6434    if (!V.getComplexFloatImag().isPosZero())
6435      mangleFloatLiteral(CT->getElementType(), V.getComplexFloatImag());
6436    Out << 'E';
6437    break;
6438  }
6439
6440  case APValue::ComplexInt: {
6441    const ComplexType *CT = T->castAs<ComplexType>();
6442    NotPrimaryExpr();
6443    Out << "tl";
6444    mangleType(T);
6445    if (V.getComplexIntReal().getBoolValue() ||
6446        V.getComplexIntImag().getBoolValue())
6447      mangleIntegerLiteral(CT->getElementType(), V.getComplexIntReal());
6448    if (V.getComplexIntImag().getBoolValue())
6449      mangleIntegerLiteral(CT->getElementType(), V.getComplexIntImag());
6450    Out << 'E';
6451    break;
6452  }
6453
6454  case APValue::LValue: {
6455    // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
6456    assert((T->isPointerType() || T->isReferenceType()) &&
6457           "unexpected type for LValue template arg");
6458
6459    if (V.isNullPointer()) {
6460      mangleNullPointer(T);
6461      break;
6462    }
6463
6464    APValue::LValueBase B = V.getLValueBase();
6465    if (!B) {
6466      // Non-standard mangling for integer cast to a pointer; this can only
6467      // occur as an extension.
6468      CharUnits Offset = V.getLValueOffset();
6469      if (Offset.isZero()) {
6470        // This is reinterpret_cast<T*>(0), not a null pointer. Mangle this as
6471        // a cast, because L <type> 0 E means something else.
6472        NotPrimaryExpr();
6473        Out << "rc";
6474        mangleType(T);
6475        Out << "Li0E";
6476        if (TopLevel)
6477          Out << 'E';
6478      } else {
6479        Out << "L";
6480        mangleType(T);
6481        Out << Offset.getQuantity() << 'E';
6482      }
6483      break;
6484    }
6485
6486    ASTContext &Ctx = Context.getASTContext();
6487
6488    enum { Base, Offset, Path } Kind;
6489    if (!V.hasLValuePath()) {
6490      // Mangle as (T*)((char*)&base + N).
6491      if (T->isReferenceType()) {
6492        NotPrimaryExpr();
6493        Out << "decvP";
6494        mangleType(T->getPointeeType());
6495      } else {
6496        NotPrimaryExpr();
6497        Out << "cv";
6498        mangleType(T);
6499      }
6500      Out << "plcvPcad";
6501      Kind = Offset;
6502    } else {
6503      // Clang 11 and before mangled an array subject to array-to-pointer decay
6504      // as if it were the declaration itself.
6505      bool IsArrayToPointerDecayMangledAsDecl = false;
6506      if (TopLevel && Ctx.getLangOpts().getClangABICompat() <=
6507                          LangOptions::ClangABI::Ver11) {
6508        QualType BType = B.getType();
6509        IsArrayToPointerDecayMangledAsDecl =
6510            BType->isArrayType() && V.getLValuePath().size() == 1 &&
6511            V.getLValuePath()[0].getAsArrayIndex() == 0 &&
6512            Ctx.hasSimilarType(T, Ctx.getDecayedType(BType));
6513      }
6514
6515      if ((!V.getLValuePath().empty() || V.isLValueOnePastTheEnd()) &&
6516          !IsArrayToPointerDecayMangledAsDecl) {
6517        NotPrimaryExpr();
6518        // A final conversion to the template parameter's type is usually
6519        // folded into the 'so' mangling, but we can't do that for 'void*'
6520        // parameters without introducing collisions.
6521        if (NeedExactType && T->isVoidPointerType()) {
6522          Out << "cv";
6523          mangleType(T);
6524        }
6525        if (T->isPointerType())
6526          Out << "ad";
6527        Out << "so";
6528        mangleType(T->isVoidPointerType()
6529                       ? getLValueType(Ctx, V).getUnqualifiedType()
6530                       : T->getPointeeType());
6531        Kind = Path;
6532      } else {
6533        if (NeedExactType &&
6534            !Ctx.hasSameType(T->getPointeeType(), getLValueType(Ctx, V)) &&
6535            !isCompatibleWith(LangOptions::ClangABI::Ver11)) {
6536          NotPrimaryExpr();
6537          Out << "cv";
6538          mangleType(T);
6539        }
6540        if (T->isPointerType()) {
6541          NotPrimaryExpr();
6542          Out << "ad";
6543        }
6544        Kind = Base;
6545      }
6546    }
6547
6548    QualType TypeSoFar = B.getType();
6549    if (auto *VD = B.dyn_cast<const ValueDecl*>()) {
6550      Out << 'L';
6551      mangle(VD);
6552      Out << 'E';
6553    } else if (auto *E = B.dyn_cast<const Expr*>()) {
6554      NotPrimaryExpr();
6555      mangleExpression(E);
6556    } else if (auto TI = B.dyn_cast<TypeInfoLValue>()) {
6557      NotPrimaryExpr();
6558      Out << "ti";
6559      mangleType(QualType(TI.getType(), 0));
6560    } else {
6561      // We should never see dynamic allocations here.
6562      llvm_unreachable("unexpected lvalue base kind in template argument");
6563    }
6564
6565    switch (Kind) {
6566    case Base:
6567      break;
6568
6569    case Offset:
6570      Out << 'L';
6571      mangleType(Ctx.getPointerDiffType());
6572      mangleNumber(V.getLValueOffset().getQuantity());
6573      Out << 'E';
6574      break;
6575
6576    case Path:
6577      // <expression> ::= so <referent type> <expr> [<offset number>]
6578      //                  <union-selector>* [p] E
6579      if (!V.getLValueOffset().isZero())
6580        mangleNumber(V.getLValueOffset().getQuantity());
6581
6582      // We model a past-the-end array pointer as array indexing with index N,
6583      // not with the "past the end" flag. Compensate for that.
6584      bool OnePastTheEnd = V.isLValueOnePastTheEnd();
6585
6586      for (APValue::LValuePathEntry E : V.getLValuePath()) {
6587        if (auto *AT = TypeSoFar->getAsArrayTypeUnsafe()) {
6588          if (auto *CAT = dyn_cast<ConstantArrayType>(AT))
6589            OnePastTheEnd |= CAT->getSize() == E.getAsArrayIndex();
6590          TypeSoFar = AT->getElementType();
6591        } else {
6592          const Decl *D = E.getAsBaseOrMember().getPointer();
6593          if (auto *FD = dyn_cast<FieldDecl>(D)) {
6594            // <union-selector> ::= _ <number>
6595            if (FD->getParent()->isUnion()) {
6596              Out << '_';
6597              if (FD->getFieldIndex())
6598                Out << (FD->getFieldIndex() - 1);
6599            }
6600            TypeSoFar = FD->getType();
6601          } else {
6602            TypeSoFar = Ctx.getRecordType(cast<CXXRecordDecl>(D));
6603          }
6604        }
6605      }
6606
6607      if (OnePastTheEnd)
6608        Out << 'p';
6609      Out << 'E';
6610      break;
6611    }
6612
6613    break;
6614  }
6615
6616  case APValue::MemberPointer:
6617    // Proposed in https://github.com/itanium-cxx-abi/cxx-abi/issues/47.
6618    if (!V.getMemberPointerDecl()) {
6619      mangleNullPointer(T);
6620      break;
6621    }
6622
6623    ASTContext &Ctx = Context.getASTContext();
6624
6625    NotPrimaryExpr();
6626    if (!V.getMemberPointerPath().empty()) {
6627      Out << "mc";
6628      mangleType(T);
6629    } else if (NeedExactType &&
6630               !Ctx.hasSameType(
6631                   T->castAs<MemberPointerType>()->getPointeeType(),
6632                   V.getMemberPointerDecl()->getType()) &&
6633               !isCompatibleWith(LangOptions::ClangABI::Ver11)) {
6634      Out << "cv";
6635      mangleType(T);
6636    }
6637    Out << "adL";
6638    mangle(V.getMemberPointerDecl());
6639    Out << 'E';
6640    if (!V.getMemberPointerPath().empty()) {
6641      CharUnits Offset =
6642          Context.getASTContext().getMemberPointerPathAdjustment(V);
6643      if (!Offset.isZero())
6644        mangleNumber(Offset.getQuantity());
6645      Out << 'E';
6646    }
6647    break;
6648  }
6649
6650  if (TopLevel && !IsPrimaryExpr)
6651    Out << 'E';
6652}
6653
6654void CXXNameMangler::mangleTemplateParameter(unsigned Depth, unsigned Index) {
6655  // <template-param> ::= T_    # first template parameter
6656  //                  ::= T <parameter-2 non-negative number> _
6657  //                  ::= TL <L-1 non-negative number> __
6658  //                  ::= TL <L-1 non-negative number> _
6659  //                         <parameter-2 non-negative number> _
6660  //
6661  // The latter two manglings are from a proposal here:
6662  // https://github.com/itanium-cxx-abi/cxx-abi/issues/31#issuecomment-528122117
6663  Out << 'T';
6664  Depth += TemplateDepthOffset;
6665  if (Depth != 0)
6666    Out << 'L' << (Depth - 1) << '_';
6667  if (Index != 0)
6668    Out << (Index - 1);
6669  Out << '_';
6670}
6671
6672void CXXNameMangler::mangleSeqID(unsigned SeqID) {
6673  if (SeqID == 0) {
6674    // Nothing.
6675  } else if (SeqID == 1) {
6676    Out << '0';
6677  } else {
6678    SeqID--;
6679
6680    // <seq-id> is encoded in base-36, using digits and upper case letters.
6681    char Buffer[7]; // log(2**32) / log(36) ~= 7
6682    MutableArrayRef<char> BufferRef(Buffer);
6683    MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
6684
6685    for (; SeqID != 0; SeqID /= 36) {
6686      unsigned C = SeqID % 36;
6687      *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
6688    }
6689
6690    Out.write(I.base(), I - BufferRef.rbegin());
6691  }
6692  Out << '_';
6693}
6694
6695void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
6696  bool result = mangleSubstitution(tname);
6697  assert(result && "no existing substitution for template name");
6698  (void) result;
6699}
6700
6701// <substitution> ::= S <seq-id> _
6702//                ::= S_
6703bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
6704  // Try one of the standard substitutions first.
6705  if (mangleStandardSubstitution(ND))
6706    return true;
6707
6708  ND = cast<NamedDecl>(ND->getCanonicalDecl());
6709  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
6710}
6711
6712bool CXXNameMangler::mangleSubstitution(NestedNameSpecifier *NNS) {
6713  assert(NNS->getKind() == NestedNameSpecifier::Identifier &&
6714         "mangleSubstitution(NestedNameSpecifier *) is only used for "
6715         "identifier nested name specifiers.");
6716  NNS = Context.getASTContext().getCanonicalNestedNameSpecifier(NNS);
6717  return mangleSubstitution(reinterpret_cast<uintptr_t>(NNS));
6718}
6719
6720/// Determine whether the given type has any qualifiers that are relevant for
6721/// substitutions.
6722static bool hasMangledSubstitutionQualifiers(QualType T) {
6723  Qualifiers Qs = T.getQualifiers();
6724  return Qs.getCVRQualifiers() || Qs.hasAddressSpace() || Qs.hasUnaligned();
6725}
6726
6727bool CXXNameMangler::mangleSubstitution(QualType T) {
6728  if (!hasMangledSubstitutionQualifiers(T)) {
6729    if (const RecordType *RT = T->getAs<RecordType>())
6730      return mangleSubstitution(RT->getDecl());
6731  }
6732
6733  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
6734
6735  return mangleSubstitution(TypePtr);
6736}
6737
6738bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
6739  if (TemplateDecl *TD = Template.getAsTemplateDecl())
6740    return mangleSubstitution(TD);
6741
6742  Template = Context.getASTContext().getCanonicalTemplateName(Template);
6743  return mangleSubstitution(
6744                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
6745}
6746
6747bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
6748  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
6749  if (I == Substitutions.end())
6750    return false;
6751
6752  unsigned SeqID = I->second;
6753  Out << 'S';
6754  mangleSeqID(SeqID);
6755
6756  return true;
6757}
6758
6759/// Returns whether S is a template specialization of std::Name with a single
6760/// argument of type A.
6761bool CXXNameMangler::isSpecializedAs(QualType S, llvm::StringRef Name,
6762                                     QualType A) {
6763  if (S.isNull())
6764    return false;
6765
6766  const RecordType *RT = S->getAs<RecordType>();
6767  if (!RT)
6768    return false;
6769
6770  const ClassTemplateSpecializationDecl *SD =
6771    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6772  if (!SD || !SD->getIdentifier()->isStr(Name))
6773    return false;
6774
6775  if (!isStdNamespace(Context.getEffectiveDeclContext(SD)))
6776    return false;
6777
6778  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
6779  if (TemplateArgs.size() != 1)
6780    return false;
6781
6782  if (TemplateArgs[0].getAsType() != A)
6783    return false;
6784
6785  if (SD->getSpecializedTemplate()->getOwningModuleForLinkage())
6786    return false;
6787
6788  return true;
6789}
6790
6791/// Returns whether SD is a template specialization std::Name<char,
6792/// std::char_traits<char> [, std::allocator<char>]>
6793/// HasAllocator controls whether the 3rd template argument is needed.
6794bool CXXNameMangler::isStdCharSpecialization(
6795    const ClassTemplateSpecializationDecl *SD, llvm::StringRef Name,
6796    bool HasAllocator) {
6797  if (!SD->getIdentifier()->isStr(Name))
6798    return false;
6799
6800  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
6801  if (TemplateArgs.size() != (HasAllocator ? 3 : 2))
6802    return false;
6803
6804  QualType A = TemplateArgs[0].getAsType();
6805  if (A.isNull())
6806    return false;
6807  // Plain 'char' is named Char_S or Char_U depending on the target ABI.
6808  if (!A->isSpecificBuiltinType(BuiltinType::Char_S) &&
6809      !A->isSpecificBuiltinType(BuiltinType::Char_U))
6810    return false;
6811
6812  if (!isSpecializedAs(TemplateArgs[1].getAsType(), "char_traits", A))
6813    return false;
6814
6815  if (HasAllocator &&
6816      !isSpecializedAs(TemplateArgs[2].getAsType(), "allocator", A))
6817    return false;
6818
6819  if (SD->getSpecializedTemplate()->getOwningModuleForLinkage())
6820    return false;
6821
6822  return true;
6823}
6824
6825bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
6826  // <substitution> ::= St # ::std::
6827  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
6828    if (isStd(NS)) {
6829      Out << "St";
6830      return true;
6831    }
6832    return false;
6833  }
6834
6835  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
6836    if (!isStdNamespace(Context.getEffectiveDeclContext(TD)))
6837      return false;
6838
6839    if (TD->getOwningModuleForLinkage())
6840      return false;
6841
6842    // <substitution> ::= Sa # ::std::allocator
6843    if (TD->getIdentifier()->isStr("allocator")) {
6844      Out << "Sa";
6845      return true;
6846    }
6847
6848    // <<substitution> ::= Sb # ::std::basic_string
6849    if (TD->getIdentifier()->isStr("basic_string")) {
6850      Out << "Sb";
6851      return true;
6852    }
6853    return false;
6854  }
6855
6856  if (const ClassTemplateSpecializationDecl *SD =
6857        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
6858    if (!isStdNamespace(Context.getEffectiveDeclContext(SD)))
6859      return false;
6860
6861    if (SD->getSpecializedTemplate()->getOwningModuleForLinkage())
6862      return false;
6863
6864    //    <substitution> ::= Ss # ::std::basic_string<char,
6865    //                            ::std::char_traits<char>,
6866    //                            ::std::allocator<char> >
6867    if (isStdCharSpecialization(SD, "basic_string", /*HasAllocator=*/true)) {
6868      Out << "Ss";
6869      return true;
6870    }
6871
6872    //    <substitution> ::= Si # ::std::basic_istream<char,
6873    //                            ::std::char_traits<char> >
6874    if (isStdCharSpecialization(SD, "basic_istream", /*HasAllocator=*/false)) {
6875      Out << "Si";
6876      return true;
6877    }
6878
6879    //    <substitution> ::= So # ::std::basic_ostream<char,
6880    //                            ::std::char_traits<char> >
6881    if (isStdCharSpecialization(SD, "basic_ostream", /*HasAllocator=*/false)) {
6882      Out << "So";
6883      return true;
6884    }
6885
6886    //    <substitution> ::= Sd # ::std::basic_iostream<char,
6887    //                            ::std::char_traits<char> >
6888    if (isStdCharSpecialization(SD, "basic_iostream", /*HasAllocator=*/false)) {
6889      Out << "Sd";
6890      return true;
6891    }
6892    return false;
6893  }
6894
6895  return false;
6896}
6897
6898void CXXNameMangler::addSubstitution(QualType T) {
6899  if (!hasMangledSubstitutionQualifiers(T)) {
6900    if (const RecordType *RT = T->getAs<RecordType>()) {
6901      addSubstitution(RT->getDecl());
6902      return;
6903    }
6904  }
6905
6906  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
6907  addSubstitution(TypePtr);
6908}
6909
6910void CXXNameMangler::addSubstitution(TemplateName Template) {
6911  if (TemplateDecl *TD = Template.getAsTemplateDecl())
6912    return addSubstitution(TD);
6913
6914  Template = Context.getASTContext().getCanonicalTemplateName(Template);
6915  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
6916}
6917
6918void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
6919  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
6920  Substitutions[Ptr] = SeqID++;
6921}
6922
6923void CXXNameMangler::extendSubstitutions(CXXNameMangler* Other) {
6924  assert(Other->SeqID >= SeqID && "Must be superset of substitutions!");
6925  if (Other->SeqID > SeqID) {
6926    Substitutions.swap(Other->Substitutions);
6927    SeqID = Other->SeqID;
6928  }
6929}
6930
6931CXXNameMangler::AbiTagList
6932CXXNameMangler::makeFunctionReturnTypeTags(const FunctionDecl *FD) {
6933  // When derived abi tags are disabled there is no need to make any list.
6934  if (DisableDerivedAbiTags)
6935    return AbiTagList();
6936
6937  llvm::raw_null_ostream NullOutStream;
6938  CXXNameMangler TrackReturnTypeTags(*this, NullOutStream);
6939  TrackReturnTypeTags.disableDerivedAbiTags();
6940
6941  const FunctionProtoType *Proto =
6942      cast<FunctionProtoType>(FD->getType()->getAs<FunctionType>());
6943  FunctionTypeDepthState saved = TrackReturnTypeTags.FunctionTypeDepth.push();
6944  TrackReturnTypeTags.FunctionTypeDepth.enterResultType();
6945  TrackReturnTypeTags.mangleType(Proto->getReturnType());
6946  TrackReturnTypeTags.FunctionTypeDepth.leaveResultType();
6947  TrackReturnTypeTags.FunctionTypeDepth.pop(saved);
6948
6949  return TrackReturnTypeTags.AbiTagsRoot.getSortedUniqueUsedAbiTags();
6950}
6951
6952CXXNameMangler::AbiTagList
6953CXXNameMangler::makeVariableTypeTags(const VarDecl *VD) {
6954  // When derived abi tags are disabled there is no need to make any list.
6955  if (DisableDerivedAbiTags)
6956    return AbiTagList();
6957
6958  llvm::raw_null_ostream NullOutStream;
6959  CXXNameMangler TrackVariableType(*this, NullOutStream);
6960  TrackVariableType.disableDerivedAbiTags();
6961
6962  TrackVariableType.mangleType(VD->getType());
6963
6964  return TrackVariableType.AbiTagsRoot.getSortedUniqueUsedAbiTags();
6965}
6966
6967bool CXXNameMangler::shouldHaveAbiTags(ItaniumMangleContextImpl &C,
6968                                       const VarDecl *VD) {
6969  llvm::raw_null_ostream NullOutStream;
6970  CXXNameMangler TrackAbiTags(C, NullOutStream, nullptr, true);
6971  TrackAbiTags.mangle(VD);
6972  return TrackAbiTags.AbiTagsRoot.getUsedAbiTags().size();
6973}
6974
6975//
6976
6977/// Mangles the name of the declaration D and emits that name to the given
6978/// output stream.
6979///
6980/// If the declaration D requires a mangled name, this routine will emit that
6981/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
6982/// and this routine will return false. In this case, the caller should just
6983/// emit the identifier of the declaration (\c D->getIdentifier()) as its
6984/// name.
6985void ItaniumMangleContextImpl::mangleCXXName(GlobalDecl GD,
6986                                             raw_ostream &Out) {
6987  const NamedDecl *D = cast<NamedDecl>(GD.getDecl());
6988  assert((isa<FunctionDecl, VarDecl, TemplateParamObjectDecl>(D)) &&
6989         "Invalid mangleName() call, argument is not a variable or function!");
6990
6991  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
6992                                 getASTContext().getSourceManager(),
6993                                 "Mangling declaration");
6994
6995  if (auto *CD = dyn_cast<CXXConstructorDecl>(D)) {
6996    auto Type = GD.getCtorType();
6997    CXXNameMangler Mangler(*this, Out, CD, Type);
6998    return Mangler.mangle(GlobalDecl(CD, Type));
6999  }
7000
7001  if (auto *DD = dyn_cast<CXXDestructorDecl>(D)) {
7002    auto Type = GD.getDtorType();
7003    CXXNameMangler Mangler(*this, Out, DD, Type);
7004    return Mangler.mangle(GlobalDecl(DD, Type));
7005  }
7006
7007  CXXNameMangler Mangler(*this, Out, D);
7008  Mangler.mangle(GD);
7009}
7010
7011void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
7012                                                   raw_ostream &Out) {
7013  CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
7014  Mangler.mangle(GlobalDecl(D, Ctor_Comdat));
7015}
7016
7017void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
7018                                                   raw_ostream &Out) {
7019  CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
7020  Mangler.mangle(GlobalDecl(D, Dtor_Comdat));
7021}
7022
7023void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
7024                                           const ThunkInfo &Thunk,
7025                                           raw_ostream &Out) {
7026  //  <special-name> ::= T <call-offset> <base encoding>
7027  //                      # base is the nominal target function of thunk
7028  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
7029  //                      # base is the nominal target function of thunk
7030  //                      # first call-offset is 'this' adjustment
7031  //                      # second call-offset is result adjustment
7032
7033  assert(!isa<CXXDestructorDecl>(MD) &&
7034         "Use mangleCXXDtor for destructor decls!");
7035  CXXNameMangler Mangler(*this, Out);
7036  Mangler.getStream() << "_ZT";
7037  if (!Thunk.Return.isEmpty())
7038    Mangler.getStream() << 'c';
7039
7040  // Mangle the 'this' pointer adjustment.
7041  Mangler.mangleCallOffset(Thunk.This.NonVirtual,
7042                           Thunk.This.Virtual.Itanium.VCallOffsetOffset);
7043
7044  // Mangle the return pointer adjustment if there is one.
7045  if (!Thunk.Return.isEmpty())
7046    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
7047                             Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
7048
7049  Mangler.mangleFunctionEncoding(MD);
7050}
7051
7052void ItaniumMangleContextImpl::mangleCXXDtorThunk(
7053    const CXXDestructorDecl *DD, CXXDtorType Type,
7054    const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
7055  //  <special-name> ::= T <call-offset> <base encoding>
7056  //                      # base is the nominal target function of thunk
7057  CXXNameMangler Mangler(*this, Out, DD, Type);
7058  Mangler.getStream() << "_ZT";
7059
7060  // Mangle the 'this' pointer adjustment.
7061  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
7062                           ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
7063
7064  Mangler.mangleFunctionEncoding(GlobalDecl(DD, Type));
7065}
7066
7067/// Returns the mangled name for a guard variable for the passed in VarDecl.
7068void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
7069                                                         raw_ostream &Out) {
7070  //  <special-name> ::= GV <object name>       # Guard variable for one-time
7071  //                                            # initialization
7072  CXXNameMangler Mangler(*this, Out);
7073  // GCC 5.3.0 doesn't emit derived ABI tags for local names but that seems to
7074  // be a bug that is fixed in trunk.
7075  Mangler.getStream() << "_ZGV";
7076  Mangler.mangleName(D);
7077}
7078
7079void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
7080                                                        raw_ostream &Out) {
7081  // These symbols are internal in the Itanium ABI, so the names don't matter.
7082  // Clang has traditionally used this symbol and allowed LLVM to adjust it to
7083  // avoid duplicate symbols.
7084  Out << "__cxx_global_var_init";
7085}
7086
7087void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
7088                                                             raw_ostream &Out) {
7089  // Prefix the mangling of D with __dtor_.
7090  CXXNameMangler Mangler(*this, Out);
7091  Mangler.getStream() << "__dtor_";
7092  if (shouldMangleDeclName(D))
7093    Mangler.mangle(D);
7094  else
7095    Mangler.getStream() << D->getName();
7096}
7097
7098void ItaniumMangleContextImpl::mangleDynamicStermFinalizer(const VarDecl *D,
7099                                                           raw_ostream &Out) {
7100  // Clang generates these internal-linkage functions as part of its
7101  // implementation of the XL ABI.
7102  CXXNameMangler Mangler(*this, Out);
7103  Mangler.getStream() << "__finalize_";
7104  if (shouldMangleDeclName(D))
7105    Mangler.mangle(D);
7106  else
7107    Mangler.getStream() << D->getName();
7108}
7109
7110void ItaniumMangleContextImpl::mangleSEHFilterExpression(
7111    GlobalDecl EnclosingDecl, raw_ostream &Out) {
7112  CXXNameMangler Mangler(*this, Out);
7113  Mangler.getStream() << "__filt_";
7114  auto *EnclosingFD = cast<FunctionDecl>(EnclosingDecl.getDecl());
7115  if (shouldMangleDeclName(EnclosingFD))
7116    Mangler.mangle(EnclosingDecl);
7117  else
7118    Mangler.getStream() << EnclosingFD->getName();
7119}
7120
7121void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
7122    GlobalDecl EnclosingDecl, raw_ostream &Out) {
7123  CXXNameMangler Mangler(*this, Out);
7124  Mangler.getStream() << "__fin_";
7125  auto *EnclosingFD = cast<FunctionDecl>(EnclosingDecl.getDecl());
7126  if (shouldMangleDeclName(EnclosingFD))
7127    Mangler.mangle(EnclosingDecl);
7128  else
7129    Mangler.getStream() << EnclosingFD->getName();
7130}
7131
7132void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
7133                                                            raw_ostream &Out) {
7134  //  <special-name> ::= TH <object name>
7135  CXXNameMangler Mangler(*this, Out);
7136  Mangler.getStream() << "_ZTH";
7137  Mangler.mangleName(D);
7138}
7139
7140void
7141ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
7142                                                          raw_ostream &Out) {
7143  //  <special-name> ::= TW <object name>
7144  CXXNameMangler Mangler(*this, Out);
7145  Mangler.getStream() << "_ZTW";
7146  Mangler.mangleName(D);
7147}
7148
7149void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
7150                                                        unsigned ManglingNumber,
7151                                                        raw_ostream &Out) {
7152  // We match the GCC mangling here.
7153  //  <special-name> ::= GR <object name>
7154  CXXNameMangler Mangler(*this, Out);
7155  Mangler.getStream() << "_ZGR";
7156  Mangler.mangleName(D);
7157  assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
7158  Mangler.mangleSeqID(ManglingNumber - 1);
7159}
7160
7161void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
7162                                               raw_ostream &Out) {
7163  // <special-name> ::= TV <type>  # virtual table
7164  CXXNameMangler Mangler(*this, Out);
7165  Mangler.getStream() << "_ZTV";
7166  Mangler.mangleNameOrStandardSubstitution(RD);
7167}
7168
7169void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
7170                                            raw_ostream &Out) {
7171  // <special-name> ::= TT <type>  # VTT structure
7172  CXXNameMangler Mangler(*this, Out);
7173  Mangler.getStream() << "_ZTT";
7174  Mangler.mangleNameOrStandardSubstitution(RD);
7175}
7176
7177void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
7178                                                   int64_t Offset,
7179                                                   const CXXRecordDecl *Type,
7180                                                   raw_ostream &Out) {
7181  // <special-name> ::= TC <type> <offset number> _ <base type>
7182  CXXNameMangler Mangler(*this, Out);
7183  Mangler.getStream() << "_ZTC";
7184  Mangler.mangleNameOrStandardSubstitution(RD);
7185  Mangler.getStream() << Offset;
7186  Mangler.getStream() << '_';
7187  Mangler.mangleNameOrStandardSubstitution(Type);
7188}
7189
7190void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
7191  // <special-name> ::= TI <type>  # typeinfo structure
7192  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
7193  CXXNameMangler Mangler(*this, Out);
7194  Mangler.getStream() << "_ZTI";
7195  Mangler.mangleType(Ty);
7196}
7197
7198void ItaniumMangleContextImpl::mangleCXXRTTIName(
7199    QualType Ty, raw_ostream &Out, bool NormalizeIntegers = false) {
7200  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
7201  CXXNameMangler Mangler(*this, Out, NormalizeIntegers);
7202  Mangler.getStream() << "_ZTS";
7203  Mangler.mangleType(Ty);
7204}
7205
7206void ItaniumMangleContextImpl::mangleCanonicalTypeName(
7207    QualType Ty, raw_ostream &Out, bool NormalizeIntegers = false) {
7208  mangleCXXRTTIName(Ty, Out, NormalizeIntegers);
7209}
7210
7211void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
7212  llvm_unreachable("Can't mangle string literals");
7213}
7214
7215void ItaniumMangleContextImpl::mangleLambdaSig(const CXXRecordDecl *Lambda,
7216                                               raw_ostream &Out) {
7217  CXXNameMangler Mangler(*this, Out);
7218  Mangler.mangleLambdaSig(Lambda);
7219}
7220
7221void ItaniumMangleContextImpl::mangleModuleInitializer(const Module *M,
7222                                                       raw_ostream &Out) {
7223  // <special-name> ::= GI <module-name>  # module initializer function
7224  CXXNameMangler Mangler(*this, Out);
7225  Mangler.getStream() << "_ZGI";
7226  Mangler.mangleModuleNamePrefix(M->getPrimaryModuleInterfaceName());
7227  if (M->isModulePartition()) {
7228    // The partition needs including, as partitions can have them too.
7229    auto Partition = M->Name.find(':');
7230    Mangler.mangleModuleNamePrefix(
7231        StringRef(&M->Name[Partition + 1], M->Name.size() - Partition - 1),
7232        /*IsPartition*/ true);
7233  }
7234}
7235
7236ItaniumMangleContext *ItaniumMangleContext::create(ASTContext &Context,
7237                                                   DiagnosticsEngine &Diags,
7238                                                   bool IsAux) {
7239  return new ItaniumMangleContextImpl(
7240      Context, Diags,
7241      [](ASTContext &, const NamedDecl *) -> std::optional<unsigned> {
7242        return std::nullopt;
7243      },
7244      IsAux);
7245}
7246
7247ItaniumMangleContext *
7248ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags,
7249                             DiscriminatorOverrideTy DiscriminatorOverride,
7250                             bool IsAux) {
7251  return new ItaniumMangleContextImpl(Context, Diags, DiscriminatorOverride,
7252                                      IsAux);
7253}
7254