1//===- CFG.h - Classes for representing and building CFGs -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9//  This file defines the CFG and CFGBuilder classes for representing and
10//  building Control-Flow Graphs (CFGs) from ASTs.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_ANALYSIS_CFG_H
15#define LLVM_CLANG_ANALYSIS_CFG_H
16
17#include "clang/AST/Attr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/ExprObjC.h"
20#include "clang/Analysis/ConstructionContext.h"
21#include "clang/Analysis/Support/BumpVector.h"
22#include "clang/Basic/LLVM.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/GraphTraits.h"
25#include "llvm/ADT/PointerIntPair.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/Support/Allocator.h"
28#include "llvm/Support/raw_ostream.h"
29#include <bitset>
30#include <cassert>
31#include <cstddef>
32#include <iterator>
33#include <memory>
34#include <optional>
35#include <vector>
36
37namespace clang {
38
39class ASTContext;
40class BinaryOperator;
41class CFG;
42class CXXBaseSpecifier;
43class CXXBindTemporaryExpr;
44class CXXCtorInitializer;
45class CXXDeleteExpr;
46class CXXDestructorDecl;
47class CXXNewExpr;
48class CXXRecordDecl;
49class Decl;
50class FieldDecl;
51class LangOptions;
52class VarDecl;
53
54/// Represents a top-level expression in a basic block.
55class CFGElement {
56public:
57  enum Kind {
58    // main kind
59    Initializer,
60    ScopeBegin,
61    ScopeEnd,
62    NewAllocator,
63    LifetimeEnds,
64    LoopExit,
65    // stmt kind
66    Statement,
67    Constructor,
68    CXXRecordTypedCall,
69    STMT_BEGIN = Statement,
70    STMT_END = CXXRecordTypedCall,
71    // dtor kind
72    AutomaticObjectDtor,
73    DeleteDtor,
74    BaseDtor,
75    MemberDtor,
76    TemporaryDtor,
77    DTOR_BEGIN = AutomaticObjectDtor,
78    DTOR_END = TemporaryDtor,
79    CleanupFunction,
80  };
81
82protected:
83  // The int bits are used to mark the kind.
84  llvm::PointerIntPair<void *, 2> Data1;
85  llvm::PointerIntPair<void *, 2> Data2;
86
87  CFGElement(Kind kind, const void *Ptr1, const void *Ptr2 = nullptr)
88      : Data1(const_cast<void*>(Ptr1), ((unsigned) kind) & 0x3),
89        Data2(const_cast<void*>(Ptr2), (((unsigned) kind) >> 2) & 0x3) {
90    assert(getKind() == kind);
91  }
92
93  CFGElement() = default;
94
95public:
96  /// Convert to the specified CFGElement type, asserting that this
97  /// CFGElement is of the desired type.
98  template<typename T>
99  T castAs() const {
100    assert(T::isKind(*this));
101    T t;
102    CFGElement& e = t;
103    e = *this;
104    return t;
105  }
106
107  /// Convert to the specified CFGElement type, returning std::nullopt if this
108  /// CFGElement is not of the desired type.
109  template <typename T> std::optional<T> getAs() const {
110    if (!T::isKind(*this))
111      return std::nullopt;
112    T t;
113    CFGElement& e = t;
114    e = *this;
115    return t;
116  }
117
118  Kind getKind() const {
119    unsigned x = Data2.getInt();
120    x <<= 2;
121    x |= Data1.getInt();
122    return (Kind) x;
123  }
124
125  void dumpToStream(llvm::raw_ostream &OS) const;
126
127  void dump() const {
128    dumpToStream(llvm::errs());
129  }
130};
131
132class CFGStmt : public CFGElement {
133public:
134  explicit CFGStmt(const Stmt *S, Kind K = Statement) : CFGElement(K, S) {
135    assert(isKind(*this));
136  }
137
138  const Stmt *getStmt() const {
139    return static_cast<const Stmt *>(Data1.getPointer());
140  }
141
142private:
143  friend class CFGElement;
144
145  static bool isKind(const CFGElement &E) {
146    return E.getKind() >= STMT_BEGIN && E.getKind() <= STMT_END;
147  }
148
149protected:
150  CFGStmt() = default;
151};
152
153/// Represents C++ constructor call. Maintains information necessary to figure
154/// out what memory is being initialized by the constructor expression. For now
155/// this is only used by the analyzer's CFG.
156class CFGConstructor : public CFGStmt {
157public:
158  explicit CFGConstructor(const CXXConstructExpr *CE,
159                          const ConstructionContext *C)
160      : CFGStmt(CE, Constructor) {
161    assert(C);
162    Data2.setPointer(const_cast<ConstructionContext *>(C));
163  }
164
165  const ConstructionContext *getConstructionContext() const {
166    return static_cast<ConstructionContext *>(Data2.getPointer());
167  }
168
169private:
170  friend class CFGElement;
171
172  CFGConstructor() = default;
173
174  static bool isKind(const CFGElement &E) {
175    return E.getKind() == Constructor;
176  }
177};
178
179/// Represents a function call that returns a C++ object by value. This, like
180/// constructor, requires a construction context in order to understand the
181/// storage of the returned object . In C such tracking is not necessary because
182/// no additional effort is required for destroying the object or modeling copy
183/// elision. Like CFGConstructor, this element is for now only used by the
184/// analyzer's CFG.
185class CFGCXXRecordTypedCall : public CFGStmt {
186public:
187  /// Returns true when call expression \p CE needs to be represented
188  /// by CFGCXXRecordTypedCall, as opposed to a regular CFGStmt.
189  static bool isCXXRecordTypedCall(const Expr *E) {
190    assert(isa<CallExpr>(E) || isa<ObjCMessageExpr>(E));
191    // There is no such thing as reference-type expression. If the function
192    // returns a reference, it'll return the respective lvalue or xvalue
193    // instead, and we're only interested in objects.
194    return !E->isGLValue() &&
195           E->getType().getCanonicalType()->getAsCXXRecordDecl();
196  }
197
198  explicit CFGCXXRecordTypedCall(const Expr *E, const ConstructionContext *C)
199      : CFGStmt(E, CXXRecordTypedCall) {
200    assert(isCXXRecordTypedCall(E));
201    assert(C && (isa<TemporaryObjectConstructionContext>(C) ||
202                 // These are possible in C++17 due to mandatory copy elision.
203                 isa<ReturnedValueConstructionContext>(C) ||
204                 isa<VariableConstructionContext>(C) ||
205                 isa<ConstructorInitializerConstructionContext>(C) ||
206                 isa<ArgumentConstructionContext>(C) ||
207                 isa<LambdaCaptureConstructionContext>(C)));
208    Data2.setPointer(const_cast<ConstructionContext *>(C));
209  }
210
211  const ConstructionContext *getConstructionContext() const {
212    return static_cast<ConstructionContext *>(Data2.getPointer());
213  }
214
215private:
216  friend class CFGElement;
217
218  CFGCXXRecordTypedCall() = default;
219
220  static bool isKind(const CFGElement &E) {
221    return E.getKind() == CXXRecordTypedCall;
222  }
223};
224
225/// Represents C++ base or member initializer from constructor's initialization
226/// list.
227class CFGInitializer : public CFGElement {
228public:
229  explicit CFGInitializer(const CXXCtorInitializer *initializer)
230      : CFGElement(Initializer, initializer) {}
231
232  CXXCtorInitializer* getInitializer() const {
233    return static_cast<CXXCtorInitializer*>(Data1.getPointer());
234  }
235
236private:
237  friend class CFGElement;
238
239  CFGInitializer() = default;
240
241  static bool isKind(const CFGElement &E) {
242    return E.getKind() == Initializer;
243  }
244};
245
246/// Represents C++ allocator call.
247class CFGNewAllocator : public CFGElement {
248public:
249  explicit CFGNewAllocator(const CXXNewExpr *S)
250    : CFGElement(NewAllocator, S) {}
251
252  // Get the new expression.
253  const CXXNewExpr *getAllocatorExpr() const {
254    return static_cast<CXXNewExpr *>(Data1.getPointer());
255  }
256
257private:
258  friend class CFGElement;
259
260  CFGNewAllocator() = default;
261
262  static bool isKind(const CFGElement &elem) {
263    return elem.getKind() == NewAllocator;
264  }
265};
266
267/// Represents the point where a loop ends.
268/// This element is only produced when building the CFG for the static
269/// analyzer and hidden behind the 'cfg-loopexit' analyzer config flag.
270///
271/// Note: a loop exit element can be reached even when the loop body was never
272/// entered.
273class CFGLoopExit : public CFGElement {
274public:
275  explicit CFGLoopExit(const Stmt *stmt) : CFGElement(LoopExit, stmt) {}
276
277  const Stmt *getLoopStmt() const {
278    return static_cast<Stmt *>(Data1.getPointer());
279  }
280
281private:
282  friend class CFGElement;
283
284  CFGLoopExit() = default;
285
286  static bool isKind(const CFGElement &elem) {
287    return elem.getKind() == LoopExit;
288  }
289};
290
291/// Represents the point where the lifetime of an automatic object ends
292class CFGLifetimeEnds : public CFGElement {
293public:
294  explicit CFGLifetimeEnds(const VarDecl *var, const Stmt *stmt)
295      : CFGElement(LifetimeEnds, var, stmt) {}
296
297  const VarDecl *getVarDecl() const {
298    return static_cast<VarDecl *>(Data1.getPointer());
299  }
300
301  const Stmt *getTriggerStmt() const {
302    return static_cast<Stmt *>(Data2.getPointer());
303  }
304
305private:
306  friend class CFGElement;
307
308  CFGLifetimeEnds() = default;
309
310  static bool isKind(const CFGElement &elem) {
311    return elem.getKind() == LifetimeEnds;
312  }
313};
314
315/// Represents beginning of a scope implicitly generated
316/// by the compiler on encountering a CompoundStmt
317class CFGScopeBegin : public CFGElement {
318public:
319  CFGScopeBegin() {}
320  CFGScopeBegin(const VarDecl *VD, const Stmt *S)
321      : CFGElement(ScopeBegin, VD, S) {}
322
323  // Get statement that triggered a new scope.
324  const Stmt *getTriggerStmt() const {
325    return static_cast<Stmt*>(Data2.getPointer());
326  }
327
328  // Get VD that triggered a new scope.
329  const VarDecl *getVarDecl() const {
330    return static_cast<VarDecl *>(Data1.getPointer());
331  }
332
333private:
334  friend class CFGElement;
335  static bool isKind(const CFGElement &E) {
336    Kind kind = E.getKind();
337    return kind == ScopeBegin;
338  }
339};
340
341/// Represents end of a scope implicitly generated by
342/// the compiler after the last Stmt in a CompoundStmt's body
343class CFGScopeEnd : public CFGElement {
344public:
345  CFGScopeEnd() {}
346  CFGScopeEnd(const VarDecl *VD, const Stmt *S) : CFGElement(ScopeEnd, VD, S) {}
347
348  const VarDecl *getVarDecl() const {
349    return static_cast<VarDecl *>(Data1.getPointer());
350  }
351
352  const Stmt *getTriggerStmt() const {
353    return static_cast<Stmt *>(Data2.getPointer());
354  }
355
356private:
357  friend class CFGElement;
358  static bool isKind(const CFGElement &E) {
359    Kind kind = E.getKind();
360    return kind == ScopeEnd;
361  }
362};
363
364/// Represents C++ object destructor implicitly generated by compiler on various
365/// occasions.
366class CFGImplicitDtor : public CFGElement {
367protected:
368  CFGImplicitDtor() = default;
369
370  CFGImplicitDtor(Kind kind, const void *data1, const void *data2 = nullptr)
371    : CFGElement(kind, data1, data2) {
372    assert(kind >= DTOR_BEGIN && kind <= DTOR_END);
373  }
374
375public:
376  const CXXDestructorDecl *getDestructorDecl(ASTContext &astContext) const;
377  bool isNoReturn(ASTContext &astContext) const;
378
379private:
380  friend class CFGElement;
381
382  static bool isKind(const CFGElement &E) {
383    Kind kind = E.getKind();
384    return kind >= DTOR_BEGIN && kind <= DTOR_END;
385  }
386};
387
388class CFGCleanupFunction final : public CFGElement {
389public:
390  CFGCleanupFunction() = default;
391  CFGCleanupFunction(const VarDecl *VD)
392      : CFGElement(Kind::CleanupFunction, VD) {
393    assert(VD->hasAttr<CleanupAttr>());
394  }
395
396  const VarDecl *getVarDecl() const {
397    return static_cast<VarDecl *>(Data1.getPointer());
398  }
399
400  /// Returns the function to be called when cleaning up the var decl.
401  const FunctionDecl *getFunctionDecl() const {
402    const CleanupAttr *A = getVarDecl()->getAttr<CleanupAttr>();
403    return A->getFunctionDecl();
404  }
405
406private:
407  friend class CFGElement;
408
409  static bool isKind(const CFGElement E) {
410    return E.getKind() == Kind::CleanupFunction;
411  }
412};
413
414/// Represents C++ object destructor implicitly generated for automatic object
415/// or temporary bound to const reference at the point of leaving its local
416/// scope.
417class CFGAutomaticObjDtor: public CFGImplicitDtor {
418public:
419  CFGAutomaticObjDtor(const VarDecl *var, const Stmt *stmt)
420      : CFGImplicitDtor(AutomaticObjectDtor, var, stmt) {}
421
422  const VarDecl *getVarDecl() const {
423    return static_cast<VarDecl*>(Data1.getPointer());
424  }
425
426  // Get statement end of which triggered the destructor call.
427  const Stmt *getTriggerStmt() const {
428    return static_cast<Stmt*>(Data2.getPointer());
429  }
430
431private:
432  friend class CFGElement;
433
434  CFGAutomaticObjDtor() = default;
435
436  static bool isKind(const CFGElement &elem) {
437    return elem.getKind() == AutomaticObjectDtor;
438  }
439};
440
441/// Represents C++ object destructor generated from a call to delete.
442class CFGDeleteDtor : public CFGImplicitDtor {
443public:
444  CFGDeleteDtor(const CXXRecordDecl *RD, const CXXDeleteExpr *DE)
445      : CFGImplicitDtor(DeleteDtor, RD, DE) {}
446
447  const CXXRecordDecl *getCXXRecordDecl() const {
448    return static_cast<CXXRecordDecl*>(Data1.getPointer());
449  }
450
451  // Get Delete expression which triggered the destructor call.
452  const CXXDeleteExpr *getDeleteExpr() const {
453    return static_cast<CXXDeleteExpr *>(Data2.getPointer());
454  }
455
456private:
457  friend class CFGElement;
458
459  CFGDeleteDtor() = default;
460
461  static bool isKind(const CFGElement &elem) {
462    return elem.getKind() == DeleteDtor;
463  }
464};
465
466/// Represents C++ object destructor implicitly generated for base object in
467/// destructor.
468class CFGBaseDtor : public CFGImplicitDtor {
469public:
470  CFGBaseDtor(const CXXBaseSpecifier *base)
471      : CFGImplicitDtor(BaseDtor, base) {}
472
473  const CXXBaseSpecifier *getBaseSpecifier() const {
474    return static_cast<const CXXBaseSpecifier*>(Data1.getPointer());
475  }
476
477private:
478  friend class CFGElement;
479
480  CFGBaseDtor() = default;
481
482  static bool isKind(const CFGElement &E) {
483    return E.getKind() == BaseDtor;
484  }
485};
486
487/// Represents C++ object destructor implicitly generated for member object in
488/// destructor.
489class CFGMemberDtor : public CFGImplicitDtor {
490public:
491  CFGMemberDtor(const FieldDecl *field)
492      : CFGImplicitDtor(MemberDtor, field, nullptr) {}
493
494  const FieldDecl *getFieldDecl() const {
495    return static_cast<const FieldDecl*>(Data1.getPointer());
496  }
497
498private:
499  friend class CFGElement;
500
501  CFGMemberDtor() = default;
502
503  static bool isKind(const CFGElement &E) {
504    return E.getKind() == MemberDtor;
505  }
506};
507
508/// Represents C++ object destructor implicitly generated at the end of full
509/// expression for temporary object.
510class CFGTemporaryDtor : public CFGImplicitDtor {
511public:
512  CFGTemporaryDtor(const CXXBindTemporaryExpr *expr)
513      : CFGImplicitDtor(TemporaryDtor, expr, nullptr) {}
514
515  const CXXBindTemporaryExpr *getBindTemporaryExpr() const {
516    return static_cast<const CXXBindTemporaryExpr *>(Data1.getPointer());
517  }
518
519private:
520  friend class CFGElement;
521
522  CFGTemporaryDtor() = default;
523
524  static bool isKind(const CFGElement &E) {
525    return E.getKind() == TemporaryDtor;
526  }
527};
528
529/// Represents CFGBlock terminator statement.
530///
531class CFGTerminator {
532public:
533  enum Kind {
534    /// A branch that corresponds to a statement in the code,
535    /// such as an if-statement.
536    StmtBranch,
537    /// A branch in control flow of destructors of temporaries. In this case
538    /// terminator statement is the same statement that branches control flow
539    /// in evaluation of matching full expression.
540    TemporaryDtorsBranch,
541    /// A shortcut around virtual base initializers. It gets taken when
542    /// virtual base classes have already been initialized by the constructor
543    /// of the most derived class while we're in the base class.
544    VirtualBaseBranch,
545
546    /// Number of different kinds, for assertions. We subtract 1 so that
547    /// to keep receiving compiler warnings when we don't cover all enum values
548    /// in a switch.
549    NumKindsMinusOne = VirtualBaseBranch
550  };
551
552private:
553  static constexpr int KindBits = 2;
554  static_assert((1 << KindBits) > NumKindsMinusOne,
555                "Not enough room for kind!");
556  llvm::PointerIntPair<Stmt *, KindBits> Data;
557
558public:
559  CFGTerminator() { assert(!isValid()); }
560  CFGTerminator(Stmt *S, Kind K = StmtBranch) : Data(S, K) {}
561
562  bool isValid() const { return Data.getOpaqueValue() != nullptr; }
563  Stmt *getStmt() { return Data.getPointer(); }
564  const Stmt *getStmt() const { return Data.getPointer(); }
565  Kind getKind() const { return static_cast<Kind>(Data.getInt()); }
566
567  bool isStmtBranch() const {
568    return getKind() == StmtBranch;
569  }
570  bool isTemporaryDtorsBranch() const {
571    return getKind() == TemporaryDtorsBranch;
572  }
573  bool isVirtualBaseBranch() const {
574    return getKind() == VirtualBaseBranch;
575  }
576};
577
578/// Represents a single basic block in a source-level CFG.
579///  It consists of:
580///
581///  (1) A set of statements/expressions (which may contain subexpressions).
582///  (2) A "terminator" statement (not in the set of statements).
583///  (3) A list of successors and predecessors.
584///
585/// Terminator: The terminator represents the type of control-flow that occurs
586/// at the end of the basic block.  The terminator is a Stmt* referring to an
587/// AST node that has control-flow: if-statements, breaks, loops, etc.
588/// If the control-flow is conditional, the condition expression will appear
589/// within the set of statements in the block (usually the last statement).
590///
591/// Predecessors: the order in the set of predecessors is arbitrary.
592///
593/// Successors: the order in the set of successors is NOT arbitrary.  We
594///  currently have the following orderings based on the terminator:
595///
596///     Terminator     |   Successor Ordering
597///  ------------------|------------------------------------
598///       if           |  Then Block;  Else Block
599///     ? operator     |  LHS expression;  RHS expression
600///     logical and/or |  expression that consumes the op, RHS
601///     vbase inits    |  already handled by the most derived class; not yet
602///
603/// But note that any of that may be NULL in case of optimized-out edges.
604class CFGBlock {
605  class ElementList {
606    using ImplTy = BumpVector<CFGElement>;
607
608    ImplTy Impl;
609
610  public:
611    ElementList(BumpVectorContext &C) : Impl(C, 4) {}
612
613    using iterator = std::reverse_iterator<ImplTy::iterator>;
614    using const_iterator = std::reverse_iterator<ImplTy::const_iterator>;
615    using reverse_iterator = ImplTy::iterator;
616    using const_reverse_iterator = ImplTy::const_iterator;
617    using const_reference = ImplTy::const_reference;
618
619    void push_back(CFGElement e, BumpVectorContext &C) { Impl.push_back(e, C); }
620
621    reverse_iterator insert(reverse_iterator I, size_t Cnt, CFGElement E,
622        BumpVectorContext &C) {
623      return Impl.insert(I, Cnt, E, C);
624    }
625
626    const_reference front() const { return Impl.back(); }
627    const_reference back() const { return Impl.front(); }
628
629    iterator begin() { return Impl.rbegin(); }
630    iterator end() { return Impl.rend(); }
631    const_iterator begin() const { return Impl.rbegin(); }
632    const_iterator end() const { return Impl.rend(); }
633    reverse_iterator rbegin() { return Impl.begin(); }
634    reverse_iterator rend() { return Impl.end(); }
635    const_reverse_iterator rbegin() const { return Impl.begin(); }
636    const_reverse_iterator rend() const { return Impl.end(); }
637
638    CFGElement operator[](size_t i) const  {
639      assert(i < Impl.size());
640      return Impl[Impl.size() - 1 - i];
641    }
642
643    size_t size() const { return Impl.size(); }
644    bool empty() const { return Impl.empty(); }
645  };
646
647  /// A convenience class for comparing CFGElements, since methods of CFGBlock
648  /// like operator[] return CFGElements by value. This is practically a wrapper
649  /// around a (CFGBlock, Index) pair.
650  template <bool IsConst> class ElementRefImpl {
651
652    template <bool IsOtherConst> friend class ElementRefImpl;
653
654    using CFGBlockPtr =
655        std::conditional_t<IsConst, const CFGBlock *, CFGBlock *>;
656
657    using CFGElementPtr =
658        std::conditional_t<IsConst, const CFGElement *, CFGElement *>;
659
660  protected:
661    CFGBlockPtr Parent;
662    size_t Index;
663
664  public:
665    ElementRefImpl(CFGBlockPtr Parent, size_t Index)
666        : Parent(Parent), Index(Index) {}
667
668    template <bool IsOtherConst>
669    ElementRefImpl(ElementRefImpl<IsOtherConst> Other)
670        : ElementRefImpl(Other.Parent, Other.Index) {}
671
672    size_t getIndexInBlock() const { return Index; }
673
674    CFGBlockPtr getParent() { return Parent; }
675    CFGBlockPtr getParent() const { return Parent; }
676
677    bool operator<(ElementRefImpl Other) const {
678      return std::make_pair(Parent, Index) <
679             std::make_pair(Other.Parent, Other.Index);
680    }
681
682    bool operator==(ElementRefImpl Other) const {
683      return Parent == Other.Parent && Index == Other.Index;
684    }
685
686    bool operator!=(ElementRefImpl Other) const { return !(*this == Other); }
687    CFGElement operator*() const { return (*Parent)[Index]; }
688    CFGElementPtr operator->() const { return &*(Parent->begin() + Index); }
689
690    void dumpToStream(llvm::raw_ostream &OS) const {
691      OS << getIndexInBlock() + 1 << ": ";
692      (*this)->dumpToStream(OS);
693    }
694
695    void dump() const {
696      dumpToStream(llvm::errs());
697    }
698  };
699
700  template <bool IsReverse, bool IsConst> class ElementRefIterator {
701
702    template <bool IsOtherReverse, bool IsOtherConst>
703    friend class ElementRefIterator;
704
705    using CFGBlockRef =
706        std::conditional_t<IsConst, const CFGBlock *, CFGBlock *>;
707
708    using UnderlayingIteratorTy = std::conditional_t<
709        IsConst,
710        std::conditional_t<IsReverse, ElementList::const_reverse_iterator,
711                           ElementList::const_iterator>,
712        std::conditional_t<IsReverse, ElementList::reverse_iterator,
713                           ElementList::iterator>>;
714
715    using IteratorTraits = typename std::iterator_traits<UnderlayingIteratorTy>;
716    using ElementRef = typename CFGBlock::ElementRefImpl<IsConst>;
717
718  public:
719    using difference_type = typename IteratorTraits::difference_type;
720    using value_type = ElementRef;
721    using pointer = ElementRef *;
722    using iterator_category = typename IteratorTraits::iterator_category;
723
724  private:
725    CFGBlockRef Parent;
726    UnderlayingIteratorTy Pos;
727
728  public:
729    ElementRefIterator(CFGBlockRef Parent, UnderlayingIteratorTy Pos)
730        : Parent(Parent), Pos(Pos) {}
731
732    template <bool IsOtherConst>
733    ElementRefIterator(ElementRefIterator<false, IsOtherConst> E)
734        : ElementRefIterator(E.Parent, E.Pos.base()) {}
735
736    template <bool IsOtherConst>
737    ElementRefIterator(ElementRefIterator<true, IsOtherConst> E)
738        : ElementRefIterator(E.Parent, std::make_reverse_iterator(E.Pos)) {}
739
740    bool operator<(ElementRefIterator Other) const {
741      assert(Parent == Other.Parent);
742      return Pos < Other.Pos;
743    }
744
745    bool operator==(ElementRefIterator Other) const {
746      return Parent == Other.Parent && Pos == Other.Pos;
747    }
748
749    bool operator!=(ElementRefIterator Other) const {
750      return !(*this == Other);
751    }
752
753  private:
754    template <bool IsOtherConst>
755    static size_t
756    getIndexInBlock(CFGBlock::ElementRefIterator<true, IsOtherConst> E) {
757      return E.Parent->size() - (E.Pos - E.Parent->rbegin()) - 1;
758    }
759
760    template <bool IsOtherConst>
761    static size_t
762    getIndexInBlock(CFGBlock::ElementRefIterator<false, IsOtherConst> E) {
763      return E.Pos - E.Parent->begin();
764    }
765
766  public:
767    value_type operator*() { return {Parent, getIndexInBlock(*this)}; }
768
769    difference_type operator-(ElementRefIterator Other) const {
770      return Pos - Other.Pos;
771    }
772
773    ElementRefIterator operator++() {
774      ++this->Pos;
775      return *this;
776    }
777    ElementRefIterator operator++(int) {
778      ElementRefIterator Ret = *this;
779      ++*this;
780      return Ret;
781    }
782    ElementRefIterator operator+(size_t count) {
783      this->Pos += count;
784      return *this;
785    }
786    ElementRefIterator operator-(size_t count) {
787      this->Pos -= count;
788      return *this;
789    }
790  };
791
792public:
793  /// The set of statements in the basic block.
794  ElementList Elements;
795
796  /// An (optional) label that prefixes the executable statements in the block.
797  /// When this variable is non-NULL, it is either an instance of LabelStmt,
798  /// SwitchCase or CXXCatchStmt.
799  Stmt *Label = nullptr;
800
801  /// The terminator for a basic block that indicates the type of control-flow
802  /// that occurs between a block and its successors.
803  CFGTerminator Terminator;
804
805  /// Some blocks are used to represent the "loop edge" to the start of a loop
806  /// from within the loop body. This Stmt* will be refer to the loop statement
807  /// for such blocks (and be null otherwise).
808  const Stmt *LoopTarget = nullptr;
809
810  /// A numerical ID assigned to a CFGBlock during construction of the CFG.
811  unsigned BlockID;
812
813public:
814  /// This class represents a potential adjacent block in the CFG.  It encodes
815  /// whether or not the block is actually reachable, or can be proved to be
816  /// trivially unreachable.  For some cases it allows one to encode scenarios
817  /// where a block was substituted because the original (now alternate) block
818  /// is unreachable.
819  class AdjacentBlock {
820    enum Kind {
821      AB_Normal,
822      AB_Unreachable,
823      AB_Alternate
824    };
825
826    CFGBlock *ReachableBlock;
827    llvm::PointerIntPair<CFGBlock *, 2> UnreachableBlock;
828
829  public:
830    /// Construct an AdjacentBlock with a possibly unreachable block.
831    AdjacentBlock(CFGBlock *B, bool IsReachable);
832
833    /// Construct an AdjacentBlock with a reachable block and an alternate
834    /// unreachable block.
835    AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock);
836
837    /// Get the reachable block, if one exists.
838    CFGBlock *getReachableBlock() const {
839      return ReachableBlock;
840    }
841
842    /// Get the potentially unreachable block.
843    CFGBlock *getPossiblyUnreachableBlock() const {
844      return UnreachableBlock.getPointer();
845    }
846
847    /// Provide an implicit conversion to CFGBlock* so that
848    /// AdjacentBlock can be substituted for CFGBlock*.
849    operator CFGBlock*() const {
850      return getReachableBlock();
851    }
852
853    CFGBlock& operator *() const {
854      return *getReachableBlock();
855    }
856
857    CFGBlock* operator ->() const {
858      return getReachableBlock();
859    }
860
861    bool isReachable() const {
862      Kind K = (Kind) UnreachableBlock.getInt();
863      return K == AB_Normal || K == AB_Alternate;
864    }
865  };
866
867private:
868  /// Keep track of the predecessor / successor CFG blocks.
869  using AdjacentBlocks = BumpVector<AdjacentBlock>;
870  AdjacentBlocks Preds;
871  AdjacentBlocks Succs;
872
873  /// This bit is set when the basic block contains a function call
874  /// or implicit destructor that is attributed as 'noreturn'. In that case,
875  /// control cannot technically ever proceed past this block. All such blocks
876  /// will have a single immediate successor: the exit block. This allows them
877  /// to be easily reached from the exit block and using this bit quickly
878  /// recognized without scanning the contents of the block.
879  ///
880  /// Optimization Note: This bit could be profitably folded with Terminator's
881  /// storage if the memory usage of CFGBlock becomes an issue.
882  unsigned HasNoReturnElement : 1;
883
884  /// The parent CFG that owns this CFGBlock.
885  CFG *Parent;
886
887public:
888  explicit CFGBlock(unsigned blockid, BumpVectorContext &C, CFG *parent)
889      : Elements(C), Terminator(nullptr), BlockID(blockid), Preds(C, 1),
890        Succs(C, 1), HasNoReturnElement(false), Parent(parent) {}
891
892  // Statement iterators
893  using iterator = ElementList::iterator;
894  using const_iterator = ElementList::const_iterator;
895  using reverse_iterator = ElementList::reverse_iterator;
896  using const_reverse_iterator = ElementList::const_reverse_iterator;
897
898  size_t getIndexInCFG() const;
899
900  CFGElement                 front()       const { return Elements.front();   }
901  CFGElement                 back()        const { return Elements.back();    }
902
903  iterator                   begin()             { return Elements.begin();   }
904  iterator                   end()               { return Elements.end();     }
905  const_iterator             begin()       const { return Elements.begin();   }
906  const_iterator             end()         const { return Elements.end();     }
907
908  reverse_iterator           rbegin()            { return Elements.rbegin();  }
909  reverse_iterator           rend()              { return Elements.rend();    }
910  const_reverse_iterator     rbegin()      const { return Elements.rbegin();  }
911  const_reverse_iterator     rend()        const { return Elements.rend();    }
912
913  using CFGElementRef = ElementRefImpl<false>;
914  using ConstCFGElementRef = ElementRefImpl<true>;
915
916  using ref_iterator = ElementRefIterator<false, false>;
917  using ref_iterator_range = llvm::iterator_range<ref_iterator>;
918  using const_ref_iterator = ElementRefIterator<false, true>;
919  using const_ref_iterator_range = llvm::iterator_range<const_ref_iterator>;
920
921  using reverse_ref_iterator = ElementRefIterator<true, false>;
922  using reverse_ref_iterator_range = llvm::iterator_range<reverse_ref_iterator>;
923
924  using const_reverse_ref_iterator = ElementRefIterator<true, true>;
925  using const_reverse_ref_iterator_range =
926      llvm::iterator_range<const_reverse_ref_iterator>;
927
928  ref_iterator ref_begin() { return {this, begin()}; }
929  ref_iterator ref_end() { return {this, end()}; }
930  const_ref_iterator ref_begin() const { return {this, begin()}; }
931  const_ref_iterator ref_end() const { return {this, end()}; }
932
933  reverse_ref_iterator rref_begin() { return {this, rbegin()}; }
934  reverse_ref_iterator rref_end() { return {this, rend()}; }
935  const_reverse_ref_iterator rref_begin() const { return {this, rbegin()}; }
936  const_reverse_ref_iterator rref_end() const { return {this, rend()}; }
937
938  ref_iterator_range refs() { return {ref_begin(), ref_end()}; }
939  const_ref_iterator_range refs() const { return {ref_begin(), ref_end()}; }
940  reverse_ref_iterator_range rrefs() { return {rref_begin(), rref_end()}; }
941  const_reverse_ref_iterator_range rrefs() const {
942    return {rref_begin(), rref_end()};
943  }
944
945  unsigned                   size()        const { return Elements.size();    }
946  bool                       empty()       const { return Elements.empty();   }
947
948  CFGElement operator[](size_t i) const  { return Elements[i]; }
949
950  // CFG iterators
951  using pred_iterator = AdjacentBlocks::iterator;
952  using const_pred_iterator = AdjacentBlocks::const_iterator;
953  using pred_reverse_iterator = AdjacentBlocks::reverse_iterator;
954  using const_pred_reverse_iterator = AdjacentBlocks::const_reverse_iterator;
955  using pred_range = llvm::iterator_range<pred_iterator>;
956  using pred_const_range = llvm::iterator_range<const_pred_iterator>;
957
958  using succ_iterator = AdjacentBlocks::iterator;
959  using const_succ_iterator = AdjacentBlocks::const_iterator;
960  using succ_reverse_iterator = AdjacentBlocks::reverse_iterator;
961  using const_succ_reverse_iterator = AdjacentBlocks::const_reverse_iterator;
962  using succ_range = llvm::iterator_range<succ_iterator>;
963  using succ_const_range = llvm::iterator_range<const_succ_iterator>;
964
965  pred_iterator                pred_begin()        { return Preds.begin();   }
966  pred_iterator                pred_end()          { return Preds.end();     }
967  const_pred_iterator          pred_begin()  const { return Preds.begin();   }
968  const_pred_iterator          pred_end()    const { return Preds.end();     }
969
970  pred_reverse_iterator        pred_rbegin()       { return Preds.rbegin();  }
971  pred_reverse_iterator        pred_rend()         { return Preds.rend();    }
972  const_pred_reverse_iterator  pred_rbegin() const { return Preds.rbegin();  }
973  const_pred_reverse_iterator  pred_rend()   const { return Preds.rend();    }
974
975  pred_range preds() {
976    return pred_range(pred_begin(), pred_end());
977  }
978
979  pred_const_range preds() const {
980    return pred_const_range(pred_begin(), pred_end());
981  }
982
983  succ_iterator                succ_begin()        { return Succs.begin();   }
984  succ_iterator                succ_end()          { return Succs.end();     }
985  const_succ_iterator          succ_begin()  const { return Succs.begin();   }
986  const_succ_iterator          succ_end()    const { return Succs.end();     }
987
988  succ_reverse_iterator        succ_rbegin()       { return Succs.rbegin();  }
989  succ_reverse_iterator        succ_rend()         { return Succs.rend();    }
990  const_succ_reverse_iterator  succ_rbegin() const { return Succs.rbegin();  }
991  const_succ_reverse_iterator  succ_rend()   const { return Succs.rend();    }
992
993  succ_range succs() {
994    return succ_range(succ_begin(), succ_end());
995  }
996
997  succ_const_range succs() const {
998    return succ_const_range(succ_begin(), succ_end());
999  }
1000
1001  unsigned                     succ_size()   const { return Succs.size();    }
1002  bool                         succ_empty()  const { return Succs.empty();   }
1003
1004  unsigned                     pred_size()   const { return Preds.size();    }
1005  bool                         pred_empty()  const { return Preds.empty();   }
1006
1007
1008  class FilterOptions {
1009  public:
1010    unsigned IgnoreNullPredecessors : 1;
1011    unsigned IgnoreDefaultsWithCoveredEnums : 1;
1012
1013    FilterOptions()
1014        : IgnoreNullPredecessors(1), IgnoreDefaultsWithCoveredEnums(0) {}
1015  };
1016
1017  static bool FilterEdge(const FilterOptions &F, const CFGBlock *Src,
1018       const CFGBlock *Dst);
1019
1020  template <typename IMPL, bool IsPred>
1021  class FilteredCFGBlockIterator {
1022  private:
1023    IMPL I, E;
1024    const FilterOptions F;
1025    const CFGBlock *From;
1026
1027  public:
1028    explicit FilteredCFGBlockIterator(const IMPL &i, const IMPL &e,
1029                                      const CFGBlock *from,
1030                                      const FilterOptions &f)
1031        : I(i), E(e), F(f), From(from) {
1032      while (hasMore() && Filter(*I))
1033        ++I;
1034    }
1035
1036    bool hasMore() const { return I != E; }
1037
1038    FilteredCFGBlockIterator &operator++() {
1039      do { ++I; } while (hasMore() && Filter(*I));
1040      return *this;
1041    }
1042
1043    const CFGBlock *operator*() const { return *I; }
1044
1045  private:
1046    bool Filter(const CFGBlock *To) {
1047      return IsPred ? FilterEdge(F, To, From) : FilterEdge(F, From, To);
1048    }
1049  };
1050
1051  using filtered_pred_iterator =
1052      FilteredCFGBlockIterator<const_pred_iterator, true>;
1053
1054  using filtered_succ_iterator =
1055      FilteredCFGBlockIterator<const_succ_iterator, false>;
1056
1057  filtered_pred_iterator filtered_pred_start_end(const FilterOptions &f) const {
1058    return filtered_pred_iterator(pred_begin(), pred_end(), this, f);
1059  }
1060
1061  filtered_succ_iterator filtered_succ_start_end(const FilterOptions &f) const {
1062    return filtered_succ_iterator(succ_begin(), succ_end(), this, f);
1063  }
1064
1065  // Manipulation of block contents
1066
1067  void setTerminator(CFGTerminator Term) { Terminator = Term; }
1068  void setLabel(Stmt *Statement) { Label = Statement; }
1069  void setLoopTarget(const Stmt *loopTarget) { LoopTarget = loopTarget; }
1070  void setHasNoReturnElement() { HasNoReturnElement = true; }
1071
1072  /// Returns true if the block would eventually end with a sink (a noreturn
1073  /// node).
1074  bool isInevitablySinking() const;
1075
1076  CFGTerminator getTerminator() const { return Terminator; }
1077
1078  Stmt *getTerminatorStmt() { return Terminator.getStmt(); }
1079  const Stmt *getTerminatorStmt() const { return Terminator.getStmt(); }
1080
1081  /// \returns the last (\c rbegin()) condition, e.g. observe the following code
1082  /// snippet:
1083  ///   if (A && B && C)
1084  /// A block would be created for \c A, \c B, and \c C. For the latter,
1085  /// \c getTerminatorStmt() would retrieve the entire condition, rather than
1086  /// C itself, while this method would only return C.
1087  const Expr *getLastCondition() const;
1088
1089  Stmt *getTerminatorCondition(bool StripParens = true);
1090
1091  const Stmt *getTerminatorCondition(bool StripParens = true) const {
1092    return const_cast<CFGBlock*>(this)->getTerminatorCondition(StripParens);
1093  }
1094
1095  const Stmt *getLoopTarget() const { return LoopTarget; }
1096
1097  Stmt *getLabel() { return Label; }
1098  const Stmt *getLabel() const { return Label; }
1099
1100  bool hasNoReturnElement() const { return HasNoReturnElement; }
1101
1102  unsigned getBlockID() const { return BlockID; }
1103
1104  CFG *getParent() const { return Parent; }
1105
1106  void dump() const;
1107
1108  void dump(const CFG *cfg, const LangOptions &LO, bool ShowColors = false) const;
1109  void print(raw_ostream &OS, const CFG* cfg, const LangOptions &LO,
1110             bool ShowColors) const;
1111
1112  void printTerminator(raw_ostream &OS, const LangOptions &LO) const;
1113  void printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
1114                           bool AddQuotes) const;
1115
1116  void printAsOperand(raw_ostream &OS, bool /*PrintType*/) {
1117    OS << "BB#" << getBlockID();
1118  }
1119
1120  /// Adds a (potentially unreachable) successor block to the current block.
1121  void addSuccessor(AdjacentBlock Succ, BumpVectorContext &C);
1122
1123  void appendStmt(Stmt *statement, BumpVectorContext &C) {
1124    Elements.push_back(CFGStmt(statement), C);
1125  }
1126
1127  void appendConstructor(CXXConstructExpr *CE, const ConstructionContext *CC,
1128                         BumpVectorContext &C) {
1129    Elements.push_back(CFGConstructor(CE, CC), C);
1130  }
1131
1132  void appendCXXRecordTypedCall(Expr *E,
1133                                const ConstructionContext *CC,
1134                                BumpVectorContext &C) {
1135    Elements.push_back(CFGCXXRecordTypedCall(E, CC), C);
1136  }
1137
1138  void appendInitializer(CXXCtorInitializer *initializer,
1139                        BumpVectorContext &C) {
1140    Elements.push_back(CFGInitializer(initializer), C);
1141  }
1142
1143  void appendNewAllocator(CXXNewExpr *NE,
1144                          BumpVectorContext &C) {
1145    Elements.push_back(CFGNewAllocator(NE), C);
1146  }
1147
1148  void appendScopeBegin(const VarDecl *VD, const Stmt *S,
1149                        BumpVectorContext &C) {
1150    Elements.push_back(CFGScopeBegin(VD, S), C);
1151  }
1152
1153  void appendScopeEnd(const VarDecl *VD, const Stmt *S, BumpVectorContext &C) {
1154    Elements.push_back(CFGScopeEnd(VD, S), C);
1155  }
1156
1157  void appendBaseDtor(const CXXBaseSpecifier *BS, BumpVectorContext &C) {
1158    Elements.push_back(CFGBaseDtor(BS), C);
1159  }
1160
1161  void appendMemberDtor(FieldDecl *FD, BumpVectorContext &C) {
1162    Elements.push_back(CFGMemberDtor(FD), C);
1163  }
1164
1165  void appendTemporaryDtor(CXXBindTemporaryExpr *E, BumpVectorContext &C) {
1166    Elements.push_back(CFGTemporaryDtor(E), C);
1167  }
1168
1169  void appendAutomaticObjDtor(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
1170    Elements.push_back(CFGAutomaticObjDtor(VD, S), C);
1171  }
1172
1173  void appendCleanupFunction(const VarDecl *VD, BumpVectorContext &C) {
1174    Elements.push_back(CFGCleanupFunction(VD), C);
1175  }
1176
1177  void appendLifetimeEnds(VarDecl *VD, Stmt *S, BumpVectorContext &C) {
1178    Elements.push_back(CFGLifetimeEnds(VD, S), C);
1179  }
1180
1181  void appendLoopExit(const Stmt *LoopStmt, BumpVectorContext &C) {
1182    Elements.push_back(CFGLoopExit(LoopStmt), C);
1183  }
1184
1185  void appendDeleteDtor(CXXRecordDecl *RD, CXXDeleteExpr *DE, BumpVectorContext &C) {
1186    Elements.push_back(CFGDeleteDtor(RD, DE), C);
1187  }
1188};
1189
1190/// CFGCallback defines methods that should be called when a logical
1191/// operator error is found when building the CFG.
1192class CFGCallback {
1193public:
1194  CFGCallback() = default;
1195  virtual ~CFGCallback() = default;
1196
1197  virtual void logicAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {}
1198  virtual void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) {}
1199  virtual void compareBitwiseEquality(const BinaryOperator *B,
1200                                      bool isAlwaysTrue) {}
1201  virtual void compareBitwiseOr(const BinaryOperator *B) {}
1202};
1203
1204/// Represents a source-level, intra-procedural CFG that represents the
1205///  control-flow of a Stmt.  The Stmt can represent an entire function body,
1206///  or a single expression.  A CFG will always contain one empty block that
1207///  represents the Exit point of the CFG.  A CFG will also contain a designated
1208///  Entry block.  The CFG solely represents control-flow; it consists of
1209///  CFGBlocks which are simply containers of Stmt*'s in the AST the CFG
1210///  was constructed from.
1211class CFG {
1212public:
1213  //===--------------------------------------------------------------------===//
1214  // CFG Construction & Manipulation.
1215  //===--------------------------------------------------------------------===//
1216
1217  class BuildOptions {
1218    // Stmt::lastStmtConstant has the same value as the last Stmt kind,
1219    // so make sure we add one to account for this!
1220    std::bitset<Stmt::lastStmtConstant + 1> alwaysAddMask;
1221
1222  public:
1223    using ForcedBlkExprs = llvm::DenseMap<const Stmt *, const CFGBlock *>;
1224
1225    ForcedBlkExprs **forcedBlkExprs = nullptr;
1226    CFGCallback *Observer = nullptr;
1227    bool PruneTriviallyFalseEdges = true;
1228    bool AddEHEdges = false;
1229    bool AddInitializers = false;
1230    bool AddImplicitDtors = false;
1231    bool AddLifetime = false;
1232    bool AddLoopExit = false;
1233    bool AddTemporaryDtors = false;
1234    bool AddScopes = false;
1235    bool AddStaticInitBranches = false;
1236    bool AddCXXNewAllocator = false;
1237    bool AddCXXDefaultInitExprInCtors = false;
1238    bool AddCXXDefaultInitExprInAggregates = false;
1239    bool AddRichCXXConstructors = false;
1240    bool MarkElidedCXXConstructors = false;
1241    bool AddVirtualBaseBranches = false;
1242    bool OmitImplicitValueInitializers = false;
1243
1244    BuildOptions() = default;
1245
1246    bool alwaysAdd(const Stmt *stmt) const {
1247      return alwaysAddMask[stmt->getStmtClass()];
1248    }
1249
1250    BuildOptions &setAlwaysAdd(Stmt::StmtClass stmtClass, bool val = true) {
1251      alwaysAddMask[stmtClass] = val;
1252      return *this;
1253    }
1254
1255    BuildOptions &setAllAlwaysAdd() {
1256      alwaysAddMask.set();
1257      return *this;
1258    }
1259  };
1260
1261  /// Builds a CFG from an AST.
1262  static std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *AST, ASTContext *C,
1263                                       const BuildOptions &BO);
1264
1265  /// Create a new block in the CFG. The CFG owns the block; the caller should
1266  /// not directly free it.
1267  CFGBlock *createBlock();
1268
1269  /// Set the entry block of the CFG. This is typically used only during CFG
1270  /// construction. Most CFG clients expect that the entry block has no
1271  /// predecessors and contains no statements.
1272  void setEntry(CFGBlock *B) { Entry = B; }
1273
1274  /// Set the block used for indirect goto jumps. This is typically used only
1275  /// during CFG construction.
1276  void setIndirectGotoBlock(CFGBlock *B) { IndirectGotoBlock = B; }
1277
1278  //===--------------------------------------------------------------------===//
1279  // Block Iterators
1280  //===--------------------------------------------------------------------===//
1281
1282  using CFGBlockListTy = BumpVector<CFGBlock *>;
1283  using iterator = CFGBlockListTy::iterator;
1284  using const_iterator = CFGBlockListTy::const_iterator;
1285  using reverse_iterator = std::reverse_iterator<iterator>;
1286  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
1287
1288  CFGBlock &                front()                { return *Blocks.front(); }
1289  CFGBlock &                back()                 { return *Blocks.back(); }
1290
1291  iterator                  begin()                { return Blocks.begin(); }
1292  iterator                  end()                  { return Blocks.end(); }
1293  const_iterator            begin()       const    { return Blocks.begin(); }
1294  const_iterator            end()         const    { return Blocks.end(); }
1295
1296  iterator nodes_begin() { return iterator(Blocks.begin()); }
1297  iterator nodes_end() { return iterator(Blocks.end()); }
1298
1299  llvm::iterator_range<iterator> nodes() { return {begin(), end()}; }
1300  llvm::iterator_range<const_iterator> const_nodes() const {
1301    return {begin(), end()};
1302  }
1303
1304  const_iterator nodes_begin() const { return const_iterator(Blocks.begin()); }
1305  const_iterator nodes_end() const { return const_iterator(Blocks.end()); }
1306
1307  reverse_iterator          rbegin()               { return Blocks.rbegin(); }
1308  reverse_iterator          rend()                 { return Blocks.rend(); }
1309  const_reverse_iterator    rbegin()      const    { return Blocks.rbegin(); }
1310  const_reverse_iterator    rend()        const    { return Blocks.rend(); }
1311
1312  llvm::iterator_range<reverse_iterator> reverse_nodes() {
1313    return {rbegin(), rend()};
1314  }
1315  llvm::iterator_range<const_reverse_iterator> const_reverse_nodes() const {
1316    return {rbegin(), rend()};
1317  }
1318
1319  CFGBlock &                getEntry()             { return *Entry; }
1320  const CFGBlock &          getEntry()    const    { return *Entry; }
1321  CFGBlock &                getExit()              { return *Exit; }
1322  const CFGBlock &          getExit()     const    { return *Exit; }
1323
1324  CFGBlock *       getIndirectGotoBlock() { return IndirectGotoBlock; }
1325  const CFGBlock * getIndirectGotoBlock() const { return IndirectGotoBlock; }
1326
1327  using try_block_iterator = std::vector<const CFGBlock *>::const_iterator;
1328  using try_block_range = llvm::iterator_range<try_block_iterator>;
1329
1330  try_block_iterator try_blocks_begin() const {
1331    return TryDispatchBlocks.begin();
1332  }
1333
1334  try_block_iterator try_blocks_end() const {
1335    return TryDispatchBlocks.end();
1336  }
1337
1338  try_block_range try_blocks() const {
1339    return try_block_range(try_blocks_begin(), try_blocks_end());
1340  }
1341
1342  void addTryDispatchBlock(const CFGBlock *block) {
1343    TryDispatchBlocks.push_back(block);
1344  }
1345
1346  /// Records a synthetic DeclStmt and the DeclStmt it was constructed from.
1347  ///
1348  /// The CFG uses synthetic DeclStmts when a single AST DeclStmt contains
1349  /// multiple decls.
1350  void addSyntheticDeclStmt(const DeclStmt *Synthetic,
1351                            const DeclStmt *Source) {
1352    assert(Synthetic->isSingleDecl() && "Can handle single declarations only");
1353    assert(Synthetic != Source && "Don't include original DeclStmts in map");
1354    assert(!SyntheticDeclStmts.count(Synthetic) && "Already in map");
1355    SyntheticDeclStmts[Synthetic] = Source;
1356  }
1357
1358  using synthetic_stmt_iterator =
1359      llvm::DenseMap<const DeclStmt *, const DeclStmt *>::const_iterator;
1360  using synthetic_stmt_range = llvm::iterator_range<synthetic_stmt_iterator>;
1361
1362  /// Iterates over synthetic DeclStmts in the CFG.
1363  ///
1364  /// Each element is a (synthetic statement, source statement) pair.
1365  ///
1366  /// \sa addSyntheticDeclStmt
1367  synthetic_stmt_iterator synthetic_stmt_begin() const {
1368    return SyntheticDeclStmts.begin();
1369  }
1370
1371  /// \sa synthetic_stmt_begin
1372  synthetic_stmt_iterator synthetic_stmt_end() const {
1373    return SyntheticDeclStmts.end();
1374  }
1375
1376  /// \sa synthetic_stmt_begin
1377  synthetic_stmt_range synthetic_stmts() const {
1378    return synthetic_stmt_range(synthetic_stmt_begin(), synthetic_stmt_end());
1379  }
1380
1381  //===--------------------------------------------------------------------===//
1382  // Member templates useful for various batch operations over CFGs.
1383  //===--------------------------------------------------------------------===//
1384
1385  template <typename Callback> void VisitBlockStmts(Callback &O) const {
1386    for (const_iterator I = begin(), E = end(); I != E; ++I)
1387      for (CFGBlock::const_iterator BI = (*I)->begin(), BE = (*I)->end();
1388           BI != BE; ++BI) {
1389        if (std::optional<CFGStmt> stmt = BI->getAs<CFGStmt>())
1390          O(const_cast<Stmt *>(stmt->getStmt()));
1391      }
1392  }
1393
1394  //===--------------------------------------------------------------------===//
1395  // CFG Introspection.
1396  //===--------------------------------------------------------------------===//
1397
1398  /// Returns the total number of BlockIDs allocated (which start at 0).
1399  unsigned getNumBlockIDs() const { return NumBlockIDs; }
1400
1401  /// Return the total number of CFGBlocks within the CFG This is simply a
1402  /// renaming of the getNumBlockIDs(). This is necessary because the dominator
1403  /// implementation needs such an interface.
1404  unsigned size() const { return NumBlockIDs; }
1405
1406  /// Returns true if the CFG has no branches. Usually it boils down to the CFG
1407  /// having exactly three blocks (entry, the actual code, exit), but sometimes
1408  /// more blocks appear due to having control flow that can be fully
1409  /// resolved in compile time.
1410  bool isLinear() const;
1411
1412  //===--------------------------------------------------------------------===//
1413  // CFG Debugging: Pretty-Printing and Visualization.
1414  //===--------------------------------------------------------------------===//
1415
1416  void viewCFG(const LangOptions &LO) const;
1417  void print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const;
1418  void dump(const LangOptions &LO, bool ShowColors) const;
1419
1420  //===--------------------------------------------------------------------===//
1421  // Internal: constructors and data.
1422  //===--------------------------------------------------------------------===//
1423
1424  CFG() : Blocks(BlkBVC, 10) {}
1425
1426  llvm::BumpPtrAllocator& getAllocator() {
1427    return BlkBVC.getAllocator();
1428  }
1429
1430  BumpVectorContext &getBumpVectorContext() {
1431    return BlkBVC;
1432  }
1433
1434private:
1435  CFGBlock *Entry = nullptr;
1436  CFGBlock *Exit = nullptr;
1437
1438  // Special block to contain collective dispatch for indirect gotos
1439  CFGBlock* IndirectGotoBlock = nullptr;
1440
1441  unsigned  NumBlockIDs = 0;
1442
1443  BumpVectorContext BlkBVC;
1444
1445  CFGBlockListTy Blocks;
1446
1447  /// C++ 'try' statements are modeled with an indirect dispatch block.
1448  /// This is the collection of such blocks present in the CFG.
1449  std::vector<const CFGBlock *> TryDispatchBlocks;
1450
1451  /// Collects DeclStmts synthesized for this CFG and maps each one back to its
1452  /// source DeclStmt.
1453  llvm::DenseMap<const DeclStmt *, const DeclStmt *> SyntheticDeclStmts;
1454};
1455
1456Expr *extractElementInitializerFromNestedAILE(const ArrayInitLoopExpr *AILE);
1457
1458} // namespace clang
1459
1460//===----------------------------------------------------------------------===//
1461// GraphTraits specializations for CFG basic block graphs (source-level CFGs)
1462//===----------------------------------------------------------------------===//
1463
1464namespace llvm {
1465
1466/// Implement simplify_type for CFGTerminator, so that we can dyn_cast from
1467/// CFGTerminator to a specific Stmt class.
1468template <> struct simplify_type< ::clang::CFGTerminator> {
1469  using SimpleType = ::clang::Stmt *;
1470
1471  static SimpleType getSimplifiedValue(::clang::CFGTerminator Val) {
1472    return Val.getStmt();
1473  }
1474};
1475
1476// Traits for: CFGBlock
1477
1478template <> struct GraphTraits< ::clang::CFGBlock *> {
1479  using NodeRef = ::clang::CFGBlock *;
1480  using ChildIteratorType = ::clang::CFGBlock::succ_iterator;
1481
1482  static NodeRef getEntryNode(::clang::CFGBlock *BB) { return BB; }
1483  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1484  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1485};
1486
1487template <> struct GraphTraits< const ::clang::CFGBlock *> {
1488  using NodeRef = const ::clang::CFGBlock *;
1489  using ChildIteratorType = ::clang::CFGBlock::const_succ_iterator;
1490
1491  static NodeRef getEntryNode(const clang::CFGBlock *BB) { return BB; }
1492  static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
1493  static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
1494};
1495
1496template <> struct GraphTraits<Inverse< ::clang::CFGBlock *>> {
1497  using NodeRef = ::clang::CFGBlock *;
1498  using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator;
1499
1500  static NodeRef getEntryNode(Inverse<::clang::CFGBlock *> G) {
1501    return G.Graph;
1502  }
1503
1504  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1505  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1506};
1507
1508template <> struct GraphTraits<Inverse<const ::clang::CFGBlock *>> {
1509  using NodeRef = const ::clang::CFGBlock *;
1510  using ChildIteratorType = ::clang::CFGBlock::const_pred_iterator;
1511
1512  static NodeRef getEntryNode(Inverse<const ::clang::CFGBlock *> G) {
1513    return G.Graph;
1514  }
1515
1516  static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
1517  static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
1518};
1519
1520// Traits for: CFG
1521
1522template <> struct GraphTraits< ::clang::CFG* >
1523    : public GraphTraits< ::clang::CFGBlock *>  {
1524  using nodes_iterator = ::clang::CFG::iterator;
1525
1526  static NodeRef getEntryNode(::clang::CFG *F) { return &F->getEntry(); }
1527  static nodes_iterator nodes_begin(::clang::CFG* F) { return F->nodes_begin();}
1528  static nodes_iterator   nodes_end(::clang::CFG* F) { return F->nodes_end(); }
1529  static unsigned              size(::clang::CFG* F) { return F->size(); }
1530};
1531
1532template <> struct GraphTraits<const ::clang::CFG* >
1533    : public GraphTraits<const ::clang::CFGBlock *>  {
1534  using nodes_iterator = ::clang::CFG::const_iterator;
1535
1536  static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getEntry(); }
1537
1538  static nodes_iterator nodes_begin( const ::clang::CFG* F) {
1539    return F->nodes_begin();
1540  }
1541
1542  static nodes_iterator nodes_end( const ::clang::CFG* F) {
1543    return F->nodes_end();
1544  }
1545
1546  static unsigned size(const ::clang::CFG* F) {
1547    return F->size();
1548  }
1549};
1550
1551template <> struct GraphTraits<Inverse< ::clang::CFG *>>
1552  : public GraphTraits<Inverse< ::clang::CFGBlock *>> {
1553  using nodes_iterator = ::clang::CFG::iterator;
1554
1555  static NodeRef getEntryNode(::clang::CFG *F) { return &F->getExit(); }
1556  static nodes_iterator nodes_begin( ::clang::CFG* F) {return F->nodes_begin();}
1557  static nodes_iterator nodes_end( ::clang::CFG* F) { return F->nodes_end(); }
1558};
1559
1560template <> struct GraphTraits<Inverse<const ::clang::CFG *>>
1561  : public GraphTraits<Inverse<const ::clang::CFGBlock *>> {
1562  using nodes_iterator = ::clang::CFG::const_iterator;
1563
1564  static NodeRef getEntryNode(const ::clang::CFG *F) { return &F->getExit(); }
1565
1566  static nodes_iterator nodes_begin(const ::clang::CFG* F) {
1567    return F->nodes_begin();
1568  }
1569
1570  static nodes_iterator nodes_end(const ::clang::CFG* F) {
1571    return F->nodes_end();
1572  }
1573};
1574
1575} // namespace llvm
1576
1577#endif // LLVM_CLANG_ANALYSIS_CFG_H
1578