1/* nfa - NFA construction routines */
2
3/*  Copyright (c) 1990 The Regents of the University of California. */
4/*  All rights reserved. */
5
6/*  This code is derived from software contributed to Berkeley by */
7/*  Vern Paxson. */
8
9/*  The United States Government has rights in this work pursuant */
10/*  to contract no. DE-AC03-76SF00098 between the United States */
11/*  Department of Energy and the University of California. */
12
13/*  This file is part of flex. */
14
15/*  Redistribution and use in source and binary forms, with or without */
16/*  modification, are permitted provided that the following conditions */
17/*  are met: */
18
19/*  1. Redistributions of source code must retain the above copyright */
20/*     notice, this list of conditions and the following disclaimer. */
21/*  2. Redistributions in binary form must reproduce the above copyright */
22/*     notice, this list of conditions and the following disclaimer in the */
23/*     documentation and/or other materials provided with the distribution. */
24
25/*  Neither the name of the University nor the names of its contributors */
26/*  may be used to endorse or promote products derived from this software */
27/*  without specific prior written permission. */
28
29/*  THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR */
30/*  IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
31/*  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR */
32/*  PURPOSE. */
33
34#include "flexdef.h"
35
36
37/* declare functions that have forward references */
38
39int	dupmachine(int);
40void	mkxtion(int, int);
41
42
43/* add_accept - add an accepting state to a machine
44 *
45 * accepting_number becomes mach's accepting number.
46 */
47
48void    add_accept (int mach, int accepting_number)
49{
50	/* Hang the accepting number off an epsilon state.  if it is associated
51	 * with a state that has a non-epsilon out-transition, then the state
52	 * will accept BEFORE it makes that transition, i.e., one character
53	 * too soon.
54	 */
55
56	if (transchar[finalst[mach]] == SYM_EPSILON)
57		accptnum[finalst[mach]] = accepting_number;
58
59	else {
60		int     astate = mkstate (SYM_EPSILON);
61
62		accptnum[astate] = accepting_number;
63		(void) link_machines (mach, astate);
64	}
65}
66
67
68/* copysingl - make a given number of copies of a singleton machine
69 *
70 * synopsis
71 *
72 *   newsng = copysingl( singl, num );
73 *
74 *     newsng - a new singleton composed of num copies of singl
75 *     singl  - a singleton machine
76 *     num    - the number of copies of singl to be present in newsng
77 */
78
79int     copysingl (int singl, int num)
80{
81	int     copy, i;
82
83	copy = mkstate (SYM_EPSILON);
84
85	for (i = 1; i <= num; ++i)
86		copy = link_machines (copy, dupmachine (singl));
87
88	return copy;
89}
90
91
92/* dumpnfa - debugging routine to write out an nfa */
93
94void    dumpnfa (int state1)
95{
96	int     sym, tsp1, tsp2, anum, ns;
97
98	fprintf (stderr,
99		 _
100		 ("\n\n********** beginning dump of nfa with start state %d\n"),
101		 state1);
102
103	/* We probably should loop starting at firstst[state1] and going to
104	 * lastst[state1], but they're not maintained properly when we "or"
105	 * all of the rules together.  So we use our knowledge that the machine
106	 * starts at state 1 and ends at lastnfa.
107	 */
108
109	/* for ( ns = firstst[state1]; ns <= lastst[state1]; ++ns ) */
110	for (ns = 1; ns <= lastnfa; ++ns) {
111		fprintf (stderr, _("state # %4d\t"), ns);
112
113		sym = transchar[ns];
114		tsp1 = trans1[ns];
115		tsp2 = trans2[ns];
116		anum = accptnum[ns];
117
118		fprintf (stderr, "%3d:  %4d, %4d", sym, tsp1, tsp2);
119
120		if (anum != NIL)
121			fprintf (stderr, "  [%d]", anum);
122
123		fprintf (stderr, "\n");
124	}
125
126	fprintf (stderr, _("********** end of dump\n"));
127}
128
129
130/* dupmachine - make a duplicate of a given machine
131 *
132 * synopsis
133 *
134 *   copy = dupmachine( mach );
135 *
136 *     copy - holds duplicate of mach
137 *     mach - machine to be duplicated
138 *
139 * note that the copy of mach is NOT an exact duplicate; rather, all the
140 * transition states values are adjusted so that the copy is self-contained,
141 * as the original should have been.
142 *
143 * also note that the original MUST be contiguous, with its low and high
144 * states accessible by the arrays firstst and lastst
145 */
146
147int     dupmachine (int mach)
148{
149	int     i, init, state_offset;
150	int     state = 0;
151	int     last = lastst[mach];
152
153	for (i = firstst[mach]; i <= last; ++i) {
154		state = mkstate (transchar[i]);
155
156		if (trans1[i] != NO_TRANSITION) {
157			mkxtion (finalst[state], trans1[i] + state - i);
158
159			if (transchar[i] == SYM_EPSILON &&
160			    trans2[i] != NO_TRANSITION)
161					mkxtion (finalst[state],
162						 trans2[i] + state - i);
163		}
164
165		accptnum[state] = accptnum[i];
166	}
167
168	if (state == 0)
169		flexfatal (_("empty machine in dupmachine()"));
170
171	state_offset = state - i + 1;
172
173	init = mach + state_offset;
174	firstst[init] = firstst[mach] + state_offset;
175	finalst[init] = finalst[mach] + state_offset;
176	lastst[init] = lastst[mach] + state_offset;
177
178	return init;
179}
180
181
182/* finish_rule - finish up the processing for a rule
183 *
184 * An accepting number is added to the given machine.  If variable_trail_rule
185 * is true then the rule has trailing context and both the head and trail
186 * are variable size.  Otherwise if headcnt or trailcnt is non-zero then
187 * the machine recognizes a pattern with trailing context and headcnt is
188 * the number of characters in the matched part of the pattern, or zero
189 * if the matched part has variable length.  trailcnt is the number of
190 * trailing context characters in the pattern, or zero if the trailing
191 * context has variable length.
192 */
193
194void    finish_rule (int mach, int variable_trail_rule, int headcnt, int trailcnt,
195		     int pcont_act)
196{
197	char    action_text[MAXLINE];
198
199	add_accept (mach, num_rules);
200
201	/* We did this in new_rule(), but it often gets the wrong
202	 * number because we do it before we start parsing the current rule.
203	 */
204	rule_linenum[num_rules] = linenum;
205
206	/* If this is a continued action, then the line-number has already
207	 * been updated, giving us the wrong number.
208	 */
209	if (continued_action)
210		--rule_linenum[num_rules];
211
212
213	/* If the previous rule was continued action, then we inherit the
214	 * previous newline flag, possibly overriding the current one.
215	 */
216	if (pcont_act && rule_has_nl[num_rules - 1])
217		rule_has_nl[num_rules] = true;
218
219	snprintf (action_text, sizeof(action_text), "case %d:\n", num_rules);
220	add_action (action_text);
221	if (rule_has_nl[num_rules]) {
222		snprintf (action_text, sizeof(action_text), "/* rule %d can match eol */\n",
223			 num_rules);
224		add_action (action_text);
225	}
226
227
228	if (variable_trail_rule) {
229		rule_type[num_rules] = RULE_VARIABLE;
230
231		if (performance_report > 0)
232			fprintf (stderr,
233				 _
234				 ("Variable trailing context rule at line %d\n"),
235				 rule_linenum[num_rules]);
236
237		variable_trailing_context_rules = true;
238	}
239
240	else {
241		rule_type[num_rules] = RULE_NORMAL;
242
243		if (headcnt > 0 || trailcnt > 0) {
244			/* Do trailing context magic to not match the trailing
245			 * characters.
246			 */
247			char   *scanner_cp = "YY_G(yy_c_buf_p) = yy_cp";
248			char   *scanner_bp = "yy_bp";
249
250			add_action
251				("*yy_cp = YY_G(yy_hold_char); /* undo effects of setting up yytext */\n");
252
253			if (headcnt > 0) {
254				if (rule_has_nl[num_rules]) {
255					snprintf (action_text, sizeof(action_text),
256						"YY_LINENO_REWIND_TO(%s + %d);\n", scanner_bp, headcnt);
257					add_action (action_text);
258				}
259				snprintf (action_text, sizeof(action_text), "%s = %s + %d;\n",
260					 scanner_cp, scanner_bp, headcnt);
261				add_action (action_text);
262			}
263
264			else {
265				if (rule_has_nl[num_rules]) {
266					snprintf (action_text, sizeof(action_text),
267						 "YY_LINENO_REWIND_TO(yy_cp - %d);\n", trailcnt);
268					add_action (action_text);
269				}
270
271				snprintf (action_text, sizeof(action_text), "%s -= %d;\n",
272					 scanner_cp, trailcnt);
273				add_action (action_text);
274			}
275
276			add_action
277				("YY_DO_BEFORE_ACTION; /* set up yytext again */\n");
278		}
279	}
280
281	/* Okay, in the action code at this point yytext and yyleng have
282	 * their proper final values for this rule, so here's the point
283	 * to do any user action.  But don't do it for continued actions,
284	 * as that'll result in multiple YY_RULE_SETUP's.
285	 */
286	if (!continued_action)
287		add_action ("YY_RULE_SETUP\n");
288
289	line_directive_out(NULL, 1);
290        add_action("[[");
291}
292
293
294/* link_machines - connect two machines together
295 *
296 * synopsis
297 *
298 *   new = link_machines( first, last );
299 *
300 *     new    - a machine constructed by connecting first to last
301 *     first  - the machine whose successor is to be last
302 *     last   - the machine whose predecessor is to be first
303 *
304 * note: this routine concatenates the machine first with the machine
305 *  last to produce a machine new which will pattern-match first first
306 *  and then last, and will fail if either of the sub-patterns fails.
307 *  FIRST is set to new by the operation.  last is unmolested.
308 */
309
310int     link_machines (int first, int last)
311{
312	if (first == NIL)
313		return last;
314
315	else if (last == NIL)
316		return first;
317
318	else {
319		mkxtion (finalst[first], last);
320		finalst[first] = finalst[last];
321		lastst[first] = MAX (lastst[first], lastst[last]);
322		firstst[first] = MIN (firstst[first], firstst[last]);
323
324		return first;
325	}
326}
327
328
329/* mark_beginning_as_normal - mark each "beginning" state in a machine
330 *                            as being a "normal" (i.e., not trailing context-
331 *                            associated) states
332 *
333 * The "beginning" states are the epsilon closure of the first state
334 */
335
336void    mark_beginning_as_normal (int mach)
337{
338	switch (state_type[mach]) {
339	case STATE_NORMAL:
340		/* Oh, we've already visited here. */
341		return;
342
343	case STATE_TRAILING_CONTEXT:
344		state_type[mach] = STATE_NORMAL;
345
346		if (transchar[mach] == SYM_EPSILON) {
347			if (trans1[mach] != NO_TRANSITION)
348				mark_beginning_as_normal (trans1[mach]);
349
350			if (trans2[mach] != NO_TRANSITION)
351				mark_beginning_as_normal (trans2[mach]);
352		}
353		break;
354
355	default:
356		flexerror (_
357			   ("bad state type in mark_beginning_as_normal()"));
358		break;
359	}
360}
361
362
363/* mkbranch - make a machine that branches to two machines
364 *
365 * synopsis
366 *
367 *   branch = mkbranch( first, second );
368 *
369 *     branch - a machine which matches either first's pattern or second's
370 *     first, second - machines whose patterns are to be or'ed (the | operator)
371 *
372 * Note that first and second are NEITHER destroyed by the operation.  Also,
373 * the resulting machine CANNOT be used with any other "mk" operation except
374 * more mkbranch's.  Compare with mkor()
375 */
376
377int     mkbranch (int first, int second)
378{
379	int     eps;
380
381	if (first == NO_TRANSITION)
382		return second;
383
384	else if (second == NO_TRANSITION)
385		return first;
386
387	eps = mkstate (SYM_EPSILON);
388
389	mkxtion (eps, first);
390	mkxtion (eps, second);
391
392	return eps;
393}
394
395
396/* mkclos - convert a machine into a closure
397 *
398 * synopsis
399 *   new = mkclos( state );
400 *
401 * new - a new state which matches the closure of "state"
402 */
403
404int     mkclos (int state)
405{
406	return mkopt (mkposcl (state));
407}
408
409
410/* mkopt - make a machine optional
411 *
412 * synopsis
413 *
414 *   new = mkopt( mach );
415 *
416 *     new  - a machine which optionally matches whatever mach matched
417 *     mach - the machine to make optional
418 *
419 * notes:
420 *     1. mach must be the last machine created
421 *     2. mach is destroyed by the call
422 */
423
424int     mkopt (int mach)
425{
426	int     eps;
427
428	if (!SUPER_FREE_EPSILON (finalst[mach])) {
429		eps = mkstate (SYM_EPSILON);
430		mach = link_machines (mach, eps);
431	}
432
433	/* Can't skimp on the following if FREE_EPSILON(mach) is true because
434	 * some state interior to "mach" might point back to the beginning
435	 * for a closure.
436	 */
437	eps = mkstate (SYM_EPSILON);
438	mach = link_machines (eps, mach);
439
440	mkxtion (mach, finalst[mach]);
441
442	return mach;
443}
444
445
446/* mkor - make a machine that matches either one of two machines
447 *
448 * synopsis
449 *
450 *   new = mkor( first, second );
451 *
452 *     new - a machine which matches either first's pattern or second's
453 *     first, second - machines whose patterns are to be or'ed (the | operator)
454 *
455 * note that first and second are both destroyed by the operation
456 * the code is rather convoluted because an attempt is made to minimize
457 * the number of epsilon states needed
458 */
459
460int     mkor (int first, int second)
461{
462	int     eps, orend;
463
464	if (first == NIL)
465		return second;
466
467	else if (second == NIL)
468		return first;
469
470	else {
471		/* See comment in mkopt() about why we can't use the first
472		 * state of "first" or "second" if they satisfy "FREE_EPSILON".
473		 */
474		eps = mkstate (SYM_EPSILON);
475
476		first = link_machines (eps, first);
477
478		mkxtion (first, second);
479
480		if (SUPER_FREE_EPSILON (finalst[first]) &&
481		    accptnum[finalst[first]] == NIL) {
482			orend = finalst[first];
483			mkxtion (finalst[second], orend);
484		}
485
486		else if (SUPER_FREE_EPSILON (finalst[second]) &&
487			 accptnum[finalst[second]] == NIL) {
488			orend = finalst[second];
489			mkxtion (finalst[first], orend);
490		}
491
492		else {
493			eps = mkstate (SYM_EPSILON);
494
495			first = link_machines (first, eps);
496			orend = finalst[first];
497
498			mkxtion (finalst[second], orend);
499		}
500	}
501
502	finalst[first] = orend;
503	return first;
504}
505
506
507/* mkposcl - convert a machine into a positive closure
508 *
509 * synopsis
510 *   new = mkposcl( state );
511 *
512 *    new - a machine matching the positive closure of "state"
513 */
514
515int     mkposcl (int state)
516{
517	int     eps;
518
519	if (SUPER_FREE_EPSILON (finalst[state])) {
520		mkxtion (finalst[state], state);
521		return state;
522	}
523
524	else {
525		eps = mkstate (SYM_EPSILON);
526		mkxtion (eps, state);
527		return link_machines (state, eps);
528	}
529}
530
531
532/* mkrep - make a replicated machine
533 *
534 * synopsis
535 *   new = mkrep( mach, lb, ub );
536 *
537 *    new - a machine that matches whatever "mach" matched from "lb"
538 *          number of times to "ub" number of times
539 *
540 * note
541 *   if "ub" is INFINITE_REPEAT then "new" matches "lb" or more occurrences of "mach"
542 */
543
544int     mkrep (int mach, int lb, int ub)
545{
546	int     base_mach, tail, copy, i;
547
548	base_mach = copysingl (mach, lb - 1);
549
550	if (ub == INFINITE_REPEAT) {
551		copy = dupmachine (mach);
552		mach = link_machines (mach,
553				      link_machines (base_mach,
554						     mkclos (copy)));
555	}
556
557	else {
558		tail = mkstate (SYM_EPSILON);
559
560		for (i = lb; i < ub; ++i) {
561			copy = dupmachine (mach);
562			tail = mkopt (link_machines (copy, tail));
563		}
564
565		mach =
566			link_machines (mach,
567				       link_machines (base_mach, tail));
568	}
569
570	return mach;
571}
572
573
574/* mkstate - create a state with a transition on a given symbol
575 *
576 * synopsis
577 *
578 *   state = mkstate( sym );
579 *
580 *     state - a new state matching sym
581 *     sym   - the symbol the new state is to have an out-transition on
582 *
583 * note that this routine makes new states in ascending order through the
584 * state array (and increments LASTNFA accordingly).  The routine DUPMACHINE
585 * relies on machines being made in ascending order and that they are
586 * CONTIGUOUS.  Change it and you will have to rewrite DUPMACHINE (kludge
587 * that it admittedly is)
588 */
589
590int     mkstate (int sym)
591{
592	if (++lastnfa >= current_mns) {
593		if ((current_mns += MNS_INCREMENT) >= maximum_mns)
594			lerr(_
595				("input rules are too complicated (>= %d NFA states)"),
596current_mns);
597
598		++num_reallocs;
599
600		firstst = reallocate_integer_array (firstst, current_mns);
601		lastst = reallocate_integer_array (lastst, current_mns);
602		finalst = reallocate_integer_array (finalst, current_mns);
603		transchar =
604			reallocate_integer_array (transchar, current_mns);
605		trans1 = reallocate_integer_array (trans1, current_mns);
606		trans2 = reallocate_integer_array (trans2, current_mns);
607		accptnum =
608			reallocate_integer_array (accptnum, current_mns);
609		assoc_rule =
610			reallocate_integer_array (assoc_rule, current_mns);
611		state_type =
612			reallocate_integer_array (state_type, current_mns);
613	}
614
615	firstst[lastnfa] = lastnfa;
616	finalst[lastnfa] = lastnfa;
617	lastst[lastnfa] = lastnfa;
618	transchar[lastnfa] = sym;
619	trans1[lastnfa] = NO_TRANSITION;
620	trans2[lastnfa] = NO_TRANSITION;
621	accptnum[lastnfa] = NIL;
622	assoc_rule[lastnfa] = num_rules;
623	state_type[lastnfa] = current_state_type;
624
625	/* Fix up equivalence classes base on this transition.  Note that any
626	 * character which has its own transition gets its own equivalence
627	 * class.  Thus only characters which are only in character classes
628	 * have a chance at being in the same equivalence class.  E.g. "a|b"
629	 * puts 'a' and 'b' into two different equivalence classes.  "[ab]"
630	 * puts them in the same equivalence class (barring other differences
631	 * elsewhere in the input).
632	 */
633
634	if (sym < 0) {
635		/* We don't have to update the equivalence classes since
636		 * that was already done when the ccl was created for the
637		 * first time.
638		 */
639	}
640
641	else if (sym == SYM_EPSILON)
642		++numeps;
643
644	else {
645		check_char (sym);
646
647		if (useecs)
648			/* Map NUL's to csize. */
649			mkechar (sym ? sym : csize, nextecm, ecgroup);
650	}
651
652	return lastnfa;
653}
654
655
656/* mkxtion - make a transition from one state to another
657 *
658 * synopsis
659 *
660 *   mkxtion( statefrom, stateto );
661 *
662 *     statefrom - the state from which the transition is to be made
663 *     stateto   - the state to which the transition is to be made
664 */
665
666void    mkxtion (int statefrom, int stateto)
667{
668	if (trans1[statefrom] == NO_TRANSITION)
669		trans1[statefrom] = stateto;
670
671	else if ((transchar[statefrom] != SYM_EPSILON) ||
672		 (trans2[statefrom] != NO_TRANSITION))
673		flexfatal (_("found too many transitions in mkxtion()"));
674
675	else {			/* second out-transition for an epsilon state */
676		++eps2;
677		trans2[statefrom] = stateto;
678	}
679}
680
681/* new_rule - initialize for a new rule */
682
683void    new_rule (void)
684{
685	if (++num_rules >= current_max_rules) {
686		++num_reallocs;
687		current_max_rules += MAX_RULES_INCREMENT;
688		rule_type = reallocate_integer_array (rule_type,
689						      current_max_rules);
690		rule_linenum = reallocate_integer_array (rule_linenum,
691							 current_max_rules);
692		rule_useful = reallocate_integer_array (rule_useful,
693							current_max_rules);
694		rule_has_nl = reallocate_bool_array (rule_has_nl,
695						     current_max_rules);
696	}
697
698	if (num_rules > MAX_RULE)
699		lerr (_("too many rules (> %d)!"), MAX_RULE);
700
701	rule_linenum[num_rules] = linenum;
702	rule_useful[num_rules] = false;
703	rule_has_nl[num_rules] = false;
704}
705