1/*
2 * Double-precision vector pow function.
3 *
4 * Copyright (c) 2020-2023, Arm Limited.
5 * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
6 */
7
8#include "v_math.h"
9#include "pl_sig.h"
10#include "pl_test.h"
11
12/* Defines parameters of the approximation and scalar fallback.  */
13#include "finite_pow.h"
14
15#define VecSmallExp v_u64 (SmallExp)
16#define VecThresExp v_u64 (ThresExp)
17
18#define VecSmallPowX v_u64 (SmallPowX)
19#define VecThresPowX v_u64 (ThresPowX)
20#define VecSmallPowY v_u64 (SmallPowY)
21#define VecThresPowY v_u64 (ThresPowY)
22
23static const struct data
24{
25  float64x2_t log_poly[7];
26  float64x2_t exp_poly[3];
27  float64x2_t ln2_hi, ln2_lo;
28  float64x2_t shift, inv_ln2_n, ln2_hi_n, ln2_lo_n;
29} data = {
30  /* Coefficients copied from v_pow_log_data.c
31     relative error: 0x1.11922ap-70 in [-0x1.6bp-8, 0x1.6bp-8]
32     Coefficients are scaled to match the scaling during evaluation.  */
33  .log_poly = { V2 (-0x1p-1), V2 (0x1.555555555556p-2 * -2),
34		V2 (-0x1.0000000000006p-2 * -2), V2 (0x1.999999959554ep-3 * 4),
35		V2 (-0x1.555555529a47ap-3 * 4), V2 (0x1.2495b9b4845e9p-3 * -8),
36		V2 (-0x1.0002b8b263fc3p-3 * -8) },
37  .ln2_hi = V2 (0x1.62e42fefa3800p-1),
38  .ln2_lo = V2 (0x1.ef35793c76730p-45),
39  /* Polynomial coefficients: abs error: 1.43*2^-58, ulp error: 0.549
40     (0.550 without fma) if |x| < ln2/512.  */
41  .exp_poly = { V2 (0x1.fffffffffffd4p-2), V2 (0x1.5555571d6ef9p-3),
42		V2 (0x1.5555576a5adcep-5) },
43  .shift = V2 (0x1.8p52), /* round to nearest int. without intrinsics.  */
44  .inv_ln2_n = V2 (0x1.71547652b82fep8), /* N/ln2.  */
45  .ln2_hi_n = V2 (0x1.62e42fefc0000p-9), /* ln2/N.  */
46  .ln2_lo_n = V2 (-0x1.c610ca86c3899p-45),
47};
48
49#define A(i) data.log_poly[i]
50#define C(i) data.exp_poly[i]
51
52/* This version implements an algorithm close to AOR scalar pow but
53   - does not implement the trick in the exp's specialcase subroutine to avoid
54     double-rounding,
55   - does not use a tail in the exponential core computation,
56   - and pow's exp polynomial order and table bits might differ.
57
58   Maximum measured error is 1.04 ULPs:
59   _ZGVnN2vv_pow(0x1.024a3e56b3c3p-136, 0x1.87910248b58acp-13)
60     got 0x1.f71162f473251p-1
61    want 0x1.f71162f473252p-1.  */
62
63static inline float64x2_t
64v_masked_lookup_f64 (const double *table, uint64x2_t i)
65{
66  return (float64x2_t){
67    table[(i[0] >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1)],
68    table[(i[1] >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1)]
69  };
70}
71
72/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
73   additional 15 bits precision.  IX is the bit representation of x, but
74   normalized in the subnormal range using the sign bit for the exponent.  */
75static inline float64x2_t
76v_log_inline (uint64x2_t ix, float64x2_t *tail, const struct data *d)
77{
78  /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
79     The range is split into N subintervals.
80     The ith subinterval contains z and c is near its center.  */
81  uint64x2_t tmp = vsubq_u64 (ix, v_u64 (Off));
82  int64x2_t k
83      = vshrq_n_s64 (vreinterpretq_s64_u64 (tmp), 52); /* arithmetic shift.  */
84  uint64x2_t iz = vsubq_u64 (ix, vandq_u64 (tmp, v_u64 (0xfffULL << 52)));
85  float64x2_t z = vreinterpretq_f64_u64 (iz);
86  float64x2_t kd = vcvtq_f64_s64 (k);
87  /* log(x) = k*Ln2 + log(c) + log1p(z/c-1).  */
88  float64x2_t invc = v_masked_lookup_f64 (__v_pow_log_data.invc, tmp);
89  float64x2_t logc = v_masked_lookup_f64 (__v_pow_log_data.logc, tmp);
90  float64x2_t logctail = v_masked_lookup_f64 (__v_pow_log_data.logctail, tmp);
91  /* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
92     |z/c - 1| < 1/N, so r = z/c - 1 is exactly representible.  */
93  float64x2_t r = vfmaq_f64 (v_f64 (-1.0), z, invc);
94  /* k*Ln2 + log(c) + r.  */
95  float64x2_t t1 = vfmaq_f64 (logc, kd, d->ln2_hi);
96  float64x2_t t2 = vaddq_f64 (t1, r);
97  float64x2_t lo1 = vfmaq_f64 (logctail, kd, d->ln2_lo);
98  float64x2_t lo2 = vaddq_f64 (vsubq_f64 (t1, t2), r);
99  /* Evaluation is optimized assuming superscalar pipelined execution.  */
100  float64x2_t ar = vmulq_f64 (A (0), r);
101  float64x2_t ar2 = vmulq_f64 (r, ar);
102  float64x2_t ar3 = vmulq_f64 (r, ar2);
103  /* k*Ln2 + log(c) + r + A[0]*r*r.  */
104  float64x2_t hi = vaddq_f64 (t2, ar2);
105  float64x2_t lo3 = vfmaq_f64 (vnegq_f64 (ar2), ar, r);
106  float64x2_t lo4 = vaddq_f64 (vsubq_f64 (t2, hi), ar2);
107  /* p = log1p(r) - r - A[0]*r*r.  */
108  float64x2_t a56 = vfmaq_f64 (A (5), r, A (6));
109  float64x2_t a34 = vfmaq_f64 (A (3), r, A (4));
110  float64x2_t a12 = vfmaq_f64 (A (1), r, A (2));
111  float64x2_t p = vfmaq_f64 (a34, ar2, a56);
112  p = vfmaq_f64 (a12, ar2, p);
113  p = vmulq_f64 (ar3, p);
114  float64x2_t lo
115      = vaddq_f64 (vaddq_f64 (vaddq_f64 (vaddq_f64 (lo1, lo2), lo3), lo4), p);
116  float64x2_t y = vaddq_f64 (hi, lo);
117  *tail = vaddq_f64 (vsubq_f64 (hi, y), lo);
118  return y;
119}
120
121/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.  */
122static inline float64x2_t
123v_exp_inline (float64x2_t x, float64x2_t xtail, const struct data *d)
124{
125  /* Fallback to scalar exp_inline for all lanes if any lane
126     contains value of x s.t. |x| <= 2^-54 or >= 512.  */
127  uint64x2_t abstop
128      = vandq_u64 (vshrq_n_u64 (vreinterpretq_u64_f64 (x), 52), v_u64 (0x7ff));
129  uint64x2_t uoflowx
130      = vcgeq_u64 (vsubq_u64 (abstop, VecSmallExp), VecThresExp);
131  if (unlikely (v_any_u64 (uoflowx)))
132    return v_call2_f64 (exp_nosignbias, x, xtail, x, v_u64 (-1));
133  /* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)].  */
134  /* x = ln2/N*k + r, with k integer and r in [-ln2/2N, ln2/2N].  */
135  float64x2_t z = vmulq_f64 (d->inv_ln2_n, x);
136  /* z - kd is in [-1, 1] in non-nearest rounding modes.  */
137  float64x2_t kd = vaddq_f64 (z, d->shift);
138  uint64x2_t ki = vreinterpretq_u64_f64 (kd);
139  kd = vsubq_f64 (kd, d->shift);
140  float64x2_t r = vfmsq_f64 (x, kd, d->ln2_hi_n);
141  r = vfmsq_f64 (r, kd, d->ln2_lo_n);
142  /* The code assumes 2^-200 < |xtail| < 2^-8/N.  */
143  r = vaddq_f64 (r, xtail);
144  /* 2^(k/N) ~= scale.  */
145  uint64x2_t idx = vandq_u64 (ki, v_u64 (N_EXP - 1));
146  uint64x2_t top = vshlq_n_u64 (ki, 52 - V_POW_EXP_TABLE_BITS);
147  /* This is only a valid scale when -1023*N < k < 1024*N.  */
148  uint64x2_t sbits = v_lookup_u64 (SBits, idx);
149  sbits = vaddq_u64 (sbits, top);
150  /* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1).  */
151  float64x2_t r2 = vmulq_f64 (r, r);
152  float64x2_t tmp = vfmaq_f64 (C (1), r, C (2));
153  tmp = vfmaq_f64 (C (0), r, tmp);
154  tmp = vfmaq_f64 (r, r2, tmp);
155  float64x2_t scale = vreinterpretq_f64_u64 (sbits);
156  /* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
157     is no spurious underflow here even without fma.  */
158  return vfmaq_f64 (scale, scale, tmp);
159}
160
161float64x2_t VPCS_ATTR V_NAME_D2 (pow) (float64x2_t x, float64x2_t y)
162{
163  const struct data *d = ptr_barrier (&data);
164  /* Case of x <= 0 is too complicated to be vectorised efficiently here,
165     fallback to scalar pow for all lanes if any x < 0 detected.  */
166  if (v_any_u64 (vclezq_s64 (vreinterpretq_s64_f64 (x))))
167    return v_call2_f64 (__pl_finite_pow, x, y, x, v_u64 (-1));
168
169  uint64x2_t vix = vreinterpretq_u64_f64 (x);
170  uint64x2_t viy = vreinterpretq_u64_f64 (y);
171  uint64x2_t vtopx = vshrq_n_u64 (vix, 52);
172  uint64x2_t vtopy = vshrq_n_u64 (viy, 52);
173  uint64x2_t vabstopx = vandq_u64 (vtopx, v_u64 (0x7ff));
174  uint64x2_t vabstopy = vandq_u64 (vtopy, v_u64 (0x7ff));
175
176  /* Special cases of x or y.  */
177#if WANT_SIMD_EXCEPT
178  /* Small or large.  */
179  uint64x2_t specialx
180      = vcgeq_u64 (vsubq_u64 (vtopx, VecSmallPowX), VecThresPowX);
181  uint64x2_t specialy
182      = vcgeq_u64 (vsubq_u64 (vabstopy, VecSmallPowY), VecThresPowY);
183#else
184  /* Inf or nan.  */
185  uint64x2_t specialx = vcgeq_u64 (vabstopx, v_u64 (0x7ff));
186  uint64x2_t specialy = vcgeq_u64 (vabstopy, v_u64 (0x7ff));
187  /* The case y==0 does not trigger a special case, since in this case it is
188     necessary to fix the result only if x is a signalling nan, which already
189     triggers a special case. We test y==0 directly in the scalar fallback.  */
190#endif
191  uint64x2_t special = vorrq_u64 (specialx, specialy);
192  /* Fallback to scalar on all lanes if any lane is inf or nan.  */
193  if (unlikely (v_any_u64 (special)))
194    return v_call2_f64 (__pl_finite_pow, x, y, x, v_u64 (-1));
195
196  /* Small cases of x: |x| < 0x1p-126.  */
197  uint64x2_t smallx = vcltq_u64 (vabstopx, VecSmallPowX);
198  if (unlikely (v_any_u64 (smallx)))
199    {
200      /* Update ix if top 12 bits of x are 0.  */
201      uint64x2_t sub_x = vceqzq_u64 (vtopx);
202      if (unlikely (v_any_u64 (sub_x)))
203	{
204	  /* Normalize subnormal x so exponent becomes negative.  */
205	  uint64x2_t vix_norm
206	      = vreinterpretq_u64_f64 (vmulq_f64 (x, v_f64 (0x1p52)));
207	  vix_norm = vandq_u64 (vix_norm, v_u64 (0x7fffffffffffffff));
208	  vix_norm = vsubq_u64 (vix_norm, v_u64 (52ULL << 52));
209	  vix = vbslq_u64 (sub_x, vix_norm, vix);
210	}
211    }
212
213  /* Vector Log(ix, &lo).  */
214  float64x2_t vlo;
215  float64x2_t vhi = v_log_inline (vix, &vlo, d);
216
217  /* Vector Exp(y_loghi, y_loglo).  */
218  float64x2_t vehi = vmulq_f64 (y, vhi);
219  float64x2_t velo = vmulq_f64 (y, vlo);
220  float64x2_t vemi = vfmsq_f64 (vehi, y, vhi);
221  velo = vsubq_f64 (velo, vemi);
222  return v_exp_inline (vehi, velo, d);
223}
224
225PL_SIG (V, D, 2, pow)
226PL_TEST_ULP (V_NAME_D2 (pow), 0.55)
227PL_TEST_EXPECT_FENV (V_NAME_D2 (pow), WANT_SIMD_EXCEPT)
228/* Wide intervals spanning the whole domain but shared between x and y.  */
229#define V_POW_INTERVAL2(xlo, xhi, ylo, yhi, n)                                 \
230  PL_TEST_INTERVAL2 (V_NAME_D2 (pow), xlo, xhi, ylo, yhi, n)                   \
231  PL_TEST_INTERVAL2 (V_NAME_D2 (pow), xlo, xhi, -ylo, -yhi, n)                 \
232  PL_TEST_INTERVAL2 (V_NAME_D2 (pow), -xlo, -xhi, ylo, yhi, n)                 \
233  PL_TEST_INTERVAL2 (V_NAME_D2 (pow), -xlo, -xhi, -ylo, -yhi, n)
234#define EXPAND(str) str##000000000
235#define SHL52(str) EXPAND (str)
236V_POW_INTERVAL2 (0, SHL52 (SmallPowX), 0, inf, 40000)
237V_POW_INTERVAL2 (SHL52 (SmallPowX), SHL52 (BigPowX), 0, inf, 40000)
238V_POW_INTERVAL2 (SHL52 (BigPowX), inf, 0, inf, 40000)
239V_POW_INTERVAL2 (0, inf, 0, SHL52 (SmallPowY), 40000)
240V_POW_INTERVAL2 (0, inf, SHL52 (SmallPowY), SHL52 (BigPowY), 40000)
241V_POW_INTERVAL2 (0, inf, SHL52 (BigPowY), inf, 40000)
242V_POW_INTERVAL2 (0, inf, 0, inf, 1000)
243/* x~1 or y~1.  */
244V_POW_INTERVAL2 (0x1p-1, 0x1p1, 0x1p-10, 0x1p10, 10000)
245V_POW_INTERVAL2 (0x1p-500, 0x1p500, 0x1p-1, 0x1p1, 10000)
246V_POW_INTERVAL2 (0x1.ep-1, 0x1.1p0, 0x1p8, 0x1p16, 10000)
247/* around argmaxs of ULP error.  */
248V_POW_INTERVAL2 (0x1p-300, 0x1p-200, 0x1p-20, 0x1p-10, 10000)
249V_POW_INTERVAL2 (0x1p50, 0x1p100, 0x1p-20, 0x1p-10, 10000)
250/* x is negative, y is odd or even integer, or y is real not integer.  */
251PL_TEST_INTERVAL2 (V_NAME_D2 (pow), -0.0, -10.0, 3.0, 3.0, 10000)
252PL_TEST_INTERVAL2 (V_NAME_D2 (pow), -0.0, -10.0, 4.0, 4.0, 10000)
253PL_TEST_INTERVAL2 (V_NAME_D2 (pow), -0.0, -10.0, 0.0, 10.0, 10000)
254PL_TEST_INTERVAL2 (V_NAME_D2 (pow), 0.0, 10.0, -0.0, -10.0, 10000)
255/* 1.0^y.  */
256PL_TEST_INTERVAL2 (V_NAME_D2 (pow), 1.0, 1.0, 0.0, 0x1p-50, 1000)
257PL_TEST_INTERVAL2 (V_NAME_D2 (pow), 1.0, 1.0, 0x1p-50, 1.0, 1000)
258PL_TEST_INTERVAL2 (V_NAME_D2 (pow), 1.0, 1.0, 1.0, 0x1p100, 1000)
259PL_TEST_INTERVAL2 (V_NAME_D2 (pow), 1.0, 1.0, -1.0, -0x1p120, 1000)
260