tblcmp.c revision 52555
1/* tblcmp - table compression routines */
2
3/*-
4 * Copyright (c) 1990 The Regents of the University of California.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Vern Paxson.
9 *
10 * The United States Government has rights in this work pursuant
11 * to contract no. DE-AC03-76SF00098 between the United States
12 * Department of Energy and the University of California.
13 *
14 * Redistribution and use in source and binary forms are permitted provided
15 * that: (1) source distributions retain this entire copyright notice and
16 * comment, and (2) distributions including binaries display the following
17 * acknowledgement:  ``This product includes software developed by the
18 * University of California, Berkeley and its contributors'' in the
19 * documentation or other materials provided with the distribution and in
20 * all advertising materials mentioning features or use of this software.
21 * Neither the name of the University nor the names of its contributors may
22 * be used to endorse or promote products derived from this software without
23 * specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
27 */
28
29/* $Header: /home/daffy/u0/vern/flex/RCS/tblcmp.c,v 2.11 94/11/05 17:08:28 vern Exp $ */
30/* $FreeBSD: head/usr.bin/lex/tblcmp.c 52555 1999-10-27 07:56:49Z obrien $ */
31
32#include "flexdef.h"
33
34
35/* declarations for functions that have forward references */
36
37void mkentry PROTO((register int*, int, int, int, int));
38void mkprot PROTO((int[], int, int));
39void mktemplate PROTO((int[], int, int));
40void mv2front PROTO((int));
41int tbldiff PROTO((int[], int, int[]));
42
43
44/* bldtbl - build table entries for dfa state
45 *
46 * synopsis
47 *   int state[numecs], statenum, totaltrans, comstate, comfreq;
48 *   bldtbl( state, statenum, totaltrans, comstate, comfreq );
49 *
50 * State is the statenum'th dfa state.  It is indexed by equivalence class and
51 * gives the number of the state to enter for a given equivalence class.
52 * totaltrans is the total number of transitions out of the state.  Comstate
53 * is that state which is the destination of the most transitions out of State.
54 * Comfreq is how many transitions there are out of State to Comstate.
55 *
56 * A note on terminology:
57 *    "protos" are transition tables which have a high probability of
58 * either being redundant (a state processed later will have an identical
59 * transition table) or nearly redundant (a state processed later will have
60 * many of the same out-transitions).  A "most recently used" queue of
61 * protos is kept around with the hope that most states will find a proto
62 * which is similar enough to be usable, and therefore compacting the
63 * output tables.
64 *    "templates" are a special type of proto.  If a transition table is
65 * homogeneous or nearly homogeneous (all transitions go to the same
66 * destination) then the odds are good that future states will also go
67 * to the same destination state on basically the same character set.
68 * These homogeneous states are so common when dealing with large rule
69 * sets that they merit special attention.  If the transition table were
70 * simply made into a proto, then (typically) each subsequent, similar
71 * state will differ from the proto for two out-transitions.  One of these
72 * out-transitions will be that character on which the proto does not go
73 * to the common destination, and one will be that character on which the
74 * state does not go to the common destination.  Templates, on the other
75 * hand, go to the common state on EVERY transition character, and therefore
76 * cost only one difference.
77 */
78
79void bldtbl( state, statenum, totaltrans, comstate, comfreq )
80int state[], statenum, totaltrans, comstate, comfreq;
81	{
82	int extptr, extrct[2][CSIZE + 1];
83	int mindiff, minprot, i, d;
84
85	/* If extptr is 0 then the first array of extrct holds the result
86	 * of the "best difference" to date, which is those transitions
87	 * which occur in "state" but not in the proto which, to date,
88	 * has the fewest differences between itself and "state".  If
89	 * extptr is 1 then the second array of extrct hold the best
90	 * difference.  The two arrays are toggled between so that the
91	 * best difference to date can be kept around and also a difference
92	 * just created by checking against a candidate "best" proto.
93	 */
94
95	extptr = 0;
96
97	/* If the state has too few out-transitions, don't bother trying to
98	 * compact its tables.
99	 */
100
101	if ( (totaltrans * 100) < (numecs * PROTO_SIZE_PERCENTAGE) )
102		mkentry( state, numecs, statenum, JAMSTATE, totaltrans );
103
104	else
105		{
106		/* "checkcom" is true if we should only check "state" against
107		 * protos which have the same "comstate" value.
108		 */
109		int checkcom =
110			comfreq * 100 > totaltrans * CHECK_COM_PERCENTAGE;
111
112		minprot = firstprot;
113		mindiff = totaltrans;
114
115		if ( checkcom )
116			{
117			/* Find first proto which has the same "comstate". */
118			for ( i = firstprot; i != NIL; i = protnext[i] )
119				if ( protcomst[i] == comstate )
120					{
121					minprot = i;
122					mindiff = tbldiff( state, minprot,
123							extrct[extptr] );
124					break;
125					}
126			}
127
128		else
129			{
130			/* Since we've decided that the most common destination
131			 * out of "state" does not occur with a high enough
132			 * frequency, we set the "comstate" to zero, assuring
133			 * that if this state is entered into the proto list,
134			 * it will not be considered a template.
135			 */
136			comstate = 0;
137
138			if ( firstprot != NIL )
139				{
140				minprot = firstprot;
141				mindiff = tbldiff( state, minprot,
142						extrct[extptr] );
143				}
144			}
145
146		/* We now have the first interesting proto in "minprot".  If
147		 * it matches within the tolerances set for the first proto,
148		 * we don't want to bother scanning the rest of the proto list
149		 * to see if we have any other reasonable matches.
150		 */
151
152		if ( mindiff * 100 > totaltrans * FIRST_MATCH_DIFF_PERCENTAGE )
153			{
154			/* Not a good enough match.  Scan the rest of the
155			 * protos.
156			 */
157			for ( i = minprot; i != NIL; i = protnext[i] )
158				{
159				d = tbldiff( state, i, extrct[1 - extptr] );
160				if ( d < mindiff )
161					{
162					extptr = 1 - extptr;
163					mindiff = d;
164					minprot = i;
165					}
166				}
167			}
168
169		/* Check if the proto we've decided on as our best bet is close
170		 * enough to the state we want to match to be usable.
171		 */
172
173		if ( mindiff * 100 > totaltrans * ACCEPTABLE_DIFF_PERCENTAGE )
174			{
175			/* No good.  If the state is homogeneous enough,
176			 * we make a template out of it.  Otherwise, we
177			 * make a proto.
178			 */
179
180			if ( comfreq * 100 >=
181			     totaltrans * TEMPLATE_SAME_PERCENTAGE )
182				mktemplate( state, statenum, comstate );
183
184			else
185				{
186				mkprot( state, statenum, comstate );
187				mkentry( state, numecs, statenum,
188					JAMSTATE, totaltrans );
189				}
190			}
191
192		else
193			{ /* use the proto */
194			mkentry( extrct[extptr], numecs, statenum,
195				prottbl[minprot], mindiff );
196
197			/* If this state was sufficiently different from the
198			 * proto we built it from, make it, too, a proto.
199			 */
200
201			if ( mindiff * 100 >=
202			     totaltrans * NEW_PROTO_DIFF_PERCENTAGE )
203				mkprot( state, statenum, comstate );
204
205			/* Since mkprot added a new proto to the proto queue,
206			 * it's possible that "minprot" is no longer on the
207			 * proto queue (if it happened to have been the last
208			 * entry, it would have been bumped off).  If it's
209			 * not there, then the new proto took its physical
210			 * place (though logically the new proto is at the
211			 * beginning of the queue), so in that case the
212			 * following call will do nothing.
213			 */
214
215			mv2front( minprot );
216			}
217		}
218	}
219
220
221/* cmptmps - compress template table entries
222 *
223 * Template tables are compressed by using the 'template equivalence
224 * classes', which are collections of transition character equivalence
225 * classes which always appear together in templates - really meta-equivalence
226 * classes.
227 */
228
229void cmptmps()
230	{
231	int tmpstorage[CSIZE + 1];
232	register int *tmp = tmpstorage, i, j;
233	int totaltrans, trans;
234
235	peakpairs = numtemps * numecs + tblend;
236
237	if ( usemecs )
238		{
239		/* Create equivalence classes based on data gathered on
240		 * template transitions.
241		 */
242		nummecs = cre8ecs( tecfwd, tecbck, numecs );
243		}
244
245	else
246		nummecs = numecs;
247
248	while ( lastdfa + numtemps + 1 >= current_max_dfas )
249		increase_max_dfas();
250
251	/* Loop through each template. */
252
253	for ( i = 1; i <= numtemps; ++i )
254		{
255		/* Number of non-jam transitions out of this template. */
256		totaltrans = 0;
257
258		for ( j = 1; j <= numecs; ++j )
259			{
260			trans = tnxt[numecs * i + j];
261
262			if ( usemecs )
263				{
264				/* The absolute value of tecbck is the
265				 * meta-equivalence class of a given
266				 * equivalence class, as set up by cre8ecs().
267				 */
268				if ( tecbck[j] > 0 )
269					{
270					tmp[tecbck[j]] = trans;
271
272					if ( trans > 0 )
273						++totaltrans;
274					}
275				}
276
277			else
278				{
279				tmp[j] = trans;
280
281				if ( trans > 0 )
282					++totaltrans;
283				}
284			}
285
286		/* It is assumed (in a rather subtle way) in the skeleton
287		 * that if we're using meta-equivalence classes, the def[]
288		 * entry for all templates is the jam template, i.e.,
289		 * templates never default to other non-jam table entries
290		 * (e.g., another template)
291		 */
292
293		/* Leave room for the jam-state after the last real state. */
294		mkentry( tmp, nummecs, lastdfa + i + 1, JAMSTATE, totaltrans );
295		}
296	}
297
298
299
300/* expand_nxt_chk - expand the next check arrays */
301
302void expand_nxt_chk()
303	{
304	register int old_max = current_max_xpairs;
305
306	current_max_xpairs += MAX_XPAIRS_INCREMENT;
307
308	++num_reallocs;
309
310	nxt = reallocate_integer_array( nxt, current_max_xpairs );
311	chk = reallocate_integer_array( chk, current_max_xpairs );
312
313	zero_out( (char *) (chk + old_max),
314		(size_t) (MAX_XPAIRS_INCREMENT * sizeof( int )) );
315	}
316
317
318/* find_table_space - finds a space in the table for a state to be placed
319 *
320 * synopsis
321 *     int *state, numtrans, block_start;
322 *     int find_table_space();
323 *
324 *     block_start = find_table_space( state, numtrans );
325 *
326 * State is the state to be added to the full speed transition table.
327 * Numtrans is the number of out-transitions for the state.
328 *
329 * find_table_space() returns the position of the start of the first block (in
330 * chk) able to accommodate the state
331 *
332 * In determining if a state will or will not fit, find_table_space() must take
333 * into account the fact that an end-of-buffer state will be added at [0],
334 * and an action number will be added in [-1].
335 */
336
337int find_table_space( state, numtrans )
338int *state, numtrans;
339	{
340	/* Firstfree is the position of the first possible occurrence of two
341	 * consecutive unused records in the chk and nxt arrays.
342	 */
343	register int i;
344	register int *state_ptr, *chk_ptr;
345	register int *ptr_to_last_entry_in_state;
346
347	/* If there are too many out-transitions, put the state at the end of
348	 * nxt and chk.
349	 */
350	if ( numtrans > MAX_XTIONS_FULL_INTERIOR_FIT )
351		{
352		/* If table is empty, return the first available spot in
353		 * chk/nxt, which should be 1.
354		 */
355		if ( tblend < 2 )
356			return 1;
357
358		/* Start searching for table space near the end of
359		 * chk/nxt arrays.
360		 */
361		i = tblend - numecs;
362		}
363
364	else
365		/* Start searching for table space from the beginning
366		 * (skipping only the elements which will definitely not
367		 * hold the new state).
368		 */
369		i = firstfree;
370
371	while ( 1 )	/* loops until a space is found */
372		{
373		while ( i + numecs >= current_max_xpairs )
374			expand_nxt_chk();
375
376		/* Loops until space for end-of-buffer and action number
377		 * are found.
378		 */
379		while ( 1 )
380			{
381			/* Check for action number space. */
382			if ( chk[i - 1] == 0 )
383				{
384				/* Check for end-of-buffer space. */
385				if ( chk[i] == 0 )
386					break;
387
388				else
389					/* Since i != 0, there is no use
390					 * checking to see if (++i) - 1 == 0,
391					 * because that's the same as i == 0,
392					 * so we skip a space.
393					 */
394					i += 2;
395				}
396
397			else
398				++i;
399
400			while ( i + numecs >= current_max_xpairs )
401				expand_nxt_chk();
402			}
403
404		/* If we started search from the beginning, store the new
405		 * firstfree for the next call of find_table_space().
406		 */
407		if ( numtrans <= MAX_XTIONS_FULL_INTERIOR_FIT )
408			firstfree = i + 1;
409
410		/* Check to see if all elements in chk (and therefore nxt)
411		 * that are needed for the new state have not yet been taken.
412		 */
413
414		state_ptr = &state[1];
415		ptr_to_last_entry_in_state = &chk[i + numecs + 1];
416
417		for ( chk_ptr = &chk[i + 1];
418		      chk_ptr != ptr_to_last_entry_in_state; ++chk_ptr )
419			if ( *(state_ptr++) != 0 && *chk_ptr != 0 )
420				break;
421
422		if ( chk_ptr == ptr_to_last_entry_in_state )
423			return i;
424
425		else
426		++i;
427		}
428	}
429
430
431/* inittbl - initialize transition tables
432 *
433 * Initializes "firstfree" to be one beyond the end of the table.  Initializes
434 * all "chk" entries to be zero.
435 */
436void inittbl()
437	{
438	register int i;
439
440	zero_out( (char *) chk, (size_t) (current_max_xpairs * sizeof( int )) );
441
442	tblend = 0;
443	firstfree = tblend + 1;
444	numtemps = 0;
445
446	if ( usemecs )
447		{
448		/* Set up doubly-linked meta-equivalence classes; these
449		 * are sets of equivalence classes which all have identical
450		 * transitions out of TEMPLATES.
451		 */
452
453		tecbck[1] = NIL;
454
455		for ( i = 2; i <= numecs; ++i )
456			{
457			tecbck[i] = i - 1;
458			tecfwd[i - 1] = i;
459			}
460
461		tecfwd[numecs] = NIL;
462		}
463	}
464
465
466/* mkdeftbl - make the default, "jam" table entries */
467
468void mkdeftbl()
469	{
470	int i;
471
472	jamstate = lastdfa + 1;
473
474	++tblend; /* room for transition on end-of-buffer character */
475
476	while ( tblend + numecs >= current_max_xpairs )
477		expand_nxt_chk();
478
479	/* Add in default end-of-buffer transition. */
480	nxt[tblend] = end_of_buffer_state;
481	chk[tblend] = jamstate;
482
483	for ( i = 1; i <= numecs; ++i )
484		{
485		nxt[tblend + i] = 0;
486		chk[tblend + i] = jamstate;
487		}
488
489	jambase = tblend;
490
491	base[jamstate] = jambase;
492	def[jamstate] = 0;
493
494	tblend += numecs;
495	++numtemps;
496	}
497
498
499/* mkentry - create base/def and nxt/chk entries for transition array
500 *
501 * synopsis
502 *   int state[numchars + 1], numchars, statenum, deflink, totaltrans;
503 *   mkentry( state, numchars, statenum, deflink, totaltrans );
504 *
505 * "state" is a transition array "numchars" characters in size, "statenum"
506 * is the offset to be used into the base/def tables, and "deflink" is the
507 * entry to put in the "def" table entry.  If "deflink" is equal to
508 * "JAMSTATE", then no attempt will be made to fit zero entries of "state"
509 * (i.e., jam entries) into the table.  It is assumed that by linking to
510 * "JAMSTATE" they will be taken care of.  In any case, entries in "state"
511 * marking transitions to "SAME_TRANS" are treated as though they will be
512 * taken care of by whereever "deflink" points.  "totaltrans" is the total
513 * number of transitions out of the state.  If it is below a certain threshold,
514 * the tables are searched for an interior spot that will accommodate the
515 * state array.
516 */
517
518void mkentry( state, numchars, statenum, deflink, totaltrans )
519register int *state;
520int numchars, statenum, deflink, totaltrans;
521	{
522	register int minec, maxec, i, baseaddr;
523	int tblbase, tbllast;
524
525	if ( totaltrans == 0 )
526		{ /* there are no out-transitions */
527		if ( deflink == JAMSTATE )
528			base[statenum] = JAMSTATE;
529		else
530			base[statenum] = 0;
531
532		def[statenum] = deflink;
533		return;
534		}
535
536	for ( minec = 1; minec <= numchars; ++minec )
537		{
538		if ( state[minec] != SAME_TRANS )
539			if ( state[minec] != 0 || deflink != JAMSTATE )
540				break;
541		}
542
543	if ( totaltrans == 1 )
544		{
545		/* There's only one out-transition.  Save it for later to fill
546		 * in holes in the tables.
547		 */
548		stack1( statenum, minec, state[minec], deflink );
549		return;
550		}
551
552	for ( maxec = numchars; maxec > 0; --maxec )
553		{
554		if ( state[maxec] != SAME_TRANS )
555			if ( state[maxec] != 0 || deflink != JAMSTATE )
556				break;
557		}
558
559	/* Whether we try to fit the state table in the middle of the table
560	 * entries we have already generated, or if we just take the state
561	 * table at the end of the nxt/chk tables, we must make sure that we
562	 * have a valid base address (i.e., non-negative).  Note that
563	 * negative base addresses dangerous at run-time (because indexing
564	 * the nxt array with one and a low-valued character will access
565	 * memory before the start of the array.
566	 */
567
568	/* Find the first transition of state that we need to worry about. */
569	if ( totaltrans * 100 <= numchars * INTERIOR_FIT_PERCENTAGE )
570		{
571		/* Attempt to squeeze it into the middle of the tables. */
572		baseaddr = firstfree;
573
574		while ( baseaddr < minec )
575			{
576			/* Using baseaddr would result in a negative base
577			 * address below; find the next free slot.
578			 */
579			for ( ++baseaddr; chk[baseaddr] != 0; ++baseaddr )
580				;
581			}
582
583		while ( baseaddr + maxec - minec + 1 >= current_max_xpairs )
584			expand_nxt_chk();
585
586		for ( i = minec; i <= maxec; ++i )
587			if ( state[i] != SAME_TRANS &&
588			     (state[i] != 0 || deflink != JAMSTATE) &&
589			     chk[baseaddr + i - minec] != 0 )
590				{ /* baseaddr unsuitable - find another */
591				for ( ++baseaddr;
592				      baseaddr < current_max_xpairs &&
593				      chk[baseaddr] != 0; ++baseaddr )
594					;
595
596				while ( baseaddr + maxec - minec + 1 >=
597					current_max_xpairs )
598					expand_nxt_chk();
599
600				/* Reset the loop counter so we'll start all
601				 * over again next time it's incremented.
602				 */
603
604				i = minec - 1;
605				}
606		}
607
608	else
609		{
610		/* Ensure that the base address we eventually generate is
611		 * non-negative.
612		 */
613		baseaddr = MAX( tblend + 1, minec );
614		}
615
616	tblbase = baseaddr - minec;
617	tbllast = tblbase + maxec;
618
619	while ( tbllast + 1 >= current_max_xpairs )
620		expand_nxt_chk();
621
622	base[statenum] = tblbase;
623	def[statenum] = deflink;
624
625	for ( i = minec; i <= maxec; ++i )
626		if ( state[i] != SAME_TRANS )
627			if ( state[i] != 0 || deflink != JAMSTATE )
628				{
629				nxt[tblbase + i] = state[i];
630				chk[tblbase + i] = statenum;
631				}
632
633	if ( baseaddr == firstfree )
634		/* Find next free slot in tables. */
635		for ( ++firstfree; chk[firstfree] != 0; ++firstfree )
636			;
637
638	tblend = MAX( tblend, tbllast );
639	}
640
641
642/* mk1tbl - create table entries for a state (or state fragment) which
643 *            has only one out-transition
644 */
645
646void mk1tbl( state, sym, onenxt, onedef )
647int state, sym, onenxt, onedef;
648	{
649	if ( firstfree < sym )
650		firstfree = sym;
651
652	while ( chk[firstfree] != 0 )
653		if ( ++firstfree >= current_max_xpairs )
654			expand_nxt_chk();
655
656	base[state] = firstfree - sym;
657	def[state] = onedef;
658	chk[firstfree] = state;
659	nxt[firstfree] = onenxt;
660
661	if ( firstfree > tblend )
662		{
663		tblend = firstfree++;
664
665		if ( firstfree >= current_max_xpairs )
666			expand_nxt_chk();
667		}
668	}
669
670
671/* mkprot - create new proto entry */
672
673void mkprot( state, statenum, comstate )
674int state[], statenum, comstate;
675	{
676	int i, slot, tblbase;
677
678	if ( ++numprots >= MSP || numecs * numprots >= PROT_SAVE_SIZE )
679		{
680		/* Gotta make room for the new proto by dropping last entry in
681		 * the queue.
682		 */
683		slot = lastprot;
684		lastprot = protprev[lastprot];
685		protnext[lastprot] = NIL;
686		}
687
688	else
689		slot = numprots;
690
691	protnext[slot] = firstprot;
692
693	if ( firstprot != NIL )
694		protprev[firstprot] = slot;
695
696	firstprot = slot;
697	prottbl[slot] = statenum;
698	protcomst[slot] = comstate;
699
700	/* Copy state into save area so it can be compared with rapidly. */
701	tblbase = numecs * (slot - 1);
702
703	for ( i = 1; i <= numecs; ++i )
704		protsave[tblbase + i] = state[i];
705	}
706
707
708/* mktemplate - create a template entry based on a state, and connect the state
709 *              to it
710 */
711
712void mktemplate( state, statenum, comstate )
713int state[], statenum, comstate;
714	{
715	int i, numdiff, tmpbase, tmp[CSIZE + 1];
716	Char transset[CSIZE + 1];
717	int tsptr;
718
719	++numtemps;
720
721	tsptr = 0;
722
723	/* Calculate where we will temporarily store the transition table
724	 * of the template in the tnxt[] array.  The final transition table
725	 * gets created by cmptmps().
726	 */
727
728	tmpbase = numtemps * numecs;
729
730	if ( tmpbase + numecs >= current_max_template_xpairs )
731		{
732		current_max_template_xpairs += MAX_TEMPLATE_XPAIRS_INCREMENT;
733
734		++num_reallocs;
735
736		tnxt = reallocate_integer_array( tnxt,
737			current_max_template_xpairs );
738		}
739
740	for ( i = 1; i <= numecs; ++i )
741		if ( state[i] == 0 )
742			tnxt[tmpbase + i] = 0;
743		else
744			{
745			transset[tsptr++] = i;
746			tnxt[tmpbase + i] = comstate;
747			}
748
749	if ( usemecs )
750		mkeccl( transset, tsptr, tecfwd, tecbck, numecs, 0 );
751
752	mkprot( tnxt + tmpbase, -numtemps, comstate );
753
754	/* We rely on the fact that mkprot adds things to the beginning
755	 * of the proto queue.
756	 */
757
758	numdiff = tbldiff( state, firstprot, tmp );
759	mkentry( tmp, numecs, statenum, -numtemps, numdiff );
760	}
761
762
763/* mv2front - move proto queue element to front of queue */
764
765void mv2front( qelm )
766int qelm;
767	{
768	if ( firstprot != qelm )
769		{
770		if ( qelm == lastprot )
771			lastprot = protprev[lastprot];
772
773		protnext[protprev[qelm]] = protnext[qelm];
774
775		if ( protnext[qelm] != NIL )
776			protprev[protnext[qelm]] = protprev[qelm];
777
778		protprev[qelm] = NIL;
779		protnext[qelm] = firstprot;
780		protprev[firstprot] = qelm;
781		firstprot = qelm;
782		}
783	}
784
785
786/* place_state - place a state into full speed transition table
787 *
788 * State is the statenum'th state.  It is indexed by equivalence class and
789 * gives the number of the state to enter for a given equivalence class.
790 * Transnum is the number of out-transitions for the state.
791 */
792
793void place_state( state, statenum, transnum )
794int *state, statenum, transnum;
795	{
796	register int i;
797	register int *state_ptr;
798	int position = find_table_space( state, transnum );
799
800	/* "base" is the table of start positions. */
801	base[statenum] = position;
802
803	/* Put in action number marker; this non-zero number makes sure that
804	 * find_table_space() knows that this position in chk/nxt is taken
805	 * and should not be used for another accepting number in another
806	 * state.
807	 */
808	chk[position - 1] = 1;
809
810	/* Put in end-of-buffer marker; this is for the same purposes as
811	 * above.
812	 */
813	chk[position] = 1;
814
815	/* Place the state into chk and nxt. */
816	state_ptr = &state[1];
817
818	for ( i = 1; i <= numecs; ++i, ++state_ptr )
819		if ( *state_ptr != 0 )
820			{
821			chk[position + i] = i;
822			nxt[position + i] = *state_ptr;
823			}
824
825	if ( position + numecs > tblend )
826		tblend = position + numecs;
827	}
828
829
830/* stack1 - save states with only one out-transition to be processed later
831 *
832 * If there's room for another state on the "one-transition" stack, the
833 * state is pushed onto it, to be processed later by mk1tbl.  If there's
834 * no room, we process the sucker right now.
835 */
836
837void stack1( statenum, sym, nextstate, deflink )
838int statenum, sym, nextstate, deflink;
839	{
840	if ( onesp >= ONE_STACK_SIZE - 1 )
841		mk1tbl( statenum, sym, nextstate, deflink );
842
843	else
844		{
845		++onesp;
846		onestate[onesp] = statenum;
847		onesym[onesp] = sym;
848		onenext[onesp] = nextstate;
849		onedef[onesp] = deflink;
850		}
851	}
852
853
854/* tbldiff - compute differences between two state tables
855 *
856 * "state" is the state array which is to be extracted from the pr'th
857 * proto.  "pr" is both the number of the proto we are extracting from
858 * and an index into the save area where we can find the proto's complete
859 * state table.  Each entry in "state" which differs from the corresponding
860 * entry of "pr" will appear in "ext".
861 *
862 * Entries which are the same in both "state" and "pr" will be marked
863 * as transitions to "SAME_TRANS" in "ext".  The total number of differences
864 * between "state" and "pr" is returned as function value.  Note that this
865 * number is "numecs" minus the number of "SAME_TRANS" entries in "ext".
866 */
867
868int tbldiff( state, pr, ext )
869int state[], pr, ext[];
870	{
871	register int i, *sp = state, *ep = ext, *protp;
872	register int numdiff = 0;
873
874	protp = &protsave[numecs * (pr - 1)];
875
876	for ( i = numecs; i > 0; --i )
877		{
878		if ( *++protp == *++sp )
879			*++ep = SAME_TRANS;
880		else
881			{
882			*++ep = *sp;
883			++numdiff;
884			}
885		}
886
887	return numdiff;
888	}
889