tsc.c revision 82971
1/*-
2 * Copyright (c) 1990 The Regents of the University of California.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * William Jolitz and Don Ahn.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
37 * $FreeBSD: head/sys/i386/i386/tsc.c 82971 2001-09-04 16:02:06Z iwasaki $
38 */
39
40/*
41 * Routines to handle clock hardware.
42 */
43
44/*
45 * inittodr, settodr and support routines written
46 * by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
47 *
48 * reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
49 */
50
51#include "opt_clock.h"
52#include "opt_apm.h"
53#include "opt_mca.h"
54
55#include <sys/param.h>
56#include <sys/systm.h>
57#include <sys/bus.h>
58#include <sys/lock.h>
59#include <sys/mutex.h>
60#include <sys/proc.h>
61#include <sys/time.h>
62#include <sys/timetc.h>
63#include <sys/kernel.h>
64#include <sys/sysctl.h>
65#include <sys/cons.h>
66
67#include <machine/clock.h>
68#ifdef CLK_CALIBRATION_LOOP
69#endif
70#include <machine/cputypes.h>
71#include <machine/frame.h>
72#include <machine/limits.h>
73#include <machine/md_var.h>
74#include <machine/psl.h>
75#ifdef APIC_IO
76#include <machine/segments.h>
77#endif
78#if defined(SMP) || defined(APIC_IO)
79#include <machine/smp.h>
80#endif /* SMP || APIC_IO */
81#include <machine/specialreg.h>
82
83#include <i386/isa/icu.h>
84#include <i386/isa/isa.h>
85#include <isa/rtc.h>
86#include <isa/isavar.h>
87#include <i386/isa/timerreg.h>
88
89#include <i386/isa/intr_machdep.h>
90
91#ifdef DEV_MCA
92#include <i386/isa/mca_machdep.h>
93#endif
94
95#ifdef APIC_IO
96#include <i386/isa/intr_machdep.h>
97/* The interrupt triggered by the 8254 (timer) chip */
98int apic_8254_intr;
99static u_long read_intr_count __P((int vec));
100static void setup_8254_mixed_mode __P((void));
101#endif
102
103/*
104 * 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
105 * can use a simple formula for leap years.
106 */
107#define	LEAPYEAR(y) ((u_int)(y) % 4 == 0)
108#define DAYSPERYEAR   (31+28+31+30+31+30+31+31+30+31+30+31)
109
110#define	TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
111
112/*
113 * Time in timer cycles that it takes for microtime() to disable interrupts
114 * and latch the count.  microtime() currently uses "cli; outb ..." so it
115 * normally takes less than 2 timer cycles.  Add a few for cache misses.
116 * Add a few more to allow for latency in bogus calls to microtime() with
117 * interrupts already disabled.
118 */
119#define	TIMER0_LATCH_COUNT	20
120
121/*
122 * Maximum frequency that we are willing to allow for timer0.  Must be
123 * low enough to guarantee that the timer interrupt handler returns
124 * before the next timer interrupt.
125 */
126#define	TIMER0_MAX_FREQ		20000
127
128int	adjkerntz;		/* local offset from GMT in seconds */
129int	clkintr_pending;
130int	disable_rtc_set;	/* disable resettodr() if != 0 */
131int	statclock_disable;
132#ifndef TIMER_FREQ
133#define TIMER_FREQ   1193182
134#endif
135u_int	timer_freq = TIMER_FREQ;
136int	timer0_max_count;
137u_int	tsc_freq;
138int	tsc_is_broken;
139u_int	tsc_present;
140int	wall_cmos_clock;	/* wall CMOS clock assumed if != 0 */
141struct mtx clock_lock;
142
143static	int	beeping = 0;
144static	const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
145static	u_int	hardclock_max_count;
146static	u_int32_t i8254_lastcount;
147static	u_int32_t i8254_offset;
148static	int	i8254_ticked;
149/*
150 * XXX new_function and timer_func should not handle clockframes, but
151 * timer_func currently needs to hold hardclock to handle the
152 * timer0_state == 0 case.  We should use inthand_add()/inthand_remove()
153 * to switch between clkintr() and a slightly different timerintr().
154 */
155static	void	(*new_function) __P((struct clockframe *frame));
156static	u_int	new_rate;
157static	u_char	rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
158static	u_char	rtc_statusb = RTCSB_24HR | RTCSB_PINTR;
159static	u_int	timer0_prescaler_count;
160
161/* Values for timerX_state: */
162#define	RELEASED	0
163#define	RELEASE_PENDING	1
164#define	ACQUIRED	2
165#define	ACQUIRE_PENDING	3
166
167static	u_char	timer0_state;
168static	u_char	timer2_state;
169static	void	(*timer_func) __P((struct clockframe *frame)) = hardclock;
170
171static	unsigned i8254_get_timecount __P((struct timecounter *tc));
172static	unsigned tsc_get_timecount __P((struct timecounter *tc));
173static	void	set_timer_freq(u_int freq, int intr_freq);
174
175static struct timecounter tsc_timecounter = {
176	tsc_get_timecount,	/* get_timecount */
177	0,			/* no poll_pps */
178 	~0u,			/* counter_mask */
179	0,			/* frequency */
180	 "TSC"			/* name */
181};
182
183SYSCTL_OPAQUE(_debug, OID_AUTO, tsc_timecounter, CTLFLAG_RD,
184	&tsc_timecounter, sizeof(tsc_timecounter), "S,timecounter", "");
185
186static struct timecounter i8254_timecounter = {
187	i8254_get_timecount,	/* get_timecount */
188	0,			/* no poll_pps */
189	~0u,			/* counter_mask */
190	0,			/* frequency */
191	"i8254"			/* name */
192};
193
194SYSCTL_OPAQUE(_debug, OID_AUTO, i8254_timecounter, CTLFLAG_RD,
195	&i8254_timecounter, sizeof(i8254_timecounter), "S,timecounter", "");
196
197static void
198clkintr(struct clockframe frame)
199{
200
201	if (timecounter->tc_get_timecount == i8254_get_timecount) {
202		mtx_lock_spin(&clock_lock);
203		if (i8254_ticked)
204			i8254_ticked = 0;
205		else {
206			i8254_offset += timer0_max_count;
207			i8254_lastcount = 0;
208		}
209		clkintr_pending = 0;
210		mtx_unlock_spin(&clock_lock);
211	}
212	timer_func(&frame);
213#ifdef SMP
214	if (timer_func == hardclock)
215		forward_hardclock();
216#endif
217	switch (timer0_state) {
218
219	case RELEASED:
220		break;
221
222	case ACQUIRED:
223		if ((timer0_prescaler_count += timer0_max_count)
224		    >= hardclock_max_count) {
225			timer0_prescaler_count -= hardclock_max_count;
226			hardclock(&frame);
227#ifdef SMP
228			forward_hardclock();
229#endif
230		}
231		break;
232
233	case ACQUIRE_PENDING:
234		mtx_lock_spin(&clock_lock);
235		i8254_offset = i8254_get_timecount(NULL);
236		i8254_lastcount = 0;
237		timer0_max_count = TIMER_DIV(new_rate);
238		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
239		outb(TIMER_CNTR0, timer0_max_count & 0xff);
240		outb(TIMER_CNTR0, timer0_max_count >> 8);
241		mtx_unlock_spin(&clock_lock);
242		timer_func = new_function;
243		timer0_state = ACQUIRED;
244		break;
245
246	case RELEASE_PENDING:
247		if ((timer0_prescaler_count += timer0_max_count)
248		    >= hardclock_max_count) {
249			mtx_lock_spin(&clock_lock);
250			i8254_offset = i8254_get_timecount(NULL);
251			i8254_lastcount = 0;
252			timer0_max_count = hardclock_max_count;
253			outb(TIMER_MODE,
254			     TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
255			outb(TIMER_CNTR0, timer0_max_count & 0xff);
256			outb(TIMER_CNTR0, timer0_max_count >> 8);
257			mtx_unlock_spin(&clock_lock);
258			timer0_prescaler_count = 0;
259			timer_func = hardclock;
260			timer0_state = RELEASED;
261			hardclock(&frame);
262#ifdef SMP
263			forward_hardclock();
264#endif
265		}
266		break;
267	}
268#ifdef DEV_MCA
269	/* Reset clock interrupt by asserting bit 7 of port 0x61 */
270	if (MCA_system)
271		outb(0x61, inb(0x61) | 0x80);
272#endif
273}
274
275/*
276 * The acquire and release functions must be called at ipl >= splclock().
277 */
278int
279acquire_timer0(int rate, void (*function) __P((struct clockframe *frame)))
280{
281	static int old_rate;
282
283	if (rate <= 0 || rate > TIMER0_MAX_FREQ)
284		return (-1);
285	switch (timer0_state) {
286
287	case RELEASED:
288		timer0_state = ACQUIRE_PENDING;
289		break;
290
291	case RELEASE_PENDING:
292		if (rate != old_rate)
293			return (-1);
294		/*
295		 * The timer has been released recently, but is being
296		 * re-acquired before the release completed.  In this
297		 * case, we simply reclaim it as if it had not been
298		 * released at all.
299		 */
300		timer0_state = ACQUIRED;
301		break;
302
303	default:
304		return (-1);	/* busy */
305	}
306	new_function = function;
307	old_rate = new_rate = rate;
308	return (0);
309}
310
311int
312acquire_timer2(int mode)
313{
314
315	if (timer2_state != RELEASED)
316		return (-1);
317	timer2_state = ACQUIRED;
318
319	/*
320	 * This access to the timer registers is as atomic as possible
321	 * because it is a single instruction.  We could do better if we
322	 * knew the rate.  Use of splclock() limits glitches to 10-100us,
323	 * and this is probably good enough for timer2, so we aren't as
324	 * careful with it as with timer0.
325	 */
326	outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
327
328	return (0);
329}
330
331int
332release_timer0()
333{
334	switch (timer0_state) {
335
336	case ACQUIRED:
337		timer0_state = RELEASE_PENDING;
338		break;
339
340	case ACQUIRE_PENDING:
341		/* Nothing happened yet, release quickly. */
342		timer0_state = RELEASED;
343		break;
344
345	default:
346		return (-1);
347	}
348	return (0);
349}
350
351int
352release_timer2()
353{
354
355	if (timer2_state != ACQUIRED)
356		return (-1);
357	timer2_state = RELEASED;
358	outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
359	return (0);
360}
361
362/*
363 * This routine receives statistical clock interrupts from the RTC.
364 * As explained above, these occur at 128 interrupts per second.
365 * When profiling, we receive interrupts at a rate of 1024 Hz.
366 *
367 * This does not actually add as much overhead as it sounds, because
368 * when the statistical clock is active, the hardclock driver no longer
369 * needs to keep (inaccurate) statistics on its own.  This decouples
370 * statistics gathering from scheduling interrupts.
371 *
372 * The RTC chip requires that we read status register C (RTC_INTR)
373 * to acknowledge an interrupt, before it will generate the next one.
374 * Under high interrupt load, rtcintr() can be indefinitely delayed and
375 * the clock can tick immediately after the read from RTC_INTR.  In this
376 * case, the mc146818A interrupt signal will not drop for long enough
377 * to register with the 8259 PIC.  If an interrupt is missed, the stat
378 * clock will halt, considerably degrading system performance.  This is
379 * why we use 'while' rather than a more straightforward 'if' below.
380 * Stat clock ticks can still be lost, causing minor loss of accuracy
381 * in the statistics, but the stat clock will no longer stop.
382 */
383static void
384rtcintr(struct clockframe frame)
385{
386	while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
387		statclock(&frame);
388#ifdef SMP
389		forward_statclock();
390#endif
391	}
392}
393
394#include "opt_ddb.h"
395#ifdef DDB
396#include <ddb/ddb.h>
397
398DB_SHOW_COMMAND(rtc, rtc)
399{
400	printf("%02x/%02x/%02x %02x:%02x:%02x, A = %02x, B = %02x, C = %02x\n",
401	       rtcin(RTC_YEAR), rtcin(RTC_MONTH), rtcin(RTC_DAY),
402	       rtcin(RTC_HRS), rtcin(RTC_MIN), rtcin(RTC_SEC),
403	       rtcin(RTC_STATUSA), rtcin(RTC_STATUSB), rtcin(RTC_INTR));
404}
405#endif /* DDB */
406
407static int
408getit(void)
409{
410	int high, low;
411
412	mtx_lock_spin(&clock_lock);
413
414	/* Select timer0 and latch counter value. */
415	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
416
417	low = inb(TIMER_CNTR0);
418	high = inb(TIMER_CNTR0);
419
420	mtx_unlock_spin(&clock_lock);
421	return ((high << 8) | low);
422}
423
424/*
425 * Wait "n" microseconds.
426 * Relies on timer 1 counting down from (timer_freq / hz)
427 * Note: timer had better have been programmed before this is first used!
428 */
429void
430DELAY(int n)
431{
432	int delta, prev_tick, tick, ticks_left;
433
434#ifdef DELAYDEBUG
435	int getit_calls = 1;
436	int n1;
437	static int state = 0;
438
439	if (state == 0) {
440		state = 1;
441		for (n1 = 1; n1 <= 10000000; n1 *= 10)
442			DELAY(n1);
443		state = 2;
444	}
445	if (state == 1)
446		printf("DELAY(%d)...", n);
447#endif
448	/*
449	 * Guard against the timer being uninitialized if we are called
450	 * early for console i/o.
451	 */
452	if (timer0_max_count == 0)
453		set_timer_freq(timer_freq, hz);
454
455	/*
456	 * Read the counter first, so that the rest of the setup overhead is
457	 * counted.  Guess the initial overhead is 20 usec (on most systems it
458	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
459	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
460	 * multiplications and divisions to scale the count take a while).
461	 */
462	prev_tick = getit();
463	n -= 0;			/* XXX actually guess no initial overhead */
464	/*
465	 * Calculate (n * (timer_freq / 1e6)) without using floating point
466	 * and without any avoidable overflows.
467	 */
468	if (n <= 0)
469		ticks_left = 0;
470	else if (n < 256)
471		/*
472		 * Use fixed point to avoid a slow division by 1000000.
473		 * 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
474		 * 2^15 is the first power of 2 that gives exact results
475		 * for n between 0 and 256.
476		 */
477		ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
478	else
479		/*
480		 * Don't bother using fixed point, although gcc-2.7.2
481		 * generates particularly poor code for the long long
482		 * division, since even the slow way will complete long
483		 * before the delay is up (unless we're interrupted).
484		 */
485		ticks_left = ((u_int)n * (long long)timer_freq + 999999)
486			     / 1000000;
487
488	while (ticks_left > 0) {
489		tick = getit();
490#ifdef DELAYDEBUG
491		++getit_calls;
492#endif
493		delta = prev_tick - tick;
494		prev_tick = tick;
495		if (delta < 0) {
496			delta += timer0_max_count;
497			/*
498			 * Guard against timer0_max_count being wrong.
499			 * This shouldn't happen in normal operation,
500			 * but it may happen if set_timer_freq() is
501			 * traced.
502			 */
503			if (delta < 0)
504				delta = 0;
505		}
506		ticks_left -= delta;
507	}
508#ifdef DELAYDEBUG
509	if (state == 1)
510		printf(" %d calls to getit() at %d usec each\n",
511		       getit_calls, (n + 5) / getit_calls);
512#endif
513}
514
515static void
516sysbeepstop(void *chan)
517{
518	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
519	release_timer2();
520	beeping = 0;
521}
522
523int
524sysbeep(int pitch, int period)
525{
526	int x = splclock();
527
528	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT))
529		if (!beeping) {
530			/* Something else owns it. */
531			splx(x);
532			return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
533		}
534	mtx_lock_spin(&clock_lock);
535	outb(TIMER_CNTR2, pitch);
536	outb(TIMER_CNTR2, (pitch>>8));
537	mtx_unlock_spin(&clock_lock);
538	if (!beeping) {
539		/* enable counter2 output to speaker */
540		outb(IO_PPI, inb(IO_PPI) | 3);
541		beeping = period;
542		timeout(sysbeepstop, (void *)NULL, period);
543	}
544	splx(x);
545	return (0);
546}
547
548/*
549 * RTC support routines
550 */
551
552int
553rtcin(reg)
554	int reg;
555{
556	int s;
557	u_char val;
558
559	s = splhigh();
560	outb(IO_RTC, reg);
561	inb(0x84);
562	val = inb(IO_RTC + 1);
563	inb(0x84);
564	splx(s);
565	return (val);
566}
567
568static __inline void
569writertc(u_char reg, u_char val)
570{
571	int s;
572
573	s = splhigh();
574	inb(0x84);
575	outb(IO_RTC, reg);
576	inb(0x84);
577	outb(IO_RTC + 1, val);
578	inb(0x84);		/* XXX work around wrong order in rtcin() */
579	splx(s);
580}
581
582static __inline int
583readrtc(int port)
584{
585	return(bcd2bin(rtcin(port)));
586}
587
588static u_int
589calibrate_clocks(void)
590{
591	u_int64_t old_tsc;
592	u_int count, prev_count, tot_count;
593	int sec, start_sec, timeout;
594
595	if (bootverbose)
596	        printf("Calibrating clock(s) ... ");
597	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
598		goto fail;
599	timeout = 100000000;
600
601	/* Read the mc146818A seconds counter. */
602	for (;;) {
603		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
604			sec = rtcin(RTC_SEC);
605			break;
606		}
607		if (--timeout == 0)
608			goto fail;
609	}
610
611	/* Wait for the mC146818A seconds counter to change. */
612	start_sec = sec;
613	for (;;) {
614		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP)) {
615			sec = rtcin(RTC_SEC);
616			if (sec != start_sec)
617				break;
618		}
619		if (--timeout == 0)
620			goto fail;
621	}
622
623	/* Start keeping track of the i8254 counter. */
624	prev_count = getit();
625	if (prev_count == 0 || prev_count > timer0_max_count)
626		goto fail;
627	tot_count = 0;
628
629	if (tsc_present)
630		old_tsc = rdtsc();
631	else
632		old_tsc = 0;		/* shut up gcc */
633
634	/*
635	 * Wait for the mc146818A seconds counter to change.  Read the i8254
636	 * counter for each iteration since this is convenient and only
637	 * costs a few usec of inaccuracy. The timing of the final reads
638	 * of the counters almost matches the timing of the initial reads,
639	 * so the main cause of inaccuracy is the varying latency from
640	 * inside getit() or rtcin(RTC_STATUSA) to the beginning of the
641	 * rtcin(RTC_SEC) that returns a changed seconds count.  The
642	 * maximum inaccuracy from this cause is < 10 usec on 486's.
643	 */
644	start_sec = sec;
645	for (;;) {
646		if (!(rtcin(RTC_STATUSA) & RTCSA_TUP))
647			sec = rtcin(RTC_SEC);
648		count = getit();
649		if (count == 0 || count > timer0_max_count)
650			goto fail;
651		if (count > prev_count)
652			tot_count += prev_count - (count - timer0_max_count);
653		else
654			tot_count += prev_count - count;
655		prev_count = count;
656		if (sec != start_sec)
657			break;
658		if (--timeout == 0)
659			goto fail;
660	}
661
662	/*
663	 * Read the cpu cycle counter.  The timing considerations are
664	 * similar to those for the i8254 clock.
665	 */
666	if (tsc_present)
667		tsc_freq = rdtsc() - old_tsc;
668
669	if (bootverbose) {
670		if (tsc_present)
671		        printf("TSC clock: %u Hz, ", tsc_freq);
672	        printf("i8254 clock: %u Hz\n", tot_count);
673	}
674	return (tot_count);
675
676fail:
677	if (bootverbose)
678	        printf("failed, using default i8254 clock of %u Hz\n",
679		       timer_freq);
680	return (timer_freq);
681}
682
683static void
684set_timer_freq(u_int freq, int intr_freq)
685{
686	int new_timer0_max_count;
687
688	mtx_lock_spin(&clock_lock);
689	timer_freq = freq;
690	new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
691	if (new_timer0_max_count != timer0_max_count) {
692		timer0_max_count = new_timer0_max_count;
693		outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
694		outb(TIMER_CNTR0, timer0_max_count & 0xff);
695		outb(TIMER_CNTR0, timer0_max_count >> 8);
696	}
697	mtx_unlock_spin(&clock_lock);
698}
699
700/*
701 * i8254_restore is called from apm_default_resume() to reload
702 * the countdown register.
703 * this should not be necessary but there are broken laptops that
704 * do not restore the countdown register on resume.
705 * when it happnes, it messes up the hardclock interval and system clock,
706 * which leads to the infamous "calcru: negative time" problem.
707 */
708static void
709i8254_restore(void)
710{
711
712	mtx_lock_spin(&clock_lock);
713	outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
714	outb(TIMER_CNTR0, timer0_max_count & 0xff);
715	outb(TIMER_CNTR0, timer0_max_count >> 8);
716	mtx_unlock_spin(&clock_lock);
717}
718
719static void
720rtc_restore(void)
721{
722
723	/* Reenable RTC updates and interrupts. */
724	/* XXX locking is needed for RTC access? */
725	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
726	writertc(RTC_STATUSB, rtc_statusb);
727}
728
729/*
730 * Restore all the timers atomically.
731 */
732void
733timer_restore(void)
734{
735
736	i8254_restore();		/* restore timer_freq and hz */
737	rtc_restore();			/* reenable RTC interrupts */
738}
739
740/*
741 * Initialize 8254 timer 0 early so that it can be used in DELAY().
742 * XXX initialization of other timers is unintentionally left blank.
743 */
744void
745startrtclock()
746{
747	u_int delta, freq;
748
749	if (cpu_feature & CPUID_TSC)
750		tsc_present = 1;
751	else
752		tsc_present = 0;
753
754	writertc(RTC_STATUSA, rtc_statusa);
755	writertc(RTC_STATUSB, RTCSB_24HR);
756
757	set_timer_freq(timer_freq, hz);
758	freq = calibrate_clocks();
759#ifdef CLK_CALIBRATION_LOOP
760	if (bootverbose) {
761		printf(
762		"Press a key on the console to abort clock calibration\n");
763		while (cncheckc() == -1)
764			calibrate_clocks();
765	}
766#endif
767
768	/*
769	 * Use the calibrated i8254 frequency if it seems reasonable.
770	 * Otherwise use the default, and don't use the calibrated i586
771	 * frequency.
772	 */
773	delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
774	if (delta < timer_freq / 100) {
775#ifndef CLK_USE_I8254_CALIBRATION
776		if (bootverbose)
777			printf(
778"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
779		freq = timer_freq;
780#endif
781		timer_freq = freq;
782	} else {
783		if (bootverbose)
784			printf(
785		    "%d Hz differs from default of %d Hz by more than 1%%\n",
786			       freq, timer_freq);
787		tsc_freq = 0;
788	}
789
790	set_timer_freq(timer_freq, hz);
791	i8254_timecounter.tc_frequency = timer_freq;
792	tc_init(&i8254_timecounter);
793
794#ifndef CLK_USE_TSC_CALIBRATION
795	if (tsc_freq != 0) {
796		if (bootverbose)
797			printf(
798"CLK_USE_TSC_CALIBRATION not specified - using old calibration method\n");
799		tsc_freq = 0;
800	}
801#endif
802	if (tsc_present && tsc_freq == 0) {
803		/*
804		 * Calibration of the i586 clock relative to the mc146818A
805		 * clock failed.  Do a less accurate calibration relative
806		 * to the i8254 clock.
807		 */
808		u_int64_t old_tsc = rdtsc();
809
810		DELAY(1000000);
811		tsc_freq = rdtsc() - old_tsc;
812#ifdef CLK_USE_TSC_CALIBRATION
813		if (bootverbose)
814			printf("TSC clock: %u Hz (Method B)\n", tsc_freq);
815#endif
816	}
817
818#if !defined(SMP)
819	/*
820	 * We can not use the TSC in SMP mode, until we figure out a
821	 * cheap (impossible), reliable and precise (yeah right!)  way
822	 * to synchronize the TSCs of all the CPUs.
823	 * Curse Intel for leaving the counter out of the I/O APIC.
824	 */
825
826#ifdef DEV_APM
827	/*
828	 * We can not use the TSC if we support APM. Precise timekeeping
829	 * on an APM'ed machine is at best a fools pursuit, since
830	 * any and all of the time spent in various SMM code can't
831	 * be reliably accounted for.  Reading the RTC is your only
832	 * source of reliable time info.  The i8254 looses too of course
833	 * but we need to have some kind of time...
834	 * We don't know at this point whether APM is going to be used
835	 * or not, nor when it might be activated.  Play it safe.
836	 */
837	{
838	int disabled = 0;
839	resource_int_value("apm", 0, "disabled", &disabled);
840	if (disabled == 0)
841		return;
842	}
843#endif /* DEV_APM */
844
845	if (tsc_present && tsc_freq != 0 && !tsc_is_broken) {
846		tsc_timecounter.tc_frequency = tsc_freq;
847		tc_init(&tsc_timecounter);
848	}
849
850#endif /* !defined(SMP) */
851}
852
853/*
854 * Initialize the time of day register, based on the time base which is, e.g.
855 * from a filesystem.
856 */
857void
858inittodr(time_t base)
859{
860	unsigned long	sec, days;
861	int		yd;
862	int		year, month;
863	int		y, m, s;
864	struct timespec ts;
865
866	if (base) {
867		s = splclock();
868		ts.tv_sec = base;
869		ts.tv_nsec = 0;
870		tc_setclock(&ts);
871		splx(s);
872	}
873
874	/* Look if we have a RTC present and the time is valid */
875	if (!(rtcin(RTC_STATUSD) & RTCSD_PWR))
876		goto wrong_time;
877
878	/* wait for time update to complete */
879	/* If RTCSA_TUP is zero, we have at least 244us before next update */
880	s = splhigh();
881	while (rtcin(RTC_STATUSA) & RTCSA_TUP) {
882		splx(s);
883		s = splhigh();
884	}
885
886	days = 0;
887#ifdef USE_RTC_CENTURY
888	year = readrtc(RTC_YEAR) + readrtc(RTC_CENTURY) * 100;
889#else
890	year = readrtc(RTC_YEAR) + 1900;
891	if (year < 1970)
892		year += 100;
893#endif
894	if (year < 1970) {
895		splx(s);
896		goto wrong_time;
897	}
898	month = readrtc(RTC_MONTH);
899	for (m = 1; m < month; m++)
900		days += daysinmonth[m-1];
901	if ((month > 2) && LEAPYEAR(year))
902		days ++;
903	days += readrtc(RTC_DAY) - 1;
904	yd = days;
905	for (y = 1970; y < year; y++)
906		days += DAYSPERYEAR + LEAPYEAR(y);
907	sec = ((( days * 24 +
908		  readrtc(RTC_HRS)) * 60 +
909		  readrtc(RTC_MIN)) * 60 +
910		  readrtc(RTC_SEC));
911	/* sec now contains the number of seconds, since Jan 1 1970,
912	   in the local time zone */
913
914	sec += tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
915
916	y = time_second - sec;
917	if (y <= -2 || y >= 2) {
918		/* badly off, adjust it */
919		ts.tv_sec = sec;
920		ts.tv_nsec = 0;
921		tc_setclock(&ts);
922	}
923	splx(s);
924	return;
925
926wrong_time:
927	printf("Invalid time in real time clock.\n");
928	printf("Check and reset the date immediately!\n");
929}
930
931/*
932 * Write system time back to RTC
933 */
934void
935resettodr()
936{
937	unsigned long	tm;
938	int		y, m, s;
939
940	if (disable_rtc_set)
941		return;
942
943	s = splclock();
944	tm = time_second;
945	splx(s);
946
947	/* Disable RTC updates and interrupts. */
948	writertc(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
949
950	/* Calculate local time to put in RTC */
951
952	tm -= tz.tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
953
954	writertc(RTC_SEC, bin2bcd(tm%60)); tm /= 60;	/* Write back Seconds */
955	writertc(RTC_MIN, bin2bcd(tm%60)); tm /= 60;	/* Write back Minutes */
956	writertc(RTC_HRS, bin2bcd(tm%24)); tm /= 24;	/* Write back Hours   */
957
958	/* We have now the days since 01-01-1970 in tm */
959	writertc(RTC_WDAY, (tm+4)%7);			/* Write back Weekday */
960	for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
961	     tm >= m;
962	     y++,      m = DAYSPERYEAR + LEAPYEAR(y))
963	     tm -= m;
964
965	/* Now we have the years in y and the day-of-the-year in tm */
966	writertc(RTC_YEAR, bin2bcd(y%100));		/* Write back Year    */
967#ifdef USE_RTC_CENTURY
968	writertc(RTC_CENTURY, bin2bcd(y/100));		/* ... and Century    */
969#endif
970	for (m = 0; ; m++) {
971		int ml;
972
973		ml = daysinmonth[m];
974		if (m == 1 && LEAPYEAR(y))
975			ml++;
976		if (tm < ml)
977			break;
978		tm -= ml;
979	}
980
981	writertc(RTC_MONTH, bin2bcd(m + 1));            /* Write back Month   */
982	writertc(RTC_DAY, bin2bcd(tm + 1));             /* Write back Month Day */
983
984	/* Reenable RTC updates and interrupts. */
985	writertc(RTC_STATUSB, rtc_statusb);
986}
987
988
989/*
990 * Start both clocks running.
991 */
992void
993cpu_initclocks()
994{
995	int diag;
996#ifdef APIC_IO
997	int apic_8254_trial;
998	void *clkdesc;
999#endif /* APIC_IO */
1000
1001	if (statclock_disable) {
1002		/*
1003		 * The stat interrupt mask is different without the
1004		 * statistics clock.  Also, don't set the interrupt
1005		 * flag which would normally cause the RTC to generate
1006		 * interrupts.
1007		 */
1008		rtc_statusb = RTCSB_24HR;
1009	} else {
1010	        /* Setting stathz to nonzero early helps avoid races. */
1011		stathz = RTC_NOPROFRATE;
1012		profhz = RTC_PROFRATE;
1013        }
1014
1015	/* Finish initializing 8253 timer 0. */
1016#ifdef APIC_IO
1017
1018	apic_8254_intr = isa_apic_irq(0);
1019	apic_8254_trial = 0;
1020	if (apic_8254_intr >= 0 ) {
1021		if (apic_int_type(0, 0) == 3)
1022			apic_8254_trial = 1;
1023	} else {
1024		/* look for ExtInt on pin 0 */
1025		if (apic_int_type(0, 0) == 3) {
1026			apic_8254_intr = apic_irq(0, 0);
1027			setup_8254_mixed_mode();
1028		} else
1029			panic("APIC_IO: Cannot route 8254 interrupt to CPU");
1030	}
1031
1032	inthand_add("clk", apic_8254_intr, (driver_intr_t *)clkintr, NULL,
1033	    INTR_TYPE_CLK | INTR_FAST, &clkdesc);
1034	INTREN(1 << apic_8254_intr);
1035
1036#else /* APIC_IO */
1037
1038	/*
1039	 * XXX Check the priority of this interrupt handler.  I
1040	 * couldn't find anything suitable in the BSD/OS code (grog,
1041	 * 19 July 2000).
1042	 */
1043	inthand_add("clk", 0, (driver_intr_t *)clkintr, NULL,
1044	    INTR_TYPE_CLK | INTR_FAST, NULL);
1045	INTREN(IRQ0);
1046
1047#endif /* APIC_IO */
1048
1049	/* Initialize RTC. */
1050	writertc(RTC_STATUSA, rtc_statusa);
1051	writertc(RTC_STATUSB, RTCSB_24HR);
1052
1053	/* Don't bother enabling the statistics clock. */
1054	if (statclock_disable)
1055		return;
1056	diag = rtcin(RTC_DIAG);
1057	if (diag != 0)
1058		printf("RTC BIOS diagnostic error %b\n", diag, RTCDG_BITS);
1059
1060#ifdef APIC_IO
1061	if (isa_apic_irq(8) != 8)
1062		panic("APIC RTC != 8");
1063#endif /* APIC_IO */
1064
1065	inthand_add("rtc", 8, (driver_intr_t *)rtcintr, NULL,
1066	    INTR_TYPE_CLK | INTR_FAST, NULL);
1067
1068#ifdef APIC_IO
1069	INTREN(APIC_IRQ8);
1070#else
1071	INTREN(IRQ8);
1072#endif /* APIC_IO */
1073
1074	writertc(RTC_STATUSB, rtc_statusb);
1075
1076#ifdef APIC_IO
1077	if (apic_8254_trial) {
1078
1079		printf("APIC_IO: Testing 8254 interrupt delivery\n");
1080		while (read_intr_count(8) < 6)
1081			;	/* nothing */
1082		if (read_intr_count(apic_8254_intr) < 3) {
1083			/*
1084			 * The MP table is broken.
1085			 * The 8254 was not connected to the specified pin
1086			 * on the IO APIC.
1087			 * Workaround: Limited variant of mixed mode.
1088			 */
1089			INTRDIS(1 << apic_8254_intr);
1090			inthand_remove(clkdesc);
1091			printf("APIC_IO: Broken MP table detected: "
1092			       "8254 is not connected to "
1093			       "IOAPIC #%d intpin %d\n",
1094			       int_to_apicintpin[apic_8254_intr].ioapic,
1095			       int_to_apicintpin[apic_8254_intr].int_pin);
1096			/*
1097			 * Revoke current ISA IRQ 0 assignment and
1098			 * configure a fallback interrupt routing from
1099			 * the 8254 Timer via the 8259 PIC to the
1100			 * an ExtInt interrupt line on IOAPIC #0 intpin 0.
1101			 * We reuse the low level interrupt handler number.
1102			 */
1103			if (apic_irq(0, 0) < 0) {
1104				revoke_apic_irq(apic_8254_intr);
1105				assign_apic_irq(0, 0, apic_8254_intr);
1106			}
1107			apic_8254_intr = apic_irq(0, 0);
1108			setup_8254_mixed_mode();
1109			inthand_add("clk", apic_8254_intr,
1110				    (driver_intr_t *)clkintr, NULL,
1111				    INTR_TYPE_CLK | INTR_FAST, NULL);
1112			INTREN(1 << apic_8254_intr);
1113		}
1114
1115	}
1116	if (apic_int_type(0, 0) != 3 ||
1117	    int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
1118	    int_to_apicintpin[apic_8254_intr].int_pin != 0)
1119		printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
1120		       int_to_apicintpin[apic_8254_intr].ioapic,
1121		       int_to_apicintpin[apic_8254_intr].int_pin);
1122	else
1123		printf("APIC_IO: "
1124		       "routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
1125#endif
1126
1127}
1128
1129#ifdef APIC_IO
1130static u_long
1131read_intr_count(int vec)
1132{
1133	u_long *up;
1134	up = intr_countp[vec];
1135	if (up)
1136		return *up;
1137	return 0UL;
1138}
1139
1140static void
1141setup_8254_mixed_mode()
1142{
1143	/*
1144	 * Allow 8254 timer to INTerrupt 8259:
1145	 *  re-initialize master 8259:
1146	 *   reset; prog 4 bytes, single ICU, edge triggered
1147	 */
1148	outb(IO_ICU1, 0x13);
1149	outb(IO_ICU1 + 1, NRSVIDT);	/* start vector (unused) */
1150	outb(IO_ICU1 + 1, 0x00);	/* ignore slave */
1151	outb(IO_ICU1 + 1, 0x03);	/* auto EOI, 8086 */
1152	outb(IO_ICU1 + 1, 0xfe);	/* unmask INT0 */
1153
1154	/* program IO APIC for type 3 INT on INT0 */
1155	if (ext_int_setup(0, 0) < 0)
1156		panic("8254 redirect via APIC pin0 impossible!");
1157}
1158#endif
1159
1160void
1161setstatclockrate(int newhz)
1162{
1163	if (newhz == RTC_PROFRATE)
1164		rtc_statusa = RTCSA_DIVIDER | RTCSA_PROF;
1165	else
1166		rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
1167	writertc(RTC_STATUSA, rtc_statusa);
1168}
1169
1170static int
1171sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
1172{
1173	int error;
1174	u_int freq;
1175
1176	/*
1177	 * Use `i8254' instead of `timer' in external names because `timer'
1178	 * is is too generic.  Should use it everywhere.
1179	 */
1180	freq = timer_freq;
1181	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1182	if (error == 0 && req->newptr != NULL) {
1183		if (timer0_state != RELEASED)
1184			return (EBUSY);	/* too much trouble to handle */
1185		set_timer_freq(freq, hz);
1186		i8254_timecounter.tc_frequency = freq;
1187		tc_update(&i8254_timecounter);
1188	}
1189	return (error);
1190}
1191
1192SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
1193    0, sizeof(u_int), sysctl_machdep_i8254_freq, "I", "");
1194
1195static int
1196sysctl_machdep_tsc_freq(SYSCTL_HANDLER_ARGS)
1197{
1198	int error;
1199	u_int freq;
1200
1201	if (tsc_timecounter.tc_frequency == 0)
1202		return (EOPNOTSUPP);
1203	freq = tsc_freq;
1204	error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
1205	if (error == 0 && req->newptr != NULL) {
1206		tsc_freq = freq;
1207		tsc_timecounter.tc_frequency = tsc_freq;
1208		tc_update(&tsc_timecounter);
1209	}
1210	return (error);
1211}
1212
1213SYSCTL_PROC(_machdep, OID_AUTO, tsc_freq, CTLTYPE_INT | CTLFLAG_RW,
1214    0, sizeof(u_int), sysctl_machdep_tsc_freq, "I", "");
1215
1216static unsigned
1217i8254_get_timecount(struct timecounter *tc)
1218{
1219	u_int count;
1220	u_int high, low;
1221	u_int eflags;
1222
1223	eflags = read_eflags();
1224	mtx_lock_spin(&clock_lock);
1225
1226	/* Select timer0 and latch counter value. */
1227	outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
1228
1229	low = inb(TIMER_CNTR0);
1230	high = inb(TIMER_CNTR0);
1231	count = timer0_max_count - ((high << 8) | low);
1232	if (count < i8254_lastcount ||
1233	    (!i8254_ticked && (clkintr_pending ||
1234	    ((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
1235#ifdef APIC_IO
1236#define	lapic_irr1	((volatile u_int *)&lapic)[0x210 / 4]	/* XXX XXX */
1237	    /* XXX this assumes that apic_8254_intr is < 24. */
1238	    (lapic_irr1 & (1 << apic_8254_intr))))
1239#else
1240	    (inb(IO_ICU1) & 1)))
1241#endif
1242	    )) {
1243		i8254_ticked = 1;
1244		i8254_offset += timer0_max_count;
1245	}
1246	i8254_lastcount = count;
1247	count += i8254_offset;
1248	mtx_unlock_spin(&clock_lock);
1249	return (count);
1250}
1251
1252static unsigned
1253tsc_get_timecount(struct timecounter *tc)
1254{
1255	return (rdtsc());
1256}
1257
1258/*
1259 * Attach to the ISA PnP descriptors for the timer and realtime clock.
1260 */
1261static struct isa_pnp_id attimer_ids[] = {
1262	{ 0x0001d041 /* PNP0100 */, "AT timer" },
1263	{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
1264	{ 0 }
1265};
1266
1267static int
1268attimer_probe(device_t dev)
1269{
1270	int result;
1271
1272	if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
1273		device_quiet(dev);
1274	return(result);
1275}
1276
1277static int
1278attimer_attach(device_t dev)
1279{
1280	return(0);
1281}
1282
1283static device_method_t attimer_methods[] = {
1284	/* Device interface */
1285	DEVMETHOD(device_probe,		attimer_probe),
1286	DEVMETHOD(device_attach,	attimer_attach),
1287	DEVMETHOD(device_detach,	bus_generic_detach),
1288	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
1289	DEVMETHOD(device_suspend,	bus_generic_suspend),	/* XXX stop statclock? */
1290	DEVMETHOD(device_resume,	bus_generic_resume),	/* XXX restart statclock? */
1291	{ 0, 0 }
1292};
1293
1294static driver_t attimer_driver = {
1295	"attimer",
1296	attimer_methods,
1297	1,		/* no softc */
1298};
1299
1300static devclass_t attimer_devclass;
1301
1302DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
1303DRIVER_MODULE(attimer, acpi, attimer_driver, attimer_devclass, 0, 0);
1304