vm_glue.c revision 99920
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 *
62 * $FreeBSD: head/sys/vm/vm_glue.c 99920 2002-07-13 19:24:04Z alc $
63 */
64
65#include "opt_vm.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/resourcevar.h>
73#include <sys/shm.h>
74#include <sys/vmmeter.h>
75#include <sys/sx.h>
76#include <sys/sysctl.h>
77
78#include <sys/kernel.h>
79#include <sys/ktr.h>
80#include <sys/unistd.h>
81
82#include <machine/limits.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_page.h>
89#include <vm/vm_pageout.h>
90#include <vm/vm_object.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/vm_pager.h>
94
95#include <sys/user.h>
96
97extern int maxslp;
98
99/*
100 * System initialization
101 *
102 * Note: proc0 from proc.h
103 */
104static void vm_init_limits(void *);
105SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
106
107/*
108 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
109 *
110 * Note: run scheduling should be divorced from the vm system.
111 */
112static void scheduler(void *);
113SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
114
115#ifndef NO_SWAPPING
116static void swapout(struct proc *);
117static void vm_proc_swapin(struct proc *p);
118static void vm_proc_swapout(struct proc *p);
119#endif
120
121/*
122 * MPSAFE
123 */
124int
125kernacc(addr, len, rw)
126	caddr_t addr;
127	int len, rw;
128{
129	boolean_t rv;
130	vm_offset_t saddr, eaddr;
131	vm_prot_t prot;
132
133	KASSERT((rw & ~VM_PROT_ALL) == 0,
134	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
135	prot = rw;
136	saddr = trunc_page((vm_offset_t)addr);
137	eaddr = round_page((vm_offset_t)addr + len);
138	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
139	return (rv == TRUE);
140}
141
142/*
143 * MPSAFE
144 */
145int
146useracc(addr, len, rw)
147	caddr_t addr;
148	int len, rw;
149{
150	boolean_t rv;
151	vm_prot_t prot;
152
153	KASSERT((rw & ~VM_PROT_ALL) == 0,
154	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
155	prot = rw;
156	/*
157	 * XXX - check separately to disallow access to user area and user
158	 * page tables - they are in the map.
159	 *
160	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  It was once
161	 * only used (as an end address) in trap.c.  Use it as an end address
162	 * here too.  This bogusness has spread.  I just fixed where it was
163	 * used as a max in vm_mmap.c.
164	 */
165	if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
166	    || (vm_offset_t) addr + len < (vm_offset_t) addr) {
167		return (FALSE);
168	}
169	rv = vm_map_check_protection(&curproc->p_vmspace->vm_map,
170	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
171	    prot);
172	return (rv == TRUE);
173}
174
175/*
176 * MPSAFE
177 */
178void
179vslock(addr, len)
180	caddr_t addr;
181	u_int len;
182{
183
184	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
185	    round_page((vm_offset_t)addr + len), FALSE);
186}
187
188/*
189 * MPSAFE
190 */
191void
192vsunlock(addr, len)
193	caddr_t addr;
194	u_int len;
195{
196
197	vm_map_unwire(&curproc->p_vmspace->vm_map,
198	    trunc_page((vm_offset_t)addr),
199	    round_page((vm_offset_t)addr + len), FALSE);
200}
201
202/*
203 * Create the U area for a new process.
204 * This routine directly affects the fork perf for a process.
205 */
206void
207vm_proc_new(struct proc *p)
208{
209	vm_page_t ma[UAREA_PAGES];
210	vm_object_t upobj;
211	vm_offset_t up;
212	vm_page_t m;
213	u_int i;
214
215	/*
216	 * Allocate object for the upage.
217	 */
218	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
219	p->p_upages_obj = upobj;
220
221	/*
222	 * Get a kernel virtual address for the U area for this process.
223	 */
224	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
225	if (up == 0)
226		panic("vm_proc_new: upage allocation failed");
227	p->p_uarea = (struct user *)up;
228
229	for (i = 0; i < UAREA_PAGES; i++) {
230		/*
231		 * Get a uarea page.
232		 */
233		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
234		ma[i] = m;
235
236		/*
237		 * Wire the page.
238		 */
239		m->wire_count++;
240		cnt.v_wire_count++;
241
242		vm_page_wakeup(m);
243		vm_page_flag_clear(m, PG_ZERO);
244		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
245		m->valid = VM_PAGE_BITS_ALL;
246	}
247
248	/*
249	 * Enter the pages into the kernel address space.
250	 */
251	pmap_qenter(up, ma, UAREA_PAGES);
252}
253
254/*
255 * Dispose the U area for a process that has exited.
256 * This routine directly impacts the exit perf of a process.
257 * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
258 */
259void
260vm_proc_dispose(struct proc *p)
261{
262	vm_object_t upobj;
263	vm_offset_t up;
264	vm_page_t m;
265
266	upobj = p->p_upages_obj;
267	if (upobj->resident_page_count != UAREA_PAGES)
268		panic("vm_proc_dispose: incorrect number of pages in upobj");
269	vm_page_lock_queues();
270	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
271		vm_page_busy(m);
272		vm_page_unwire(m, 0);
273		vm_page_free(m);
274	}
275	vm_page_unlock_queues();
276	up = (vm_offset_t)p->p_uarea;
277	pmap_qremove(up, UAREA_PAGES);
278	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
279	vm_object_deallocate(upobj);
280}
281
282#ifndef NO_SWAPPING
283/*
284 * Allow the U area for a process to be prejudicially paged out.
285 */
286void
287vm_proc_swapout(struct proc *p)
288{
289	vm_object_t upobj;
290	vm_offset_t up;
291	vm_page_t m;
292
293	upobj = p->p_upages_obj;
294	if (upobj->resident_page_count != UAREA_PAGES)
295		panic("vm_proc_dispose: incorrect number of pages in upobj");
296	vm_page_lock_queues();
297	TAILQ_FOREACH(m, &upobj->memq, listq) {
298		vm_page_dirty(m);
299		vm_page_unwire(m, 0);
300	}
301	vm_page_unlock_queues();
302	up = (vm_offset_t)p->p_uarea;
303	pmap_qremove(up, UAREA_PAGES);
304}
305
306/*
307 * Bring the U area for a specified process back in.
308 */
309void
310vm_proc_swapin(struct proc *p)
311{
312	vm_page_t ma[UAREA_PAGES];
313	vm_object_t upobj;
314	vm_offset_t up;
315	vm_page_t m;
316	int rv;
317	int i;
318
319	upobj = p->p_upages_obj;
320	for (i = 0; i < UAREA_PAGES; i++) {
321		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
322		if (m->valid != VM_PAGE_BITS_ALL) {
323			rv = vm_pager_get_pages(upobj, &m, 1, 0);
324			if (rv != VM_PAGER_OK)
325				panic("vm_proc_swapin: cannot get upage");
326		}
327		ma[i] = m;
328	}
329	if (upobj->resident_page_count != UAREA_PAGES)
330		panic("vm_proc_swapin: lost pages from upobj");
331	TAILQ_FOREACH(m, &upobj->memq, listq) {
332		m->valid = VM_PAGE_BITS_ALL;
333		vm_page_wire(m);
334		vm_page_wakeup(m);
335		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
336	}
337	up = (vm_offset_t)p->p_uarea;
338	pmap_qenter(up, ma, UAREA_PAGES);
339}
340#endif
341
342/*
343 * Implement fork's actions on an address space.
344 * Here we arrange for the address space to be copied or referenced,
345 * allocate a user struct (pcb and kernel stack), then call the
346 * machine-dependent layer to fill those in and make the new process
347 * ready to run.  The new process is set up so that it returns directly
348 * to user mode to avoid stack copying and relocation problems.
349 */
350void
351vm_forkproc(td, p2, td2, flags)
352	struct thread *td;
353	struct proc *p2;
354	struct thread *td2;
355	int flags;
356{
357	struct proc *p1 = td->td_proc;
358	struct user *up;
359
360	GIANT_REQUIRED;
361
362	if ((flags & RFPROC) == 0) {
363		/*
364		 * Divorce the memory, if it is shared, essentially
365		 * this changes shared memory amongst threads, into
366		 * COW locally.
367		 */
368		if ((flags & RFMEM) == 0) {
369			if (p1->p_vmspace->vm_refcnt > 1) {
370				vmspace_unshare(p1);
371			}
372		}
373		cpu_fork(td, p2, td2, flags);
374		return;
375	}
376
377	if (flags & RFMEM) {
378		p2->p_vmspace = p1->p_vmspace;
379		p1->p_vmspace->vm_refcnt++;
380	}
381
382	while (vm_page_count_severe()) {
383		VM_WAIT;
384	}
385
386	if ((flags & RFMEM) == 0) {
387		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
388
389		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
390
391		if (p1->p_vmspace->vm_shm)
392			shmfork(p1, p2);
393	}
394
395	/* XXXKSE this is unsatisfactory but should be adequate */
396	up = p2->p_uarea;
397
398	/*
399	 * p_stats currently points at fields in the user struct
400	 * but not at &u, instead at p_addr. Copy parts of
401	 * p_stats; zero the rest of p_stats (statistics).
402	 *
403	 * If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
404	 * to share sigacts, so we use the up->u_sigacts.
405	 */
406	p2->p_stats = &up->u_stats;
407	if (p2->p_sigacts == NULL) {
408		if (p2->p_procsig->ps_refcnt != 1)
409			printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
410		p2->p_sigacts = &up->u_sigacts;
411		up->u_sigacts = *p1->p_sigacts;
412	}
413
414	bzero(&up->u_stats.pstat_startzero,
415	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
416		(caddr_t) &up->u_stats.pstat_startzero));
417	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
418	    ((caddr_t) &up->u_stats.pstat_endcopy -
419		(caddr_t) &up->u_stats.pstat_startcopy));
420
421
422	/*
423	 * cpu_fork will copy and update the pcb, set up the kernel stack,
424	 * and make the child ready to run.
425	 */
426	cpu_fork(td, p2, td2, flags);
427}
428
429/*
430 * Called after process has been wait(2)'ed apon and is being reaped.
431 * The idea is to reclaim resources that we could not reclaim while
432 * the process was still executing.
433 */
434void
435vm_waitproc(p)
436	struct proc *p;
437{
438	struct thread *td;
439
440	GIANT_REQUIRED;
441	cpu_wait(p);
442/* XXXKSE by here there should not be any threads left! */
443	FOREACH_THREAD_IN_PROC(p, td) {
444		panic("vm_waitproc: Survivor thread!");
445	}
446	vmspace_exitfree(p);		/* and clean-out the vmspace */
447}
448
449/*
450 * Set default limits for VM system.
451 * Called for proc 0, and then inherited by all others.
452 *
453 * XXX should probably act directly on proc0.
454 */
455static void
456vm_init_limits(udata)
457	void *udata;
458{
459	struct proc *p = udata;
460	int rss_limit;
461
462	/*
463	 * Set up the initial limits on process VM. Set the maximum resident
464	 * set size to be half of (reasonably) available memory.  Since this
465	 * is a soft limit, it comes into effect only when the system is out
466	 * of memory - half of main memory helps to favor smaller processes,
467	 * and reduces thrashing of the object cache.
468	 */
469	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
470	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
471	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
472	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
473	/* limit the limit to no less than 2MB */
474	rss_limit = max(cnt.v_free_count, 512);
475	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
476	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
477}
478
479void
480faultin(p)
481	struct proc *p;
482{
483
484	GIANT_REQUIRED;
485	PROC_LOCK_ASSERT(p, MA_OWNED);
486	mtx_lock_spin(&sched_lock);
487#ifdef NO_SWAPPING
488	if ((p->p_sflag & PS_INMEM) == 0)
489		panic("faultin: proc swapped out with NO_SWAPPING!");
490#else
491	if ((p->p_sflag & PS_INMEM) == 0) {
492		struct thread *td;
493
494		++p->p_lock;
495		mtx_unlock_spin(&sched_lock);
496		PROC_UNLOCK(p);
497
498		vm_proc_swapin(p);
499		FOREACH_THREAD_IN_PROC (p, td)
500			pmap_swapin_thread(td);
501
502		PROC_LOCK(p);
503		mtx_lock_spin(&sched_lock);
504		FOREACH_THREAD_IN_PROC (p, td)
505			if (td->td_state == TDS_RUNQ)	/* XXXKSE */
506				setrunqueue(td);
507
508		p->p_sflag |= PS_INMEM;
509
510		/* undo the effect of setting SLOCK above */
511		--p->p_lock;
512	}
513#endif
514	mtx_unlock_spin(&sched_lock);
515}
516
517/*
518 * This swapin algorithm attempts to swap-in processes only if there
519 * is enough space for them.  Of course, if a process waits for a long
520 * time, it will be swapped in anyway.
521 *
522 *  XXXKSE - process with the thread with highest priority counts..
523 *
524 * Giant is still held at this point, to be released in tsleep.
525 */
526/* ARGSUSED*/
527static void
528scheduler(dummy)
529	void *dummy;
530{
531	struct proc *p;
532	struct thread *td;
533	int pri;
534	struct proc *pp;
535	int ppri;
536
537	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
538	/* GIANT_REQUIRED */
539
540loop:
541	if (vm_page_count_min()) {
542		VM_WAIT;
543		goto loop;
544	}
545
546	pp = NULL;
547	ppri = INT_MIN;
548	sx_slock(&allproc_lock);
549	FOREACH_PROC_IN_SYSTEM(p) {
550		struct ksegrp *kg;
551		if (p->p_sflag & (PS_INMEM | PS_SWAPPING)) {
552			continue;
553		}
554		mtx_lock_spin(&sched_lock);
555		FOREACH_THREAD_IN_PROC(p, td) {
556			/* Only consider runnable threads */
557			if (td->td_state == TDS_RUNQ) {
558				kg = td->td_ksegrp;
559				pri = p->p_swtime + kg->kg_slptime;
560				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
561					pri -= kg->kg_nice * 8;
562				}
563
564				/*
565				 * if this ksegrp is higher priority
566				 * and there is enough space, then select
567				 * this process instead of the previous
568				 * selection.
569				 */
570				if (pri > ppri) {
571					pp = p;
572					ppri = pri;
573				}
574			}
575		}
576		mtx_unlock_spin(&sched_lock);
577	}
578	sx_sunlock(&allproc_lock);
579
580	/*
581	 * Nothing to do, back to sleep.
582	 */
583	if ((p = pp) == NULL) {
584		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
585		goto loop;
586	}
587	mtx_lock_spin(&sched_lock);
588	p->p_sflag &= ~PS_SWAPINREQ;
589	mtx_unlock_spin(&sched_lock);
590
591	/*
592	 * We would like to bring someone in. (only if there is space).
593	 * [What checks the space? ]
594	 */
595	PROC_LOCK(p);
596	faultin(p);
597	PROC_UNLOCK(p);
598	mtx_lock_spin(&sched_lock);
599	p->p_swtime = 0;
600	mtx_unlock_spin(&sched_lock);
601	goto loop;
602}
603
604#ifndef NO_SWAPPING
605
606/*
607 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
608 */
609static int swap_idle_threshold1 = 2;
610SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
611	CTLFLAG_RW, &swap_idle_threshold1, 0, "");
612
613/*
614 * Swap_idle_threshold2 is the time that a process can be idle before
615 * it will be swapped out, if idle swapping is enabled.
616 */
617static int swap_idle_threshold2 = 10;
618SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
619	CTLFLAG_RW, &swap_idle_threshold2, 0, "");
620
621/*
622 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
623 * procs and unwire their u-areas.  We try to always "swap" at least one
624 * process in case we need the room for a swapin.
625 * If any procs have been sleeping/stopped for at least maxslp seconds,
626 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
627 * if any, otherwise the longest-resident process.
628 */
629void
630swapout_procs(action)
631int action;
632{
633	struct proc *p;
634	struct thread *td;
635	struct ksegrp *kg;
636	struct proc *outp, *outp2;
637	int outpri, outpri2;
638	int didswap = 0;
639
640	GIANT_REQUIRED;
641
642	outp = outp2 = NULL;
643	outpri = outpri2 = INT_MIN;
644retry:
645	sx_slock(&allproc_lock);
646	FOREACH_PROC_IN_SYSTEM(p) {
647		struct vmspace *vm;
648		int minslptime = 100000;
649
650		PROC_LOCK(p);
651		if (p->p_lock != 0 ||
652		    (p->p_flag & (P_STOPPED_SNGL|P_TRACED|P_SYSTEM|P_WEXIT)) != 0) {
653			PROC_UNLOCK(p);
654			continue;
655		}
656		/*
657		 * only aiod changes vmspace, however it will be
658		 * skipped because of the if statement above checking
659		 * for P_SYSTEM
660		 */
661		vm = p->p_vmspace;
662		mtx_lock_spin(&sched_lock);
663		if ((p->p_sflag & (PS_INMEM|PS_SWAPPING)) != PS_INMEM) {
664			mtx_unlock_spin(&sched_lock);
665			PROC_UNLOCK(p);
666			continue;
667		}
668
669		switch (p->p_state) {
670		default:
671			/* Don't swap out processes in any sort
672			 * of 'special' state. */
673			mtx_unlock_spin(&sched_lock);
674			PROC_UNLOCK(p);
675			continue;
676
677		case PRS_NORMAL:
678			/*
679			 * do not swapout a realtime process
680			 * Check all the thread groups..
681			 */
682			FOREACH_KSEGRP_IN_PROC(p, kg) {
683				if (PRI_IS_REALTIME(kg->kg_pri_class)) {
684					mtx_unlock_spin(&sched_lock);
685					PROC_UNLOCK(p);
686					goto nextproc;
687				}
688
689				/*
690				 * Do not swapout a process waiting
691				 * on a critical event of some kind.
692				 * Also guarantee swap_idle_threshold1
693				 * time in memory.
694				 */
695				if (kg->kg_slptime < swap_idle_threshold1) {
696					mtx_unlock_spin(&sched_lock);
697					PROC_UNLOCK(p);
698					goto nextproc;
699				}
700				FOREACH_THREAD_IN_PROC(p, td) {
701					if ((td->td_priority) < PSOCK) {
702						mtx_unlock_spin(&sched_lock);
703						PROC_UNLOCK(p);
704						goto nextproc;
705					}
706				}
707				/*
708				 * If the system is under memory stress,
709				 * or if we are swapping
710				 * idle processes >= swap_idle_threshold2,
711				 * then swap the process out.
712				 */
713				if (((action & VM_SWAP_NORMAL) == 0) &&
714				    (((action & VM_SWAP_IDLE) == 0) ||
715				    (kg->kg_slptime < swap_idle_threshold2))) {
716					mtx_unlock_spin(&sched_lock);
717					PROC_UNLOCK(p);
718					goto nextproc;
719				}
720				if (minslptime > kg->kg_slptime)
721					minslptime = kg->kg_slptime;
722			}
723
724			mtx_unlock_spin(&sched_lock);
725			++vm->vm_refcnt;
726			/*
727			 * do not swapout a process that
728			 * is waiting for VM
729			 * data structures there is a
730			 * possible deadlock.
731			 */
732			if (!vm_map_trylock(&vm->vm_map)) {
733				vmspace_free(vm);
734				PROC_UNLOCK(p);
735				goto nextproc;
736			}
737			vm_map_unlock(&vm->vm_map);
738			/*
739			 * If the process has been asleep for awhile and had
740			 * most of its pages taken away already, swap it out.
741			 */
742			if ((action & VM_SWAP_NORMAL) ||
743				((action & VM_SWAP_IDLE) &&
744				 (minslptime > swap_idle_threshold2))) {
745				sx_sunlock(&allproc_lock);
746				swapout(p);
747				vmspace_free(vm);
748				didswap++;
749				goto retry;
750			}
751			PROC_UNLOCK(p);
752			vmspace_free(vm);
753		}
754nextproc:
755		continue;
756	}
757	sx_sunlock(&allproc_lock);
758	/*
759	 * If we swapped something out, and another process needed memory,
760	 * then wakeup the sched process.
761	 */
762	if (didswap)
763		wakeup(&proc0);
764}
765
766static void
767swapout(p)
768	struct proc *p;
769{
770	struct thread *td;
771
772	PROC_LOCK_ASSERT(p, MA_OWNED);
773#if defined(SWAP_DEBUG)
774	printf("swapping out %d\n", p->p_pid);
775#endif
776	++p->p_stats->p_ru.ru_nswap;
777	/*
778	 * remember the process resident count
779	 */
780	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
781
782	mtx_lock_spin(&sched_lock);
783	p->p_sflag &= ~PS_INMEM;
784	p->p_sflag |= PS_SWAPPING;
785	PROC_UNLOCK(p);
786	FOREACH_THREAD_IN_PROC (p, td)
787		if (td->td_state == TDS_RUNQ)	/* XXXKSE */
788			remrunqueue(td);	/* XXXKSE */
789	mtx_unlock_spin(&sched_lock);
790
791	vm_proc_swapout(p);
792	FOREACH_THREAD_IN_PROC(p, td)
793		pmap_swapout_thread(td);
794	mtx_lock_spin(&sched_lock);
795	p->p_sflag &= ~PS_SWAPPING;
796	p->p_swtime = 0;
797	mtx_unlock_spin(&sched_lock);
798}
799#endif /* !NO_SWAPPING */
800