vm_glue.c revision 76778
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 *
62 * $FreeBSD: head/sys/vm/vm_glue.c 76778 2001-05-18 00:08:38Z jhb $
63 */
64
65#include "opt_rlimit.h"
66#include "opt_vm.h"
67
68#include <sys/param.h>
69#include <sys/systm.h>
70#include <sys/lock.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/resourcevar.h>
74#include <sys/shm.h>
75#include <sys/vmmeter.h>
76#include <sys/sx.h>
77#include <sys/sysctl.h>
78
79#include <sys/kernel.h>
80#include <sys/ktr.h>
81#include <sys/unistd.h>
82
83#include <machine/limits.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_page.h>
90#include <vm/vm_pageout.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93
94#include <sys/user.h>
95
96extern int maxslp;
97
98/*
99 * System initialization
100 *
101 * Note: proc0 from proc.h
102 */
103
104static void vm_init_limits __P((void *));
105SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
106
107/*
108 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
109 *
110 * Note: run scheduling should be divorced from the vm system.
111 */
112static void scheduler __P((void *));
113SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
114
115
116static void swapout __P((struct proc *));
117
118int
119kernacc(addr, len, rw)
120	caddr_t addr;
121	int len, rw;
122{
123	boolean_t rv;
124	vm_offset_t saddr, eaddr;
125	vm_prot_t prot;
126
127	KASSERT((rw & (~VM_PROT_ALL)) == 0,
128	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
129	prot = rw;
130	saddr = trunc_page((vm_offset_t)addr);
131	eaddr = round_page((vm_offset_t)addr + len);
132	vm_map_lock_read(kernel_map);
133	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
134	vm_map_unlock_read(kernel_map);
135	return (rv == TRUE);
136}
137
138int
139useracc(addr, len, rw)
140	caddr_t addr;
141	int len, rw;
142{
143	boolean_t rv;
144	vm_prot_t prot;
145	vm_map_t map;
146	vm_map_entry_t save_hint;
147
148	KASSERT((rw & (~VM_PROT_ALL)) == 0,
149	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
150	prot = rw;
151	/*
152	 * XXX - check separately to disallow access to user area and user
153	 * page tables - they are in the map.
154	 *
155	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  It was once
156	 * only used (as an end address) in trap.c.  Use it as an end address
157	 * here too.  This bogusness has spread.  I just fixed where it was
158	 * used as a max in vm_mmap.c.
159	 */
160	if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
161	    || (vm_offset_t) addr + len < (vm_offset_t) addr) {
162		return (FALSE);
163	}
164	map = &curproc->p_vmspace->vm_map;
165	vm_map_lock_read(map);
166	/*
167	 * We save the map hint, and restore it.  Useracc appears to distort
168	 * the map hint unnecessarily.
169	 */
170	save_hint = map->hint;
171	rv = vm_map_check_protection(map,
172	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len), prot);
173	map->hint = save_hint;
174	vm_map_unlock_read(map);
175
176	return (rv == TRUE);
177}
178
179void
180vslock(addr, len)
181	caddr_t addr;
182	u_int len;
183{
184	vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
185	    round_page((vm_offset_t)addr + len), FALSE);
186}
187
188void
189vsunlock(addr, len)
190	caddr_t addr;
191	u_int len;
192{
193	vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
194	    round_page((vm_offset_t)addr + len), TRUE);
195}
196
197/*
198 * Implement fork's actions on an address space.
199 * Here we arrange for the address space to be copied or referenced,
200 * allocate a user struct (pcb and kernel stack), then call the
201 * machine-dependent layer to fill those in and make the new process
202 * ready to run.  The new process is set up so that it returns directly
203 * to user mode to avoid stack copying and relocation problems.
204 */
205void
206vm_fork(p1, p2, flags)
207	register struct proc *p1, *p2;
208	int flags;
209{
210	register struct user *up;
211
212	if ((flags & RFPROC) == 0) {
213		/*
214		 * Divorce the memory, if it is shared, essentially
215		 * this changes shared memory amongst threads, into
216		 * COW locally.
217		 */
218		if ((flags & RFMEM) == 0) {
219			if (p1->p_vmspace->vm_refcnt > 1) {
220				vmspace_unshare(p1);
221			}
222		}
223		cpu_fork(p1, p2, flags);
224		return;
225	}
226
227	if (flags & RFMEM) {
228		p2->p_vmspace = p1->p_vmspace;
229		p1->p_vmspace->vm_refcnt++;
230	}
231
232	while (vm_page_count_severe()) {
233		VM_WAIT;
234	}
235
236	if ((flags & RFMEM) == 0) {
237		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
238
239		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
240
241		if (p1->p_vmspace->vm_shm)
242			shmfork(p1, p2);
243	}
244
245	pmap_new_proc(p2);
246
247	up = p2->p_addr;
248
249	/*
250	 * p_stats currently points at fields in the user struct
251	 * but not at &u, instead at p_addr. Copy parts of
252	 * p_stats; zero the rest of p_stats (statistics).
253	 *
254	 * If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
255	 * to share sigacts, so we use the up->u_sigacts.
256	 */
257	p2->p_stats = &up->u_stats;
258	if (p2->p_sigacts == NULL) {
259		if (p2->p_procsig->ps_refcnt != 1)
260			printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
261		p2->p_sigacts = &up->u_sigacts;
262		up->u_sigacts = *p1->p_sigacts;
263	}
264
265	bzero(&up->u_stats.pstat_startzero,
266	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
267		(caddr_t) &up->u_stats.pstat_startzero));
268	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
269	    ((caddr_t) &up->u_stats.pstat_endcopy -
270		(caddr_t) &up->u_stats.pstat_startcopy));
271
272
273	/*
274	 * cpu_fork will copy and update the pcb, set up the kernel stack,
275	 * and make the child ready to run.
276	 */
277	cpu_fork(p1, p2, flags);
278}
279
280/*
281 * Set default limits for VM system.
282 * Called for proc 0, and then inherited by all others.
283 *
284 * XXX should probably act directly on proc0.
285 */
286static void
287vm_init_limits(udata)
288	void *udata;
289{
290	register struct proc *p = udata;
291	int rss_limit;
292
293	/*
294	 * Set up the initial limits on process VM. Set the maximum resident
295	 * set size to be half of (reasonably) available memory.  Since this
296	 * is a soft limit, it comes into effect only when the system is out
297	 * of memory - half of main memory helps to favor smaller processes,
298	 * and reduces thrashing of the object cache.
299	 */
300	p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
301	p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
302	p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
303	p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
304	/* limit the limit to no less than 2MB */
305	rss_limit = max(cnt.v_free_count, 512);
306	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
307	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
308}
309
310/*
311 * Must be called with the proc struc mutex held.
312 */
313void
314faultin(p)
315	struct proc *p;
316{
317
318	PROC_LOCK_ASSERT(p, MA_OWNED);
319	mtx_lock_spin(&sched_lock);
320	if ((p->p_sflag & PS_INMEM) == 0) {
321
322		++p->p_lock;
323		mtx_unlock_spin(&sched_lock);
324		PROC_UNLOCK(p);
325
326		mtx_assert(&Giant, MA_OWNED);
327		pmap_swapin_proc(p);
328
329		PROC_LOCK(p);
330		mtx_lock_spin(&sched_lock);
331		if (p->p_stat == SRUN) {
332			setrunqueue(p);
333		}
334
335		p->p_sflag |= PS_INMEM;
336
337		/* undo the effect of setting SLOCK above */
338		--p->p_lock;
339	}
340	mtx_unlock_spin(&sched_lock);
341}
342
343/*
344 * This swapin algorithm attempts to swap-in processes only if there
345 * is enough space for them.  Of course, if a process waits for a long
346 * time, it will be swapped in anyway.
347 *
348 * Giant is still held at this point, to be released in tsleep.
349 */
350/* ARGSUSED*/
351static void
352scheduler(dummy)
353	void *dummy;
354{
355	register struct proc *p;
356	register int pri;
357	struct proc *pp;
358	int ppri;
359
360	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
361
362loop:
363	if (vm_page_count_min()) {
364		VM_WAIT;
365		goto loop;
366	}
367
368	mtx_unlock(&Giant);
369	pp = NULL;
370	ppri = INT_MIN;
371	sx_slock(&allproc_lock);
372	LIST_FOREACH(p, &allproc, p_list) {
373		mtx_lock_spin(&sched_lock);
374		if (p->p_stat == SRUN &&
375			(p->p_sflag & (PS_INMEM | PS_SWAPPING)) == 0) {
376
377			pri = p->p_swtime + p->p_slptime;
378			if ((p->p_sflag & PS_SWAPINREQ) == 0) {
379				pri -= p->p_nice * 8;
380			}
381
382			/*
383			 * if this process is higher priority and there is
384			 * enough space, then select this process instead of
385			 * the previous selection.
386			 */
387			if (pri > ppri) {
388				pp = p;
389				ppri = pri;
390			}
391		}
392		mtx_unlock_spin(&sched_lock);
393	}
394	sx_sunlock(&allproc_lock);
395
396	/*
397	 * Nothing to do, back to sleep.
398	 */
399	if ((p = pp) == NULL) {
400		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
401		mtx_lock(&Giant);
402		goto loop;
403	}
404	mtx_lock_spin(&sched_lock);
405	p->p_sflag &= ~PS_SWAPINREQ;
406	mtx_unlock_spin(&sched_lock);
407
408	/*
409	 * We would like to bring someone in. (only if there is space).
410	 */
411	mtx_lock(&Giant);
412	PROC_LOCK(p);
413	faultin(p);
414	PROC_UNLOCK(p);
415	mtx_lock_spin(&sched_lock);
416	p->p_swtime = 0;
417	mtx_unlock_spin(&sched_lock);
418	goto loop;
419}
420
421#ifndef NO_SWAPPING
422
423/*
424 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
425 */
426static int swap_idle_threshold1 = 2;
427SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
428	CTLFLAG_RW, &swap_idle_threshold1, 0, "");
429
430/*
431 * Swap_idle_threshold2 is the time that a process can be idle before
432 * it will be swapped out, if idle swapping is enabled.
433 */
434static int swap_idle_threshold2 = 10;
435SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
436	CTLFLAG_RW, &swap_idle_threshold2, 0, "");
437
438/*
439 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
440 * procs and unwire their u-areas.  We try to always "swap" at least one
441 * process in case we need the room for a swapin.
442 * If any procs have been sleeping/stopped for at least maxslp seconds,
443 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
444 * if any, otherwise the longest-resident process.
445 */
446void
447swapout_procs(action)
448int action;
449{
450	register struct proc *p;
451	struct proc *outp, *outp2;
452	int outpri, outpri2;
453	int didswap = 0;
454
455	outp = outp2 = NULL;
456	outpri = outpri2 = INT_MIN;
457	sx_slock(&allproc_lock);
458retry:
459	LIST_FOREACH(p, &allproc, p_list) {
460		struct vmspace *vm;
461
462		PROC_LOCK(p);
463		if (p->p_lock != 0 ||
464		    (p->p_flag & (P_TRACED|P_SYSTEM|P_WEXIT)) != 0) {
465			PROC_UNLOCK(p);
466			continue;
467		}
468		vm = p->p_vmspace;
469		mtx_lock_spin(&sched_lock);
470		if ((p->p_sflag & (PS_INMEM|PS_SWAPPING)) != PS_INMEM) {
471			mtx_unlock_spin(&sched_lock);
472			PROC_UNLOCK(p);
473			continue;
474		}
475
476		switch (p->p_stat) {
477		default:
478			mtx_unlock_spin(&sched_lock);
479			PROC_UNLOCK(p);
480			continue;
481
482		case SSLEEP:
483		case SSTOP:
484			/*
485			 * do not swapout a realtime process
486			 */
487			if (PRI_IS_REALTIME(p->p_pri.pri_class)) {
488				mtx_unlock_spin(&sched_lock);
489				PROC_UNLOCK(p);
490				continue;
491			}
492
493			/*
494			 * Do not swapout a process waiting on a critical
495			 * event of some kind.  Also guarantee swap_idle_threshold1
496			 * time in memory.
497			 */
498			if (((p->p_pri.pri_level) < PSOCK) ||
499				(p->p_slptime < swap_idle_threshold1)) {
500				mtx_unlock_spin(&sched_lock);
501				PROC_UNLOCK(p);
502				continue;
503			}
504
505			/*
506			 * If the system is under memory stress, or if we are swapping
507			 * idle processes >= swap_idle_threshold2, then swap the process
508			 * out.
509			 */
510			if (((action & VM_SWAP_NORMAL) == 0) &&
511				(((action & VM_SWAP_IDLE) == 0) ||
512				  (p->p_slptime < swap_idle_threshold2))) {
513				mtx_unlock_spin(&sched_lock);
514				PROC_UNLOCK(p);
515				continue;
516			}
517			mtx_unlock_spin(&sched_lock);
518
519#if 0
520			/*
521			 * XXX: This is broken.  We release the lock we
522			 * acquire before calling swapout, so we could
523			 * still deadlock if another CPU locks this process'
524			 * VM data structures after we release the lock but
525			 * before we call swapout().
526			 */
527			++vm->vm_refcnt;
528			/*
529			 * do not swapout a process that is waiting for VM
530			 * data structures there is a possible deadlock.
531			 */
532			if (lockmgr(&vm->vm_map.lock,
533					LK_EXCLUSIVE | LK_NOWAIT,
534					(void *)0, curproc)) {
535				vmspace_free(vm);
536				PROC_UNLOCK(p);
537				continue;
538			}
539			vm_map_unlock(&vm->vm_map);
540#endif
541			/*
542			 * If the process has been asleep for awhile and had
543			 * most of its pages taken away already, swap it out.
544			 */
545			if ((action & VM_SWAP_NORMAL) ||
546				((action & VM_SWAP_IDLE) &&
547				 (p->p_slptime > swap_idle_threshold2))) {
548				swapout(p);
549				vmspace_free(vm);
550				didswap++;
551				goto retry;
552			}
553			PROC_UNLOCK(p);
554		}
555	}
556	sx_sunlock(&allproc_lock);
557	/*
558	 * If we swapped something out, and another process needed memory,
559	 * then wakeup the sched process.
560	 */
561	if (didswap)
562		wakeup(&proc0);
563}
564
565static void
566swapout(p)
567	register struct proc *p;
568{
569
570	PROC_LOCK_ASSERT(p, MA_OWNED);
571#if defined(SWAP_DEBUG)
572	printf("swapping out %d\n", p->p_pid);
573#endif
574	++p->p_stats->p_ru.ru_nswap;
575	/*
576	 * remember the process resident count
577	 */
578	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
579
580	mtx_lock_spin(&sched_lock);
581	p->p_sflag &= ~PS_INMEM;
582	p->p_sflag |= PS_SWAPPING;
583	PROC_UNLOCK_NOSWITCH(p);
584	if (p->p_stat == SRUN)
585		remrunqueue(p);
586	mtx_unlock_spin(&sched_lock);
587
588	pmap_swapout_proc(p);
589
590	mtx_lock_spin(&sched_lock);
591	p->p_sflag &= ~PS_SWAPPING;
592	p->p_swtime = 0;
593	mtx_unlock_spin(&sched_lock);
594}
595#endif /* !NO_SWAPPING */
596