vm_glue.c revision 225736
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51 *  School of Computer Science
52 *  Carnegie Mellon University
53 *  Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: stable/9/sys/vm/vm_glue.c 223825 2011-07-06 20:06:44Z trasz $");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/racct.h>
73#include <sys/resourcevar.h>
74#include <sys/sched.h>
75#include <sys/sf_buf.h>
76#include <sys/shm.h>
77#include <sys/vmmeter.h>
78#include <sys/sx.h>
79#include <sys/sysctl.h>
80
81#include <sys/eventhandler.h>
82#include <sys/kernel.h>
83#include <sys/ktr.h>
84#include <sys/unistd.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_object.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_pager.h>
96#include <vm/swap_pager.h>
97
98/*
99 * System initialization
100 *
101 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
102 *
103 * Note: run scheduling should be divorced from the vm system.
104 */
105static void scheduler(void *);
106SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
107
108#ifndef NO_SWAPPING
109static int swapout(struct proc *);
110static void swapclear(struct proc *);
111static void vm_thread_swapin(struct thread *td);
112static void vm_thread_swapout(struct thread *td);
113#endif
114
115/*
116 * MPSAFE
117 *
118 * WARNING!  This code calls vm_map_check_protection() which only checks
119 * the associated vm_map_entry range.  It does not determine whether the
120 * contents of the memory is actually readable or writable.  In most cases
121 * just checking the vm_map_entry is sufficient within the kernel's address
122 * space.
123 */
124int
125kernacc(addr, len, rw)
126	void *addr;
127	int len, rw;
128{
129	boolean_t rv;
130	vm_offset_t saddr, eaddr;
131	vm_prot_t prot;
132
133	KASSERT((rw & ~VM_PROT_ALL) == 0,
134	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
135
136	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
137	    (vm_offset_t)addr + len < (vm_offset_t)addr)
138		return (FALSE);
139
140	prot = rw;
141	saddr = trunc_page((vm_offset_t)addr);
142	eaddr = round_page((vm_offset_t)addr + len);
143	vm_map_lock_read(kernel_map);
144	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
145	vm_map_unlock_read(kernel_map);
146	return (rv == TRUE);
147}
148
149/*
150 * MPSAFE
151 *
152 * WARNING!  This code calls vm_map_check_protection() which only checks
153 * the associated vm_map_entry range.  It does not determine whether the
154 * contents of the memory is actually readable or writable.  vmapbuf(),
155 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
156 * used in conjuction with this call.
157 */
158int
159useracc(addr, len, rw)
160	void *addr;
161	int len, rw;
162{
163	boolean_t rv;
164	vm_prot_t prot;
165	vm_map_t map;
166
167	KASSERT((rw & ~VM_PROT_ALL) == 0,
168	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
169	prot = rw;
170	map = &curproc->p_vmspace->vm_map;
171	if ((vm_offset_t)addr + len > vm_map_max(map) ||
172	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
173		return (FALSE);
174	}
175	vm_map_lock_read(map);
176	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
177	    round_page((vm_offset_t)addr + len), prot);
178	vm_map_unlock_read(map);
179	return (rv == TRUE);
180}
181
182int
183vslock(void *addr, size_t len)
184{
185	vm_offset_t end, last, start;
186	unsigned long nsize;
187	vm_size_t npages;
188	int error;
189
190	last = (vm_offset_t)addr + len;
191	start = trunc_page((vm_offset_t)addr);
192	end = round_page(last);
193	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
194		return (EINVAL);
195	npages = atop(end - start);
196	if (npages > vm_page_max_wired)
197		return (ENOMEM);
198	PROC_LOCK(curproc);
199	nsize = ptoa(npages +
200	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map)));
201	if (nsize > lim_cur(curproc, RLIMIT_MEMLOCK)) {
202		PROC_UNLOCK(curproc);
203		return (ENOMEM);
204	}
205	if (racct_set(curproc, RACCT_MEMLOCK, nsize)) {
206		PROC_UNLOCK(curproc);
207		return (ENOMEM);
208	}
209	PROC_UNLOCK(curproc);
210#if 0
211	/*
212	 * XXX - not yet
213	 *
214	 * The limit for transient usage of wired pages should be
215	 * larger than for "permanent" wired pages (mlock()).
216	 *
217	 * Also, the sysctl code, which is the only present user
218	 * of vslock(), does a hard loop on EAGAIN.
219	 */
220	if (npages + cnt.v_wire_count > vm_page_max_wired)
221		return (EAGAIN);
222#endif
223	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
224	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
225#ifdef RACCT
226	if (error != KERN_SUCCESS) {
227		PROC_LOCK(curproc);
228		racct_set(curproc, RACCT_MEMLOCK,
229		    ptoa(pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))));
230		PROC_UNLOCK(curproc);
231	}
232#endif
233	/*
234	 * Return EFAULT on error to match copy{in,out}() behaviour
235	 * rather than returning ENOMEM like mlock() would.
236	 */
237	return (error == KERN_SUCCESS ? 0 : EFAULT);
238}
239
240void
241vsunlock(void *addr, size_t len)
242{
243
244	/* Rely on the parameter sanity checks performed by vslock(). */
245	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
246	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
247	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
248
249#ifdef RACCT
250	PROC_LOCK(curproc);
251	racct_set(curproc, RACCT_MEMLOCK,
252	    ptoa(pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))));
253	PROC_UNLOCK(curproc);
254#endif
255}
256
257/*
258 * Pin the page contained within the given object at the given offset.  If the
259 * page is not resident, allocate and load it using the given object's pager.
260 * Return the pinned page if successful; otherwise, return NULL.
261 */
262static vm_page_t
263vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
264{
265	vm_page_t m, ma[1];
266	vm_pindex_t pindex;
267	int rv;
268
269	VM_OBJECT_LOCK(object);
270	pindex = OFF_TO_IDX(offset);
271	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
272	if (m->valid != VM_PAGE_BITS_ALL) {
273		ma[0] = m;
274		rv = vm_pager_get_pages(object, ma, 1, 0);
275		m = vm_page_lookup(object, pindex);
276		if (m == NULL)
277			goto out;
278		if (rv != VM_PAGER_OK) {
279			vm_page_lock(m);
280			vm_page_free(m);
281			vm_page_unlock(m);
282			m = NULL;
283			goto out;
284		}
285	}
286	vm_page_lock(m);
287	vm_page_hold(m);
288	vm_page_unlock(m);
289	vm_page_wakeup(m);
290out:
291	VM_OBJECT_UNLOCK(object);
292	return (m);
293}
294
295/*
296 * Return a CPU private mapping to the page at the given offset within the
297 * given object.  The page is pinned before it is mapped.
298 */
299struct sf_buf *
300vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
301{
302	vm_page_t m;
303
304	m = vm_imgact_hold_page(object, offset);
305	if (m == NULL)
306		return (NULL);
307	sched_pin();
308	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
309}
310
311/*
312 * Destroy the given CPU private mapping and unpin the page that it mapped.
313 */
314void
315vm_imgact_unmap_page(struct sf_buf *sf)
316{
317	vm_page_t m;
318
319	m = sf_buf_page(sf);
320	sf_buf_free(sf);
321	sched_unpin();
322	vm_page_lock(m);
323	vm_page_unhold(m);
324	vm_page_unlock(m);
325}
326
327void
328vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
329{
330
331	pmap_sync_icache(map->pmap, va, sz);
332}
333
334struct kstack_cache_entry {
335	vm_object_t ksobj;
336	struct kstack_cache_entry *next_ks_entry;
337};
338
339static struct kstack_cache_entry *kstack_cache;
340static int kstack_cache_size = 128;
341static int kstacks;
342static struct mtx kstack_cache_mtx;
343SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
344    "");
345SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
346    "");
347
348#ifndef KSTACK_MAX_PAGES
349#define KSTACK_MAX_PAGES 32
350#endif
351
352/*
353 * Create the kernel stack (including pcb for i386) for a new thread.
354 * This routine directly affects the fork perf for a process and
355 * create performance for a thread.
356 */
357int
358vm_thread_new(struct thread *td, int pages)
359{
360	vm_object_t ksobj;
361	vm_offset_t ks;
362	vm_page_t m, ma[KSTACK_MAX_PAGES];
363	struct kstack_cache_entry *ks_ce;
364	int i;
365
366	/* Bounds check */
367	if (pages <= 1)
368		pages = KSTACK_PAGES;
369	else if (pages > KSTACK_MAX_PAGES)
370		pages = KSTACK_MAX_PAGES;
371
372	if (pages == KSTACK_PAGES) {
373		mtx_lock(&kstack_cache_mtx);
374		if (kstack_cache != NULL) {
375			ks_ce = kstack_cache;
376			kstack_cache = ks_ce->next_ks_entry;
377			mtx_unlock(&kstack_cache_mtx);
378
379			td->td_kstack_obj = ks_ce->ksobj;
380			td->td_kstack = (vm_offset_t)ks_ce;
381			td->td_kstack_pages = KSTACK_PAGES;
382			return (1);
383		}
384		mtx_unlock(&kstack_cache_mtx);
385	}
386
387	/*
388	 * Allocate an object for the kstack.
389	 */
390	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
391
392	/*
393	 * Get a kernel virtual address for this thread's kstack.
394	 */
395#if defined(__mips__)
396	/*
397	 * We need to align the kstack's mapped address to fit within
398	 * a single TLB entry.
399	 */
400	ks = kmem_alloc_nofault_space(kernel_map,
401	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, VMFS_TLB_ALIGNED_SPACE);
402#else
403	ks = kmem_alloc_nofault(kernel_map,
404	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
405#endif
406	if (ks == 0) {
407		printf("vm_thread_new: kstack allocation failed\n");
408		vm_object_deallocate(ksobj);
409		return (0);
410	}
411
412	atomic_add_int(&kstacks, 1);
413	if (KSTACK_GUARD_PAGES != 0) {
414		pmap_qremove(ks, KSTACK_GUARD_PAGES);
415		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
416	}
417	td->td_kstack_obj = ksobj;
418	td->td_kstack = ks;
419	/*
420	 * Knowing the number of pages allocated is useful when you
421	 * want to deallocate them.
422	 */
423	td->td_kstack_pages = pages;
424	/*
425	 * For the length of the stack, link in a real page of ram for each
426	 * page of stack.
427	 */
428	VM_OBJECT_LOCK(ksobj);
429	for (i = 0; i < pages; i++) {
430		/*
431		 * Get a kernel stack page.
432		 */
433		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
434		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
435		ma[i] = m;
436		m->valid = VM_PAGE_BITS_ALL;
437	}
438	VM_OBJECT_UNLOCK(ksobj);
439	pmap_qenter(ks, ma, pages);
440	return (1);
441}
442
443static void
444vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
445{
446	vm_page_t m;
447	int i;
448
449	atomic_add_int(&kstacks, -1);
450	pmap_qremove(ks, pages);
451	VM_OBJECT_LOCK(ksobj);
452	for (i = 0; i < pages; i++) {
453		m = vm_page_lookup(ksobj, i);
454		if (m == NULL)
455			panic("vm_thread_dispose: kstack already missing?");
456		vm_page_lock(m);
457		vm_page_unwire(m, 0);
458		vm_page_free(m);
459		vm_page_unlock(m);
460	}
461	VM_OBJECT_UNLOCK(ksobj);
462	vm_object_deallocate(ksobj);
463	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
464	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
465}
466
467/*
468 * Dispose of a thread's kernel stack.
469 */
470void
471vm_thread_dispose(struct thread *td)
472{
473	vm_object_t ksobj;
474	vm_offset_t ks;
475	struct kstack_cache_entry *ks_ce;
476	int pages;
477
478	pages = td->td_kstack_pages;
479	ksobj = td->td_kstack_obj;
480	ks = td->td_kstack;
481	td->td_kstack = 0;
482	td->td_kstack_pages = 0;
483	if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
484		ks_ce = (struct kstack_cache_entry *)ks;
485		ks_ce->ksobj = ksobj;
486		mtx_lock(&kstack_cache_mtx);
487		ks_ce->next_ks_entry = kstack_cache;
488		kstack_cache = ks_ce;
489		mtx_unlock(&kstack_cache_mtx);
490		return;
491	}
492	vm_thread_stack_dispose(ksobj, ks, pages);
493}
494
495static void
496vm_thread_stack_lowmem(void *nulll)
497{
498	struct kstack_cache_entry *ks_ce, *ks_ce1;
499
500	mtx_lock(&kstack_cache_mtx);
501	ks_ce = kstack_cache;
502	kstack_cache = NULL;
503	mtx_unlock(&kstack_cache_mtx);
504
505	while (ks_ce != NULL) {
506		ks_ce1 = ks_ce;
507		ks_ce = ks_ce->next_ks_entry;
508
509		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
510		    KSTACK_PAGES);
511	}
512}
513
514static void
515kstack_cache_init(void *nulll)
516{
517
518	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
519	    EVENTHANDLER_PRI_ANY);
520}
521
522MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
523SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
524
525#ifndef NO_SWAPPING
526/*
527 * Allow a thread's kernel stack to be paged out.
528 */
529static void
530vm_thread_swapout(struct thread *td)
531{
532	vm_object_t ksobj;
533	vm_page_t m;
534	int i, pages;
535
536	cpu_thread_swapout(td);
537	pages = td->td_kstack_pages;
538	ksobj = td->td_kstack_obj;
539	pmap_qremove(td->td_kstack, pages);
540	VM_OBJECT_LOCK(ksobj);
541	for (i = 0; i < pages; i++) {
542		m = vm_page_lookup(ksobj, i);
543		if (m == NULL)
544			panic("vm_thread_swapout: kstack already missing?");
545		vm_page_dirty(m);
546		vm_page_lock(m);
547		vm_page_unwire(m, 0);
548		vm_page_unlock(m);
549	}
550	VM_OBJECT_UNLOCK(ksobj);
551}
552
553/*
554 * Bring the kernel stack for a specified thread back in.
555 */
556static void
557vm_thread_swapin(struct thread *td)
558{
559	vm_object_t ksobj;
560	vm_page_t ma[KSTACK_MAX_PAGES];
561	int i, j, k, pages, rv;
562
563	pages = td->td_kstack_pages;
564	ksobj = td->td_kstack_obj;
565	VM_OBJECT_LOCK(ksobj);
566	for (i = 0; i < pages; i++)
567		ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
568		    VM_ALLOC_WIRED);
569	for (i = 0; i < pages; i++) {
570		if (ma[i]->valid != VM_PAGE_BITS_ALL) {
571			KASSERT(ma[i]->oflags & VPO_BUSY,
572			    ("lost busy 1"));
573			vm_object_pip_add(ksobj, 1);
574			for (j = i + 1; j < pages; j++) {
575				KASSERT(ma[j]->valid == VM_PAGE_BITS_ALL ||
576				    (ma[j]->oflags & VPO_BUSY),
577				    ("lost busy 2"));
578				if (ma[j]->valid == VM_PAGE_BITS_ALL)
579					break;
580			}
581			rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
582			if (rv != VM_PAGER_OK)
583	panic("vm_thread_swapin: cannot get kstack for proc: %d",
584				    td->td_proc->p_pid);
585			vm_object_pip_wakeup(ksobj);
586			for (k = i; k < j; k++)
587				ma[k] = vm_page_lookup(ksobj, k);
588			vm_page_wakeup(ma[i]);
589		} else if (ma[i]->oflags & VPO_BUSY)
590			vm_page_wakeup(ma[i]);
591	}
592	VM_OBJECT_UNLOCK(ksobj);
593	pmap_qenter(td->td_kstack, ma, pages);
594	cpu_thread_swapin(td);
595}
596#endif /* !NO_SWAPPING */
597
598/*
599 * Implement fork's actions on an address space.
600 * Here we arrange for the address space to be copied or referenced,
601 * allocate a user struct (pcb and kernel stack), then call the
602 * machine-dependent layer to fill those in and make the new process
603 * ready to run.  The new process is set up so that it returns directly
604 * to user mode to avoid stack copying and relocation problems.
605 */
606int
607vm_forkproc(td, p2, td2, vm2, flags)
608	struct thread *td;
609	struct proc *p2;
610	struct thread *td2;
611	struct vmspace *vm2;
612	int flags;
613{
614	struct proc *p1 = td->td_proc;
615	int error;
616
617	if ((flags & RFPROC) == 0) {
618		/*
619		 * Divorce the memory, if it is shared, essentially
620		 * this changes shared memory amongst threads, into
621		 * COW locally.
622		 */
623		if ((flags & RFMEM) == 0) {
624			if (p1->p_vmspace->vm_refcnt > 1) {
625				error = vmspace_unshare(p1);
626				if (error)
627					return (error);
628			}
629		}
630		cpu_fork(td, p2, td2, flags);
631		return (0);
632	}
633
634	if (flags & RFMEM) {
635		p2->p_vmspace = p1->p_vmspace;
636		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
637	}
638
639	while (vm_page_count_severe()) {
640		VM_WAIT;
641	}
642
643	if ((flags & RFMEM) == 0) {
644		p2->p_vmspace = vm2;
645		if (p1->p_vmspace->vm_shm)
646			shmfork(p1, p2);
647	}
648
649	/*
650	 * cpu_fork will copy and update the pcb, set up the kernel stack,
651	 * and make the child ready to run.
652	 */
653	cpu_fork(td, p2, td2, flags);
654	return (0);
655}
656
657/*
658 * Called after process has been wait(2)'ed apon and is being reaped.
659 * The idea is to reclaim resources that we could not reclaim while
660 * the process was still executing.
661 */
662void
663vm_waitproc(p)
664	struct proc *p;
665{
666
667	vmspace_exitfree(p);		/* and clean-out the vmspace */
668}
669
670void
671faultin(p)
672	struct proc *p;
673{
674#ifdef NO_SWAPPING
675
676	PROC_LOCK_ASSERT(p, MA_OWNED);
677	if ((p->p_flag & P_INMEM) == 0)
678		panic("faultin: proc swapped out with NO_SWAPPING!");
679#else /* !NO_SWAPPING */
680	struct thread *td;
681
682	PROC_LOCK_ASSERT(p, MA_OWNED);
683	/*
684	 * If another process is swapping in this process,
685	 * just wait until it finishes.
686	 */
687	if (p->p_flag & P_SWAPPINGIN) {
688		while (p->p_flag & P_SWAPPINGIN)
689			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
690		return;
691	}
692	if ((p->p_flag & P_INMEM) == 0) {
693		/*
694		 * Don't let another thread swap process p out while we are
695		 * busy swapping it in.
696		 */
697		++p->p_lock;
698		p->p_flag |= P_SWAPPINGIN;
699		PROC_UNLOCK(p);
700
701		/*
702		 * We hold no lock here because the list of threads
703		 * can not change while all threads in the process are
704		 * swapped out.
705		 */
706		FOREACH_THREAD_IN_PROC(p, td)
707			vm_thread_swapin(td);
708		PROC_LOCK(p);
709		swapclear(p);
710		p->p_swtick = ticks;
711
712		wakeup(&p->p_flag);
713
714		/* Allow other threads to swap p out now. */
715		--p->p_lock;
716	}
717#endif /* NO_SWAPPING */
718}
719
720/*
721 * This swapin algorithm attempts to swap-in processes only if there
722 * is enough space for them.  Of course, if a process waits for a long
723 * time, it will be swapped in anyway.
724 *
725 * Giant is held on entry.
726 */
727/* ARGSUSED*/
728static void
729scheduler(dummy)
730	void *dummy;
731{
732	struct proc *p;
733	struct thread *td;
734	struct proc *pp;
735	int slptime;
736	int swtime;
737	int ppri;
738	int pri;
739
740	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
741	mtx_unlock(&Giant);
742
743loop:
744	if (vm_page_count_min()) {
745		VM_WAIT;
746		goto loop;
747	}
748
749	pp = NULL;
750	ppri = INT_MIN;
751	sx_slock(&allproc_lock);
752	FOREACH_PROC_IN_SYSTEM(p) {
753		PROC_LOCK(p);
754		if (p->p_state == PRS_NEW ||
755		    p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
756			PROC_UNLOCK(p);
757			continue;
758		}
759		swtime = (ticks - p->p_swtick) / hz;
760		FOREACH_THREAD_IN_PROC(p, td) {
761			/*
762			 * An otherwise runnable thread of a process
763			 * swapped out has only the TDI_SWAPPED bit set.
764			 *
765			 */
766			thread_lock(td);
767			if (td->td_inhibitors == TDI_SWAPPED) {
768				slptime = (ticks - td->td_slptick) / hz;
769				pri = swtime + slptime;
770				if ((td->td_flags & TDF_SWAPINREQ) == 0)
771					pri -= p->p_nice * 8;
772				/*
773				 * if this thread is higher priority
774				 * and there is enough space, then select
775				 * this process instead of the previous
776				 * selection.
777				 */
778				if (pri > ppri) {
779					pp = p;
780					ppri = pri;
781				}
782			}
783			thread_unlock(td);
784		}
785		PROC_UNLOCK(p);
786	}
787	sx_sunlock(&allproc_lock);
788
789	/*
790	 * Nothing to do, back to sleep.
791	 */
792	if ((p = pp) == NULL) {
793		tsleep(&proc0, PVM, "sched", MAXSLP * hz / 2);
794		goto loop;
795	}
796	PROC_LOCK(p);
797
798	/*
799	 * Another process may be bringing or may have already
800	 * brought this process in while we traverse all threads.
801	 * Or, this process may even be being swapped out again.
802	 */
803	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
804		PROC_UNLOCK(p);
805		goto loop;
806	}
807
808	/*
809	 * We would like to bring someone in. (only if there is space).
810	 * [What checks the space? ]
811	 */
812	faultin(p);
813	PROC_UNLOCK(p);
814	goto loop;
815}
816
817void
818kick_proc0(void)
819{
820
821	wakeup(&proc0);
822}
823
824#ifndef NO_SWAPPING
825
826/*
827 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
828 */
829static int swap_idle_threshold1 = 2;
830SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
831    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
832
833/*
834 * Swap_idle_threshold2 is the time that a process can be idle before
835 * it will be swapped out, if idle swapping is enabled.
836 */
837static int swap_idle_threshold2 = 10;
838SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
839    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
840
841/*
842 * First, if any processes have been sleeping or stopped for at least
843 * "swap_idle_threshold1" seconds, they are swapped out.  If, however,
844 * no such processes exist, then the longest-sleeping or stopped
845 * process is swapped out.  Finally, and only as a last resort, if
846 * there are no sleeping or stopped processes, the longest-resident
847 * process is swapped out.
848 */
849void
850swapout_procs(action)
851int action;
852{
853	struct proc *p;
854	struct thread *td;
855	int didswap = 0;
856
857retry:
858	sx_slock(&allproc_lock);
859	FOREACH_PROC_IN_SYSTEM(p) {
860		struct vmspace *vm;
861		int minslptime = 100000;
862		int slptime;
863
864		/*
865		 * Watch out for a process in
866		 * creation.  It may have no
867		 * address space or lock yet.
868		 */
869		if (p->p_state == PRS_NEW)
870			continue;
871		/*
872		 * An aio daemon switches its
873		 * address space while running.
874		 * Perform a quick check whether
875		 * a process has P_SYSTEM.
876		 */
877		if ((p->p_flag & P_SYSTEM) != 0)
878			continue;
879		/*
880		 * Do not swapout a process that
881		 * is waiting for VM data
882		 * structures as there is a possible
883		 * deadlock.  Test this first as
884		 * this may block.
885		 *
886		 * Lock the map until swapout
887		 * finishes, or a thread of this
888		 * process may attempt to alter
889		 * the map.
890		 */
891		vm = vmspace_acquire_ref(p);
892		if (vm == NULL)
893			continue;
894		if (!vm_map_trylock(&vm->vm_map))
895			goto nextproc1;
896
897		PROC_LOCK(p);
898		if (p->p_lock != 0 ||
899		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
900		    ) != 0) {
901			goto nextproc;
902		}
903		/*
904		 * only aiod changes vmspace, however it will be
905		 * skipped because of the if statement above checking
906		 * for P_SYSTEM
907		 */
908		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
909			goto nextproc;
910
911		switch (p->p_state) {
912		default:
913			/* Don't swap out processes in any sort
914			 * of 'special' state. */
915			break;
916
917		case PRS_NORMAL:
918			/*
919			 * do not swapout a realtime process
920			 * Check all the thread groups..
921			 */
922			FOREACH_THREAD_IN_PROC(p, td) {
923				thread_lock(td);
924				if (PRI_IS_REALTIME(td->td_pri_class)) {
925					thread_unlock(td);
926					goto nextproc;
927				}
928				slptime = (ticks - td->td_slptick) / hz;
929				/*
930				 * Guarantee swap_idle_threshold1
931				 * time in memory.
932				 */
933				if (slptime < swap_idle_threshold1) {
934					thread_unlock(td);
935					goto nextproc;
936				}
937
938				/*
939				 * Do not swapout a process if it is
940				 * waiting on a critical event of some
941				 * kind or there is a thread whose
942				 * pageable memory may be accessed.
943				 *
944				 * This could be refined to support
945				 * swapping out a thread.
946				 */
947				if (!thread_safetoswapout(td)) {
948					thread_unlock(td);
949					goto nextproc;
950				}
951				/*
952				 * If the system is under memory stress,
953				 * or if we are swapping
954				 * idle processes >= swap_idle_threshold2,
955				 * then swap the process out.
956				 */
957				if (((action & VM_SWAP_NORMAL) == 0) &&
958				    (((action & VM_SWAP_IDLE) == 0) ||
959				    (slptime < swap_idle_threshold2))) {
960					thread_unlock(td);
961					goto nextproc;
962				}
963
964				if (minslptime > slptime)
965					minslptime = slptime;
966				thread_unlock(td);
967			}
968
969			/*
970			 * If the pageout daemon didn't free enough pages,
971			 * or if this process is idle and the system is
972			 * configured to swap proactively, swap it out.
973			 */
974			if ((action & VM_SWAP_NORMAL) ||
975				((action & VM_SWAP_IDLE) &&
976				 (minslptime > swap_idle_threshold2))) {
977				if (swapout(p) == 0)
978					didswap++;
979				PROC_UNLOCK(p);
980				vm_map_unlock(&vm->vm_map);
981				vmspace_free(vm);
982				sx_sunlock(&allproc_lock);
983				goto retry;
984			}
985		}
986nextproc:
987		PROC_UNLOCK(p);
988		vm_map_unlock(&vm->vm_map);
989nextproc1:
990		vmspace_free(vm);
991		continue;
992	}
993	sx_sunlock(&allproc_lock);
994	/*
995	 * If we swapped something out, and another process needed memory,
996	 * then wakeup the sched process.
997	 */
998	if (didswap)
999		wakeup(&proc0);
1000}
1001
1002static void
1003swapclear(p)
1004	struct proc *p;
1005{
1006	struct thread *td;
1007
1008	PROC_LOCK_ASSERT(p, MA_OWNED);
1009
1010	FOREACH_THREAD_IN_PROC(p, td) {
1011		thread_lock(td);
1012		td->td_flags |= TDF_INMEM;
1013		td->td_flags &= ~TDF_SWAPINREQ;
1014		TD_CLR_SWAPPED(td);
1015		if (TD_CAN_RUN(td))
1016			if (setrunnable(td)) {
1017#ifdef INVARIANTS
1018				/*
1019				 * XXX: We just cleared TDI_SWAPPED
1020				 * above and set TDF_INMEM, so this
1021				 * should never happen.
1022				 */
1023				panic("not waking up swapper");
1024#endif
1025			}
1026		thread_unlock(td);
1027	}
1028	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
1029	p->p_flag |= P_INMEM;
1030}
1031
1032static int
1033swapout(p)
1034	struct proc *p;
1035{
1036	struct thread *td;
1037
1038	PROC_LOCK_ASSERT(p, MA_OWNED);
1039#if defined(SWAP_DEBUG)
1040	printf("swapping out %d\n", p->p_pid);
1041#endif
1042
1043	/*
1044	 * The states of this process and its threads may have changed
1045	 * by now.  Assuming that there is only one pageout daemon thread,
1046	 * this process should still be in memory.
1047	 */
1048	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1049		("swapout: lost a swapout race?"));
1050
1051	/*
1052	 * remember the process resident count
1053	 */
1054	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1055	/*
1056	 * Check and mark all threads before we proceed.
1057	 */
1058	p->p_flag &= ~P_INMEM;
1059	p->p_flag |= P_SWAPPINGOUT;
1060	FOREACH_THREAD_IN_PROC(p, td) {
1061		thread_lock(td);
1062		if (!thread_safetoswapout(td)) {
1063			thread_unlock(td);
1064			swapclear(p);
1065			return (EBUSY);
1066		}
1067		td->td_flags &= ~TDF_INMEM;
1068		TD_SET_SWAPPED(td);
1069		thread_unlock(td);
1070	}
1071	td = FIRST_THREAD_IN_PROC(p);
1072	++td->td_ru.ru_nswap;
1073	PROC_UNLOCK(p);
1074
1075	/*
1076	 * This list is stable because all threads are now prevented from
1077	 * running.  The list is only modified in the context of a running
1078	 * thread in this process.
1079	 */
1080	FOREACH_THREAD_IN_PROC(p, td)
1081		vm_thread_swapout(td);
1082
1083	PROC_LOCK(p);
1084	p->p_flag &= ~P_SWAPPINGOUT;
1085	p->p_swtick = ticks;
1086	return (0);
1087}
1088#endif /* !NO_SWAPPING */
1089