vm_glue.c revision 220390
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51 *  School of Computer Science
52 *  Carnegie Mellon University
53 *  Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 220390 2011-04-06 17:47:22Z jhb $");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/racct.h>
73#include <sys/resourcevar.h>
74#include <sys/sched.h>
75#include <sys/sf_buf.h>
76#include <sys/shm.h>
77#include <sys/vmmeter.h>
78#include <sys/sx.h>
79#include <sys/sysctl.h>
80
81#include <sys/eventhandler.h>
82#include <sys/kernel.h>
83#include <sys/ktr.h>
84#include <sys/unistd.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_object.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_pager.h>
96#include <vm/swap_pager.h>
97
98/*
99 * System initialization
100 *
101 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
102 *
103 * Note: run scheduling should be divorced from the vm system.
104 */
105static void scheduler(void *);
106SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
107
108#ifndef NO_SWAPPING
109static int swapout(struct proc *);
110static void swapclear(struct proc *);
111static void vm_thread_swapin(struct thread *td);
112static void vm_thread_swapout(struct thread *td);
113#endif
114
115/*
116 * MPSAFE
117 *
118 * WARNING!  This code calls vm_map_check_protection() which only checks
119 * the associated vm_map_entry range.  It does not determine whether the
120 * contents of the memory is actually readable or writable.  In most cases
121 * just checking the vm_map_entry is sufficient within the kernel's address
122 * space.
123 */
124int
125kernacc(addr, len, rw)
126	void *addr;
127	int len, rw;
128{
129	boolean_t rv;
130	vm_offset_t saddr, eaddr;
131	vm_prot_t prot;
132
133	KASSERT((rw & ~VM_PROT_ALL) == 0,
134	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
135
136	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
137	    (vm_offset_t)addr + len < (vm_offset_t)addr)
138		return (FALSE);
139
140	prot = rw;
141	saddr = trunc_page((vm_offset_t)addr);
142	eaddr = round_page((vm_offset_t)addr + len);
143	vm_map_lock_read(kernel_map);
144	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
145	vm_map_unlock_read(kernel_map);
146	return (rv == TRUE);
147}
148
149/*
150 * MPSAFE
151 *
152 * WARNING!  This code calls vm_map_check_protection() which only checks
153 * the associated vm_map_entry range.  It does not determine whether the
154 * contents of the memory is actually readable or writable.  vmapbuf(),
155 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
156 * used in conjuction with this call.
157 */
158int
159useracc(addr, len, rw)
160	void *addr;
161	int len, rw;
162{
163	boolean_t rv;
164	vm_prot_t prot;
165	vm_map_t map;
166
167	KASSERT((rw & ~VM_PROT_ALL) == 0,
168	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
169	prot = rw;
170	map = &curproc->p_vmspace->vm_map;
171	if ((vm_offset_t)addr + len > vm_map_max(map) ||
172	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
173		return (FALSE);
174	}
175	vm_map_lock_read(map);
176	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
177	    round_page((vm_offset_t)addr + len), prot);
178	vm_map_unlock_read(map);
179	return (rv == TRUE);
180}
181
182int
183vslock(void *addr, size_t len)
184{
185	vm_offset_t end, last, start;
186	unsigned long nsize;
187	vm_size_t npages;
188	int error;
189
190	last = (vm_offset_t)addr + len;
191	start = trunc_page((vm_offset_t)addr);
192	end = round_page(last);
193	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
194		return (EINVAL);
195	npages = atop(end - start);
196	if (npages > vm_page_max_wired)
197		return (ENOMEM);
198	PROC_LOCK(curproc);
199	nsize = ptoa(npages +
200	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map)));
201	if (nsize > lim_cur(curproc, RLIMIT_MEMLOCK)) {
202		PROC_UNLOCK(curproc);
203		return (ENOMEM);
204	}
205	if (racct_set(curproc, RACCT_MEMLOCK, nsize)) {
206		PROC_UNLOCK(curproc);
207		return (ENOMEM);
208	}
209	PROC_UNLOCK(curproc);
210#if 0
211	/*
212	 * XXX - not yet
213	 *
214	 * The limit for transient usage of wired pages should be
215	 * larger than for "permanent" wired pages (mlock()).
216	 *
217	 * Also, the sysctl code, which is the only present user
218	 * of vslock(), does a hard loop on EAGAIN.
219	 */
220	if (npages + cnt.v_wire_count > vm_page_max_wired)
221		return (EAGAIN);
222#endif
223	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
224	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
225	if (error != KERN_SUCCESS) {
226		PROC_LOCK(curproc);
227		racct_set(curproc, RACCT_MEMLOCK,
228		    ptoa(pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))));
229		PROC_UNLOCK(curproc);
230	}
231	/*
232	 * Return EFAULT on error to match copy{in,out}() behaviour
233	 * rather than returning ENOMEM like mlock() would.
234	 */
235	return (error == KERN_SUCCESS ? 0 : EFAULT);
236}
237
238void
239vsunlock(void *addr, size_t len)
240{
241
242	/* Rely on the parameter sanity checks performed by vslock(). */
243	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
244	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
245	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
246
247	PROC_LOCK(curproc);
248	racct_set(curproc, RACCT_MEMLOCK,
249	    ptoa(pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))));
250	PROC_UNLOCK(curproc);
251}
252
253/*
254 * Pin the page contained within the given object at the given offset.  If the
255 * page is not resident, allocate and load it using the given object's pager.
256 * Return the pinned page if successful; otherwise, return NULL.
257 */
258static vm_page_t
259vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
260{
261	vm_page_t m, ma[1];
262	vm_pindex_t pindex;
263	int rv;
264
265	VM_OBJECT_LOCK(object);
266	pindex = OFF_TO_IDX(offset);
267	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
268	if (m->valid != VM_PAGE_BITS_ALL) {
269		ma[0] = m;
270		rv = vm_pager_get_pages(object, ma, 1, 0);
271		m = vm_page_lookup(object, pindex);
272		if (m == NULL)
273			goto out;
274		if (rv != VM_PAGER_OK) {
275			vm_page_lock(m);
276			vm_page_free(m);
277			vm_page_unlock(m);
278			m = NULL;
279			goto out;
280		}
281	}
282	vm_page_lock(m);
283	vm_page_hold(m);
284	vm_page_unlock(m);
285	vm_page_wakeup(m);
286out:
287	VM_OBJECT_UNLOCK(object);
288	return (m);
289}
290
291/*
292 * Return a CPU private mapping to the page at the given offset within the
293 * given object.  The page is pinned before it is mapped.
294 */
295struct sf_buf *
296vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
297{
298	vm_page_t m;
299
300	m = vm_imgact_hold_page(object, offset);
301	if (m == NULL)
302		return (NULL);
303	sched_pin();
304	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
305}
306
307/*
308 * Destroy the given CPU private mapping and unpin the page that it mapped.
309 */
310void
311vm_imgact_unmap_page(struct sf_buf *sf)
312{
313	vm_page_t m;
314
315	m = sf_buf_page(sf);
316	sf_buf_free(sf);
317	sched_unpin();
318	vm_page_lock(m);
319	vm_page_unhold(m);
320	vm_page_unlock(m);
321}
322
323void
324vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
325{
326
327	pmap_sync_icache(map->pmap, va, sz);
328}
329
330struct kstack_cache_entry {
331	vm_object_t ksobj;
332	struct kstack_cache_entry *next_ks_entry;
333};
334
335static struct kstack_cache_entry *kstack_cache;
336static int kstack_cache_size = 128;
337static int kstacks;
338static struct mtx kstack_cache_mtx;
339SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
340    "");
341SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
342    "");
343
344#ifndef KSTACK_MAX_PAGES
345#define KSTACK_MAX_PAGES 32
346#endif
347
348/*
349 * Create the kernel stack (including pcb for i386) for a new thread.
350 * This routine directly affects the fork perf for a process and
351 * create performance for a thread.
352 */
353int
354vm_thread_new(struct thread *td, int pages)
355{
356	vm_object_t ksobj;
357	vm_offset_t ks;
358	vm_page_t m, ma[KSTACK_MAX_PAGES];
359	struct kstack_cache_entry *ks_ce;
360	int i;
361
362	/* Bounds check */
363	if (pages <= 1)
364		pages = KSTACK_PAGES;
365	else if (pages > KSTACK_MAX_PAGES)
366		pages = KSTACK_MAX_PAGES;
367
368	if (pages == KSTACK_PAGES) {
369		mtx_lock(&kstack_cache_mtx);
370		if (kstack_cache != NULL) {
371			ks_ce = kstack_cache;
372			kstack_cache = ks_ce->next_ks_entry;
373			mtx_unlock(&kstack_cache_mtx);
374
375			td->td_kstack_obj = ks_ce->ksobj;
376			td->td_kstack = (vm_offset_t)ks_ce;
377			td->td_kstack_pages = KSTACK_PAGES;
378			return (1);
379		}
380		mtx_unlock(&kstack_cache_mtx);
381	}
382
383	/*
384	 * Allocate an object for the kstack.
385	 */
386	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
387
388	/*
389	 * Get a kernel virtual address for this thread's kstack.
390	 */
391#if defined(__mips__)
392	/*
393	 * We need to align the kstack's mapped address to fit within
394	 * a single TLB entry.
395	 */
396	ks = kmem_alloc_nofault_space(kernel_map,
397	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, VMFS_TLB_ALIGNED_SPACE);
398#else
399	ks = kmem_alloc_nofault(kernel_map,
400	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
401#endif
402	if (ks == 0) {
403		printf("vm_thread_new: kstack allocation failed\n");
404		vm_object_deallocate(ksobj);
405		return (0);
406	}
407
408	atomic_add_int(&kstacks, 1);
409	if (KSTACK_GUARD_PAGES != 0) {
410		pmap_qremove(ks, KSTACK_GUARD_PAGES);
411		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
412	}
413	td->td_kstack_obj = ksobj;
414	td->td_kstack = ks;
415	/*
416	 * Knowing the number of pages allocated is useful when you
417	 * want to deallocate them.
418	 */
419	td->td_kstack_pages = pages;
420	/*
421	 * For the length of the stack, link in a real page of ram for each
422	 * page of stack.
423	 */
424	VM_OBJECT_LOCK(ksobj);
425	for (i = 0; i < pages; i++) {
426		/*
427		 * Get a kernel stack page.
428		 */
429		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
430		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
431		ma[i] = m;
432		m->valid = VM_PAGE_BITS_ALL;
433	}
434	VM_OBJECT_UNLOCK(ksobj);
435	pmap_qenter(ks, ma, pages);
436	return (1);
437}
438
439static void
440vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
441{
442	vm_page_t m;
443	int i;
444
445	atomic_add_int(&kstacks, -1);
446	pmap_qremove(ks, pages);
447	VM_OBJECT_LOCK(ksobj);
448	for (i = 0; i < pages; i++) {
449		m = vm_page_lookup(ksobj, i);
450		if (m == NULL)
451			panic("vm_thread_dispose: kstack already missing?");
452		vm_page_lock(m);
453		vm_page_unwire(m, 0);
454		vm_page_free(m);
455		vm_page_unlock(m);
456	}
457	VM_OBJECT_UNLOCK(ksobj);
458	vm_object_deallocate(ksobj);
459	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
460	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
461}
462
463/*
464 * Dispose of a thread's kernel stack.
465 */
466void
467vm_thread_dispose(struct thread *td)
468{
469	vm_object_t ksobj;
470	vm_offset_t ks;
471	struct kstack_cache_entry *ks_ce;
472	int pages;
473
474	pages = td->td_kstack_pages;
475	ksobj = td->td_kstack_obj;
476	ks = td->td_kstack;
477	td->td_kstack = 0;
478	td->td_kstack_pages = 0;
479	if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
480		ks_ce = (struct kstack_cache_entry *)ks;
481		ks_ce->ksobj = ksobj;
482		mtx_lock(&kstack_cache_mtx);
483		ks_ce->next_ks_entry = kstack_cache;
484		kstack_cache = ks_ce;
485		mtx_unlock(&kstack_cache_mtx);
486		return;
487	}
488	vm_thread_stack_dispose(ksobj, ks, pages);
489}
490
491static void
492vm_thread_stack_lowmem(void *nulll)
493{
494	struct kstack_cache_entry *ks_ce, *ks_ce1;
495
496	mtx_lock(&kstack_cache_mtx);
497	ks_ce = kstack_cache;
498	kstack_cache = NULL;
499	mtx_unlock(&kstack_cache_mtx);
500
501	while (ks_ce != NULL) {
502		ks_ce1 = ks_ce;
503		ks_ce = ks_ce->next_ks_entry;
504
505		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
506		    KSTACK_PAGES);
507	}
508}
509
510static void
511kstack_cache_init(void *nulll)
512{
513
514	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
515	    EVENTHANDLER_PRI_ANY);
516}
517
518MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
519SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
520
521#ifndef NO_SWAPPING
522/*
523 * Allow a thread's kernel stack to be paged out.
524 */
525static void
526vm_thread_swapout(struct thread *td)
527{
528	vm_object_t ksobj;
529	vm_page_t m;
530	int i, pages;
531
532	cpu_thread_swapout(td);
533	pages = td->td_kstack_pages;
534	ksobj = td->td_kstack_obj;
535	pmap_qremove(td->td_kstack, pages);
536	VM_OBJECT_LOCK(ksobj);
537	for (i = 0; i < pages; i++) {
538		m = vm_page_lookup(ksobj, i);
539		if (m == NULL)
540			panic("vm_thread_swapout: kstack already missing?");
541		vm_page_dirty(m);
542		vm_page_lock(m);
543		vm_page_unwire(m, 0);
544		vm_page_unlock(m);
545	}
546	VM_OBJECT_UNLOCK(ksobj);
547}
548
549/*
550 * Bring the kernel stack for a specified thread back in.
551 */
552static void
553vm_thread_swapin(struct thread *td)
554{
555	vm_object_t ksobj;
556	vm_page_t ma[KSTACK_MAX_PAGES];
557	int i, j, k, pages, rv;
558
559	pages = td->td_kstack_pages;
560	ksobj = td->td_kstack_obj;
561	VM_OBJECT_LOCK(ksobj);
562	for (i = 0; i < pages; i++)
563		ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
564		    VM_ALLOC_WIRED);
565	for (i = 0; i < pages; i++) {
566		if (ma[i]->valid != VM_PAGE_BITS_ALL) {
567			KASSERT(ma[i]->oflags & VPO_BUSY,
568			    ("lost busy 1"));
569			vm_object_pip_add(ksobj, 1);
570			for (j = i + 1; j < pages; j++) {
571				KASSERT(ma[j]->valid == VM_PAGE_BITS_ALL ||
572				    (ma[j]->oflags & VPO_BUSY),
573				    ("lost busy 2"));
574				if (ma[j]->valid == VM_PAGE_BITS_ALL)
575					break;
576			}
577			rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
578			if (rv != VM_PAGER_OK)
579	panic("vm_thread_swapin: cannot get kstack for proc: %d",
580				    td->td_proc->p_pid);
581			vm_object_pip_wakeup(ksobj);
582			for (k = i; k < j; k++)
583				ma[k] = vm_page_lookup(ksobj, k);
584			vm_page_wakeup(ma[i]);
585		} else if (ma[i]->oflags & VPO_BUSY)
586			vm_page_wakeup(ma[i]);
587	}
588	VM_OBJECT_UNLOCK(ksobj);
589	pmap_qenter(td->td_kstack, ma, pages);
590	cpu_thread_swapin(td);
591}
592#endif /* !NO_SWAPPING */
593
594/*
595 * Implement fork's actions on an address space.
596 * Here we arrange for the address space to be copied or referenced,
597 * allocate a user struct (pcb and kernel stack), then call the
598 * machine-dependent layer to fill those in and make the new process
599 * ready to run.  The new process is set up so that it returns directly
600 * to user mode to avoid stack copying and relocation problems.
601 */
602int
603vm_forkproc(td, p2, td2, vm2, flags)
604	struct thread *td;
605	struct proc *p2;
606	struct thread *td2;
607	struct vmspace *vm2;
608	int flags;
609{
610	struct proc *p1 = td->td_proc;
611	int error;
612
613	if ((flags & RFPROC) == 0) {
614		/*
615		 * Divorce the memory, if it is shared, essentially
616		 * this changes shared memory amongst threads, into
617		 * COW locally.
618		 */
619		if ((flags & RFMEM) == 0) {
620			if (p1->p_vmspace->vm_refcnt > 1) {
621				error = vmspace_unshare(p1);
622				if (error)
623					return (error);
624			}
625		}
626		cpu_fork(td, p2, td2, flags);
627		return (0);
628	}
629
630	if (flags & RFMEM) {
631		p2->p_vmspace = p1->p_vmspace;
632		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
633	}
634
635	while (vm_page_count_severe()) {
636		VM_WAIT;
637	}
638
639	if ((flags & RFMEM) == 0) {
640		p2->p_vmspace = vm2;
641		if (p1->p_vmspace->vm_shm)
642			shmfork(p1, p2);
643	}
644
645	/*
646	 * cpu_fork will copy and update the pcb, set up the kernel stack,
647	 * and make the child ready to run.
648	 */
649	cpu_fork(td, p2, td2, flags);
650	return (0);
651}
652
653/*
654 * Called after process has been wait(2)'ed apon and is being reaped.
655 * The idea is to reclaim resources that we could not reclaim while
656 * the process was still executing.
657 */
658void
659vm_waitproc(p)
660	struct proc *p;
661{
662
663	vmspace_exitfree(p);		/* and clean-out the vmspace */
664}
665
666void
667faultin(p)
668	struct proc *p;
669{
670#ifdef NO_SWAPPING
671
672	PROC_LOCK_ASSERT(p, MA_OWNED);
673	if ((p->p_flag & P_INMEM) == 0)
674		panic("faultin: proc swapped out with NO_SWAPPING!");
675#else /* !NO_SWAPPING */
676	struct thread *td;
677
678	PROC_LOCK_ASSERT(p, MA_OWNED);
679	/*
680	 * If another process is swapping in this process,
681	 * just wait until it finishes.
682	 */
683	if (p->p_flag & P_SWAPPINGIN) {
684		while (p->p_flag & P_SWAPPINGIN)
685			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
686		return;
687	}
688	if ((p->p_flag & P_INMEM) == 0) {
689		/*
690		 * Don't let another thread swap process p out while we are
691		 * busy swapping it in.
692		 */
693		++p->p_lock;
694		p->p_flag |= P_SWAPPINGIN;
695		PROC_UNLOCK(p);
696
697		/*
698		 * We hold no lock here because the list of threads
699		 * can not change while all threads in the process are
700		 * swapped out.
701		 */
702		FOREACH_THREAD_IN_PROC(p, td)
703			vm_thread_swapin(td);
704		PROC_LOCK(p);
705		swapclear(p);
706		p->p_swtick = ticks;
707
708		wakeup(&p->p_flag);
709
710		/* Allow other threads to swap p out now. */
711		--p->p_lock;
712	}
713#endif /* NO_SWAPPING */
714}
715
716/*
717 * This swapin algorithm attempts to swap-in processes only if there
718 * is enough space for them.  Of course, if a process waits for a long
719 * time, it will be swapped in anyway.
720 *
721 * Giant is held on entry.
722 */
723/* ARGSUSED*/
724static void
725scheduler(dummy)
726	void *dummy;
727{
728	struct proc *p;
729	struct thread *td;
730	struct proc *pp;
731	int slptime;
732	int swtime;
733	int ppri;
734	int pri;
735
736	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
737	mtx_unlock(&Giant);
738
739loop:
740	if (vm_page_count_min()) {
741		VM_WAIT;
742		goto loop;
743	}
744
745	pp = NULL;
746	ppri = INT_MIN;
747	sx_slock(&allproc_lock);
748	FOREACH_PROC_IN_SYSTEM(p) {
749		PROC_LOCK(p);
750		if (p->p_state == PRS_NEW ||
751		    p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
752			PROC_UNLOCK(p);
753			continue;
754		}
755		swtime = (ticks - p->p_swtick) / hz;
756		FOREACH_THREAD_IN_PROC(p, td) {
757			/*
758			 * An otherwise runnable thread of a process
759			 * swapped out has only the TDI_SWAPPED bit set.
760			 *
761			 */
762			thread_lock(td);
763			if (td->td_inhibitors == TDI_SWAPPED) {
764				slptime = (ticks - td->td_slptick) / hz;
765				pri = swtime + slptime;
766				if ((td->td_flags & TDF_SWAPINREQ) == 0)
767					pri -= p->p_nice * 8;
768				/*
769				 * if this thread is higher priority
770				 * and there is enough space, then select
771				 * this process instead of the previous
772				 * selection.
773				 */
774				if (pri > ppri) {
775					pp = p;
776					ppri = pri;
777				}
778			}
779			thread_unlock(td);
780		}
781		PROC_UNLOCK(p);
782	}
783	sx_sunlock(&allproc_lock);
784
785	/*
786	 * Nothing to do, back to sleep.
787	 */
788	if ((p = pp) == NULL) {
789		tsleep(&proc0, PVM, "sched", MAXSLP * hz / 2);
790		goto loop;
791	}
792	PROC_LOCK(p);
793
794	/*
795	 * Another process may be bringing or may have already
796	 * brought this process in while we traverse all threads.
797	 * Or, this process may even be being swapped out again.
798	 */
799	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
800		PROC_UNLOCK(p);
801		goto loop;
802	}
803
804	/*
805	 * We would like to bring someone in. (only if there is space).
806	 * [What checks the space? ]
807	 */
808	faultin(p);
809	PROC_UNLOCK(p);
810	goto loop;
811}
812
813void
814kick_proc0(void)
815{
816
817	wakeup(&proc0);
818}
819
820#ifndef NO_SWAPPING
821
822/*
823 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
824 */
825static int swap_idle_threshold1 = 2;
826SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
827    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
828
829/*
830 * Swap_idle_threshold2 is the time that a process can be idle before
831 * it will be swapped out, if idle swapping is enabled.
832 */
833static int swap_idle_threshold2 = 10;
834SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
835    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
836
837/*
838 * First, if any processes have been sleeping or stopped for at least
839 * "swap_idle_threshold1" seconds, they are swapped out.  If, however,
840 * no such processes exist, then the longest-sleeping or stopped
841 * process is swapped out.  Finally, and only as a last resort, if
842 * there are no sleeping or stopped processes, the longest-resident
843 * process is swapped out.
844 */
845void
846swapout_procs(action)
847int action;
848{
849	struct proc *p;
850	struct thread *td;
851	int didswap = 0;
852
853retry:
854	sx_slock(&allproc_lock);
855	FOREACH_PROC_IN_SYSTEM(p) {
856		struct vmspace *vm;
857		int minslptime = 100000;
858		int slptime;
859
860		/*
861		 * Watch out for a process in
862		 * creation.  It may have no
863		 * address space or lock yet.
864		 */
865		if (p->p_state == PRS_NEW)
866			continue;
867		/*
868		 * An aio daemon switches its
869		 * address space while running.
870		 * Perform a quick check whether
871		 * a process has P_SYSTEM.
872		 */
873		if ((p->p_flag & P_SYSTEM) != 0)
874			continue;
875		/*
876		 * Do not swapout a process that
877		 * is waiting for VM data
878		 * structures as there is a possible
879		 * deadlock.  Test this first as
880		 * this may block.
881		 *
882		 * Lock the map until swapout
883		 * finishes, or a thread of this
884		 * process may attempt to alter
885		 * the map.
886		 */
887		vm = vmspace_acquire_ref(p);
888		if (vm == NULL)
889			continue;
890		if (!vm_map_trylock(&vm->vm_map))
891			goto nextproc1;
892
893		PROC_LOCK(p);
894		if (p->p_lock != 0 ||
895		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
896		    ) != 0) {
897			goto nextproc;
898		}
899		/*
900		 * only aiod changes vmspace, however it will be
901		 * skipped because of the if statement above checking
902		 * for P_SYSTEM
903		 */
904		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
905			goto nextproc;
906
907		switch (p->p_state) {
908		default:
909			/* Don't swap out processes in any sort
910			 * of 'special' state. */
911			break;
912
913		case PRS_NORMAL:
914			/*
915			 * do not swapout a realtime process
916			 * Check all the thread groups..
917			 */
918			FOREACH_THREAD_IN_PROC(p, td) {
919				thread_lock(td);
920				if (PRI_IS_REALTIME(td->td_pri_class)) {
921					thread_unlock(td);
922					goto nextproc;
923				}
924				slptime = (ticks - td->td_slptick) / hz;
925				/*
926				 * Guarantee swap_idle_threshold1
927				 * time in memory.
928				 */
929				if (slptime < swap_idle_threshold1) {
930					thread_unlock(td);
931					goto nextproc;
932				}
933
934				/*
935				 * Do not swapout a process if it is
936				 * waiting on a critical event of some
937				 * kind or there is a thread whose
938				 * pageable memory may be accessed.
939				 *
940				 * This could be refined to support
941				 * swapping out a thread.
942				 */
943				if (!thread_safetoswapout(td)) {
944					thread_unlock(td);
945					goto nextproc;
946				}
947				/*
948				 * If the system is under memory stress,
949				 * or if we are swapping
950				 * idle processes >= swap_idle_threshold2,
951				 * then swap the process out.
952				 */
953				if (((action & VM_SWAP_NORMAL) == 0) &&
954				    (((action & VM_SWAP_IDLE) == 0) ||
955				    (slptime < swap_idle_threshold2))) {
956					thread_unlock(td);
957					goto nextproc;
958				}
959
960				if (minslptime > slptime)
961					minslptime = slptime;
962				thread_unlock(td);
963			}
964
965			/*
966			 * If the pageout daemon didn't free enough pages,
967			 * or if this process is idle and the system is
968			 * configured to swap proactively, swap it out.
969			 */
970			if ((action & VM_SWAP_NORMAL) ||
971				((action & VM_SWAP_IDLE) &&
972				 (minslptime > swap_idle_threshold2))) {
973				if (swapout(p) == 0)
974					didswap++;
975				PROC_UNLOCK(p);
976				vm_map_unlock(&vm->vm_map);
977				vmspace_free(vm);
978				sx_sunlock(&allproc_lock);
979				goto retry;
980			}
981		}
982nextproc:
983		PROC_UNLOCK(p);
984		vm_map_unlock(&vm->vm_map);
985nextproc1:
986		vmspace_free(vm);
987		continue;
988	}
989	sx_sunlock(&allproc_lock);
990	/*
991	 * If we swapped something out, and another process needed memory,
992	 * then wakeup the sched process.
993	 */
994	if (didswap)
995		wakeup(&proc0);
996}
997
998static void
999swapclear(p)
1000	struct proc *p;
1001{
1002	struct thread *td;
1003
1004	PROC_LOCK_ASSERT(p, MA_OWNED);
1005
1006	FOREACH_THREAD_IN_PROC(p, td) {
1007		thread_lock(td);
1008		td->td_flags |= TDF_INMEM;
1009		td->td_flags &= ~TDF_SWAPINREQ;
1010		TD_CLR_SWAPPED(td);
1011		if (TD_CAN_RUN(td))
1012			if (setrunnable(td)) {
1013#ifdef INVARIANTS
1014				/*
1015				 * XXX: We just cleared TDI_SWAPPED
1016				 * above and set TDF_INMEM, so this
1017				 * should never happen.
1018				 */
1019				panic("not waking up swapper");
1020#endif
1021			}
1022		thread_unlock(td);
1023	}
1024	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
1025	p->p_flag |= P_INMEM;
1026}
1027
1028static int
1029swapout(p)
1030	struct proc *p;
1031{
1032	struct thread *td;
1033
1034	PROC_LOCK_ASSERT(p, MA_OWNED);
1035#if defined(SWAP_DEBUG)
1036	printf("swapping out %d\n", p->p_pid);
1037#endif
1038
1039	/*
1040	 * The states of this process and its threads may have changed
1041	 * by now.  Assuming that there is only one pageout daemon thread,
1042	 * this process should still be in memory.
1043	 */
1044	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1045		("swapout: lost a swapout race?"));
1046
1047	/*
1048	 * remember the process resident count
1049	 */
1050	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1051	/*
1052	 * Check and mark all threads before we proceed.
1053	 */
1054	p->p_flag &= ~P_INMEM;
1055	p->p_flag |= P_SWAPPINGOUT;
1056	FOREACH_THREAD_IN_PROC(p, td) {
1057		thread_lock(td);
1058		if (!thread_safetoswapout(td)) {
1059			thread_unlock(td);
1060			swapclear(p);
1061			return (EBUSY);
1062		}
1063		td->td_flags &= ~TDF_INMEM;
1064		TD_SET_SWAPPED(td);
1065		thread_unlock(td);
1066	}
1067	td = FIRST_THREAD_IN_PROC(p);
1068	++td->td_ru.ru_nswap;
1069	PROC_UNLOCK(p);
1070
1071	/*
1072	 * This list is stable because all threads are now prevented from
1073	 * running.  The list is only modified in the context of a running
1074	 * thread in this process.
1075	 */
1076	FOREACH_THREAD_IN_PROC(p, td)
1077		vm_thread_swapout(td);
1078
1079	PROC_LOCK(p);
1080	p->p_flag &= ~P_SWAPPINGOUT;
1081	p->p_swtick = ticks;
1082	return (0);
1083}
1084#endif /* !NO_SWAPPING */
1085