vm_glue.c revision 207728
161828Smarkm/*-
261828Smarkm * Copyright (c) 1991, 1993
361828Smarkm *	The Regents of the University of California.  All rights reserved.
461828Smarkm *
561828Smarkm * This code is derived from software contributed to Berkeley by
661828Smarkm * The Mach Operating System project at Carnegie-Mellon University.
761828Smarkm *
861828Smarkm * Redistribution and use in source and binary forms, with or without
961828Smarkm * modification, are permitted provided that the following conditions
1061828Smarkm * are met:
1161828Smarkm * 1. Redistributions of source code must retain the above copyright
1261828Smarkm *    notice, this list of conditions and the following disclaimer.
1361828Smarkm * 2. Redistributions in binary form must reproduce the above copyright
1461828Smarkm *    notice, this list of conditions and the following disclaimer in the
1561828Smarkm *    documentation and/or other materials provided with the distribution.
1661828Smarkm * 4. Neither the name of the University nor the names of its contributors
1761828Smarkm *    may be used to endorse or promote products derived from this software
1861828Smarkm *    without specific prior written permission.
1961828Smarkm *
2061828Smarkm * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
2161828Smarkm * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2261828Smarkm * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2361828Smarkm * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
2461828Smarkm * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2561828Smarkm * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2661828Smarkm * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2761828Smarkm * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2861828Smarkm * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2961828Smarkm * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3061828Smarkm * SUCH DAMAGE.
3161828Smarkm *
3261828Smarkm *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
3361828Smarkm *
3461828Smarkm *
3561828Smarkm * Copyright (c) 1987, 1990 Carnegie-Mellon University.
3661828Smarkm * All rights reserved.
3761828Smarkm *
3861828Smarkm * Permission to use, copy, modify and distribute this software and
3961828Smarkm * its documentation is hereby granted, provided that both the copyright
4061828Smarkm * notice and this permission notice appear in all copies of the
4161828Smarkm * software, derivative works or modified versions, and any portions
4261828Smarkm * thereof, and that both notices appear in supporting documentation.
4361828Smarkm *
4461828Smarkm * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
4561828Smarkm * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
4661828Smarkm * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
4761828Smarkm *
4861828Smarkm * Carnegie Mellon requests users of this software to return to
4961828Smarkm *
5061828Smarkm *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
5161828Smarkm *  School of Computer Science
5261828Smarkm *  Carnegie Mellon University
5361828Smarkm *  Pittsburgh PA 15213-3890
5461828Smarkm *
5561828Smarkm * any improvements or extensions that they make and grant Carnegie the
5661828Smarkm * rights to redistribute these changes.
5761828Smarkm */
5861828Smarkm
5961828Smarkm#include <sys/cdefs.h>
60194206Ssimon__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 207728 2010-05-06 18:58:32Z alc $");
61194206Ssimon
62194206Ssimon#include "opt_vm.h"
63194206Ssimon#include "opt_kstack_pages.h"
64194206Ssimon#include "opt_kstack_max_pages.h"
6561828Smarkm
6661828Smarkm#include <sys/param.h>
6761828Smarkm#include <sys/systm.h>
68194206Ssimon#include <sys/limits.h>
69194206Ssimon#include <sys/lock.h>
7068654Skris#include <sys/mutex.h>
7161828Smarkm#include <sys/proc.h>
72194206Ssimon#include <sys/resourcevar.h>
73194206Ssimon#include <sys/sched.h>
74194206Ssimon#include <sys/sf_buf.h>
75194206Ssimon#include <sys/shm.h>
76194206Ssimon#include <sys/vmmeter.h>
77194206Ssimon#include <sys/sx.h>
78194206Ssimon#include <sys/sysctl.h>
79194206Ssimon
80194206Ssimon#include <sys/eventhandler.h>
81194206Ssimon#include <sys/kernel.h>
8261828Smarkm#include <sys/ktr.h>
8361828Smarkm#include <sys/unistd.h>
8461828Smarkm
8561828Smarkm#include <vm/vm.h>
8661828Smarkm#include <vm/vm_param.h>
8761828Smarkm#include <vm/pmap.h>
8861828Smarkm#include <vm/vm_map.h>
8961828Smarkm#include <vm/vm_page.h>
9061828Smarkm#include <vm/vm_pageout.h>
9161828Smarkm#include <vm/vm_object.h>
9261828Smarkm#include <vm/vm_kern.h>
9361828Smarkm#include <vm/vm_extern.h>
9461828Smarkm#include <vm/vm_pager.h>
9561828Smarkm#include <vm/swap_pager.h>
9661828Smarkm
9761828Smarkmextern int maxslp;
9861828Smarkm
9961828Smarkm/*
10061828Smarkm * System initialization
10161828Smarkm *
10261828Smarkm * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
10361828Smarkm *
10461828Smarkm * Note: run scheduling should be divorced from the vm system.
10561828Smarkm */
10661828Smarkmstatic void scheduler(void *);
10761828SmarkmSYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
10861828Smarkm
10961828Smarkm#ifndef NO_SWAPPING
11061828Smarkmstatic int swapout(struct proc *);
11161828Smarkmstatic void swapclear(struct proc *);
11261828Smarkmstatic void vm_thread_swapin(struct thread *td);
11361828Smarkmstatic void vm_thread_swapout(struct thread *td);
114160817Ssimon#endif
11561828Smarkm
11661828Smarkm/*
117160817Ssimon * MPSAFE
118160817Ssimon *
11961828Smarkm * WARNING!  This code calls vm_map_check_protection() which only checks
12061828Smarkm * the associated vm_map_entry range.  It does not determine whether the
12161828Smarkm * contents of the memory is actually readable or writable.  In most cases
12261828Smarkm * just checking the vm_map_entry is sufficient within the kernel's address
12361828Smarkm * space.
12461828Smarkm */
12561828Smarkmint
12661828Smarkmkernacc(addr, len, rw)
12761828Smarkm	void *addr;
12861828Smarkm	int len, rw;
12961828Smarkm{
13061828Smarkm	boolean_t rv;
13161828Smarkm	vm_offset_t saddr, eaddr;
13261828Smarkm	vm_prot_t prot;
13361828Smarkm
13461828Smarkm	KASSERT((rw & ~VM_PROT_ALL) == 0,
13561828Smarkm	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
13661828Smarkm
13761828Smarkm	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
13861828Smarkm	    (vm_offset_t)addr + len < (vm_offset_t)addr)
13961828Smarkm		return (FALSE);
14061828Smarkm
14161828Smarkm	prot = rw;
14261828Smarkm	saddr = trunc_page((vm_offset_t)addr);
14361828Smarkm	eaddr = round_page((vm_offset_t)addr + len);
14461828Smarkm	vm_map_lock_read(kernel_map);
14561828Smarkm	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
14661828Smarkm	vm_map_unlock_read(kernel_map);
14761828Smarkm	return (rv == TRUE);
14861828Smarkm}
14961828Smarkm
15061828Smarkm/*
15161828Smarkm * MPSAFE
15261828Smarkm *
15361828Smarkm * WARNING!  This code calls vm_map_check_protection() which only checks
15461828Smarkm * the associated vm_map_entry range.  It does not determine whether the
15561828Smarkm * contents of the memory is actually readable or writable.  vmapbuf(),
15661828Smarkm * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
15761828Smarkm * used in conjuction with this call.
15861828Smarkm */
15961828Smarkmint
16061828Smarkmuseracc(addr, len, rw)
16161828Smarkm	void *addr;
16261828Smarkm	int len, rw;
16361828Smarkm{
16461828Smarkm	boolean_t rv;
16561828Smarkm	vm_prot_t prot;
16661828Smarkm	vm_map_t map;
16761828Smarkm
16861828Smarkm	KASSERT((rw & ~VM_PROT_ALL) == 0,
16961828Smarkm	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
17061828Smarkm	prot = rw;
17161828Smarkm	map = &curproc->p_vmspace->vm_map;
17261828Smarkm	if ((vm_offset_t)addr + len > vm_map_max(map) ||
17361828Smarkm	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
17461828Smarkm		return (FALSE);
175	}
176	vm_map_lock_read(map);
177	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
178	    round_page((vm_offset_t)addr + len), prot);
179	vm_map_unlock_read(map);
180	return (rv == TRUE);
181}
182
183int
184vslock(void *addr, size_t len)
185{
186	vm_offset_t end, last, start;
187	vm_size_t npages;
188	int error;
189
190	last = (vm_offset_t)addr + len;
191	start = trunc_page((vm_offset_t)addr);
192	end = round_page(last);
193	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
194		return (EINVAL);
195	npages = atop(end - start);
196	if (npages > vm_page_max_wired)
197		return (ENOMEM);
198	PROC_LOCK(curproc);
199	if (ptoa(npages +
200	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
201	    lim_cur(curproc, RLIMIT_MEMLOCK)) {
202		PROC_UNLOCK(curproc);
203		return (ENOMEM);
204	}
205	PROC_UNLOCK(curproc);
206#if 0
207	/*
208	 * XXX - not yet
209	 *
210	 * The limit for transient usage of wired pages should be
211	 * larger than for "permanent" wired pages (mlock()).
212	 *
213	 * Also, the sysctl code, which is the only present user
214	 * of vslock(), does a hard loop on EAGAIN.
215	 */
216	if (npages + cnt.v_wire_count > vm_page_max_wired)
217		return (EAGAIN);
218#endif
219	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
220	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
221	/*
222	 * Return EFAULT on error to match copy{in,out}() behaviour
223	 * rather than returning ENOMEM like mlock() would.
224	 */
225	return (error == KERN_SUCCESS ? 0 : EFAULT);
226}
227
228void
229vsunlock(void *addr, size_t len)
230{
231
232	/* Rely on the parameter sanity checks performed by vslock(). */
233	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
234	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
235	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
236}
237
238/*
239 * Pin the page contained within the given object at the given offset.  If the
240 * page is not resident, allocate and load it using the given object's pager.
241 * Return the pinned page if successful; otherwise, return NULL.
242 */
243static vm_page_t
244vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
245{
246	vm_page_t m, ma[1];
247	vm_pindex_t pindex;
248	int rv;
249
250	VM_OBJECT_LOCK(object);
251	pindex = OFF_TO_IDX(offset);
252	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
253	if (m->valid != VM_PAGE_BITS_ALL) {
254		ma[0] = m;
255		rv = vm_pager_get_pages(object, ma, 1, 0);
256		m = vm_page_lookup(object, pindex);
257		if (m == NULL)
258			goto out;
259		if (rv != VM_PAGER_OK) {
260			vm_page_lock(m);
261			vm_page_free(m);
262			vm_page_unlock(m);
263			m = NULL;
264			goto out;
265		}
266	}
267	vm_page_lock(m);
268	vm_page_hold(m);
269	vm_page_unlock(m);
270	vm_page_wakeup(m);
271out:
272	VM_OBJECT_UNLOCK(object);
273	return (m);
274}
275
276/*
277 * Return a CPU private mapping to the page at the given offset within the
278 * given object.  The page is pinned before it is mapped.
279 */
280struct sf_buf *
281vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
282{
283	vm_page_t m;
284
285	m = vm_imgact_hold_page(object, offset);
286	if (m == NULL)
287		return (NULL);
288	sched_pin();
289	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
290}
291
292/*
293 * Destroy the given CPU private mapping and unpin the page that it mapped.
294 */
295void
296vm_imgact_unmap_page(struct sf_buf *sf)
297{
298	vm_page_t m;
299
300	m = sf_buf_page(sf);
301	sf_buf_free(sf);
302	sched_unpin();
303	vm_page_lock(m);
304	vm_page_unhold(m);
305	vm_page_unlock(m);
306}
307
308void
309vm_sync_icache(vm_map_t map, vm_offset_t va, vm_offset_t sz)
310{
311
312	pmap_sync_icache(map->pmap, va, sz);
313}
314
315struct kstack_cache_entry {
316	vm_object_t ksobj;
317	struct kstack_cache_entry *next_ks_entry;
318};
319
320static struct kstack_cache_entry *kstack_cache;
321static int kstack_cache_size = 128;
322static int kstacks;
323static struct mtx kstack_cache_mtx;
324SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
325    "");
326SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
327    "");
328
329#ifndef KSTACK_MAX_PAGES
330#define KSTACK_MAX_PAGES 32
331#endif
332
333/*
334 * Create the kernel stack (including pcb for i386) for a new thread.
335 * This routine directly affects the fork perf for a process and
336 * create performance for a thread.
337 */
338int
339vm_thread_new(struct thread *td, int pages)
340{
341	vm_object_t ksobj;
342	vm_offset_t ks;
343	vm_page_t m, ma[KSTACK_MAX_PAGES];
344	struct kstack_cache_entry *ks_ce;
345	int i;
346
347	/* Bounds check */
348	if (pages <= 1)
349		pages = KSTACK_PAGES;
350	else if (pages > KSTACK_MAX_PAGES)
351		pages = KSTACK_MAX_PAGES;
352
353	if (pages == KSTACK_PAGES) {
354		mtx_lock(&kstack_cache_mtx);
355		if (kstack_cache != NULL) {
356			ks_ce = kstack_cache;
357			kstack_cache = ks_ce->next_ks_entry;
358			mtx_unlock(&kstack_cache_mtx);
359
360			td->td_kstack_obj = ks_ce->ksobj;
361			td->td_kstack = (vm_offset_t)ks_ce;
362			td->td_kstack_pages = KSTACK_PAGES;
363			return (1);
364		}
365		mtx_unlock(&kstack_cache_mtx);
366	}
367
368	/*
369	 * Allocate an object for the kstack.
370	 */
371	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
372
373	/*
374	 * Get a kernel virtual address for this thread's kstack.
375	 */
376#if defined(__mips__)
377	/*
378	 * We need to align the kstack's mapped address to fit within
379	 * a single TLB entry.
380	 */
381	ks = kmem_alloc_nofault_space(kernel_map,
382	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE, VMFS_TLB_ALIGNED_SPACE);
383#else
384	ks = kmem_alloc_nofault(kernel_map,
385	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
386#endif
387	if (ks == 0) {
388		printf("vm_thread_new: kstack allocation failed\n");
389		vm_object_deallocate(ksobj);
390		return (0);
391	}
392
393	atomic_add_int(&kstacks, 1);
394	if (KSTACK_GUARD_PAGES != 0) {
395		pmap_qremove(ks, KSTACK_GUARD_PAGES);
396		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
397	}
398	td->td_kstack_obj = ksobj;
399	td->td_kstack = ks;
400	/*
401	 * Knowing the number of pages allocated is useful when you
402	 * want to deallocate them.
403	 */
404	td->td_kstack_pages = pages;
405	/*
406	 * For the length of the stack, link in a real page of ram for each
407	 * page of stack.
408	 */
409	VM_OBJECT_LOCK(ksobj);
410	for (i = 0; i < pages; i++) {
411		/*
412		 * Get a kernel stack page.
413		 */
414		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
415		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
416		ma[i] = m;
417		m->valid = VM_PAGE_BITS_ALL;
418	}
419	VM_OBJECT_UNLOCK(ksobj);
420	pmap_qenter(ks, ma, pages);
421	return (1);
422}
423
424static void
425vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
426{
427	vm_page_t m;
428	int i;
429
430	atomic_add_int(&kstacks, -1);
431	pmap_qremove(ks, pages);
432	VM_OBJECT_LOCK(ksobj);
433	for (i = 0; i < pages; i++) {
434		m = vm_page_lookup(ksobj, i);
435		if (m == NULL)
436			panic("vm_thread_dispose: kstack already missing?");
437		vm_page_lock(m);
438		vm_page_unwire(m, 0);
439		vm_page_free(m);
440		vm_page_unlock(m);
441	}
442	VM_OBJECT_UNLOCK(ksobj);
443	vm_object_deallocate(ksobj);
444	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
445	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
446}
447
448/*
449 * Dispose of a thread's kernel stack.
450 */
451void
452vm_thread_dispose(struct thread *td)
453{
454	vm_object_t ksobj;
455	vm_offset_t ks;
456	struct kstack_cache_entry *ks_ce;
457	int pages;
458
459	pages = td->td_kstack_pages;
460	ksobj = td->td_kstack_obj;
461	ks = td->td_kstack;
462	td->td_kstack = 0;
463	td->td_kstack_pages = 0;
464	if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
465		ks_ce = (struct kstack_cache_entry *)ks;
466		ks_ce->ksobj = ksobj;
467		mtx_lock(&kstack_cache_mtx);
468		ks_ce->next_ks_entry = kstack_cache;
469		kstack_cache = ks_ce;
470		mtx_unlock(&kstack_cache_mtx);
471		return;
472	}
473	vm_thread_stack_dispose(ksobj, ks, pages);
474}
475
476static void
477vm_thread_stack_lowmem(void *nulll)
478{
479	struct kstack_cache_entry *ks_ce, *ks_ce1;
480
481	mtx_lock(&kstack_cache_mtx);
482	ks_ce = kstack_cache;
483	kstack_cache = NULL;
484	mtx_unlock(&kstack_cache_mtx);
485
486	while (ks_ce != NULL) {
487		ks_ce1 = ks_ce;
488		ks_ce = ks_ce->next_ks_entry;
489
490		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
491		    KSTACK_PAGES);
492	}
493}
494
495static void
496kstack_cache_init(void *nulll)
497{
498
499	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
500	    EVENTHANDLER_PRI_ANY);
501}
502
503MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
504SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
505
506#ifndef NO_SWAPPING
507/*
508 * Allow a thread's kernel stack to be paged out.
509 */
510static void
511vm_thread_swapout(struct thread *td)
512{
513	vm_object_t ksobj;
514	vm_page_t m;
515	int i, pages;
516
517	cpu_thread_swapout(td);
518	pages = td->td_kstack_pages;
519	ksobj = td->td_kstack_obj;
520	pmap_qremove(td->td_kstack, pages);
521	VM_OBJECT_LOCK(ksobj);
522	for (i = 0; i < pages; i++) {
523		m = vm_page_lookup(ksobj, i);
524		if (m == NULL)
525			panic("vm_thread_swapout: kstack already missing?");
526		vm_page_dirty(m);
527		vm_page_lock(m);
528		vm_page_unwire(m, 0);
529		vm_page_unlock(m);
530	}
531	VM_OBJECT_UNLOCK(ksobj);
532}
533
534/*
535 * Bring the kernel stack for a specified thread back in.
536 */
537static void
538vm_thread_swapin(struct thread *td)
539{
540	vm_object_t ksobj;
541	vm_page_t ma[KSTACK_MAX_PAGES];
542	int i, j, k, pages, rv;
543
544	pages = td->td_kstack_pages;
545	ksobj = td->td_kstack_obj;
546	VM_OBJECT_LOCK(ksobj);
547	for (i = 0; i < pages; i++)
548		ma[i] = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY |
549		    VM_ALLOC_WIRED);
550	for (i = 0; i < pages; i++) {
551		if (ma[i]->valid != VM_PAGE_BITS_ALL) {
552			KASSERT(ma[i]->oflags & VPO_BUSY,
553			    ("lost busy 1"));
554			vm_object_pip_add(ksobj, 1);
555			for (j = i + 1; j < pages; j++) {
556				KASSERT(ma[j]->valid == VM_PAGE_BITS_ALL ||
557				    (ma[j]->oflags & VPO_BUSY),
558				    ("lost busy 2"));
559				if (ma[j]->valid == VM_PAGE_BITS_ALL)
560					break;
561			}
562			rv = vm_pager_get_pages(ksobj, ma + i, j - i, 0);
563			if (rv != VM_PAGER_OK)
564	panic("vm_thread_swapin: cannot get kstack for proc: %d",
565				    td->td_proc->p_pid);
566			vm_object_pip_wakeup(ksobj);
567			for (k = i; k < j; k++)
568				ma[k] = vm_page_lookup(ksobj, k);
569			vm_page_wakeup(ma[i]);
570		} else if (ma[i]->oflags & VPO_BUSY)
571			vm_page_wakeup(ma[i]);
572	}
573	VM_OBJECT_UNLOCK(ksobj);
574	pmap_qenter(td->td_kstack, ma, pages);
575	cpu_thread_swapin(td);
576}
577#endif /* !NO_SWAPPING */
578
579/*
580 * Implement fork's actions on an address space.
581 * Here we arrange for the address space to be copied or referenced,
582 * allocate a user struct (pcb and kernel stack), then call the
583 * machine-dependent layer to fill those in and make the new process
584 * ready to run.  The new process is set up so that it returns directly
585 * to user mode to avoid stack copying and relocation problems.
586 */
587int
588vm_forkproc(td, p2, td2, vm2, flags)
589	struct thread *td;
590	struct proc *p2;
591	struct thread *td2;
592	struct vmspace *vm2;
593	int flags;
594{
595	struct proc *p1 = td->td_proc;
596	int error;
597
598	if ((flags & RFPROC) == 0) {
599		/*
600		 * Divorce the memory, if it is shared, essentially
601		 * this changes shared memory amongst threads, into
602		 * COW locally.
603		 */
604		if ((flags & RFMEM) == 0) {
605			if (p1->p_vmspace->vm_refcnt > 1) {
606				error = vmspace_unshare(p1);
607				if (error)
608					return (error);
609			}
610		}
611		cpu_fork(td, p2, td2, flags);
612		return (0);
613	}
614
615	if (flags & RFMEM) {
616		p2->p_vmspace = p1->p_vmspace;
617		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
618	}
619
620	while (vm_page_count_severe()) {
621		VM_WAIT;
622	}
623
624	if ((flags & RFMEM) == 0) {
625		p2->p_vmspace = vm2;
626		if (p1->p_vmspace->vm_shm)
627			shmfork(p1, p2);
628	}
629
630	/*
631	 * cpu_fork will copy and update the pcb, set up the kernel stack,
632	 * and make the child ready to run.
633	 */
634	cpu_fork(td, p2, td2, flags);
635	return (0);
636}
637
638/*
639 * Called after process has been wait(2)'ed apon and is being reaped.
640 * The idea is to reclaim resources that we could not reclaim while
641 * the process was still executing.
642 */
643void
644vm_waitproc(p)
645	struct proc *p;
646{
647
648	vmspace_exitfree(p);		/* and clean-out the vmspace */
649}
650
651void
652faultin(p)
653	struct proc *p;
654{
655#ifdef NO_SWAPPING
656
657	PROC_LOCK_ASSERT(p, MA_OWNED);
658	if ((p->p_flag & P_INMEM) == 0)
659		panic("faultin: proc swapped out with NO_SWAPPING!");
660#else /* !NO_SWAPPING */
661	struct thread *td;
662
663	PROC_LOCK_ASSERT(p, MA_OWNED);
664	/*
665	 * If another process is swapping in this process,
666	 * just wait until it finishes.
667	 */
668	if (p->p_flag & P_SWAPPINGIN) {
669		while (p->p_flag & P_SWAPPINGIN)
670			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
671		return;
672	}
673	if ((p->p_flag & P_INMEM) == 0) {
674		/*
675		 * Don't let another thread swap process p out while we are
676		 * busy swapping it in.
677		 */
678		++p->p_lock;
679		p->p_flag |= P_SWAPPINGIN;
680		PROC_UNLOCK(p);
681
682		/*
683		 * We hold no lock here because the list of threads
684		 * can not change while all threads in the process are
685		 * swapped out.
686		 */
687		FOREACH_THREAD_IN_PROC(p, td)
688			vm_thread_swapin(td);
689		PROC_LOCK(p);
690		swapclear(p);
691		p->p_swtick = ticks;
692
693		wakeup(&p->p_flag);
694
695		/* Allow other threads to swap p out now. */
696		--p->p_lock;
697	}
698#endif /* NO_SWAPPING */
699}
700
701/*
702 * This swapin algorithm attempts to swap-in processes only if there
703 * is enough space for them.  Of course, if a process waits for a long
704 * time, it will be swapped in anyway.
705 *
706 * Giant is held on entry.
707 */
708/* ARGSUSED*/
709static void
710scheduler(dummy)
711	void *dummy;
712{
713	struct proc *p;
714	struct thread *td;
715	struct proc *pp;
716	int slptime;
717	int swtime;
718	int ppri;
719	int pri;
720
721	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
722	mtx_unlock(&Giant);
723
724loop:
725	if (vm_page_count_min()) {
726		VM_WAIT;
727		goto loop;
728	}
729
730	pp = NULL;
731	ppri = INT_MIN;
732	sx_slock(&allproc_lock);
733	FOREACH_PROC_IN_SYSTEM(p) {
734		PROC_LOCK(p);
735		if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
736			PROC_UNLOCK(p);
737			continue;
738		}
739		swtime = (ticks - p->p_swtick) / hz;
740		FOREACH_THREAD_IN_PROC(p, td) {
741			/*
742			 * An otherwise runnable thread of a process
743			 * swapped out has only the TDI_SWAPPED bit set.
744			 *
745			 */
746			thread_lock(td);
747			if (td->td_inhibitors == TDI_SWAPPED) {
748				slptime = (ticks - td->td_slptick) / hz;
749				pri = swtime + slptime;
750				if ((td->td_flags & TDF_SWAPINREQ) == 0)
751					pri -= p->p_nice * 8;
752				/*
753				 * if this thread is higher priority
754				 * and there is enough space, then select
755				 * this process instead of the previous
756				 * selection.
757				 */
758				if (pri > ppri) {
759					pp = p;
760					ppri = pri;
761				}
762			}
763			thread_unlock(td);
764		}
765		PROC_UNLOCK(p);
766	}
767	sx_sunlock(&allproc_lock);
768
769	/*
770	 * Nothing to do, back to sleep.
771	 */
772	if ((p = pp) == NULL) {
773		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
774		goto loop;
775	}
776	PROC_LOCK(p);
777
778	/*
779	 * Another process may be bringing or may have already
780	 * brought this process in while we traverse all threads.
781	 * Or, this process may even be being swapped out again.
782	 */
783	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
784		PROC_UNLOCK(p);
785		goto loop;
786	}
787
788	/*
789	 * We would like to bring someone in. (only if there is space).
790	 * [What checks the space? ]
791	 */
792	faultin(p);
793	PROC_UNLOCK(p);
794	goto loop;
795}
796
797void
798kick_proc0(void)
799{
800
801	wakeup(&proc0);
802}
803
804#ifndef NO_SWAPPING
805
806/*
807 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
808 */
809static int swap_idle_threshold1 = 2;
810SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
811    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
812
813/*
814 * Swap_idle_threshold2 is the time that a process can be idle before
815 * it will be swapped out, if idle swapping is enabled.
816 */
817static int swap_idle_threshold2 = 10;
818SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
819    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
820
821/*
822 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
823 * procs and swap out their stacks.  We try to always "swap" at least one
824 * process in case we need the room for a swapin.
825 * If any procs have been sleeping/stopped for at least maxslp seconds,
826 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
827 * if any, otherwise the longest-resident process.
828 */
829void
830swapout_procs(action)
831int action;
832{
833	struct proc *p;
834	struct thread *td;
835	int didswap = 0;
836
837retry:
838	sx_slock(&allproc_lock);
839	FOREACH_PROC_IN_SYSTEM(p) {
840		struct vmspace *vm;
841		int minslptime = 100000;
842		int slptime;
843
844		/*
845		 * Watch out for a process in
846		 * creation.  It may have no
847		 * address space or lock yet.
848		 */
849		if (p->p_state == PRS_NEW)
850			continue;
851		/*
852		 * An aio daemon switches its
853		 * address space while running.
854		 * Perform a quick check whether
855		 * a process has P_SYSTEM.
856		 */
857		if ((p->p_flag & P_SYSTEM) != 0)
858			continue;
859		/*
860		 * Do not swapout a process that
861		 * is waiting for VM data
862		 * structures as there is a possible
863		 * deadlock.  Test this first as
864		 * this may block.
865		 *
866		 * Lock the map until swapout
867		 * finishes, or a thread of this
868		 * process may attempt to alter
869		 * the map.
870		 */
871		vm = vmspace_acquire_ref(p);
872		if (vm == NULL)
873			continue;
874		if (!vm_map_trylock(&vm->vm_map))
875			goto nextproc1;
876
877		PROC_LOCK(p);
878		if (p->p_lock != 0 ||
879		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
880		    ) != 0) {
881			goto nextproc;
882		}
883		/*
884		 * only aiod changes vmspace, however it will be
885		 * skipped because of the if statement above checking
886		 * for P_SYSTEM
887		 */
888		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
889			goto nextproc;
890
891		switch (p->p_state) {
892		default:
893			/* Don't swap out processes in any sort
894			 * of 'special' state. */
895			break;
896
897		case PRS_NORMAL:
898			/*
899			 * do not swapout a realtime process
900			 * Check all the thread groups..
901			 */
902			FOREACH_THREAD_IN_PROC(p, td) {
903				thread_lock(td);
904				if (PRI_IS_REALTIME(td->td_pri_class)) {
905					thread_unlock(td);
906					goto nextproc;
907				}
908				slptime = (ticks - td->td_slptick) / hz;
909				/*
910				 * Guarantee swap_idle_threshold1
911				 * time in memory.
912				 */
913				if (slptime < swap_idle_threshold1) {
914					thread_unlock(td);
915					goto nextproc;
916				}
917
918				/*
919				 * Do not swapout a process if it is
920				 * waiting on a critical event of some
921				 * kind or there is a thread whose
922				 * pageable memory may be accessed.
923				 *
924				 * This could be refined to support
925				 * swapping out a thread.
926				 */
927				if (!thread_safetoswapout(td)) {
928					thread_unlock(td);
929					goto nextproc;
930				}
931				/*
932				 * If the system is under memory stress,
933				 * or if we are swapping
934				 * idle processes >= swap_idle_threshold2,
935				 * then swap the process out.
936				 */
937				if (((action & VM_SWAP_NORMAL) == 0) &&
938				    (((action & VM_SWAP_IDLE) == 0) ||
939				    (slptime < swap_idle_threshold2))) {
940					thread_unlock(td);
941					goto nextproc;
942				}
943
944				if (minslptime > slptime)
945					minslptime = slptime;
946				thread_unlock(td);
947			}
948
949			/*
950			 * If the pageout daemon didn't free enough pages,
951			 * or if this process is idle and the system is
952			 * configured to swap proactively, swap it out.
953			 */
954			if ((action & VM_SWAP_NORMAL) ||
955				((action & VM_SWAP_IDLE) &&
956				 (minslptime > swap_idle_threshold2))) {
957				if (swapout(p) == 0)
958					didswap++;
959				PROC_UNLOCK(p);
960				vm_map_unlock(&vm->vm_map);
961				vmspace_free(vm);
962				sx_sunlock(&allproc_lock);
963				goto retry;
964			}
965		}
966nextproc:
967		PROC_UNLOCK(p);
968		vm_map_unlock(&vm->vm_map);
969nextproc1:
970		vmspace_free(vm);
971		continue;
972	}
973	sx_sunlock(&allproc_lock);
974	/*
975	 * If we swapped something out, and another process needed memory,
976	 * then wakeup the sched process.
977	 */
978	if (didswap)
979		wakeup(&proc0);
980}
981
982static void
983swapclear(p)
984	struct proc *p;
985{
986	struct thread *td;
987
988	PROC_LOCK_ASSERT(p, MA_OWNED);
989
990	FOREACH_THREAD_IN_PROC(p, td) {
991		thread_lock(td);
992		td->td_flags |= TDF_INMEM;
993		td->td_flags &= ~TDF_SWAPINREQ;
994		TD_CLR_SWAPPED(td);
995		if (TD_CAN_RUN(td))
996			if (setrunnable(td)) {
997#ifdef INVARIANTS
998				/*
999				 * XXX: We just cleared TDI_SWAPPED
1000				 * above and set TDF_INMEM, so this
1001				 * should never happen.
1002				 */
1003				panic("not waking up swapper");
1004#endif
1005			}
1006		thread_unlock(td);
1007	}
1008	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
1009	p->p_flag |= P_INMEM;
1010}
1011
1012static int
1013swapout(p)
1014	struct proc *p;
1015{
1016	struct thread *td;
1017
1018	PROC_LOCK_ASSERT(p, MA_OWNED);
1019#if defined(SWAP_DEBUG)
1020	printf("swapping out %d\n", p->p_pid);
1021#endif
1022
1023	/*
1024	 * The states of this process and its threads may have changed
1025	 * by now.  Assuming that there is only one pageout daemon thread,
1026	 * this process should still be in memory.
1027	 */
1028	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1029		("swapout: lost a swapout race?"));
1030
1031	/*
1032	 * remember the process resident count
1033	 */
1034	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1035	/*
1036	 * Check and mark all threads before we proceed.
1037	 */
1038	p->p_flag &= ~P_INMEM;
1039	p->p_flag |= P_SWAPPINGOUT;
1040	FOREACH_THREAD_IN_PROC(p, td) {
1041		thread_lock(td);
1042		if (!thread_safetoswapout(td)) {
1043			thread_unlock(td);
1044			swapclear(p);
1045			return (EBUSY);
1046		}
1047		td->td_flags &= ~TDF_INMEM;
1048		TD_SET_SWAPPED(td);
1049		thread_unlock(td);
1050	}
1051	td = FIRST_THREAD_IN_PROC(p);
1052	++td->td_ru.ru_nswap;
1053	PROC_UNLOCK(p);
1054
1055	/*
1056	 * This list is stable because all threads are now prevented from
1057	 * running.  The list is only modified in the context of a running
1058	 * thread in this process.
1059	 */
1060	FOREACH_THREAD_IN_PROC(p, td)
1061		vm_thread_swapout(td);
1062
1063	PROC_LOCK(p);
1064	p->p_flag &= ~P_SWAPPINGOUT;
1065	p->p_swtick = ticks;
1066	return (0);
1067}
1068#endif /* !NO_SWAPPING */
1069