vm_glue.c revision 196730
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51 *  School of Computer Science
52 *  Carnegie Mellon University
53 *  Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 196730 2009-09-01 11:41:51Z kib $");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/resourcevar.h>
73#include <sys/sched.h>
74#include <sys/sf_buf.h>
75#include <sys/shm.h>
76#include <sys/vmmeter.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79
80#include <sys/eventhandler.h>
81#include <sys/kernel.h>
82#include <sys/ktr.h>
83#include <sys/unistd.h>
84
85#include <vm/vm.h>
86#include <vm/vm_param.h>
87#include <vm/pmap.h>
88#include <vm/vm_map.h>
89#include <vm/vm_page.h>
90#include <vm/vm_pageout.h>
91#include <vm/vm_object.h>
92#include <vm/vm_kern.h>
93#include <vm/vm_extern.h>
94#include <vm/vm_pager.h>
95#include <vm/swap_pager.h>
96
97extern int maxslp;
98
99/*
100 * System initialization
101 *
102 * Note: proc0 from proc.h
103 */
104static void vm_init_limits(void *);
105SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0);
106
107/*
108 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
109 *
110 * Note: run scheduling should be divorced from the vm system.
111 */
112static void scheduler(void *);
113SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
114
115#ifndef NO_SWAPPING
116static int swapout(struct proc *);
117static void swapclear(struct proc *);
118#endif
119
120/*
121 * MPSAFE
122 *
123 * WARNING!  This code calls vm_map_check_protection() which only checks
124 * the associated vm_map_entry range.  It does not determine whether the
125 * contents of the memory is actually readable or writable.  In most cases
126 * just checking the vm_map_entry is sufficient within the kernel's address
127 * space.
128 */
129int
130kernacc(addr, len, rw)
131	void *addr;
132	int len, rw;
133{
134	boolean_t rv;
135	vm_offset_t saddr, eaddr;
136	vm_prot_t prot;
137
138	KASSERT((rw & ~VM_PROT_ALL) == 0,
139	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
140
141	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
142	    (vm_offset_t)addr + len < (vm_offset_t)addr)
143		return (FALSE);
144
145	prot = rw;
146	saddr = trunc_page((vm_offset_t)addr);
147	eaddr = round_page((vm_offset_t)addr + len);
148	vm_map_lock_read(kernel_map);
149	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
150	vm_map_unlock_read(kernel_map);
151	return (rv == TRUE);
152}
153
154/*
155 * MPSAFE
156 *
157 * WARNING!  This code calls vm_map_check_protection() which only checks
158 * the associated vm_map_entry range.  It does not determine whether the
159 * contents of the memory is actually readable or writable.  vmapbuf(),
160 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
161 * used in conjuction with this call.
162 */
163int
164useracc(addr, len, rw)
165	void *addr;
166	int len, rw;
167{
168	boolean_t rv;
169	vm_prot_t prot;
170	vm_map_t map;
171
172	KASSERT((rw & ~VM_PROT_ALL) == 0,
173	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
174	prot = rw;
175	map = &curproc->p_vmspace->vm_map;
176	if ((vm_offset_t)addr + len > vm_map_max(map) ||
177	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
178		return (FALSE);
179	}
180	vm_map_lock_read(map);
181	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
182	    round_page((vm_offset_t)addr + len), prot);
183	vm_map_unlock_read(map);
184	return (rv == TRUE);
185}
186
187int
188vslock(void *addr, size_t len)
189{
190	vm_offset_t end, last, start;
191	vm_size_t npages;
192	int error;
193
194	last = (vm_offset_t)addr + len;
195	start = trunc_page((vm_offset_t)addr);
196	end = round_page(last);
197	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
198		return (EINVAL);
199	npages = atop(end - start);
200	if (npages > vm_page_max_wired)
201		return (ENOMEM);
202	PROC_LOCK(curproc);
203	if (ptoa(npages +
204	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
205	    lim_cur(curproc, RLIMIT_MEMLOCK)) {
206		PROC_UNLOCK(curproc);
207		return (ENOMEM);
208	}
209	PROC_UNLOCK(curproc);
210#if 0
211	/*
212	 * XXX - not yet
213	 *
214	 * The limit for transient usage of wired pages should be
215	 * larger than for "permanent" wired pages (mlock()).
216	 *
217	 * Also, the sysctl code, which is the only present user
218	 * of vslock(), does a hard loop on EAGAIN.
219	 */
220	if (npages + cnt.v_wire_count > vm_page_max_wired)
221		return (EAGAIN);
222#endif
223	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
224	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
225	/*
226	 * Return EFAULT on error to match copy{in,out}() behaviour
227	 * rather than returning ENOMEM like mlock() would.
228	 */
229	return (error == KERN_SUCCESS ? 0 : EFAULT);
230}
231
232void
233vsunlock(void *addr, size_t len)
234{
235
236	/* Rely on the parameter sanity checks performed by vslock(). */
237	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
238	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
239	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
240}
241
242/*
243 * Pin the page contained within the given object at the given offset.  If the
244 * page is not resident, allocate and load it using the given object's pager.
245 * Return the pinned page if successful; otherwise, return NULL.
246 */
247static vm_page_t
248vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
249{
250	vm_page_t m, ma[1];
251	vm_pindex_t pindex;
252	int rv;
253
254	VM_OBJECT_LOCK(object);
255	pindex = OFF_TO_IDX(offset);
256	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
257	if (m->valid != VM_PAGE_BITS_ALL) {
258		ma[0] = m;
259		rv = vm_pager_get_pages(object, ma, 1, 0);
260		m = vm_page_lookup(object, pindex);
261		if (m == NULL)
262			goto out;
263		if (rv != VM_PAGER_OK) {
264			vm_page_lock_queues();
265			vm_page_free(m);
266			vm_page_unlock_queues();
267			m = NULL;
268			goto out;
269		}
270	}
271	vm_page_lock_queues();
272	vm_page_hold(m);
273	vm_page_unlock_queues();
274	vm_page_wakeup(m);
275out:
276	VM_OBJECT_UNLOCK(object);
277	return (m);
278}
279
280/*
281 * Return a CPU private mapping to the page at the given offset within the
282 * given object.  The page is pinned before it is mapped.
283 */
284struct sf_buf *
285vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
286{
287	vm_page_t m;
288
289	m = vm_imgact_hold_page(object, offset);
290	if (m == NULL)
291		return (NULL);
292	sched_pin();
293	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
294}
295
296/*
297 * Destroy the given CPU private mapping and unpin the page that it mapped.
298 */
299void
300vm_imgact_unmap_page(struct sf_buf *sf)
301{
302	vm_page_t m;
303
304	m = sf_buf_page(sf);
305	sf_buf_free(sf);
306	sched_unpin();
307	vm_page_lock_queues();
308	vm_page_unhold(m);
309	vm_page_unlock_queues();
310}
311
312struct kstack_cache_entry {
313	vm_object_t ksobj;
314	struct kstack_cache_entry *next_ks_entry;
315};
316
317static struct kstack_cache_entry *kstack_cache;
318static int kstack_cache_size = 128;
319static int kstacks;
320static struct mtx kstack_cache_mtx;
321SYSCTL_INT(_vm, OID_AUTO, kstack_cache_size, CTLFLAG_RW, &kstack_cache_size, 0,
322    "");
323SYSCTL_INT(_vm, OID_AUTO, kstacks, CTLFLAG_RD, &kstacks, 0,
324    "");
325
326#ifndef KSTACK_MAX_PAGES
327#define KSTACK_MAX_PAGES 32
328#endif
329
330/*
331 * Create the kernel stack (including pcb for i386) for a new thread.
332 * This routine directly affects the fork perf for a process and
333 * create performance for a thread.
334 */
335int
336vm_thread_new(struct thread *td, int pages)
337{
338	vm_object_t ksobj;
339	vm_offset_t ks;
340	vm_page_t m, ma[KSTACK_MAX_PAGES];
341	struct kstack_cache_entry *ks_ce;
342	int i;
343
344	/* Bounds check */
345	if (pages <= 1)
346		pages = KSTACK_PAGES;
347	else if (pages > KSTACK_MAX_PAGES)
348		pages = KSTACK_MAX_PAGES;
349
350	if (pages == KSTACK_PAGES) {
351		mtx_lock(&kstack_cache_mtx);
352		if (kstack_cache != NULL) {
353			ks_ce = kstack_cache;
354			kstack_cache = ks_ce->next_ks_entry;
355			mtx_unlock(&kstack_cache_mtx);
356
357			td->td_kstack_obj = ks_ce->ksobj;
358			td->td_kstack = (vm_offset_t)ks_ce;
359			td->td_kstack_pages = KSTACK_PAGES;
360			return (1);
361		}
362		mtx_unlock(&kstack_cache_mtx);
363	}
364
365	/*
366	 * Allocate an object for the kstack.
367	 */
368	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
369
370	/*
371	 * Get a kernel virtual address for this thread's kstack.
372	 */
373	ks = kmem_alloc_nofault(kernel_map,
374	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
375	if (ks == 0) {
376		printf("vm_thread_new: kstack allocation failed\n");
377		vm_object_deallocate(ksobj);
378		return (0);
379	}
380
381	atomic_add_int(&kstacks, 1);
382	if (KSTACK_GUARD_PAGES != 0) {
383		pmap_qremove(ks, KSTACK_GUARD_PAGES);
384		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
385	}
386	td->td_kstack_obj = ksobj;
387	td->td_kstack = ks;
388	/*
389	 * Knowing the number of pages allocated is useful when you
390	 * want to deallocate them.
391	 */
392	td->td_kstack_pages = pages;
393	/*
394	 * For the length of the stack, link in a real page of ram for each
395	 * page of stack.
396	 */
397	VM_OBJECT_LOCK(ksobj);
398	for (i = 0; i < pages; i++) {
399		/*
400		 * Get a kernel stack page.
401		 */
402		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
403		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
404		ma[i] = m;
405		m->valid = VM_PAGE_BITS_ALL;
406	}
407	VM_OBJECT_UNLOCK(ksobj);
408	pmap_qenter(ks, ma, pages);
409	return (1);
410}
411
412static void
413vm_thread_stack_dispose(vm_object_t ksobj, vm_offset_t ks, int pages)
414{
415	vm_page_t m;
416	int i;
417
418	atomic_add_int(&kstacks, -1);
419	pmap_qremove(ks, pages);
420	VM_OBJECT_LOCK(ksobj);
421	for (i = 0; i < pages; i++) {
422		m = vm_page_lookup(ksobj, i);
423		if (m == NULL)
424			panic("vm_thread_dispose: kstack already missing?");
425		vm_page_lock_queues();
426		vm_page_unwire(m, 0);
427		vm_page_free(m);
428		vm_page_unlock_queues();
429	}
430	VM_OBJECT_UNLOCK(ksobj);
431	vm_object_deallocate(ksobj);
432	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
433	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
434}
435
436/*
437 * Dispose of a thread's kernel stack.
438 */
439void
440vm_thread_dispose(struct thread *td)
441{
442	vm_object_t ksobj;
443	vm_offset_t ks;
444	struct kstack_cache_entry *ks_ce;
445	int pages;
446
447	pages = td->td_kstack_pages;
448	ksobj = td->td_kstack_obj;
449	ks = td->td_kstack;
450	td->td_kstack = 0;
451	td->td_kstack_pages = 0;
452	if (pages == KSTACK_PAGES && kstacks <= kstack_cache_size) {
453		ks_ce = (struct kstack_cache_entry *)ks;
454		ks_ce->ksobj = ksobj;
455		mtx_lock(&kstack_cache_mtx);
456		ks_ce->next_ks_entry = kstack_cache;
457		kstack_cache = ks_ce;
458		mtx_unlock(&kstack_cache_mtx);
459		return;
460	}
461	vm_thread_stack_dispose(ksobj, ks, pages);
462}
463
464static void
465vm_thread_stack_lowmem(void *nulll)
466{
467	struct kstack_cache_entry *ks_ce, *ks_ce1;
468
469	mtx_lock(&kstack_cache_mtx);
470	ks_ce = kstack_cache;
471	kstack_cache = NULL;
472	mtx_unlock(&kstack_cache_mtx);
473
474	while (ks_ce != NULL) {
475		ks_ce1 = ks_ce;
476		ks_ce = ks_ce->next_ks_entry;
477
478		vm_thread_stack_dispose(ks_ce1->ksobj, (vm_offset_t)ks_ce1,
479		    KSTACK_PAGES);
480	}
481}
482
483static void
484kstack_cache_init(void *nulll)
485{
486
487	EVENTHANDLER_REGISTER(vm_lowmem, vm_thread_stack_lowmem, NULL,
488	    EVENTHANDLER_PRI_ANY);
489}
490
491MTX_SYSINIT(kstack_cache, &kstack_cache_mtx, "kstkch", MTX_DEF);
492SYSINIT(vm_kstacks, SI_SUB_KTHREAD_INIT, SI_ORDER_ANY, kstack_cache_init, NULL);
493
494/*
495 * Allow a thread's kernel stack to be paged out.
496 */
497void
498vm_thread_swapout(struct thread *td)
499{
500	vm_object_t ksobj;
501	vm_page_t m;
502	int i, pages;
503
504	cpu_thread_swapout(td);
505	pages = td->td_kstack_pages;
506	ksobj = td->td_kstack_obj;
507	pmap_qremove(td->td_kstack, pages);
508	VM_OBJECT_LOCK(ksobj);
509	for (i = 0; i < pages; i++) {
510		m = vm_page_lookup(ksobj, i);
511		if (m == NULL)
512			panic("vm_thread_swapout: kstack already missing?");
513		vm_page_lock_queues();
514		vm_page_dirty(m);
515		vm_page_unwire(m, 0);
516		vm_page_unlock_queues();
517	}
518	VM_OBJECT_UNLOCK(ksobj);
519}
520
521/*
522 * Bring the kernel stack for a specified thread back in.
523 */
524void
525vm_thread_swapin(struct thread *td)
526{
527	vm_object_t ksobj;
528	vm_page_t m, ma[KSTACK_MAX_PAGES];
529	int i, pages, rv;
530
531	pages = td->td_kstack_pages;
532	ksobj = td->td_kstack_obj;
533	VM_OBJECT_LOCK(ksobj);
534	for (i = 0; i < pages; i++) {
535		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
536		if (m->valid != VM_PAGE_BITS_ALL) {
537			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
538			if (rv != VM_PAGER_OK)
539				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
540			m = vm_page_lookup(ksobj, i);
541		}
542		ma[i] = m;
543		vm_page_lock_queues();
544		vm_page_wire(m);
545		vm_page_unlock_queues();
546		vm_page_wakeup(m);
547	}
548	VM_OBJECT_UNLOCK(ksobj);
549	pmap_qenter(td->td_kstack, ma, pages);
550	cpu_thread_swapin(td);
551}
552
553/*
554 * Implement fork's actions on an address space.
555 * Here we arrange for the address space to be copied or referenced,
556 * allocate a user struct (pcb and kernel stack), then call the
557 * machine-dependent layer to fill those in and make the new process
558 * ready to run.  The new process is set up so that it returns directly
559 * to user mode to avoid stack copying and relocation problems.
560 */
561int
562vm_forkproc(td, p2, td2, vm2, flags)
563	struct thread *td;
564	struct proc *p2;
565	struct thread *td2;
566	struct vmspace *vm2;
567	int flags;
568{
569	struct proc *p1 = td->td_proc;
570	int error;
571
572	if ((flags & RFPROC) == 0) {
573		/*
574		 * Divorce the memory, if it is shared, essentially
575		 * this changes shared memory amongst threads, into
576		 * COW locally.
577		 */
578		if ((flags & RFMEM) == 0) {
579			if (p1->p_vmspace->vm_refcnt > 1) {
580				error = vmspace_unshare(p1);
581				if (error)
582					return (error);
583			}
584		}
585		cpu_fork(td, p2, td2, flags);
586		return (0);
587	}
588
589	if (flags & RFMEM) {
590		p2->p_vmspace = p1->p_vmspace;
591		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
592	}
593
594	while (vm_page_count_severe()) {
595		VM_WAIT;
596	}
597
598	if ((flags & RFMEM) == 0) {
599		p2->p_vmspace = vm2;
600		if (p1->p_vmspace->vm_shm)
601			shmfork(p1, p2);
602	}
603
604	/*
605	 * cpu_fork will copy and update the pcb, set up the kernel stack,
606	 * and make the child ready to run.
607	 */
608	cpu_fork(td, p2, td2, flags);
609	return (0);
610}
611
612/*
613 * Called after process has been wait(2)'ed apon and is being reaped.
614 * The idea is to reclaim resources that we could not reclaim while
615 * the process was still executing.
616 */
617void
618vm_waitproc(p)
619	struct proc *p;
620{
621
622	vmspace_exitfree(p);		/* and clean-out the vmspace */
623}
624
625/*
626 * Set default limits for VM system.
627 * Called for proc 0, and then inherited by all others.
628 *
629 * XXX should probably act directly on proc0.
630 */
631static void
632vm_init_limits(udata)
633	void *udata;
634{
635	struct proc *p = udata;
636	struct plimit *limp;
637	int rss_limit;
638
639	/*
640	 * Set up the initial limits on process VM. Set the maximum resident
641	 * set size to be half of (reasonably) available memory.  Since this
642	 * is a soft limit, it comes into effect only when the system is out
643	 * of memory - half of main memory helps to favor smaller processes,
644	 * and reduces thrashing of the object cache.
645	 */
646	limp = p->p_limit;
647	limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
648	limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
649	limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
650	limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
651	/* limit the limit to no less than 2MB */
652	rss_limit = max(cnt.v_free_count, 512);
653	limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
654	limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
655}
656
657void
658faultin(p)
659	struct proc *p;
660{
661#ifdef NO_SWAPPING
662
663	PROC_LOCK_ASSERT(p, MA_OWNED);
664	if ((p->p_flag & P_INMEM) == 0)
665		panic("faultin: proc swapped out with NO_SWAPPING!");
666#else /* !NO_SWAPPING */
667	struct thread *td;
668
669	PROC_LOCK_ASSERT(p, MA_OWNED);
670	/*
671	 * If another process is swapping in this process,
672	 * just wait until it finishes.
673	 */
674	if (p->p_flag & P_SWAPPINGIN) {
675		while (p->p_flag & P_SWAPPINGIN)
676			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
677		return;
678	}
679	if ((p->p_flag & P_INMEM) == 0) {
680		/*
681		 * Don't let another thread swap process p out while we are
682		 * busy swapping it in.
683		 */
684		++p->p_lock;
685		p->p_flag |= P_SWAPPINGIN;
686		PROC_UNLOCK(p);
687
688		/*
689		 * We hold no lock here because the list of threads
690		 * can not change while all threads in the process are
691		 * swapped out.
692		 */
693		FOREACH_THREAD_IN_PROC(p, td)
694			vm_thread_swapin(td);
695		PROC_LOCK(p);
696		swapclear(p);
697		p->p_swtick = ticks;
698
699		wakeup(&p->p_flag);
700
701		/* Allow other threads to swap p out now. */
702		--p->p_lock;
703	}
704#endif /* NO_SWAPPING */
705}
706
707/*
708 * This swapin algorithm attempts to swap-in processes only if there
709 * is enough space for them.  Of course, if a process waits for a long
710 * time, it will be swapped in anyway.
711 *
712 * Giant is held on entry.
713 */
714/* ARGSUSED*/
715static void
716scheduler(dummy)
717	void *dummy;
718{
719	struct proc *p;
720	struct thread *td;
721	struct proc *pp;
722	int slptime;
723	int swtime;
724	int ppri;
725	int pri;
726
727	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
728	mtx_unlock(&Giant);
729
730loop:
731	if (vm_page_count_min()) {
732		VM_WAIT;
733		goto loop;
734	}
735
736	pp = NULL;
737	ppri = INT_MIN;
738	sx_slock(&allproc_lock);
739	FOREACH_PROC_IN_SYSTEM(p) {
740		PROC_LOCK(p);
741		if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
742			PROC_UNLOCK(p);
743			continue;
744		}
745		swtime = (ticks - p->p_swtick) / hz;
746		FOREACH_THREAD_IN_PROC(p, td) {
747			/*
748			 * An otherwise runnable thread of a process
749			 * swapped out has only the TDI_SWAPPED bit set.
750			 *
751			 */
752			thread_lock(td);
753			if (td->td_inhibitors == TDI_SWAPPED) {
754				slptime = (ticks - td->td_slptick) / hz;
755				pri = swtime + slptime;
756				if ((td->td_flags & TDF_SWAPINREQ) == 0)
757					pri -= p->p_nice * 8;
758				/*
759				 * if this thread is higher priority
760				 * and there is enough space, then select
761				 * this process instead of the previous
762				 * selection.
763				 */
764				if (pri > ppri) {
765					pp = p;
766					ppri = pri;
767				}
768			}
769			thread_unlock(td);
770		}
771		PROC_UNLOCK(p);
772	}
773	sx_sunlock(&allproc_lock);
774
775	/*
776	 * Nothing to do, back to sleep.
777	 */
778	if ((p = pp) == NULL) {
779		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
780		goto loop;
781	}
782	PROC_LOCK(p);
783
784	/*
785	 * Another process may be bringing or may have already
786	 * brought this process in while we traverse all threads.
787	 * Or, this process may even be being swapped out again.
788	 */
789	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
790		PROC_UNLOCK(p);
791		goto loop;
792	}
793
794	/*
795	 * We would like to bring someone in. (only if there is space).
796	 * [What checks the space? ]
797	 */
798	faultin(p);
799	PROC_UNLOCK(p);
800	goto loop;
801}
802
803void
804kick_proc0(void)
805{
806
807	wakeup(&proc0);
808}
809
810#ifndef NO_SWAPPING
811
812/*
813 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
814 */
815static int swap_idle_threshold1 = 2;
816SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
817    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
818
819/*
820 * Swap_idle_threshold2 is the time that a process can be idle before
821 * it will be swapped out, if idle swapping is enabled.
822 */
823static int swap_idle_threshold2 = 10;
824SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
825    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
826
827/*
828 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
829 * procs and swap out their stacks.  We try to always "swap" at least one
830 * process in case we need the room for a swapin.
831 * If any procs have been sleeping/stopped for at least maxslp seconds,
832 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
833 * if any, otherwise the longest-resident process.
834 */
835void
836swapout_procs(action)
837int action;
838{
839	struct proc *p;
840	struct thread *td;
841	int didswap = 0;
842
843retry:
844	sx_slock(&allproc_lock);
845	FOREACH_PROC_IN_SYSTEM(p) {
846		struct vmspace *vm;
847		int minslptime = 100000;
848		int slptime;
849
850		/*
851		 * Watch out for a process in
852		 * creation.  It may have no
853		 * address space or lock yet.
854		 */
855		if (p->p_state == PRS_NEW)
856			continue;
857		/*
858		 * An aio daemon switches its
859		 * address space while running.
860		 * Perform a quick check whether
861		 * a process has P_SYSTEM.
862		 */
863		if ((p->p_flag & P_SYSTEM) != 0)
864			continue;
865		/*
866		 * Do not swapout a process that
867		 * is waiting for VM data
868		 * structures as there is a possible
869		 * deadlock.  Test this first as
870		 * this may block.
871		 *
872		 * Lock the map until swapout
873		 * finishes, or a thread of this
874		 * process may attempt to alter
875		 * the map.
876		 */
877		vm = vmspace_acquire_ref(p);
878		if (vm == NULL)
879			continue;
880		if (!vm_map_trylock(&vm->vm_map))
881			goto nextproc1;
882
883		PROC_LOCK(p);
884		if (p->p_lock != 0 ||
885		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
886		    ) != 0) {
887			goto nextproc;
888		}
889		/*
890		 * only aiod changes vmspace, however it will be
891		 * skipped because of the if statement above checking
892		 * for P_SYSTEM
893		 */
894		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
895			goto nextproc;
896
897		switch (p->p_state) {
898		default:
899			/* Don't swap out processes in any sort
900			 * of 'special' state. */
901			break;
902
903		case PRS_NORMAL:
904			/*
905			 * do not swapout a realtime process
906			 * Check all the thread groups..
907			 */
908			FOREACH_THREAD_IN_PROC(p, td) {
909				thread_lock(td);
910				if (PRI_IS_REALTIME(td->td_pri_class)) {
911					thread_unlock(td);
912					goto nextproc;
913				}
914				slptime = (ticks - td->td_slptick) / hz;
915				/*
916				 * Guarantee swap_idle_threshold1
917				 * time in memory.
918				 */
919				if (slptime < swap_idle_threshold1) {
920					thread_unlock(td);
921					goto nextproc;
922				}
923
924				/*
925				 * Do not swapout a process if it is
926				 * waiting on a critical event of some
927				 * kind or there is a thread whose
928				 * pageable memory may be accessed.
929				 *
930				 * This could be refined to support
931				 * swapping out a thread.
932				 */
933				if (!thread_safetoswapout(td)) {
934					thread_unlock(td);
935					goto nextproc;
936				}
937				/*
938				 * If the system is under memory stress,
939				 * or if we are swapping
940				 * idle processes >= swap_idle_threshold2,
941				 * then swap the process out.
942				 */
943				if (((action & VM_SWAP_NORMAL) == 0) &&
944				    (((action & VM_SWAP_IDLE) == 0) ||
945				    (slptime < swap_idle_threshold2))) {
946					thread_unlock(td);
947					goto nextproc;
948				}
949
950				if (minslptime > slptime)
951					minslptime = slptime;
952				thread_unlock(td);
953			}
954
955			/*
956			 * If the pageout daemon didn't free enough pages,
957			 * or if this process is idle and the system is
958			 * configured to swap proactively, swap it out.
959			 */
960			if ((action & VM_SWAP_NORMAL) ||
961				((action & VM_SWAP_IDLE) &&
962				 (minslptime > swap_idle_threshold2))) {
963				if (swapout(p) == 0)
964					didswap++;
965				PROC_UNLOCK(p);
966				vm_map_unlock(&vm->vm_map);
967				vmspace_free(vm);
968				sx_sunlock(&allproc_lock);
969				goto retry;
970			}
971		}
972nextproc:
973		PROC_UNLOCK(p);
974		vm_map_unlock(&vm->vm_map);
975nextproc1:
976		vmspace_free(vm);
977		continue;
978	}
979	sx_sunlock(&allproc_lock);
980	/*
981	 * If we swapped something out, and another process needed memory,
982	 * then wakeup the sched process.
983	 */
984	if (didswap)
985		wakeup(&proc0);
986}
987
988static void
989swapclear(p)
990	struct proc *p;
991{
992	struct thread *td;
993
994	PROC_LOCK_ASSERT(p, MA_OWNED);
995
996	FOREACH_THREAD_IN_PROC(p, td) {
997		thread_lock(td);
998		td->td_flags |= TDF_INMEM;
999		td->td_flags &= ~TDF_SWAPINREQ;
1000		TD_CLR_SWAPPED(td);
1001		if (TD_CAN_RUN(td))
1002			if (setrunnable(td)) {
1003#ifdef INVARIANTS
1004				/*
1005				 * XXX: We just cleared TDI_SWAPPED
1006				 * above and set TDF_INMEM, so this
1007				 * should never happen.
1008				 */
1009				panic("not waking up swapper");
1010#endif
1011			}
1012		thread_unlock(td);
1013	}
1014	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
1015	p->p_flag |= P_INMEM;
1016}
1017
1018static int
1019swapout(p)
1020	struct proc *p;
1021{
1022	struct thread *td;
1023
1024	PROC_LOCK_ASSERT(p, MA_OWNED);
1025#if defined(SWAP_DEBUG)
1026	printf("swapping out %d\n", p->p_pid);
1027#endif
1028
1029	/*
1030	 * The states of this process and its threads may have changed
1031	 * by now.  Assuming that there is only one pageout daemon thread,
1032	 * this process should still be in memory.
1033	 */
1034	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1035		("swapout: lost a swapout race?"));
1036
1037	/*
1038	 * remember the process resident count
1039	 */
1040	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1041	/*
1042	 * Check and mark all threads before we proceed.
1043	 */
1044	p->p_flag &= ~P_INMEM;
1045	p->p_flag |= P_SWAPPINGOUT;
1046	FOREACH_THREAD_IN_PROC(p, td) {
1047		thread_lock(td);
1048		if (!thread_safetoswapout(td)) {
1049			thread_unlock(td);
1050			swapclear(p);
1051			return (EBUSY);
1052		}
1053		td->td_flags &= ~TDF_INMEM;
1054		TD_SET_SWAPPED(td);
1055		thread_unlock(td);
1056	}
1057	td = FIRST_THREAD_IN_PROC(p);
1058	++td->td_ru.ru_nswap;
1059	PROC_UNLOCK(p);
1060
1061	/*
1062	 * This list is stable because all threads are now prevented from
1063	 * running.  The list is only modified in the context of a running
1064	 * thread in this process.
1065	 */
1066	FOREACH_THREAD_IN_PROC(p, td)
1067		vm_thread_swapout(td);
1068
1069	PROC_LOCK(p);
1070	p->p_flag &= ~P_SWAPPINGOUT;
1071	p->p_swtick = ticks;
1072	return (0);
1073}
1074#endif /* !NO_SWAPPING */
1075