vm_glue.c revision 193522
112657Skvn/*-
212657Skvn * Copyright (c) 1991, 1993
312657Skvn *	The Regents of the University of California.  All rights reserved.
412657Skvn *
512657Skvn * This code is derived from software contributed to Berkeley by
612657Skvn * The Mach Operating System project at Carnegie-Mellon University.
712657Skvn *
812657Skvn * Redistribution and use in source and binary forms, with or without
912657Skvn * modification, are permitted provided that the following conditions
1012657Skvn * are met:
1112657Skvn * 1. Redistributions of source code must retain the above copyright
1212657Skvn *    notice, this list of conditions and the following disclaimer.
1312657Skvn * 2. Redistributions in binary form must reproduce the above copyright
1412657Skvn *    notice, this list of conditions and the following disclaimer in the
1512657Skvn *    documentation and/or other materials provided with the distribution.
1612657Skvn * 4. Neither the name of the University nor the names of its contributors
1712657Skvn *    may be used to endorse or promote products derived from this software
1812657Skvn *    without specific prior written permission.
1912657Skvn *
2012657Skvn * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
2112657Skvn * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2212657Skvn * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2312657Skvn * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
2412657Skvn * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2512657Skvn * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2612657Skvn * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2712657Skvn * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2812657Skvn * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2912657Skvn * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3012657Skvn * SUCH DAMAGE.
3112657Skvn *
3212657Skvn *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
3312657Skvn *
3412657Skvn *
3512657Skvn * Copyright (c) 1987, 1990 Carnegie-Mellon University.
3612657Skvn * All rights reserved.
3712657Skvn *
3812657Skvn * Permission to use, copy, modify and distribute this software and
3912657Skvn * its documentation is hereby granted, provided that both the copyright
4012657Skvn * notice and this permission notice appear in all copies of the
4112657Skvn * software, derivative works or modified versions, and any portions
4212657Skvn * thereof, and that both notices appear in supporting documentation.
4312657Skvn *
4412657Skvn * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
4512657Skvn * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
4612657Skvn * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
4712657Skvn *
4812657Skvn * Carnegie Mellon requests users of this software to return to
4912657Skvn *
5012657Skvn *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
5112657Skvn *  School of Computer Science
5212657Skvn *  Carnegie Mellon University
5312657Skvn *  Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 193522 2009-06-05 17:06:20Z alc $");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/resourcevar.h>
73#include <sys/sched.h>
74#include <sys/sf_buf.h>
75#include <sys/shm.h>
76#include <sys/vmmeter.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79
80#include <sys/kernel.h>
81#include <sys/ktr.h>
82#include <sys/unistd.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_page.h>
89#include <vm/vm_pageout.h>
90#include <vm/vm_object.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95
96extern int maxslp;
97
98/*
99 * System initialization
100 *
101 * Note: proc0 from proc.h
102 */
103static void vm_init_limits(void *);
104SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0);
105
106/*
107 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108 *
109 * Note: run scheduling should be divorced from the vm system.
110 */
111static void scheduler(void *);
112SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
113
114#ifndef NO_SWAPPING
115static int swapout(struct proc *);
116static void swapclear(struct proc *);
117#endif
118
119/*
120 * MPSAFE
121 *
122 * WARNING!  This code calls vm_map_check_protection() which only checks
123 * the associated vm_map_entry range.  It does not determine whether the
124 * contents of the memory is actually readable or writable.  In most cases
125 * just checking the vm_map_entry is sufficient within the kernel's address
126 * space.
127 */
128int
129kernacc(addr, len, rw)
130	void *addr;
131	int len, rw;
132{
133	boolean_t rv;
134	vm_offset_t saddr, eaddr;
135	vm_prot_t prot;
136
137	KASSERT((rw & ~VM_PROT_ALL) == 0,
138	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
139
140	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
141	    (vm_offset_t)addr + len < (vm_offset_t)addr)
142		return (FALSE);
143
144	prot = rw;
145	saddr = trunc_page((vm_offset_t)addr);
146	eaddr = round_page((vm_offset_t)addr + len);
147	vm_map_lock_read(kernel_map);
148	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
149	vm_map_unlock_read(kernel_map);
150	return (rv == TRUE);
151}
152
153/*
154 * MPSAFE
155 *
156 * WARNING!  This code calls vm_map_check_protection() which only checks
157 * the associated vm_map_entry range.  It does not determine whether the
158 * contents of the memory is actually readable or writable.  vmapbuf(),
159 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
160 * used in conjuction with this call.
161 */
162int
163useracc(addr, len, rw)
164	void *addr;
165	int len, rw;
166{
167	boolean_t rv;
168	vm_prot_t prot;
169	vm_map_t map;
170
171	KASSERT((rw & ~VM_PROT_ALL) == 0,
172	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
173	prot = rw;
174	map = &curproc->p_vmspace->vm_map;
175	if ((vm_offset_t)addr + len > vm_map_max(map) ||
176	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
177		return (FALSE);
178	}
179	vm_map_lock_read(map);
180	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
181	    round_page((vm_offset_t)addr + len), prot);
182	vm_map_unlock_read(map);
183	return (rv == TRUE);
184}
185
186int
187vslock(void *addr, size_t len)
188{
189	vm_offset_t end, last, start;
190	vm_size_t npages;
191	int error;
192
193	last = (vm_offset_t)addr + len;
194	start = trunc_page((vm_offset_t)addr);
195	end = round_page(last);
196	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
197		return (EINVAL);
198	npages = atop(end - start);
199	if (npages > vm_page_max_wired)
200		return (ENOMEM);
201	PROC_LOCK(curproc);
202	if (ptoa(npages +
203	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
204	    lim_cur(curproc, RLIMIT_MEMLOCK)) {
205		PROC_UNLOCK(curproc);
206		return (ENOMEM);
207	}
208	PROC_UNLOCK(curproc);
209#if 0
210	/*
211	 * XXX - not yet
212	 *
213	 * The limit for transient usage of wired pages should be
214	 * larger than for "permanent" wired pages (mlock()).
215	 *
216	 * Also, the sysctl code, which is the only present user
217	 * of vslock(), does a hard loop on EAGAIN.
218	 */
219	if (npages + cnt.v_wire_count > vm_page_max_wired)
220		return (EAGAIN);
221#endif
222	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
223	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
224	/*
225	 * Return EFAULT on error to match copy{in,out}() behaviour
226	 * rather than returning ENOMEM like mlock() would.
227	 */
228	return (error == KERN_SUCCESS ? 0 : EFAULT);
229}
230
231void
232vsunlock(void *addr, size_t len)
233{
234
235	/* Rely on the parameter sanity checks performed by vslock(). */
236	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
237	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
238	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
239}
240
241/*
242 * Pin the page contained within the given object at the given offset.  If the
243 * page is not resident, allocate and load it using the given object's pager.
244 * Return the pinned page if successful; otherwise, return NULL.
245 */
246static vm_page_t
247vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
248{
249	vm_page_t m, ma[1];
250	vm_pindex_t pindex;
251	int rv;
252
253	VM_OBJECT_LOCK(object);
254	pindex = OFF_TO_IDX(offset);
255	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
256	if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
257		ma[0] = m;
258		rv = vm_pager_get_pages(object, ma, 1, 0);
259		m = vm_page_lookup(object, pindex);
260		if (m == NULL)
261			goto out;
262		if (m->valid == 0 || rv != VM_PAGER_OK) {
263			vm_page_lock_queues();
264			vm_page_free(m);
265			vm_page_unlock_queues();
266			m = NULL;
267			goto out;
268		}
269	}
270	vm_page_lock_queues();
271	vm_page_hold(m);
272	vm_page_unlock_queues();
273	vm_page_wakeup(m);
274out:
275	VM_OBJECT_UNLOCK(object);
276	return (m);
277}
278
279/*
280 * Return a CPU private mapping to the page at the given offset within the
281 * given object.  The page is pinned before it is mapped.
282 */
283struct sf_buf *
284vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
285{
286	vm_page_t m;
287
288	m = vm_imgact_hold_page(object, offset);
289	if (m == NULL)
290		return (NULL);
291	sched_pin();
292	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
293}
294
295/*
296 * Destroy the given CPU private mapping and unpin the page that it mapped.
297 */
298void
299vm_imgact_unmap_page(struct sf_buf *sf)
300{
301	vm_page_t m;
302
303	m = sf_buf_page(sf);
304	sf_buf_free(sf);
305	sched_unpin();
306	vm_page_lock_queues();
307	vm_page_unhold(m);
308	vm_page_unlock_queues();
309}
310
311#ifndef KSTACK_MAX_PAGES
312#define KSTACK_MAX_PAGES 32
313#endif
314
315/*
316 * Create the kernel stack (including pcb for i386) for a new thread.
317 * This routine directly affects the fork perf for a process and
318 * create performance for a thread.
319 */
320int
321vm_thread_new(struct thread *td, int pages)
322{
323	vm_object_t ksobj;
324	vm_offset_t ks;
325	vm_page_t m, ma[KSTACK_MAX_PAGES];
326	int i;
327
328	/* Bounds check */
329	if (pages <= 1)
330		pages = KSTACK_PAGES;
331	else if (pages > KSTACK_MAX_PAGES)
332		pages = KSTACK_MAX_PAGES;
333	/*
334	 * Allocate an object for the kstack.
335	 */
336	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
337
338	/*
339	 * Get a kernel virtual address for this thread's kstack.
340	 */
341	ks = kmem_alloc_nofault(kernel_map,
342	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
343	if (ks == 0) {
344		printf("vm_thread_new: kstack allocation failed\n");
345		vm_object_deallocate(ksobj);
346		return (0);
347	}
348
349	if (KSTACK_GUARD_PAGES != 0) {
350		pmap_qremove(ks, KSTACK_GUARD_PAGES);
351		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
352	}
353	td->td_kstack_obj = ksobj;
354	td->td_kstack = ks;
355	/*
356	 * Knowing the number of pages allocated is useful when you
357	 * want to deallocate them.
358	 */
359	td->td_kstack_pages = pages;
360	/*
361	 * For the length of the stack, link in a real page of ram for each
362	 * page of stack.
363	 */
364	VM_OBJECT_LOCK(ksobj);
365	for (i = 0; i < pages; i++) {
366		/*
367		 * Get a kernel stack page.
368		 */
369		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
370		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
371		ma[i] = m;
372		m->valid = VM_PAGE_BITS_ALL;
373	}
374	VM_OBJECT_UNLOCK(ksobj);
375	pmap_qenter(ks, ma, pages);
376	return (1);
377}
378
379/*
380 * Dispose of a thread's kernel stack.
381 */
382void
383vm_thread_dispose(struct thread *td)
384{
385	vm_object_t ksobj;
386	vm_offset_t ks;
387	vm_page_t m;
388	int i, pages;
389
390	pages = td->td_kstack_pages;
391	ksobj = td->td_kstack_obj;
392	ks = td->td_kstack;
393	pmap_qremove(ks, pages);
394	VM_OBJECT_LOCK(ksobj);
395	for (i = 0; i < pages; i++) {
396		m = vm_page_lookup(ksobj, i);
397		if (m == NULL)
398			panic("vm_thread_dispose: kstack already missing?");
399		vm_page_lock_queues();
400		vm_page_unwire(m, 0);
401		vm_page_free(m);
402		vm_page_unlock_queues();
403	}
404	VM_OBJECT_UNLOCK(ksobj);
405	vm_object_deallocate(ksobj);
406	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
407	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
408	td->td_kstack = 0;
409}
410
411/*
412 * Allow a thread's kernel stack to be paged out.
413 */
414void
415vm_thread_swapout(struct thread *td)
416{
417	vm_object_t ksobj;
418	vm_page_t m;
419	int i, pages;
420
421	cpu_thread_swapout(td);
422	pages = td->td_kstack_pages;
423	ksobj = td->td_kstack_obj;
424	pmap_qremove(td->td_kstack, pages);
425	VM_OBJECT_LOCK(ksobj);
426	for (i = 0; i < pages; i++) {
427		m = vm_page_lookup(ksobj, i);
428		if (m == NULL)
429			panic("vm_thread_swapout: kstack already missing?");
430		vm_page_lock_queues();
431		vm_page_dirty(m);
432		vm_page_unwire(m, 0);
433		vm_page_unlock_queues();
434	}
435	VM_OBJECT_UNLOCK(ksobj);
436}
437
438/*
439 * Bring the kernel stack for a specified thread back in.
440 */
441void
442vm_thread_swapin(struct thread *td)
443{
444	vm_object_t ksobj;
445	vm_page_t m, ma[KSTACK_MAX_PAGES];
446	int i, pages, rv;
447
448	pages = td->td_kstack_pages;
449	ksobj = td->td_kstack_obj;
450	VM_OBJECT_LOCK(ksobj);
451	for (i = 0; i < pages; i++) {
452		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
453		if (m->valid != VM_PAGE_BITS_ALL) {
454			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
455			if (rv != VM_PAGER_OK)
456				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
457			m = vm_page_lookup(ksobj, i);
458		}
459		ma[i] = m;
460		vm_page_lock_queues();
461		vm_page_wire(m);
462		vm_page_unlock_queues();
463		vm_page_wakeup(m);
464	}
465	VM_OBJECT_UNLOCK(ksobj);
466	pmap_qenter(td->td_kstack, ma, pages);
467	cpu_thread_swapin(td);
468}
469
470/*
471 * Set up a variable-sized alternate kstack.
472 */
473int
474vm_thread_new_altkstack(struct thread *td, int pages)
475{
476
477	td->td_altkstack = td->td_kstack;
478	td->td_altkstack_obj = td->td_kstack_obj;
479	td->td_altkstack_pages = td->td_kstack_pages;
480
481	return (vm_thread_new(td, pages));
482}
483
484/*
485 * Restore the original kstack.
486 */
487void
488vm_thread_dispose_altkstack(struct thread *td)
489{
490
491	vm_thread_dispose(td);
492
493	td->td_kstack = td->td_altkstack;
494	td->td_kstack_obj = td->td_altkstack_obj;
495	td->td_kstack_pages = td->td_altkstack_pages;
496	td->td_altkstack = 0;
497	td->td_altkstack_obj = NULL;
498	td->td_altkstack_pages = 0;
499}
500
501/*
502 * Implement fork's actions on an address space.
503 * Here we arrange for the address space to be copied or referenced,
504 * allocate a user struct (pcb and kernel stack), then call the
505 * machine-dependent layer to fill those in and make the new process
506 * ready to run.  The new process is set up so that it returns directly
507 * to user mode to avoid stack copying and relocation problems.
508 */
509int
510vm_forkproc(td, p2, td2, vm2, flags)
511	struct thread *td;
512	struct proc *p2;
513	struct thread *td2;
514	struct vmspace *vm2;
515	int flags;
516{
517	struct proc *p1 = td->td_proc;
518	int error;
519
520	if ((flags & RFPROC) == 0) {
521		/*
522		 * Divorce the memory, if it is shared, essentially
523		 * this changes shared memory amongst threads, into
524		 * COW locally.
525		 */
526		if ((flags & RFMEM) == 0) {
527			if (p1->p_vmspace->vm_refcnt > 1) {
528				error = vmspace_unshare(p1);
529				if (error)
530					return (error);
531			}
532		}
533		cpu_fork(td, p2, td2, flags);
534		return (0);
535	}
536
537	if (flags & RFMEM) {
538		p2->p_vmspace = p1->p_vmspace;
539		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
540	}
541
542	while (vm_page_count_severe()) {
543		VM_WAIT;
544	}
545
546	if ((flags & RFMEM) == 0) {
547		p2->p_vmspace = vm2;
548		if (p1->p_vmspace->vm_shm)
549			shmfork(p1, p2);
550	}
551
552	/*
553	 * cpu_fork will copy and update the pcb, set up the kernel stack,
554	 * and make the child ready to run.
555	 */
556	cpu_fork(td, p2, td2, flags);
557	return (0);
558}
559
560/*
561 * Called after process has been wait(2)'ed apon and is being reaped.
562 * The idea is to reclaim resources that we could not reclaim while
563 * the process was still executing.
564 */
565void
566vm_waitproc(p)
567	struct proc *p;
568{
569
570	vmspace_exitfree(p);		/* and clean-out the vmspace */
571}
572
573/*
574 * Set default limits for VM system.
575 * Called for proc 0, and then inherited by all others.
576 *
577 * XXX should probably act directly on proc0.
578 */
579static void
580vm_init_limits(udata)
581	void *udata;
582{
583	struct proc *p = udata;
584	struct plimit *limp;
585	int rss_limit;
586
587	/*
588	 * Set up the initial limits on process VM. Set the maximum resident
589	 * set size to be half of (reasonably) available memory.  Since this
590	 * is a soft limit, it comes into effect only when the system is out
591	 * of memory - half of main memory helps to favor smaller processes,
592	 * and reduces thrashing of the object cache.
593	 */
594	limp = p->p_limit;
595	limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
596	limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
597	limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
598	limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
599	/* limit the limit to no less than 2MB */
600	rss_limit = max(cnt.v_free_count, 512);
601	limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
602	limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
603}
604
605void
606faultin(p)
607	struct proc *p;
608{
609#ifdef NO_SWAPPING
610
611	PROC_LOCK_ASSERT(p, MA_OWNED);
612	if ((p->p_flag & P_INMEM) == 0)
613		panic("faultin: proc swapped out with NO_SWAPPING!");
614#else /* !NO_SWAPPING */
615	struct thread *td;
616
617	PROC_LOCK_ASSERT(p, MA_OWNED);
618	/*
619	 * If another process is swapping in this process,
620	 * just wait until it finishes.
621	 */
622	if (p->p_flag & P_SWAPPINGIN) {
623		while (p->p_flag & P_SWAPPINGIN)
624			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
625		return;
626	}
627	if ((p->p_flag & P_INMEM) == 0) {
628		/*
629		 * Don't let another thread swap process p out while we are
630		 * busy swapping it in.
631		 */
632		++p->p_lock;
633		p->p_flag |= P_SWAPPINGIN;
634		PROC_UNLOCK(p);
635
636		/*
637		 * We hold no lock here because the list of threads
638		 * can not change while all threads in the process are
639		 * swapped out.
640		 */
641		FOREACH_THREAD_IN_PROC(p, td)
642			vm_thread_swapin(td);
643		PROC_LOCK(p);
644		swapclear(p);
645		p->p_swtick = ticks;
646
647		wakeup(&p->p_flag);
648
649		/* Allow other threads to swap p out now. */
650		--p->p_lock;
651	}
652#endif /* NO_SWAPPING */
653}
654
655/*
656 * This swapin algorithm attempts to swap-in processes only if there
657 * is enough space for them.  Of course, if a process waits for a long
658 * time, it will be swapped in anyway.
659 *
660 * Giant is held on entry.
661 */
662/* ARGSUSED*/
663static void
664scheduler(dummy)
665	void *dummy;
666{
667	struct proc *p;
668	struct thread *td;
669	struct proc *pp;
670	int slptime;
671	int swtime;
672	int ppri;
673	int pri;
674
675	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
676	mtx_unlock(&Giant);
677
678loop:
679	if (vm_page_count_min()) {
680		VM_WAIT;
681		goto loop;
682	}
683
684	pp = NULL;
685	ppri = INT_MIN;
686	sx_slock(&allproc_lock);
687	FOREACH_PROC_IN_SYSTEM(p) {
688		PROC_LOCK(p);
689		if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
690			PROC_UNLOCK(p);
691			continue;
692		}
693		swtime = (ticks - p->p_swtick) / hz;
694		FOREACH_THREAD_IN_PROC(p, td) {
695			/*
696			 * An otherwise runnable thread of a process
697			 * swapped out has only the TDI_SWAPPED bit set.
698			 *
699			 */
700			thread_lock(td);
701			if (td->td_inhibitors == TDI_SWAPPED) {
702				slptime = (ticks - td->td_slptick) / hz;
703				pri = swtime + slptime;
704				if ((td->td_flags & TDF_SWAPINREQ) == 0)
705					pri -= p->p_nice * 8;
706				/*
707				 * if this thread is higher priority
708				 * and there is enough space, then select
709				 * this process instead of the previous
710				 * selection.
711				 */
712				if (pri > ppri) {
713					pp = p;
714					ppri = pri;
715				}
716			}
717			thread_unlock(td);
718		}
719		PROC_UNLOCK(p);
720	}
721	sx_sunlock(&allproc_lock);
722
723	/*
724	 * Nothing to do, back to sleep.
725	 */
726	if ((p = pp) == NULL) {
727		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
728		goto loop;
729	}
730	PROC_LOCK(p);
731
732	/*
733	 * Another process may be bringing or may have already
734	 * brought this process in while we traverse all threads.
735	 * Or, this process may even be being swapped out again.
736	 */
737	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
738		PROC_UNLOCK(p);
739		goto loop;
740	}
741
742	/*
743	 * We would like to bring someone in. (only if there is space).
744	 * [What checks the space? ]
745	 */
746	faultin(p);
747	PROC_UNLOCK(p);
748	goto loop;
749}
750
751void
752kick_proc0(void)
753{
754
755	wakeup(&proc0);
756}
757
758#ifndef NO_SWAPPING
759
760/*
761 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
762 */
763static int swap_idle_threshold1 = 2;
764SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
765    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
766
767/*
768 * Swap_idle_threshold2 is the time that a process can be idle before
769 * it will be swapped out, if idle swapping is enabled.
770 */
771static int swap_idle_threshold2 = 10;
772SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
773    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
774
775/*
776 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
777 * procs and swap out their stacks.  We try to always "swap" at least one
778 * process in case we need the room for a swapin.
779 * If any procs have been sleeping/stopped for at least maxslp seconds,
780 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
781 * if any, otherwise the longest-resident process.
782 */
783void
784swapout_procs(action)
785int action;
786{
787	struct proc *p;
788	struct thread *td;
789	int didswap = 0;
790
791retry:
792	sx_slock(&allproc_lock);
793	FOREACH_PROC_IN_SYSTEM(p) {
794		struct vmspace *vm;
795		int minslptime = 100000;
796		int slptime;
797
798		/*
799		 * Watch out for a process in
800		 * creation.  It may have no
801		 * address space or lock yet.
802		 */
803		if (p->p_state == PRS_NEW)
804			continue;
805		/*
806		 * An aio daemon switches its
807		 * address space while running.
808		 * Perform a quick check whether
809		 * a process has P_SYSTEM.
810		 */
811		if ((p->p_flag & P_SYSTEM) != 0)
812			continue;
813		/*
814		 * Do not swapout a process that
815		 * is waiting for VM data
816		 * structures as there is a possible
817		 * deadlock.  Test this first as
818		 * this may block.
819		 *
820		 * Lock the map until swapout
821		 * finishes, or a thread of this
822		 * process may attempt to alter
823		 * the map.
824		 */
825		vm = vmspace_acquire_ref(p);
826		if (vm == NULL)
827			continue;
828		if (!vm_map_trylock(&vm->vm_map))
829			goto nextproc1;
830
831		PROC_LOCK(p);
832		if (p->p_lock != 0 ||
833		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
834		    ) != 0) {
835			goto nextproc;
836		}
837		/*
838		 * only aiod changes vmspace, however it will be
839		 * skipped because of the if statement above checking
840		 * for P_SYSTEM
841		 */
842		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
843			goto nextproc;
844
845		switch (p->p_state) {
846		default:
847			/* Don't swap out processes in any sort
848			 * of 'special' state. */
849			break;
850
851		case PRS_NORMAL:
852			/*
853			 * do not swapout a realtime process
854			 * Check all the thread groups..
855			 */
856			FOREACH_THREAD_IN_PROC(p, td) {
857				thread_lock(td);
858				if (PRI_IS_REALTIME(td->td_pri_class)) {
859					thread_unlock(td);
860					goto nextproc;
861				}
862				slptime = (ticks - td->td_slptick) / hz;
863				/*
864				 * Guarantee swap_idle_threshold1
865				 * time in memory.
866				 */
867				if (slptime < swap_idle_threshold1) {
868					thread_unlock(td);
869					goto nextproc;
870				}
871
872				/*
873				 * Do not swapout a process if it is
874				 * waiting on a critical event of some
875				 * kind or there is a thread whose
876				 * pageable memory may be accessed.
877				 *
878				 * This could be refined to support
879				 * swapping out a thread.
880				 */
881				if (!thread_safetoswapout(td)) {
882					thread_unlock(td);
883					goto nextproc;
884				}
885				/*
886				 * If the system is under memory stress,
887				 * or if we are swapping
888				 * idle processes >= swap_idle_threshold2,
889				 * then swap the process out.
890				 */
891				if (((action & VM_SWAP_NORMAL) == 0) &&
892				    (((action & VM_SWAP_IDLE) == 0) ||
893				    (slptime < swap_idle_threshold2))) {
894					thread_unlock(td);
895					goto nextproc;
896				}
897
898				if (minslptime > slptime)
899					minslptime = slptime;
900				thread_unlock(td);
901			}
902
903			/*
904			 * If the pageout daemon didn't free enough pages,
905			 * or if this process is idle and the system is
906			 * configured to swap proactively, swap it out.
907			 */
908			if ((action & VM_SWAP_NORMAL) ||
909				((action & VM_SWAP_IDLE) &&
910				 (minslptime > swap_idle_threshold2))) {
911				if (swapout(p) == 0)
912					didswap++;
913				PROC_UNLOCK(p);
914				vm_map_unlock(&vm->vm_map);
915				vmspace_free(vm);
916				sx_sunlock(&allproc_lock);
917				goto retry;
918			}
919		}
920nextproc:
921		PROC_UNLOCK(p);
922		vm_map_unlock(&vm->vm_map);
923nextproc1:
924		vmspace_free(vm);
925		continue;
926	}
927	sx_sunlock(&allproc_lock);
928	/*
929	 * If we swapped something out, and another process needed memory,
930	 * then wakeup the sched process.
931	 */
932	if (didswap)
933		wakeup(&proc0);
934}
935
936static void
937swapclear(p)
938	struct proc *p;
939{
940	struct thread *td;
941
942	PROC_LOCK_ASSERT(p, MA_OWNED);
943
944	FOREACH_THREAD_IN_PROC(p, td) {
945		thread_lock(td);
946		td->td_flags |= TDF_INMEM;
947		td->td_flags &= ~TDF_SWAPINREQ;
948		TD_CLR_SWAPPED(td);
949		if (TD_CAN_RUN(td))
950			if (setrunnable(td)) {
951#ifdef INVARIANTS
952				/*
953				 * XXX: We just cleared TDI_SWAPPED
954				 * above and set TDF_INMEM, so this
955				 * should never happen.
956				 */
957				panic("not waking up swapper");
958#endif
959			}
960		thread_unlock(td);
961	}
962	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
963	p->p_flag |= P_INMEM;
964}
965
966static int
967swapout(p)
968	struct proc *p;
969{
970	struct thread *td;
971
972	PROC_LOCK_ASSERT(p, MA_OWNED);
973#if defined(SWAP_DEBUG)
974	printf("swapping out %d\n", p->p_pid);
975#endif
976
977	/*
978	 * The states of this process and its threads may have changed
979	 * by now.  Assuming that there is only one pageout daemon thread,
980	 * this process should still be in memory.
981	 */
982	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
983		("swapout: lost a swapout race?"));
984
985	/*
986	 * remember the process resident count
987	 */
988	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
989	/*
990	 * Check and mark all threads before we proceed.
991	 */
992	p->p_flag &= ~P_INMEM;
993	p->p_flag |= P_SWAPPINGOUT;
994	FOREACH_THREAD_IN_PROC(p, td) {
995		thread_lock(td);
996		if (!thread_safetoswapout(td)) {
997			thread_unlock(td);
998			swapclear(p);
999			return (EBUSY);
1000		}
1001		td->td_flags &= ~TDF_INMEM;
1002		TD_SET_SWAPPED(td);
1003		thread_unlock(td);
1004	}
1005	td = FIRST_THREAD_IN_PROC(p);
1006	++td->td_ru.ru_nswap;
1007	PROC_UNLOCK(p);
1008
1009	/*
1010	 * This list is stable because all threads are now prevented from
1011	 * running.  The list is only modified in the context of a running
1012	 * thread in this process.
1013	 */
1014	FOREACH_THREAD_IN_PROC(p, td)
1015		vm_thread_swapout(td);
1016
1017	PROC_LOCK(p);
1018	p->p_flag &= ~P_SWAPPINGOUT;
1019	p->p_swtick = ticks;
1020	return (0);
1021}
1022#endif /* !NO_SWAPPING */
1023