vm_glue.c revision 1817
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 *
62 * $Id$
63 */
64
65#include <sys/param.h>
66#include <sys/systm.h>
67#include <sys/proc.h>
68#include <sys/resourcevar.h>
69#include <sys/buf.h>
70#include <sys/user.h>
71
72#include <sys/kernel.h>
73#include <sys/dkstat.h>
74
75#include <vm/vm.h>
76#include <vm/vm_page.h>
77#include <vm/vm_pageout.h>
78#include <vm/vm_kern.h>
79
80#include <machine/stdarg.h>
81
82extern char kstack[];
83int	avefree = 0;		/* XXX */
84int	readbuffers = 0;	/* XXX allow kgdb to read kernel buffer pool */
85/* vm_map_t upages_map; */
86
87void swapout(struct proc *p);
88int
89kernacc(addr, len, rw)
90	caddr_t addr;
91	int len, rw;
92{
93	boolean_t rv;
94	vm_offset_t saddr, eaddr;
95	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
96
97	saddr = trunc_page(addr);
98	eaddr = round_page(addr+len);
99	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
100	return(rv == TRUE);
101}
102
103int
104useracc(addr, len, rw)
105	caddr_t addr;
106	int len, rw;
107{
108	boolean_t rv;
109	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
110
111	/*
112	 * XXX - specially disallow access to user page tables - they are
113	 * in the map.
114	 *
115	 * XXX - don't specially disallow access to the user area - treat
116	 * it as incorrectly as elsewhere.
117	 *
118	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  It was
119	 * only used (as an end address) in trap.c.  Use it as an end
120	 * address here too.
121	 */
122	if ((vm_offset_t) addr >= VM_MAXUSER_ADDRESS
123	    || (vm_offset_t) addr + len > VM_MAXUSER_ADDRESS
124	    || (vm_offset_t) addr + len <= (vm_offset_t) addr) {
125		return (FALSE);
126	}
127
128	rv = vm_map_check_protection(&curproc->p_vmspace->vm_map,
129	    trunc_page(addr), round_page(addr+len), prot);
130	return(rv == TRUE);
131}
132
133#ifdef KGDB
134/*
135 * Change protections on kernel pages from addr to addr+len
136 * (presumably so debugger can plant a breakpoint).
137 * All addresses are assumed to reside in the Sysmap,
138 */
139chgkprot(addr, len, rw)
140	register caddr_t addr;
141	int len, rw;
142{
143	vm_prot_t prot = rw == B_READ ? VM_PROT_READ : VM_PROT_WRITE;
144
145	vm_map_protect(kernel_map, trunc_page(addr),
146		       round_page(addr+len), prot, FALSE);
147}
148#endif
149void
150vslock(addr, len)
151	caddr_t	addr;
152	u_int	len;
153{
154	vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
155			round_page(addr+len), FALSE);
156}
157
158void
159vsunlock(addr, len, dirtied)
160	caddr_t	addr;
161	u_int	len;
162	int dirtied;
163{
164#ifdef	lint
165	dirtied++;
166#endif	lint
167		vm_map_pageable(&curproc->p_vmspace->vm_map, trunc_page(addr),
168			round_page(addr+len), TRUE);
169}
170
171/*
172 * Implement fork's actions on an address space.
173 * Here we arrange for the address space to be copied or referenced,
174 * allocate a user struct (pcb and kernel stack), then call the
175 * machine-dependent layer to fill those in and make the new process
176 * ready to run.
177 * NOTE: the kernel stack may be at a different location in the child
178 * process, and thus addresses of automatic variables may be invalid
179 * after cpu_fork returns in the child process.  We do nothing here
180 * after cpu_fork returns.
181 */
182int
183vm_fork(p1, p2, isvfork)
184	register struct proc *p1, *p2;
185	int isvfork;
186{
187	register struct user *up;
188	vm_offset_t addr, ptaddr;
189	int i;
190	struct vm_map *vp;
191
192	while( cnt.v_free_count < cnt.v_free_min)
193		VM_WAIT;
194
195	/*
196	 * avoid copying any of the parent's pagetables or other per-process
197	 * objects that reside in the map by marking all of them non-inheritable
198	 */
199	(void)vm_map_inherit(&p1->p_vmspace->vm_map,
200		UPT_MIN_ADDRESS - UPAGES * NBPG, VM_MAX_ADDRESS, VM_INHERIT_NONE);
201	p2->p_vmspace = vmspace_fork(p1->p_vmspace);
202
203#ifdef SYSVSHM
204	if (p1->p_vmspace->vm_shm)
205		shmfork(p1, p2, isvfork);
206#endif
207
208	/*
209	 * Allocate a wired-down (for now) pcb and kernel stack for the process
210	 */
211
212	addr = (vm_offset_t) kstack;
213
214	vp = &p2->p_vmspace->vm_map;
215
216	/* ream out old pagetables and kernel stack */
217	(void)vm_deallocate(vp, addr, UPT_MAX_ADDRESS - addr);
218
219	/* get new pagetables and kernel stack */
220	(void)vm_allocate(vp, &addr, UPT_MAX_ADDRESS - addr, FALSE);
221
222	/* force in the page table encompassing the UPAGES */
223	ptaddr = trunc_page((u_int)vtopte(addr));
224	vm_map_pageable(vp, ptaddr, ptaddr + NBPG, FALSE);
225
226	/* and force in (demand-zero) the UPAGES */
227	vm_map_pageable(vp, addr, addr + UPAGES * NBPG, FALSE);
228
229	/* get a kernel virtual address for the UPAGES for this proc */
230	up = (struct user *)kmem_alloc_pageable(kernel_map, UPAGES * NBPG);
231
232	/* and force-map the upages into the kernel pmap */
233	for (i = 0; i < UPAGES; i++)
234		pmap_enter(vm_map_pmap(kernel_map),
235			((vm_offset_t) up) + NBPG * i,
236			pmap_extract(vp->pmap, addr + NBPG * i),
237			VM_PROT_READ|VM_PROT_WRITE, 1);
238
239	/* and allow the UPAGES page table entry to be paged (at the vm system level) */
240	vm_map_pageable(vp, ptaddr, ptaddr + NBPG, TRUE);
241
242	p2->p_addr = up;
243
244	/*
245	 * p_stats and p_sigacts currently point at fields
246	 * in the user struct but not at &u, instead at p_addr.
247	 * Copy p_sigacts and parts of p_stats; zero the rest
248	 * of p_stats (statistics).
249	 */
250	p2->p_stats = &up->u_stats;
251	p2->p_sigacts = &up->u_sigacts;
252	up->u_sigacts = *p1->p_sigacts;
253	bzero(&up->u_stats.pstat_startzero,
254	    (unsigned) ((caddr_t)&up->u_stats.pstat_endzero -
255	    (caddr_t)&up->u_stats.pstat_startzero));
256	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
257	    ((caddr_t)&up->u_stats.pstat_endcopy -
258	     (caddr_t)&up->u_stats.pstat_startcopy));
259
260
261	/*
262	 * cpu_fork will copy and update the kernel stack and pcb,
263	 * and make the child ready to run.  It marks the child
264	 * so that it can return differently than the parent.
265	 * It returns twice, once in the parent process and
266	 * once in the child.
267	 */
268	return (cpu_fork(p1, p2));
269}
270
271/*
272 * Set default limits for VM system.
273 * Called for proc 0, and then inherited by all others.
274 */
275void
276vm_init_limits(p)
277	register struct proc *p;
278{
279	int tmp;
280
281	/*
282	 * Set up the initial limits on process VM.
283	 * Set the maximum resident set size to be all
284	 * of (reasonably) available memory.  This causes
285	 * any single, large process to start random page
286	 * replacement once it fills memory.
287	 */
288        p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
289        p->p_rlimit[RLIMIT_STACK].rlim_max = MAXSSIZ;
290        p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
291        p->p_rlimit[RLIMIT_DATA].rlim_max = MAXDSIZ;
292	tmp = ((2 * cnt.v_free_count) / 3) - 32;
293	if (cnt.v_free_count < 512)
294		tmp = cnt.v_free_count;
295	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(tmp);
296	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
297}
298
299#ifdef DEBUG
300int	enableswap = 1;
301int	swapdebug = 0;
302#define	SDB_FOLLOW	1
303#define SDB_SWAPIN	2
304#define SDB_SWAPOUT	4
305#endif
306
307void
308faultin(p)
309struct proc *p;
310{
311	vm_offset_t i;
312	vm_offset_t vaddr, ptaddr;
313	vm_offset_t v, v1;
314	struct user *up;
315	int s;
316	int opflag;
317
318	if ((p->p_flag & P_INMEM) == 0) {
319		int rv0, rv1;
320		vm_map_t map;
321
322		++p->p_lock;
323
324		map = &p->p_vmspace->vm_map;
325		/* force the page table encompassing the kernel stack (upages) */
326		ptaddr = trunc_page((u_int)vtopte(kstack));
327		vm_map_pageable(map, ptaddr, ptaddr + NBPG, FALSE);
328
329		/* wire in the UPAGES */
330		vm_map_pageable(map, (vm_offset_t) kstack,
331			(vm_offset_t) kstack + UPAGES * NBPG, FALSE);
332
333		/* and map them nicely into the kernel pmap */
334		for (i = 0; i < UPAGES; i++) {
335			vm_offset_t off = i * NBPG;
336			vm_offset_t pa = (vm_offset_t)
337				pmap_extract(&p->p_vmspace->vm_pmap,
338				(vm_offset_t) kstack + off);
339			pmap_enter(vm_map_pmap(kernel_map),
340				((vm_offset_t)p->p_addr) + off,
341					pa, VM_PROT_READ|VM_PROT_WRITE, 1);
342		}
343
344		/* and let the page table pages go (at least above pmap level) */
345		vm_map_pageable(map, ptaddr, ptaddr + NBPG, TRUE);
346
347		s = splhigh();
348
349		if (p->p_stat == SRUN)
350			setrunqueue(p);
351
352		p->p_flag |= P_INMEM;
353
354		/* undo the effect of setting SLOCK above */
355		--p->p_lock;
356		splx(s);
357
358	}
359
360}
361
362int swapinreq;
363int percentactive;
364/*
365 * This swapin algorithm attempts to swap-in processes only if there
366 * is enough space for them.  Of course, if a process waits for a long
367 * time, it will be swapped in anyway.
368 */
369void
370scheduler()
371{
372	register struct proc *p;
373	register int pri;
374	struct proc *pp;
375	int ppri;
376	vm_offset_t addr;
377	int lastidle, lastrun;
378	int curidle, currun;
379	int forceload;
380	int percent;
381	int ntries;
382
383	lastidle = 0;
384	lastrun = 0;
385
386loop:
387	ntries = 0;
388	vmmeter();
389
390	curidle = cp_time[CP_IDLE];
391	currun = cp_time[CP_USER] + cp_time[CP_SYS] + cp_time[CP_NICE];
392	percent = (100*(currun-lastrun)) / ( 1 + (currun-lastrun) + (curidle-lastidle));
393	lastrun = currun;
394	lastidle = curidle;
395	if( percent > 100)
396		percent = 100;
397	percentactive = percent;
398
399	if( percentactive < 25)
400		forceload = 1;
401	else
402		forceload = 0;
403
404loop1:
405	pp = NULL;
406	ppri = INT_MIN;
407	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
408		if (p->p_stat == SRUN && (p->p_flag & P_INMEM) == 0) {
409			int mempri;
410			pri = p->p_swtime + p->p_slptime - p->p_nice * 8;
411			mempri = pri > 0 ? pri : 0;
412			/*
413			 * if this process is higher priority and there is
414			 * enough space, then select this process instead
415			 * of the previous selection.
416			 */
417			if (pri > ppri &&
418				(((cnt.v_free_count + (mempri * (4*PAGE_SIZE) / PAGE_SIZE) >= (p->p_vmspace->vm_swrss)) || (ntries > 0 && forceload)))) {
419				pp = p;
420				ppri = pri;
421			}
422		}
423	}
424
425	if ((pp == NULL) && (ntries == 0) && forceload) {
426		++ntries;
427		goto loop1;
428	}
429
430	/*
431	 * Nothing to do, back to sleep
432	 */
433	if ((p = pp) == NULL) {
434		tsleep((caddr_t)&proc0, PVM, "sched", 0);
435		goto loop;
436	}
437
438	/*
439	 * We would like to bring someone in. (only if there is space).
440	 */
441/*
442	printf("swapin: %d, free: %d, res: %d, min: %d\n",
443		p->p_pid, cnt.v_free_count, cnt.v_free_reserved, cnt.v_free_min);
444*/
445	(void) splhigh();
446	if ((forceload && (cnt.v_free_count > (cnt.v_free_reserved + UPAGES + 1))) ||
447	    (cnt.v_free_count >= cnt.v_free_min)) {
448		spl0();
449		faultin(p);
450		p->p_swtime = 0;
451		goto loop;
452	}
453	/*
454	 * log the memory shortage
455	 */
456	swapinreq += p->p_vmspace->vm_swrss;
457	/*
458	 * Not enough memory, jab the pageout daemon and wait til the
459	 * coast is clear.
460	 */
461	if( cnt.v_free_count < cnt.v_free_min) {
462		VM_WAIT;
463	} else {
464		tsleep((caddr_t)&proc0, PVM, "sched", 0);
465	}
466	(void) spl0();
467	goto loop;
468}
469
470#define	swappable(p) \
471	(((p)->p_lock == 0) && \
472		((p)->p_flag & (P_TRACED|P_NOSWAP|P_SYSTEM|P_INMEM|P_WEXIT|P_PHYSIO)) == P_INMEM)
473
474extern int vm_pageout_free_min;
475/*
476 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
477 * procs and unwire their u-areas.  We try to always "swap" at least one
478 * process in case we need the room for a swapin.
479 * If any procs have been sleeping/stopped for at least maxslp seconds,
480 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
481 * if any, otherwise the longest-resident process.
482 */
483void
484swapout_threads()
485{
486	register struct proc *p;
487	struct proc *outp, *outp2;
488	int outpri, outpri2;
489	int tpri;
490	int didswap = 0;
491	int swapneeded = swapinreq;
492	extern int maxslp;
493	int runnablenow;
494	int s;
495
496swapmore:
497	runnablenow = 0;
498	outp = outp2 = NULL;
499	outpri = outpri2 = INT_MIN;
500	for (p = (struct proc *)allproc; p != NULL; p = p->p_next) {
501		if (!swappable(p))
502			continue;
503		switch (p->p_stat) {
504		case SRUN:
505			++runnablenow;
506			/*
507			 * count the process as being in a runnable state
508			 */
509			if ((tpri = p->p_swtime + p->p_nice * 8) > outpri2) {
510				outp2 = p;
511				outpri2 = tpri;
512			}
513			continue;
514
515		case SSLEEP:
516		case SSTOP:
517			/*
518			 * do not swapout a process that is waiting for VM datastructures
519			 * there is a possible deadlock.
520			 */
521			if (!lock_try_write( &p->p_vmspace->vm_map.lock)) {
522				continue;
523			}
524			vm_map_unlock( &p->p_vmspace->vm_map);
525			if (p->p_slptime > maxslp) {
526				swapout(p);
527				didswap++;
528			} else if ((tpri = p->p_slptime + p->p_nice * 8) > outpri) {
529				outp = p;
530				outpri = tpri ;
531			}
532			continue;
533		}
534	}
535	/*
536	 * We swapout only if there are more than two runnable processes or if
537	 * another process needs some space to swapin.
538	 */
539	if ((swapinreq || ((percentactive > 90) && (runnablenow > 2))) &&
540			(((cnt.v_free_count + cnt.v_inactive_count) <= (cnt.v_free_target + cnt.v_inactive_target)) ||
541			(cnt.v_free_count < cnt.v_free_min))) {
542		if ((p = outp) == 0) {
543			p = outp2;
544		}
545
546		if (p) {
547			swapout(p);
548			didswap = 1;
549		}
550	}
551
552	/*
553	 * if we previously had found a process to swapout, and we need to swapout
554	 * more then try again.
555	 */
556#if 0
557	if( p && swapinreq)
558		goto swapmore;
559#endif
560
561	/*
562	 * If we swapped something out, and another process needed memory,
563	 * then wakeup the sched process.
564	 */
565	if (didswap) {
566		if (swapneeded)
567			wakeup((caddr_t)&proc0);
568		swapinreq = 0;
569	}
570}
571
572void
573swapout(p)
574	register struct proc *p;
575{
576	vm_offset_t addr;
577	struct pmap *pmap = &p->p_vmspace->vm_pmap;
578	vm_map_t map = &p->p_vmspace->vm_map;
579	vm_offset_t ptaddr;
580	int i;
581
582	++p->p_stats->p_ru.ru_nswap;
583	/*
584	 * remember the process resident count
585	 */
586	p->p_vmspace->vm_swrss =
587			p->p_vmspace->vm_pmap.pm_stats.resident_count;
588	/*
589	 * and decrement the amount of needed space
590	 */
591	swapinreq -= min(swapinreq, p->p_vmspace->vm_pmap.pm_stats.resident_count);
592
593	(void) splhigh();
594	p->p_flag &= ~P_INMEM;
595	if (p->p_stat == SRUN)
596		remrq(p);
597	(void) spl0();
598
599	++p->p_lock;
600/* let the upages be paged */
601	pmap_remove(vm_map_pmap(kernel_map),
602		(vm_offset_t) p->p_addr, ((vm_offset_t) p->p_addr) + UPAGES * NBPG);
603
604	vm_map_pageable(map, (vm_offset_t) kstack,
605		(vm_offset_t) kstack + UPAGES * NBPG, TRUE);
606
607	--p->p_lock;
608	p->p_swtime = 0;
609}
610
611/*
612 * The rest of these routines fake thread handling
613 */
614
615#ifndef assert_wait
616void
617assert_wait(event, ruptible)
618	int event;
619	boolean_t ruptible;
620{
621#ifdef lint
622	ruptible++;
623#endif
624	curproc->p_thread = event;
625}
626#endif
627
628void
629thread_block(char *msg)
630{
631	if (curproc->p_thread)
632		tsleep((caddr_t)curproc->p_thread, PVM, msg, 0);
633}
634
635
636void
637thread_sleep_(event, lock, wmesg)
638	int event;
639	simple_lock_t lock;
640	char *wmesg;
641{
642
643	curproc->p_thread = event;
644	simple_unlock(lock);
645	if (curproc->p_thread) {
646		tsleep((caddr_t)event, PVM, wmesg, 0);
647	}
648}
649
650#ifndef thread_wakeup
651void
652thread_wakeup(event)
653	int event;
654{
655	wakeup((caddr_t)event);
656}
657#endif
658
659/*
660 * DEBUG stuff
661 */
662
663int indent = 0;
664
665#include <machine/stdarg.h>		/* see subr_prf.c */
666
667/*ARGSUSED2*/
668void
669#if __STDC__
670iprintf(const char *fmt, ...)
671#else
672iprintf(fmt /* , va_alist */)
673	char *fmt;
674	/* va_dcl */
675#endif
676{
677	register int i;
678	va_list ap;
679
680	for (i = indent; i >= 8; i -= 8)
681		printf("\t");
682	while (--i >= 0)
683		printf(" ");
684	va_start(ap, fmt);
685	printf("%r", fmt, ap);
686	va_end(ap);
687}
688