vm_glue.c revision 181334
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51 *  School of Computer Science
52 *  Carnegie Mellon University
53 *  Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 181334 2008-08-05 20:02:31Z jhb $");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/resourcevar.h>
73#include <sys/sched.h>
74#include <sys/sf_buf.h>
75#include <sys/shm.h>
76#include <sys/vmmeter.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79
80#include <sys/kernel.h>
81#include <sys/ktr.h>
82#include <sys/unistd.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_page.h>
89#include <vm/vm_pageout.h>
90#include <vm/vm_object.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95
96extern int maxslp;
97
98/*
99 * System initialization
100 *
101 * Note: proc0 from proc.h
102 */
103static void vm_init_limits(void *);
104SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0);
105
106/*
107 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108 *
109 * Note: run scheduling should be divorced from the vm system.
110 */
111static void scheduler(void *);
112SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL);
113
114#ifndef NO_SWAPPING
115static int swapout(struct proc *);
116static void swapclear(struct proc *);
117#endif
118
119/*
120 * MPSAFE
121 *
122 * WARNING!  This code calls vm_map_check_protection() which only checks
123 * the associated vm_map_entry range.  It does not determine whether the
124 * contents of the memory is actually readable or writable.  In most cases
125 * just checking the vm_map_entry is sufficient within the kernel's address
126 * space.
127 */
128int
129kernacc(addr, len, rw)
130	void *addr;
131	int len, rw;
132{
133	boolean_t rv;
134	vm_offset_t saddr, eaddr;
135	vm_prot_t prot;
136
137	KASSERT((rw & ~VM_PROT_ALL) == 0,
138	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
139
140	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
141	    (vm_offset_t)addr + len < (vm_offset_t)addr)
142		return (FALSE);
143
144	prot = rw;
145	saddr = trunc_page((vm_offset_t)addr);
146	eaddr = round_page((vm_offset_t)addr + len);
147	vm_map_lock_read(kernel_map);
148	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
149	vm_map_unlock_read(kernel_map);
150	return (rv == TRUE);
151}
152
153/*
154 * MPSAFE
155 *
156 * WARNING!  This code calls vm_map_check_protection() which only checks
157 * the associated vm_map_entry range.  It does not determine whether the
158 * contents of the memory is actually readable or writable.  vmapbuf(),
159 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
160 * used in conjuction with this call.
161 */
162int
163useracc(addr, len, rw)
164	void *addr;
165	int len, rw;
166{
167	boolean_t rv;
168	vm_prot_t prot;
169	vm_map_t map;
170
171	KASSERT((rw & ~VM_PROT_ALL) == 0,
172	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
173	prot = rw;
174	map = &curproc->p_vmspace->vm_map;
175	if ((vm_offset_t)addr + len > vm_map_max(map) ||
176	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
177		return (FALSE);
178	}
179	vm_map_lock_read(map);
180	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
181	    round_page((vm_offset_t)addr + len), prot);
182	vm_map_unlock_read(map);
183	return (rv == TRUE);
184}
185
186int
187vslock(void *addr, size_t len)
188{
189	vm_offset_t end, last, start;
190	vm_size_t npages;
191	int error;
192
193	last = (vm_offset_t)addr + len;
194	start = trunc_page((vm_offset_t)addr);
195	end = round_page(last);
196	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
197		return (EINVAL);
198	npages = atop(end - start);
199	if (npages > vm_page_max_wired)
200		return (ENOMEM);
201	PROC_LOCK(curproc);
202	if (ptoa(npages +
203	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
204	    lim_cur(curproc, RLIMIT_MEMLOCK)) {
205		PROC_UNLOCK(curproc);
206		return (ENOMEM);
207	}
208	PROC_UNLOCK(curproc);
209#if 0
210	/*
211	 * XXX - not yet
212	 *
213	 * The limit for transient usage of wired pages should be
214	 * larger than for "permanent" wired pages (mlock()).
215	 *
216	 * Also, the sysctl code, which is the only present user
217	 * of vslock(), does a hard loop on EAGAIN.
218	 */
219	if (npages + cnt.v_wire_count > vm_page_max_wired)
220		return (EAGAIN);
221#endif
222	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
223	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
224	/*
225	 * Return EFAULT on error to match copy{in,out}() behaviour
226	 * rather than returning ENOMEM like mlock() would.
227	 */
228	return (error == KERN_SUCCESS ? 0 : EFAULT);
229}
230
231void
232vsunlock(void *addr, size_t len)
233{
234
235	/* Rely on the parameter sanity checks performed by vslock(). */
236	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
237	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
238	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
239}
240
241/*
242 * Pin the page contained within the given object at the given offset.  If the
243 * page is not resident, allocate and load it using the given object's pager.
244 * Return the pinned page if successful; otherwise, return NULL.
245 */
246static vm_page_t
247vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
248{
249	vm_page_t m, ma[1];
250	vm_pindex_t pindex;
251	int rv;
252
253	VM_OBJECT_LOCK(object);
254	pindex = OFF_TO_IDX(offset);
255	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
256	if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
257		ma[0] = m;
258		rv = vm_pager_get_pages(object, ma, 1, 0);
259		m = vm_page_lookup(object, pindex);
260		if (m == NULL)
261			goto out;
262		if (m->valid == 0 || rv != VM_PAGER_OK) {
263			vm_page_lock_queues();
264			vm_page_free(m);
265			vm_page_unlock_queues();
266			m = NULL;
267			goto out;
268		}
269	}
270	vm_page_lock_queues();
271	vm_page_hold(m);
272	vm_page_unlock_queues();
273	vm_page_wakeup(m);
274out:
275	VM_OBJECT_UNLOCK(object);
276	return (m);
277}
278
279/*
280 * Return a CPU private mapping to the page at the given offset within the
281 * given object.  The page is pinned before it is mapped.
282 */
283struct sf_buf *
284vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
285{
286	vm_page_t m;
287
288	m = vm_imgact_hold_page(object, offset);
289	if (m == NULL)
290		return (NULL);
291	sched_pin();
292	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
293}
294
295/*
296 * Destroy the given CPU private mapping and unpin the page that it mapped.
297 */
298void
299vm_imgact_unmap_page(struct sf_buf *sf)
300{
301	vm_page_t m;
302
303	m = sf_buf_page(sf);
304	sf_buf_free(sf);
305	sched_unpin();
306	vm_page_lock_queues();
307	vm_page_unhold(m);
308	vm_page_unlock_queues();
309}
310
311#ifndef KSTACK_MAX_PAGES
312#define KSTACK_MAX_PAGES 32
313#endif
314
315/*
316 * Create the kernel stack (including pcb for i386) for a new thread.
317 * This routine directly affects the fork perf for a process and
318 * create performance for a thread.
319 */
320int
321vm_thread_new(struct thread *td, int pages)
322{
323	vm_object_t ksobj;
324	vm_offset_t ks;
325	vm_page_t m, ma[KSTACK_MAX_PAGES];
326	int i;
327
328	/* Bounds check */
329	if (pages <= 1)
330		pages = KSTACK_PAGES;
331	else if (pages > KSTACK_MAX_PAGES)
332		pages = KSTACK_MAX_PAGES;
333	/*
334	 * Allocate an object for the kstack.
335	 */
336	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
337
338	/*
339	 * Get a kernel virtual address for this thread's kstack.
340	 */
341	ks = kmem_alloc_nofault(kernel_map,
342	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
343	if (ks == 0) {
344		printf("vm_thread_new: kstack allocation failed\n");
345		vm_object_deallocate(ksobj);
346		return (0);
347	}
348
349	if (KSTACK_GUARD_PAGES != 0) {
350		pmap_qremove(ks, KSTACK_GUARD_PAGES);
351		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
352	}
353	td->td_kstack_obj = ksobj;
354	td->td_kstack = ks;
355	/*
356	 * Knowing the number of pages allocated is useful when you
357	 * want to deallocate them.
358	 */
359	td->td_kstack_pages = pages;
360	/*
361	 * For the length of the stack, link in a real page of ram for each
362	 * page of stack.
363	 */
364	VM_OBJECT_LOCK(ksobj);
365	for (i = 0; i < pages; i++) {
366		/*
367		 * Get a kernel stack page.
368		 */
369		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
370		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
371		ma[i] = m;
372		m->valid = VM_PAGE_BITS_ALL;
373	}
374	VM_OBJECT_UNLOCK(ksobj);
375	pmap_qenter(ks, ma, pages);
376	return (1);
377}
378
379/*
380 * Dispose of a thread's kernel stack.
381 */
382void
383vm_thread_dispose(struct thread *td)
384{
385	vm_object_t ksobj;
386	vm_offset_t ks;
387	vm_page_t m;
388	int i, pages;
389
390	pages = td->td_kstack_pages;
391	ksobj = td->td_kstack_obj;
392	ks = td->td_kstack;
393	pmap_qremove(ks, pages);
394	VM_OBJECT_LOCK(ksobj);
395	for (i = 0; i < pages; i++) {
396		m = vm_page_lookup(ksobj, i);
397		if (m == NULL)
398			panic("vm_thread_dispose: kstack already missing?");
399		vm_page_lock_queues();
400		vm_page_unwire(m, 0);
401		vm_page_free(m);
402		vm_page_unlock_queues();
403	}
404	VM_OBJECT_UNLOCK(ksobj);
405	vm_object_deallocate(ksobj);
406	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
407	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
408	td->td_kstack = 0;
409}
410
411/*
412 * Allow a thread's kernel stack to be paged out.
413 */
414void
415vm_thread_swapout(struct thread *td)
416{
417	vm_object_t ksobj;
418	vm_page_t m;
419	int i, pages;
420
421	cpu_thread_swapout(td);
422	pages = td->td_kstack_pages;
423	ksobj = td->td_kstack_obj;
424	pmap_qremove(td->td_kstack, pages);
425	VM_OBJECT_LOCK(ksobj);
426	for (i = 0; i < pages; i++) {
427		m = vm_page_lookup(ksobj, i);
428		if (m == NULL)
429			panic("vm_thread_swapout: kstack already missing?");
430		vm_page_lock_queues();
431		vm_page_dirty(m);
432		vm_page_unwire(m, 0);
433		vm_page_unlock_queues();
434	}
435	VM_OBJECT_UNLOCK(ksobj);
436}
437
438/*
439 * Bring the kernel stack for a specified thread back in.
440 */
441void
442vm_thread_swapin(struct thread *td)
443{
444	vm_object_t ksobj;
445	vm_page_t m, ma[KSTACK_MAX_PAGES];
446	int i, pages, rv;
447
448	pages = td->td_kstack_pages;
449	ksobj = td->td_kstack_obj;
450	VM_OBJECT_LOCK(ksobj);
451	for (i = 0; i < pages; i++) {
452		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
453		if (m->valid != VM_PAGE_BITS_ALL) {
454			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
455			if (rv != VM_PAGER_OK)
456				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
457			m = vm_page_lookup(ksobj, i);
458			m->valid = VM_PAGE_BITS_ALL;
459		}
460		ma[i] = m;
461		vm_page_lock_queues();
462		vm_page_wire(m);
463		vm_page_unlock_queues();
464		vm_page_wakeup(m);
465	}
466	VM_OBJECT_UNLOCK(ksobj);
467	pmap_qenter(td->td_kstack, ma, pages);
468	cpu_thread_swapin(td);
469}
470
471/*
472 * Set up a variable-sized alternate kstack.
473 */
474int
475vm_thread_new_altkstack(struct thread *td, int pages)
476{
477
478	td->td_altkstack = td->td_kstack;
479	td->td_altkstack_obj = td->td_kstack_obj;
480	td->td_altkstack_pages = td->td_kstack_pages;
481
482	return (vm_thread_new(td, pages));
483}
484
485/*
486 * Restore the original kstack.
487 */
488void
489vm_thread_dispose_altkstack(struct thread *td)
490{
491
492	vm_thread_dispose(td);
493
494	td->td_kstack = td->td_altkstack;
495	td->td_kstack_obj = td->td_altkstack_obj;
496	td->td_kstack_pages = td->td_altkstack_pages;
497	td->td_altkstack = 0;
498	td->td_altkstack_obj = NULL;
499	td->td_altkstack_pages = 0;
500}
501
502/*
503 * Implement fork's actions on an address space.
504 * Here we arrange for the address space to be copied or referenced,
505 * allocate a user struct (pcb and kernel stack), then call the
506 * machine-dependent layer to fill those in and make the new process
507 * ready to run.  The new process is set up so that it returns directly
508 * to user mode to avoid stack copying and relocation problems.
509 */
510int
511vm_forkproc(td, p2, td2, vm2, flags)
512	struct thread *td;
513	struct proc *p2;
514	struct thread *td2;
515	struct vmspace *vm2;
516	int flags;
517{
518	struct proc *p1 = td->td_proc;
519	int error;
520
521	if ((flags & RFPROC) == 0) {
522		/*
523		 * Divorce the memory, if it is shared, essentially
524		 * this changes shared memory amongst threads, into
525		 * COW locally.
526		 */
527		if ((flags & RFMEM) == 0) {
528			if (p1->p_vmspace->vm_refcnt > 1) {
529				error = vmspace_unshare(p1);
530				if (error)
531					return (error);
532			}
533		}
534		cpu_fork(td, p2, td2, flags);
535		return (0);
536	}
537
538	if (flags & RFMEM) {
539		p2->p_vmspace = p1->p_vmspace;
540		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
541	}
542
543	while (vm_page_count_severe()) {
544		VM_WAIT;
545	}
546
547	if ((flags & RFMEM) == 0) {
548		p2->p_vmspace = vm2;
549		if (p1->p_vmspace->vm_shm)
550			shmfork(p1, p2);
551	}
552
553	/*
554	 * cpu_fork will copy and update the pcb, set up the kernel stack,
555	 * and make the child ready to run.
556	 */
557	cpu_fork(td, p2, td2, flags);
558	return (0);
559}
560
561/*
562 * Called after process has been wait(2)'ed apon and is being reaped.
563 * The idea is to reclaim resources that we could not reclaim while
564 * the process was still executing.
565 */
566void
567vm_waitproc(p)
568	struct proc *p;
569{
570
571	vmspace_exitfree(p);		/* and clean-out the vmspace */
572}
573
574/*
575 * Set default limits for VM system.
576 * Called for proc 0, and then inherited by all others.
577 *
578 * XXX should probably act directly on proc0.
579 */
580static void
581vm_init_limits(udata)
582	void *udata;
583{
584	struct proc *p = udata;
585	struct plimit *limp;
586	int rss_limit;
587
588	/*
589	 * Set up the initial limits on process VM. Set the maximum resident
590	 * set size to be half of (reasonably) available memory.  Since this
591	 * is a soft limit, it comes into effect only when the system is out
592	 * of memory - half of main memory helps to favor smaller processes,
593	 * and reduces thrashing of the object cache.
594	 */
595	limp = p->p_limit;
596	limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
597	limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
598	limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
599	limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
600	/* limit the limit to no less than 2MB */
601	rss_limit = max(cnt.v_free_count, 512);
602	limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
603	limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
604}
605
606void
607faultin(p)
608	struct proc *p;
609{
610#ifdef NO_SWAPPING
611
612	PROC_LOCK_ASSERT(p, MA_OWNED);
613	if ((p->p_flag & P_INMEM) == 0)
614		panic("faultin: proc swapped out with NO_SWAPPING!");
615#else /* !NO_SWAPPING */
616	struct thread *td;
617
618	PROC_LOCK_ASSERT(p, MA_OWNED);
619	/*
620	 * If another process is swapping in this process,
621	 * just wait until it finishes.
622	 */
623	if (p->p_flag & P_SWAPPINGIN) {
624		while (p->p_flag & P_SWAPPINGIN)
625			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
626		return;
627	}
628	if ((p->p_flag & P_INMEM) == 0) {
629		/*
630		 * Don't let another thread swap process p out while we are
631		 * busy swapping it in.
632		 */
633		++p->p_lock;
634		p->p_flag |= P_SWAPPINGIN;
635		PROC_UNLOCK(p);
636
637		/*
638		 * We hold no lock here because the list of threads
639		 * can not change while all threads in the process are
640		 * swapped out.
641		 */
642		FOREACH_THREAD_IN_PROC(p, td)
643			vm_thread_swapin(td);
644		PROC_LOCK(p);
645		swapclear(p);
646		p->p_swtick = ticks;
647
648		wakeup(&p->p_flag);
649
650		/* Allow other threads to swap p out now. */
651		--p->p_lock;
652	}
653#endif /* NO_SWAPPING */
654}
655
656/*
657 * This swapin algorithm attempts to swap-in processes only if there
658 * is enough space for them.  Of course, if a process waits for a long
659 * time, it will be swapped in anyway.
660 *
661 * Giant is held on entry.
662 */
663/* ARGSUSED*/
664static void
665scheduler(dummy)
666	void *dummy;
667{
668	struct proc *p;
669	struct thread *td;
670	struct proc *pp;
671	int slptime;
672	int swtime;
673	int ppri;
674	int pri;
675
676	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
677	mtx_unlock(&Giant);
678
679loop:
680	if (vm_page_count_min()) {
681		VM_WAIT;
682		goto loop;
683	}
684
685	pp = NULL;
686	ppri = INT_MIN;
687	sx_slock(&allproc_lock);
688	FOREACH_PROC_IN_SYSTEM(p) {
689		PROC_LOCK(p);
690		if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
691			PROC_UNLOCK(p);
692			continue;
693		}
694		swtime = (ticks - p->p_swtick) / hz;
695		FOREACH_THREAD_IN_PROC(p, td) {
696			/*
697			 * An otherwise runnable thread of a process
698			 * swapped out has only the TDI_SWAPPED bit set.
699			 *
700			 */
701			thread_lock(td);
702			if (td->td_inhibitors == TDI_SWAPPED) {
703				slptime = (ticks - td->td_slptick) / hz;
704				pri = swtime + slptime;
705				if ((td->td_flags & TDF_SWAPINREQ) == 0)
706					pri -= p->p_nice * 8;
707				/*
708				 * if this thread is higher priority
709				 * and there is enough space, then select
710				 * this process instead of the previous
711				 * selection.
712				 */
713				if (pri > ppri) {
714					pp = p;
715					ppri = pri;
716				}
717			}
718			thread_unlock(td);
719		}
720		PROC_UNLOCK(p);
721	}
722	sx_sunlock(&allproc_lock);
723
724	/*
725	 * Nothing to do, back to sleep.
726	 */
727	if ((p = pp) == NULL) {
728		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
729		goto loop;
730	}
731	PROC_LOCK(p);
732
733	/*
734	 * Another process may be bringing or may have already
735	 * brought this process in while we traverse all threads.
736	 * Or, this process may even be being swapped out again.
737	 */
738	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
739		PROC_UNLOCK(p);
740		goto loop;
741	}
742
743	/*
744	 * We would like to bring someone in. (only if there is space).
745	 * [What checks the space? ]
746	 */
747	faultin(p);
748	PROC_UNLOCK(p);
749	goto loop;
750}
751
752void
753kick_proc0(void)
754{
755
756	wakeup(&proc0);
757}
758
759#ifndef NO_SWAPPING
760
761/*
762 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
763 */
764static int swap_idle_threshold1 = 2;
765SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
766    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
767
768/*
769 * Swap_idle_threshold2 is the time that a process can be idle before
770 * it will be swapped out, if idle swapping is enabled.
771 */
772static int swap_idle_threshold2 = 10;
773SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
774    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
775
776/*
777 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
778 * procs and swap out their stacks.  We try to always "swap" at least one
779 * process in case we need the room for a swapin.
780 * If any procs have been sleeping/stopped for at least maxslp seconds,
781 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
782 * if any, otherwise the longest-resident process.
783 */
784void
785swapout_procs(action)
786int action;
787{
788	struct proc *p;
789	struct thread *td;
790	int didswap = 0;
791
792retry:
793	sx_slock(&allproc_lock);
794	FOREACH_PROC_IN_SYSTEM(p) {
795		struct vmspace *vm;
796		int minslptime = 100000;
797		int slptime;
798
799		/*
800		 * Watch out for a process in
801		 * creation.  It may have no
802		 * address space or lock yet.
803		 */
804		if (p->p_state == PRS_NEW)
805			continue;
806		/*
807		 * An aio daemon switches its
808		 * address space while running.
809		 * Perform a quick check whether
810		 * a process has P_SYSTEM.
811		 */
812		if ((p->p_flag & P_SYSTEM) != 0)
813			continue;
814		/*
815		 * Do not swapout a process that
816		 * is waiting for VM data
817		 * structures as there is a possible
818		 * deadlock.  Test this first as
819		 * this may block.
820		 *
821		 * Lock the map until swapout
822		 * finishes, or a thread of this
823		 * process may attempt to alter
824		 * the map.
825		 */
826		vm = vmspace_acquire_ref(p);
827		if (vm == NULL)
828			continue;
829		if (!vm_map_trylock(&vm->vm_map))
830			goto nextproc1;
831
832		PROC_LOCK(p);
833		if (p->p_lock != 0 ||
834		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
835		    ) != 0) {
836			goto nextproc;
837		}
838		/*
839		 * only aiod changes vmspace, however it will be
840		 * skipped because of the if statement above checking
841		 * for P_SYSTEM
842		 */
843		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
844			goto nextproc;
845
846		switch (p->p_state) {
847		default:
848			/* Don't swap out processes in any sort
849			 * of 'special' state. */
850			break;
851
852		case PRS_NORMAL:
853			/*
854			 * do not swapout a realtime process
855			 * Check all the thread groups..
856			 */
857			FOREACH_THREAD_IN_PROC(p, td) {
858				thread_lock(td);
859				if (PRI_IS_REALTIME(td->td_pri_class)) {
860					thread_unlock(td);
861					goto nextproc;
862				}
863				slptime = (ticks - td->td_slptick) / hz;
864				/*
865				 * Guarantee swap_idle_threshold1
866				 * time in memory.
867				 */
868				if (slptime < swap_idle_threshold1) {
869					thread_unlock(td);
870					goto nextproc;
871				}
872
873				/*
874				 * Do not swapout a process if it is
875				 * waiting on a critical event of some
876				 * kind or there is a thread whose
877				 * pageable memory may be accessed.
878				 *
879				 * This could be refined to support
880				 * swapping out a thread.
881				 */
882				if (!thread_safetoswapout(td)) {
883					thread_unlock(td);
884					goto nextproc;
885				}
886				/*
887				 * If the system is under memory stress,
888				 * or if we are swapping
889				 * idle processes >= swap_idle_threshold2,
890				 * then swap the process out.
891				 */
892				if (((action & VM_SWAP_NORMAL) == 0) &&
893				    (((action & VM_SWAP_IDLE) == 0) ||
894				    (slptime < swap_idle_threshold2))) {
895					thread_unlock(td);
896					goto nextproc;
897				}
898
899				if (minslptime > slptime)
900					minslptime = slptime;
901				thread_unlock(td);
902			}
903
904			/*
905			 * If the pageout daemon didn't free enough pages,
906			 * or if this process is idle and the system is
907			 * configured to swap proactively, swap it out.
908			 */
909			if ((action & VM_SWAP_NORMAL) ||
910				((action & VM_SWAP_IDLE) &&
911				 (minslptime > swap_idle_threshold2))) {
912				if (swapout(p) == 0)
913					didswap++;
914				PROC_UNLOCK(p);
915				vm_map_unlock(&vm->vm_map);
916				vmspace_free(vm);
917				sx_sunlock(&allproc_lock);
918				goto retry;
919			}
920		}
921nextproc:
922		PROC_UNLOCK(p);
923		vm_map_unlock(&vm->vm_map);
924nextproc1:
925		vmspace_free(vm);
926		continue;
927	}
928	sx_sunlock(&allproc_lock);
929	/*
930	 * If we swapped something out, and another process needed memory,
931	 * then wakeup the sched process.
932	 */
933	if (didswap)
934		wakeup(&proc0);
935}
936
937static void
938swapclear(p)
939	struct proc *p;
940{
941	struct thread *td;
942
943	PROC_LOCK_ASSERT(p, MA_OWNED);
944
945	FOREACH_THREAD_IN_PROC(p, td) {
946		thread_lock(td);
947		td->td_flags |= TDF_INMEM;
948		td->td_flags &= ~TDF_SWAPINREQ;
949		TD_CLR_SWAPPED(td);
950		if (TD_CAN_RUN(td))
951			if (setrunnable(td)) {
952#ifdef INVARIANTS
953				/*
954				 * XXX: We just cleared TDI_SWAPPED
955				 * above and set TDF_INMEM, so this
956				 * should never happen.
957				 */
958				panic("not waking up swapper");
959#endif
960			}
961		thread_unlock(td);
962	}
963	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
964	p->p_flag |= P_INMEM;
965}
966
967static int
968swapout(p)
969	struct proc *p;
970{
971	struct thread *td;
972
973	PROC_LOCK_ASSERT(p, MA_OWNED);
974#if defined(SWAP_DEBUG)
975	printf("swapping out %d\n", p->p_pid);
976#endif
977
978	/*
979	 * The states of this process and its threads may have changed
980	 * by now.  Assuming that there is only one pageout daemon thread,
981	 * this process should still be in memory.
982	 */
983	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
984		("swapout: lost a swapout race?"));
985
986	/*
987	 * remember the process resident count
988	 */
989	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
990	/*
991	 * Check and mark all threads before we proceed.
992	 */
993	p->p_flag &= ~P_INMEM;
994	p->p_flag |= P_SWAPPINGOUT;
995	FOREACH_THREAD_IN_PROC(p, td) {
996		thread_lock(td);
997		if (!thread_safetoswapout(td)) {
998			thread_unlock(td);
999			swapclear(p);
1000			return (EBUSY);
1001		}
1002		td->td_flags &= ~TDF_INMEM;
1003		TD_SET_SWAPPED(td);
1004		thread_unlock(td);
1005	}
1006	td = FIRST_THREAD_IN_PROC(p);
1007	++td->td_ru.ru_nswap;
1008	PROC_UNLOCK(p);
1009
1010	/*
1011	 * This list is stable because all threads are now prevented from
1012	 * running.  The list is only modified in the context of a running
1013	 * thread in this process.
1014	 */
1015	FOREACH_THREAD_IN_PROC(p, td)
1016		vm_thread_swapout(td);
1017
1018	PROC_LOCK(p);
1019	p->p_flag &= ~P_SWAPPINGOUT;
1020	p->p_swtick = ticks;
1021	return (0);
1022}
1023#endif /* !NO_SWAPPING */
1024