vm_glue.c revision 177085
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51 *  School of Computer Science
52 *  Carnegie Mellon University
53 *  Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 177085 2008-03-12 06:31:06Z jeff $");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/resourcevar.h>
73#include <sys/sched.h>
74#include <sys/sf_buf.h>
75#include <sys/shm.h>
76#include <sys/vmmeter.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79
80#include <sys/kernel.h>
81#include <sys/ktr.h>
82#include <sys/unistd.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_page.h>
89#include <vm/vm_pageout.h>
90#include <vm/vm_object.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95
96extern int maxslp;
97
98/*
99 * System initialization
100 *
101 * Note: proc0 from proc.h
102 */
103static void vm_init_limits(void *);
104SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
105
106/*
107 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108 *
109 * Note: run scheduling should be divorced from the vm system.
110 */
111static void scheduler(void *);
112SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
113
114#ifndef NO_SWAPPING
115static int swapout(struct proc *);
116static void swapclear(struct proc *);
117#endif
118
119
120static volatile int proc0_rescan;
121
122
123/*
124 * MPSAFE
125 *
126 * WARNING!  This code calls vm_map_check_protection() which only checks
127 * the associated vm_map_entry range.  It does not determine whether the
128 * contents of the memory is actually readable or writable.  In most cases
129 * just checking the vm_map_entry is sufficient within the kernel's address
130 * space.
131 */
132int
133kernacc(addr, len, rw)
134	void *addr;
135	int len, rw;
136{
137	boolean_t rv;
138	vm_offset_t saddr, eaddr;
139	vm_prot_t prot;
140
141	KASSERT((rw & ~VM_PROT_ALL) == 0,
142	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
143
144	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
145	    (vm_offset_t)addr + len < (vm_offset_t)addr)
146		return (FALSE);
147
148	prot = rw;
149	saddr = trunc_page((vm_offset_t)addr);
150	eaddr = round_page((vm_offset_t)addr + len);
151	vm_map_lock_read(kernel_map);
152	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
153	vm_map_unlock_read(kernel_map);
154	return (rv == TRUE);
155}
156
157/*
158 * MPSAFE
159 *
160 * WARNING!  This code calls vm_map_check_protection() which only checks
161 * the associated vm_map_entry range.  It does not determine whether the
162 * contents of the memory is actually readable or writable.  vmapbuf(),
163 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
164 * used in conjuction with this call.
165 */
166int
167useracc(addr, len, rw)
168	void *addr;
169	int len, rw;
170{
171	boolean_t rv;
172	vm_prot_t prot;
173	vm_map_t map;
174
175	KASSERT((rw & ~VM_PROT_ALL) == 0,
176	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
177	prot = rw;
178	map = &curproc->p_vmspace->vm_map;
179	if ((vm_offset_t)addr + len > vm_map_max(map) ||
180	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
181		return (FALSE);
182	}
183	vm_map_lock_read(map);
184	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
185	    round_page((vm_offset_t)addr + len), prot);
186	vm_map_unlock_read(map);
187	return (rv == TRUE);
188}
189
190int
191vslock(void *addr, size_t len)
192{
193	vm_offset_t end, last, start;
194	vm_size_t npages;
195	int error;
196
197	last = (vm_offset_t)addr + len;
198	start = trunc_page((vm_offset_t)addr);
199	end = round_page(last);
200	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
201		return (EINVAL);
202	npages = atop(end - start);
203	if (npages > vm_page_max_wired)
204		return (ENOMEM);
205	PROC_LOCK(curproc);
206	if (ptoa(npages +
207	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
208	    lim_cur(curproc, RLIMIT_MEMLOCK)) {
209		PROC_UNLOCK(curproc);
210		return (ENOMEM);
211	}
212	PROC_UNLOCK(curproc);
213#if 0
214	/*
215	 * XXX - not yet
216	 *
217	 * The limit for transient usage of wired pages should be
218	 * larger than for "permanent" wired pages (mlock()).
219	 *
220	 * Also, the sysctl code, which is the only present user
221	 * of vslock(), does a hard loop on EAGAIN.
222	 */
223	if (npages + cnt.v_wire_count > vm_page_max_wired)
224		return (EAGAIN);
225#endif
226	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
227	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
228	/*
229	 * Return EFAULT on error to match copy{in,out}() behaviour
230	 * rather than returning ENOMEM like mlock() would.
231	 */
232	return (error == KERN_SUCCESS ? 0 : EFAULT);
233}
234
235void
236vsunlock(void *addr, size_t len)
237{
238
239	/* Rely on the parameter sanity checks performed by vslock(). */
240	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
241	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
242	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
243}
244
245/*
246 * Pin the page contained within the given object at the given offset.  If the
247 * page is not resident, allocate and load it using the given object's pager.
248 * Return the pinned page if successful; otherwise, return NULL.
249 */
250static vm_page_t
251vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
252{
253	vm_page_t m, ma[1];
254	vm_pindex_t pindex;
255	int rv;
256
257	VM_OBJECT_LOCK(object);
258	pindex = OFF_TO_IDX(offset);
259	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
260	if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
261		ma[0] = m;
262		rv = vm_pager_get_pages(object, ma, 1, 0);
263		m = vm_page_lookup(object, pindex);
264		if (m == NULL)
265			goto out;
266		if (m->valid == 0 || rv != VM_PAGER_OK) {
267			vm_page_lock_queues();
268			vm_page_free(m);
269			vm_page_unlock_queues();
270			m = NULL;
271			goto out;
272		}
273	}
274	vm_page_lock_queues();
275	vm_page_hold(m);
276	vm_page_unlock_queues();
277	vm_page_wakeup(m);
278out:
279	VM_OBJECT_UNLOCK(object);
280	return (m);
281}
282
283/*
284 * Return a CPU private mapping to the page at the given offset within the
285 * given object.  The page is pinned before it is mapped.
286 */
287struct sf_buf *
288vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
289{
290	vm_page_t m;
291
292	m = vm_imgact_hold_page(object, offset);
293	if (m == NULL)
294		return (NULL);
295	sched_pin();
296	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
297}
298
299/*
300 * Destroy the given CPU private mapping and unpin the page that it mapped.
301 */
302void
303vm_imgact_unmap_page(struct sf_buf *sf)
304{
305	vm_page_t m;
306
307	m = sf_buf_page(sf);
308	sf_buf_free(sf);
309	sched_unpin();
310	vm_page_lock_queues();
311	vm_page_unhold(m);
312	vm_page_unlock_queues();
313}
314
315#ifndef KSTACK_MAX_PAGES
316#define KSTACK_MAX_PAGES 32
317#endif
318
319/*
320 * Create the kernel stack (including pcb for i386) for a new thread.
321 * This routine directly affects the fork perf for a process and
322 * create performance for a thread.
323 */
324int
325vm_thread_new(struct thread *td, int pages)
326{
327	vm_object_t ksobj;
328	vm_offset_t ks;
329	vm_page_t m, ma[KSTACK_MAX_PAGES];
330	int i;
331
332	/* Bounds check */
333	if (pages <= 1)
334		pages = KSTACK_PAGES;
335	else if (pages > KSTACK_MAX_PAGES)
336		pages = KSTACK_MAX_PAGES;
337	/*
338	 * Allocate an object for the kstack.
339	 */
340	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
341	/*
342	 * Get a kernel virtual address for this thread's kstack.
343	 */
344	ks = kmem_alloc_nofault(kernel_map,
345	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
346	if (ks == 0) {
347		printf("vm_thread_new: kstack allocation failed\n");
348		vm_object_deallocate(ksobj);
349		return (0);
350	}
351
352	if (KSTACK_GUARD_PAGES != 0) {
353		pmap_qremove(ks, KSTACK_GUARD_PAGES);
354		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
355	}
356	td->td_kstack_obj = ksobj;
357	td->td_kstack = ks;
358	/*
359	 * Knowing the number of pages allocated is useful when you
360	 * want to deallocate them.
361	 */
362	td->td_kstack_pages = pages;
363	/*
364	 * For the length of the stack, link in a real page of ram for each
365	 * page of stack.
366	 */
367	VM_OBJECT_LOCK(ksobj);
368	for (i = 0; i < pages; i++) {
369		/*
370		 * Get a kernel stack page.
371		 */
372		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
373		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
374		ma[i] = m;
375		m->valid = VM_PAGE_BITS_ALL;
376	}
377	VM_OBJECT_UNLOCK(ksobj);
378	pmap_qenter(ks, ma, pages);
379	return (1);
380}
381
382/*
383 * Dispose of a thread's kernel stack.
384 */
385void
386vm_thread_dispose(struct thread *td)
387{
388	vm_object_t ksobj;
389	vm_offset_t ks;
390	vm_page_t m;
391	int i, pages;
392
393	pages = td->td_kstack_pages;
394	ksobj = td->td_kstack_obj;
395	ks = td->td_kstack;
396	pmap_qremove(ks, pages);
397	VM_OBJECT_LOCK(ksobj);
398	for (i = 0; i < pages; i++) {
399		m = vm_page_lookup(ksobj, i);
400		if (m == NULL)
401			panic("vm_thread_dispose: kstack already missing?");
402		vm_page_lock_queues();
403		vm_page_unwire(m, 0);
404		vm_page_free(m);
405		vm_page_unlock_queues();
406	}
407	VM_OBJECT_UNLOCK(ksobj);
408	vm_object_deallocate(ksobj);
409	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
410	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
411	td->td_kstack = 0;
412}
413
414/*
415 * Allow a thread's kernel stack to be paged out.
416 */
417void
418vm_thread_swapout(struct thread *td)
419{
420	vm_object_t ksobj;
421	vm_page_t m;
422	int i, pages;
423
424	cpu_thread_swapout(td);
425	pages = td->td_kstack_pages;
426	ksobj = td->td_kstack_obj;
427	pmap_qremove(td->td_kstack, pages);
428	VM_OBJECT_LOCK(ksobj);
429	for (i = 0; i < pages; i++) {
430		m = vm_page_lookup(ksobj, i);
431		if (m == NULL)
432			panic("vm_thread_swapout: kstack already missing?");
433		vm_page_lock_queues();
434		vm_page_dirty(m);
435		vm_page_unwire(m, 0);
436		vm_page_unlock_queues();
437	}
438	VM_OBJECT_UNLOCK(ksobj);
439}
440
441/*
442 * Bring the kernel stack for a specified thread back in.
443 */
444void
445vm_thread_swapin(struct thread *td)
446{
447	vm_object_t ksobj;
448	vm_page_t m, ma[KSTACK_MAX_PAGES];
449	int i, pages, rv;
450
451	pages = td->td_kstack_pages;
452	ksobj = td->td_kstack_obj;
453	VM_OBJECT_LOCK(ksobj);
454	for (i = 0; i < pages; i++) {
455		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
456		if (m->valid != VM_PAGE_BITS_ALL) {
457			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
458			if (rv != VM_PAGER_OK)
459				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
460			m = vm_page_lookup(ksobj, i);
461			m->valid = VM_PAGE_BITS_ALL;
462		}
463		ma[i] = m;
464		vm_page_lock_queues();
465		vm_page_wire(m);
466		vm_page_unlock_queues();
467		vm_page_wakeup(m);
468	}
469	VM_OBJECT_UNLOCK(ksobj);
470	pmap_qenter(td->td_kstack, ma, pages);
471	cpu_thread_swapin(td);
472}
473
474/*
475 * Set up a variable-sized alternate kstack.
476 */
477int
478vm_thread_new_altkstack(struct thread *td, int pages)
479{
480
481	td->td_altkstack = td->td_kstack;
482	td->td_altkstack_obj = td->td_kstack_obj;
483	td->td_altkstack_pages = td->td_kstack_pages;
484
485	return (vm_thread_new(td, pages));
486}
487
488/*
489 * Restore the original kstack.
490 */
491void
492vm_thread_dispose_altkstack(struct thread *td)
493{
494
495	vm_thread_dispose(td);
496
497	td->td_kstack = td->td_altkstack;
498	td->td_kstack_obj = td->td_altkstack_obj;
499	td->td_kstack_pages = td->td_altkstack_pages;
500	td->td_altkstack = 0;
501	td->td_altkstack_obj = NULL;
502	td->td_altkstack_pages = 0;
503}
504
505/*
506 * Implement fork's actions on an address space.
507 * Here we arrange for the address space to be copied or referenced,
508 * allocate a user struct (pcb and kernel stack), then call the
509 * machine-dependent layer to fill those in and make the new process
510 * ready to run.  The new process is set up so that it returns directly
511 * to user mode to avoid stack copying and relocation problems.
512 */
513int
514vm_forkproc(td, p2, td2, vm2, flags)
515	struct thread *td;
516	struct proc *p2;
517	struct thread *td2;
518	struct vmspace *vm2;
519	int flags;
520{
521	struct proc *p1 = td->td_proc;
522	int error;
523
524	if ((flags & RFPROC) == 0) {
525		/*
526		 * Divorce the memory, if it is shared, essentially
527		 * this changes shared memory amongst threads, into
528		 * COW locally.
529		 */
530		if ((flags & RFMEM) == 0) {
531			if (p1->p_vmspace->vm_refcnt > 1) {
532				error = vmspace_unshare(p1);
533				if (error)
534					return (error);
535			}
536		}
537		cpu_fork(td, p2, td2, flags);
538		return (0);
539	}
540
541	if (flags & RFMEM) {
542		p2->p_vmspace = p1->p_vmspace;
543		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
544	}
545
546	while (vm_page_count_severe()) {
547		VM_WAIT;
548	}
549
550	if ((flags & RFMEM) == 0) {
551		p2->p_vmspace = vm2;
552		if (p1->p_vmspace->vm_shm)
553			shmfork(p1, p2);
554	}
555
556	/*
557	 * cpu_fork will copy and update the pcb, set up the kernel stack,
558	 * and make the child ready to run.
559	 */
560	cpu_fork(td, p2, td2, flags);
561	return (0);
562}
563
564/*
565 * Called after process has been wait(2)'ed apon and is being reaped.
566 * The idea is to reclaim resources that we could not reclaim while
567 * the process was still executing.
568 */
569void
570vm_waitproc(p)
571	struct proc *p;
572{
573
574	vmspace_exitfree(p);		/* and clean-out the vmspace */
575}
576
577/*
578 * Set default limits for VM system.
579 * Called for proc 0, and then inherited by all others.
580 *
581 * XXX should probably act directly on proc0.
582 */
583static void
584vm_init_limits(udata)
585	void *udata;
586{
587	struct proc *p = udata;
588	struct plimit *limp;
589	int rss_limit;
590
591	/*
592	 * Set up the initial limits on process VM. Set the maximum resident
593	 * set size to be half of (reasonably) available memory.  Since this
594	 * is a soft limit, it comes into effect only when the system is out
595	 * of memory - half of main memory helps to favor smaller processes,
596	 * and reduces thrashing of the object cache.
597	 */
598	limp = p->p_limit;
599	limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
600	limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
601	limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
602	limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
603	/* limit the limit to no less than 2MB */
604	rss_limit = max(cnt.v_free_count, 512);
605	limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
606	limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
607}
608
609void
610faultin(p)
611	struct proc *p;
612{
613#ifdef NO_SWAPPING
614
615	PROC_LOCK_ASSERT(p, MA_OWNED);
616	if ((p->p_flag & P_INMEM) == 0)
617		panic("faultin: proc swapped out with NO_SWAPPING!");
618#else /* !NO_SWAPPING */
619	struct thread *td;
620
621	PROC_LOCK_ASSERT(p, MA_OWNED);
622	/*
623	 * If another process is swapping in this process,
624	 * just wait until it finishes.
625	 */
626	if (p->p_flag & P_SWAPPINGIN) {
627		while (p->p_flag & P_SWAPPINGIN)
628			msleep(&p->p_flag, &p->p_mtx, PVM, "faultin", 0);
629		return;
630	}
631	if ((p->p_flag & P_INMEM) == 0) {
632		/*
633		 * Don't let another thread swap process p out while we are
634		 * busy swapping it in.
635		 */
636		++p->p_lock;
637		p->p_flag |= P_SWAPPINGIN;
638		PROC_UNLOCK(p);
639
640		/*
641		 * We hold no lock here because the list of threads
642		 * can not change while all threads in the process are
643		 * swapped out.
644		 */
645		FOREACH_THREAD_IN_PROC(p, td)
646			vm_thread_swapin(td);
647		PROC_LOCK(p);
648		PROC_SLOCK(p);
649		swapclear(p);
650		p->p_swtick = ticks;
651		PROC_SUNLOCK(p);
652
653		wakeup(&p->p_flag);
654
655		/* Allow other threads to swap p out now. */
656		--p->p_lock;
657	}
658#endif /* NO_SWAPPING */
659}
660
661/*
662 * This swapin algorithm attempts to swap-in processes only if there
663 * is enough space for them.  Of course, if a process waits for a long
664 * time, it will be swapped in anyway.
665 *
666 *  XXXKSE - process with the thread with highest priority counts..
667 *
668 * Giant is held on entry.
669 */
670/* ARGSUSED*/
671static void
672scheduler(dummy)
673	void *dummy;
674{
675	struct proc *p;
676	struct thread *td;
677	struct proc *pp;
678	int slptime;
679	int swtime;
680	int ppri;
681	int pri;
682
683	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
684	mtx_unlock(&Giant);
685
686loop:
687	if (vm_page_count_min()) {
688		VM_WAIT;
689		thread_lock(&thread0);
690		proc0_rescan = 0;
691		thread_unlock(&thread0);
692		goto loop;
693	}
694
695	pp = NULL;
696	ppri = INT_MIN;
697	sx_slock(&allproc_lock);
698	FOREACH_PROC_IN_SYSTEM(p) {
699		PROC_LOCK(p);
700		if (p->p_flag & (P_SWAPPINGOUT | P_SWAPPINGIN | P_INMEM)) {
701			PROC_UNLOCK(p);
702			continue;
703		}
704		swtime = (ticks - p->p_swtick) / hz;
705		PROC_SLOCK(p);
706		FOREACH_THREAD_IN_PROC(p, td) {
707			/*
708			 * An otherwise runnable thread of a process
709			 * swapped out has only the TDI_SWAPPED bit set.
710			 *
711			 */
712			thread_lock(td);
713			if (td->td_inhibitors == TDI_SWAPPED) {
714				slptime = (ticks - td->td_slptick) / hz;
715				pri = swtime + slptime;
716				if ((td->td_flags & TDF_SWAPINREQ) == 0)
717					pri -= p->p_nice * 8;
718				/*
719				 * if this thread is higher priority
720				 * and there is enough space, then select
721				 * this process instead of the previous
722				 * selection.
723				 */
724				if (pri > ppri) {
725					pp = p;
726					ppri = pri;
727				}
728			}
729			thread_unlock(td);
730		}
731		PROC_SUNLOCK(p);
732		PROC_UNLOCK(p);
733	}
734	sx_sunlock(&allproc_lock);
735
736	/*
737	 * Nothing to do, back to sleep.
738	 */
739	if ((p = pp) == NULL) {
740		thread_lock(&thread0);
741		if (!proc0_rescan) {
742			TD_SET_IWAIT(&thread0);
743			mi_switch(SW_VOL, NULL);
744		}
745		proc0_rescan = 0;
746		thread_unlock(&thread0);
747		goto loop;
748	}
749	PROC_LOCK(p);
750
751	/*
752	 * Another process may be bringing or may have already
753	 * brought this process in while we traverse all threads.
754	 * Or, this process may even be being swapped out again.
755	 */
756	if (p->p_flag & (P_INMEM | P_SWAPPINGOUT | P_SWAPPINGIN)) {
757		PROC_UNLOCK(p);
758		thread_lock(&thread0);
759		proc0_rescan = 0;
760		thread_unlock(&thread0);
761		goto loop;
762	}
763
764	/*
765	 * We would like to bring someone in. (only if there is space).
766	 * [What checks the space? ]
767	 */
768	faultin(p);
769	PROC_UNLOCK(p);
770	thread_lock(&thread0);
771	proc0_rescan = 0;
772	thread_unlock(&thread0);
773	goto loop;
774}
775
776void kick_proc0(void)
777{
778	struct thread *td = &thread0;
779
780	/* XXX This will probably cause a LOR in some cases */
781	thread_lock(td);
782	if (TD_AWAITING_INTR(td)) {
783		CTR2(KTR_INTR, "%s: sched_add %d", __func__, 0);
784		TD_CLR_IWAIT(td);
785		sched_add(td, SRQ_INTR);
786	} else {
787		proc0_rescan = 1;
788		CTR2(KTR_INTR, "%s: state %d",
789		    __func__, td->td_state);
790	}
791	thread_unlock(td);
792
793}
794
795
796#ifndef NO_SWAPPING
797
798/*
799 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
800 */
801static int swap_idle_threshold1 = 2;
802SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
803    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
804
805/*
806 * Swap_idle_threshold2 is the time that a process can be idle before
807 * it will be swapped out, if idle swapping is enabled.
808 */
809static int swap_idle_threshold2 = 10;
810SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
811    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
812
813/*
814 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
815 * procs and swap out their stacks.  We try to always "swap" at least one
816 * process in case we need the room for a swapin.
817 * If any procs have been sleeping/stopped for at least maxslp seconds,
818 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
819 * if any, otherwise the longest-resident process.
820 */
821void
822swapout_procs(action)
823int action;
824{
825	struct proc *p;
826	struct thread *td;
827	int didswap = 0;
828
829retry:
830	sx_slock(&allproc_lock);
831	FOREACH_PROC_IN_SYSTEM(p) {
832		struct vmspace *vm;
833		int minslptime = 100000;
834		int slptime;
835
836		/*
837		 * Watch out for a process in
838		 * creation.  It may have no
839		 * address space or lock yet.
840		 */
841		if (p->p_state == PRS_NEW)
842			continue;
843		/*
844		 * An aio daemon switches its
845		 * address space while running.
846		 * Perform a quick check whether
847		 * a process has P_SYSTEM.
848		 */
849		if ((p->p_flag & P_SYSTEM) != 0)
850			continue;
851		/*
852		 * Do not swapout a process that
853		 * is waiting for VM data
854		 * structures as there is a possible
855		 * deadlock.  Test this first as
856		 * this may block.
857		 *
858		 * Lock the map until swapout
859		 * finishes, or a thread of this
860		 * process may attempt to alter
861		 * the map.
862		 */
863		vm = vmspace_acquire_ref(p);
864		if (vm == NULL)
865			continue;
866		if (!vm_map_trylock(&vm->vm_map))
867			goto nextproc1;
868
869		PROC_LOCK(p);
870		if (p->p_lock != 0 ||
871		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
872		    ) != 0) {
873			goto nextproc2;
874		}
875		/*
876		 * only aiod changes vmspace, however it will be
877		 * skipped because of the if statement above checking
878		 * for P_SYSTEM
879		 */
880		if ((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) != P_INMEM)
881			goto nextproc2;
882
883		switch (p->p_state) {
884		default:
885			/* Don't swap out processes in any sort
886			 * of 'special' state. */
887			break;
888
889		case PRS_NORMAL:
890			PROC_SLOCK(p);
891			/*
892			 * do not swapout a realtime process
893			 * Check all the thread groups..
894			 */
895			FOREACH_THREAD_IN_PROC(p, td) {
896				thread_lock(td);
897				if (PRI_IS_REALTIME(td->td_pri_class)) {
898					thread_unlock(td);
899					goto nextproc;
900				}
901				slptime = (ticks - td->td_slptick) / hz;
902				/*
903				 * Guarantee swap_idle_threshold1
904				 * time in memory.
905				 */
906				if (slptime < swap_idle_threshold1) {
907					thread_unlock(td);
908					goto nextproc;
909				}
910
911				/*
912				 * Do not swapout a process if it is
913				 * waiting on a critical event of some
914				 * kind or there is a thread whose
915				 * pageable memory may be accessed.
916				 *
917				 * This could be refined to support
918				 * swapping out a thread.
919				 */
920				if (!thread_safetoswapout(td)) {
921					thread_unlock(td);
922					goto nextproc;
923				}
924				/*
925				 * If the system is under memory stress,
926				 * or if we are swapping
927				 * idle processes >= swap_idle_threshold2,
928				 * then swap the process out.
929				 */
930				if (((action & VM_SWAP_NORMAL) == 0) &&
931				    (((action & VM_SWAP_IDLE) == 0) ||
932				    (slptime < swap_idle_threshold2))) {
933					thread_unlock(td);
934					goto nextproc;
935				}
936
937				if (minslptime > slptime)
938					minslptime = slptime;
939				thread_unlock(td);
940			}
941
942			/*
943			 * If the pageout daemon didn't free enough pages,
944			 * or if this process is idle and the system is
945			 * configured to swap proactively, swap it out.
946			 */
947			if ((action & VM_SWAP_NORMAL) ||
948				((action & VM_SWAP_IDLE) &&
949				 (minslptime > swap_idle_threshold2))) {
950				if (swapout(p) == 0)
951					didswap++;
952				PROC_SUNLOCK(p);
953				PROC_UNLOCK(p);
954				vm_map_unlock(&vm->vm_map);
955				vmspace_free(vm);
956				sx_sunlock(&allproc_lock);
957				goto retry;
958			}
959nextproc:
960			PROC_SUNLOCK(p);
961		}
962nextproc2:
963		PROC_UNLOCK(p);
964		vm_map_unlock(&vm->vm_map);
965nextproc1:
966		vmspace_free(vm);
967		continue;
968	}
969	sx_sunlock(&allproc_lock);
970	/*
971	 * If we swapped something out, and another process needed memory,
972	 * then wakeup the sched process.
973	 */
974	if (didswap)
975		wakeup(&proc0);
976}
977
978static void
979swapclear(p)
980	struct proc *p;
981{
982	struct thread *td;
983
984	PROC_LOCK_ASSERT(p, MA_OWNED);
985	PROC_SLOCK_ASSERT(p, MA_OWNED);
986
987	FOREACH_THREAD_IN_PROC(p, td) {
988		thread_lock(td);
989		td->td_flags |= TDF_INMEM;
990		td->td_flags &= ~TDF_SWAPINREQ;
991		TD_CLR_SWAPPED(td);
992		if (TD_CAN_RUN(td))
993			setrunnable(td);
994		thread_unlock(td);
995	}
996	p->p_flag &= ~(P_SWAPPINGIN|P_SWAPPINGOUT);
997	p->p_flag |= P_INMEM;
998}
999
1000static int
1001swapout(p)
1002	struct proc *p;
1003{
1004	struct thread *td;
1005
1006	PROC_LOCK_ASSERT(p, MA_OWNED);
1007	PROC_SLOCK_ASSERT(p, MA_OWNED | MA_NOTRECURSED);
1008#if defined(SWAP_DEBUG)
1009	printf("swapping out %d\n", p->p_pid);
1010#endif
1011
1012	/*
1013	 * The states of this process and its threads may have changed
1014	 * by now.  Assuming that there is only one pageout daemon thread,
1015	 * this process should still be in memory.
1016	 */
1017	KASSERT((p->p_flag & (P_INMEM|P_SWAPPINGOUT|P_SWAPPINGIN)) == P_INMEM,
1018		("swapout: lost a swapout race?"));
1019
1020	/*
1021	 * remember the process resident count
1022	 */
1023	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1024	/*
1025	 * Check and mark all threads before we proceed.
1026	 */
1027	p->p_flag &= ~P_INMEM;
1028	p->p_flag |= P_SWAPPINGOUT;
1029	FOREACH_THREAD_IN_PROC(p, td) {
1030		thread_lock(td);
1031		if (!thread_safetoswapout(td)) {
1032			thread_unlock(td);
1033			swapclear(p);
1034			return (EBUSY);
1035		}
1036		td->td_flags &= ~TDF_INMEM;
1037		TD_SET_SWAPPED(td);
1038		thread_unlock(td);
1039	}
1040	td = FIRST_THREAD_IN_PROC(p);
1041	++td->td_ru.ru_nswap;
1042	PROC_SUNLOCK(p);
1043	PROC_UNLOCK(p);
1044
1045	/*
1046	 * This list is stable because all threads are now prevented from
1047	 * running.  The list is only modified in the context of a running
1048	 * thread in this process.
1049	 */
1050	FOREACH_THREAD_IN_PROC(p, td)
1051		vm_thread_swapout(td);
1052
1053	PROC_LOCK(p);
1054	p->p_flag &= ~P_SWAPPINGOUT;
1055	PROC_SLOCK(p);
1056	p->p_swtick = ticks;
1057	return (0);
1058}
1059#endif /* !NO_SWAPPING */
1060