vm_glue.c revision 169667
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51 *  School of Computer Science
52 *  Carnegie Mellon University
53 *  Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 169667 2007-05-18 07:10:50Z jeff $");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/resourcevar.h>
73#include <sys/sched.h>
74#include <sys/sf_buf.h>
75#include <sys/shm.h>
76#include <sys/vmmeter.h>
77#include <sys/sx.h>
78#include <sys/sysctl.h>
79
80#include <sys/kernel.h>
81#include <sys/ktr.h>
82#include <sys/unistd.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_page.h>
89#include <vm/vm_pageout.h>
90#include <vm/vm_object.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95
96extern int maxslp;
97
98/*
99 * System initialization
100 *
101 * Note: proc0 from proc.h
102 */
103static void vm_init_limits(void *);
104SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
105
106/*
107 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108 *
109 * Note: run scheduling should be divorced from the vm system.
110 */
111static void scheduler(void *);
112SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
113
114#ifndef NO_SWAPPING
115static void swapout(struct proc *);
116#endif
117
118
119static volatile int proc0_rescan;
120
121
122/*
123 * MPSAFE
124 *
125 * WARNING!  This code calls vm_map_check_protection() which only checks
126 * the associated vm_map_entry range.  It does not determine whether the
127 * contents of the memory is actually readable or writable.  In most cases
128 * just checking the vm_map_entry is sufficient within the kernel's address
129 * space.
130 */
131int
132kernacc(addr, len, rw)
133	void *addr;
134	int len, rw;
135{
136	boolean_t rv;
137	vm_offset_t saddr, eaddr;
138	vm_prot_t prot;
139
140	KASSERT((rw & ~VM_PROT_ALL) == 0,
141	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
142
143	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
144	    (vm_offset_t)addr + len < (vm_offset_t)addr)
145		return (FALSE);
146
147	prot = rw;
148	saddr = trunc_page((vm_offset_t)addr);
149	eaddr = round_page((vm_offset_t)addr + len);
150	vm_map_lock_read(kernel_map);
151	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
152	vm_map_unlock_read(kernel_map);
153	return (rv == TRUE);
154}
155
156/*
157 * MPSAFE
158 *
159 * WARNING!  This code calls vm_map_check_protection() which only checks
160 * the associated vm_map_entry range.  It does not determine whether the
161 * contents of the memory is actually readable or writable.  vmapbuf(),
162 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
163 * used in conjuction with this call.
164 */
165int
166useracc(addr, len, rw)
167	void *addr;
168	int len, rw;
169{
170	boolean_t rv;
171	vm_prot_t prot;
172	vm_map_t map;
173
174	KASSERT((rw & ~VM_PROT_ALL) == 0,
175	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
176	prot = rw;
177	map = &curproc->p_vmspace->vm_map;
178	if ((vm_offset_t)addr + len > vm_map_max(map) ||
179	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
180		return (FALSE);
181	}
182	vm_map_lock_read(map);
183	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
184	    round_page((vm_offset_t)addr + len), prot);
185	vm_map_unlock_read(map);
186	return (rv == TRUE);
187}
188
189int
190vslock(void *addr, size_t len)
191{
192	vm_offset_t end, last, start;
193	vm_size_t npages;
194	int error;
195
196	last = (vm_offset_t)addr + len;
197	start = trunc_page((vm_offset_t)addr);
198	end = round_page(last);
199	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
200		return (EINVAL);
201	npages = atop(end - start);
202	if (npages > vm_page_max_wired)
203		return (ENOMEM);
204	PROC_LOCK(curproc);
205	if (ptoa(npages +
206	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
207	    lim_cur(curproc, RLIMIT_MEMLOCK)) {
208		PROC_UNLOCK(curproc);
209		return (ENOMEM);
210	}
211	PROC_UNLOCK(curproc);
212#if 0
213	/*
214	 * XXX - not yet
215	 *
216	 * The limit for transient usage of wired pages should be
217	 * larger than for "permanent" wired pages (mlock()).
218	 *
219	 * Also, the sysctl code, which is the only present user
220	 * of vslock(), does a hard loop on EAGAIN.
221	 */
222	if (npages + VMCNT_GET(wire_count) > vm_page_max_wired)
223		return (EAGAIN);
224#endif
225	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
226	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
227	/*
228	 * Return EFAULT on error to match copy{in,out}() behaviour
229	 * rather than returning ENOMEM like mlock() would.
230	 */
231	return (error == KERN_SUCCESS ? 0 : EFAULT);
232}
233
234void
235vsunlock(void *addr, size_t len)
236{
237
238	/* Rely on the parameter sanity checks performed by vslock(). */
239	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
240	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
241	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
242}
243
244/*
245 * Pin the page contained within the given object at the given offset.  If the
246 * page is not resident, allocate and load it using the given object's pager.
247 * Return the pinned page if successful; otherwise, return NULL.
248 */
249static vm_page_t
250vm_imgact_hold_page(vm_object_t object, vm_ooffset_t offset)
251{
252	vm_page_t m, ma[1];
253	vm_pindex_t pindex;
254	int rv;
255
256	VM_OBJECT_LOCK(object);
257	pindex = OFF_TO_IDX(offset);
258	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
259	if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
260		ma[0] = m;
261		rv = vm_pager_get_pages(object, ma, 1, 0);
262		m = vm_page_lookup(object, pindex);
263		if (m == NULL)
264			goto out;
265		if (m->valid == 0 || rv != VM_PAGER_OK) {
266			vm_page_lock_queues();
267			vm_page_free(m);
268			vm_page_unlock_queues();
269			m = NULL;
270			goto out;
271		}
272	}
273	vm_page_lock_queues();
274	vm_page_hold(m);
275	vm_page_unlock_queues();
276	vm_page_wakeup(m);
277out:
278	VM_OBJECT_UNLOCK(object);
279	return (m);
280}
281
282/*
283 * Return a CPU private mapping to the page at the given offset within the
284 * given object.  The page is pinned before it is mapped.
285 */
286struct sf_buf *
287vm_imgact_map_page(vm_object_t object, vm_ooffset_t offset)
288{
289	vm_page_t m;
290
291	m = vm_imgact_hold_page(object, offset);
292	if (m == NULL)
293		return (NULL);
294	sched_pin();
295	return (sf_buf_alloc(m, SFB_CPUPRIVATE));
296}
297
298/*
299 * Destroy the given CPU private mapping and unpin the page that it mapped.
300 */
301void
302vm_imgact_unmap_page(struct sf_buf *sf)
303{
304	vm_page_t m;
305
306	m = sf_buf_page(sf);
307	sf_buf_free(sf);
308	sched_unpin();
309	vm_page_lock_queues();
310	vm_page_unhold(m);
311	vm_page_unlock_queues();
312}
313
314#ifndef KSTACK_MAX_PAGES
315#define KSTACK_MAX_PAGES 32
316#endif
317
318/*
319 * Create the kernel stack (including pcb for i386) for a new thread.
320 * This routine directly affects the fork perf for a process and
321 * create performance for a thread.
322 */
323void
324vm_thread_new(struct thread *td, int pages)
325{
326	vm_object_t ksobj;
327	vm_offset_t ks;
328	vm_page_t m, ma[KSTACK_MAX_PAGES];
329	int i;
330
331	/* Bounds check */
332	if (pages <= 1)
333		pages = KSTACK_PAGES;
334	else if (pages > KSTACK_MAX_PAGES)
335		pages = KSTACK_MAX_PAGES;
336	/*
337	 * Allocate an object for the kstack.
338	 */
339	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
340	td->td_kstack_obj = ksobj;
341	/*
342	 * Get a kernel virtual address for this thread's kstack.
343	 */
344	ks = kmem_alloc_nofault(kernel_map,
345	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
346	if (ks == 0)
347		panic("vm_thread_new: kstack allocation failed");
348	if (KSTACK_GUARD_PAGES != 0) {
349		pmap_qremove(ks, KSTACK_GUARD_PAGES);
350		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
351	}
352	td->td_kstack = ks;
353	/*
354	 * Knowing the number of pages allocated is useful when you
355	 * want to deallocate them.
356	 */
357	td->td_kstack_pages = pages;
358	/*
359	 * For the length of the stack, link in a real page of ram for each
360	 * page of stack.
361	 */
362	VM_OBJECT_LOCK(ksobj);
363	for (i = 0; i < pages; i++) {
364		/*
365		 * Get a kernel stack page.
366		 */
367		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
368		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
369		ma[i] = m;
370		m->valid = VM_PAGE_BITS_ALL;
371	}
372	VM_OBJECT_UNLOCK(ksobj);
373	pmap_qenter(ks, ma, pages);
374}
375
376/*
377 * Dispose of a thread's kernel stack.
378 */
379void
380vm_thread_dispose(struct thread *td)
381{
382	vm_object_t ksobj;
383	vm_offset_t ks;
384	vm_page_t m;
385	int i, pages;
386
387	pages = td->td_kstack_pages;
388	ksobj = td->td_kstack_obj;
389	ks = td->td_kstack;
390	pmap_qremove(ks, pages);
391	VM_OBJECT_LOCK(ksobj);
392	for (i = 0; i < pages; i++) {
393		m = vm_page_lookup(ksobj, i);
394		if (m == NULL)
395			panic("vm_thread_dispose: kstack already missing?");
396		vm_page_lock_queues();
397		vm_page_unwire(m, 0);
398		vm_page_free(m);
399		vm_page_unlock_queues();
400	}
401	VM_OBJECT_UNLOCK(ksobj);
402	vm_object_deallocate(ksobj);
403	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
404	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
405}
406
407/*
408 * Allow a thread's kernel stack to be paged out.
409 */
410void
411vm_thread_swapout(struct thread *td)
412{
413	vm_object_t ksobj;
414	vm_page_t m;
415	int i, pages;
416
417	cpu_thread_swapout(td);
418	pages = td->td_kstack_pages;
419	ksobj = td->td_kstack_obj;
420	pmap_qremove(td->td_kstack, pages);
421	VM_OBJECT_LOCK(ksobj);
422	for (i = 0; i < pages; i++) {
423		m = vm_page_lookup(ksobj, i);
424		if (m == NULL)
425			panic("vm_thread_swapout: kstack already missing?");
426		vm_page_lock_queues();
427		vm_page_dirty(m);
428		vm_page_unwire(m, 0);
429		vm_page_unlock_queues();
430	}
431	VM_OBJECT_UNLOCK(ksobj);
432}
433
434/*
435 * Bring the kernel stack for a specified thread back in.
436 */
437void
438vm_thread_swapin(struct thread *td)
439{
440	vm_object_t ksobj;
441	vm_page_t m, ma[KSTACK_MAX_PAGES];
442	int i, pages, rv;
443
444	pages = td->td_kstack_pages;
445	ksobj = td->td_kstack_obj;
446	VM_OBJECT_LOCK(ksobj);
447	for (i = 0; i < pages; i++) {
448		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
449		if (m->valid != VM_PAGE_BITS_ALL) {
450			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
451			if (rv != VM_PAGER_OK)
452				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
453			m = vm_page_lookup(ksobj, i);
454			m->valid = VM_PAGE_BITS_ALL;
455		}
456		ma[i] = m;
457		vm_page_lock_queues();
458		vm_page_wire(m);
459		vm_page_unlock_queues();
460		vm_page_wakeup(m);
461	}
462	VM_OBJECT_UNLOCK(ksobj);
463	pmap_qenter(td->td_kstack, ma, pages);
464	cpu_thread_swapin(td);
465}
466
467/*
468 * Set up a variable-sized alternate kstack.
469 */
470void
471vm_thread_new_altkstack(struct thread *td, int pages)
472{
473
474	td->td_altkstack = td->td_kstack;
475	td->td_altkstack_obj = td->td_kstack_obj;
476	td->td_altkstack_pages = td->td_kstack_pages;
477
478	vm_thread_new(td, pages);
479}
480
481/*
482 * Restore the original kstack.
483 */
484void
485vm_thread_dispose_altkstack(struct thread *td)
486{
487
488	vm_thread_dispose(td);
489
490	td->td_kstack = td->td_altkstack;
491	td->td_kstack_obj = td->td_altkstack_obj;
492	td->td_kstack_pages = td->td_altkstack_pages;
493	td->td_altkstack = 0;
494	td->td_altkstack_obj = NULL;
495	td->td_altkstack_pages = 0;
496}
497
498/*
499 * Implement fork's actions on an address space.
500 * Here we arrange for the address space to be copied or referenced,
501 * allocate a user struct (pcb and kernel stack), then call the
502 * machine-dependent layer to fill those in and make the new process
503 * ready to run.  The new process is set up so that it returns directly
504 * to user mode to avoid stack copying and relocation problems.
505 */
506void
507vm_forkproc(td, p2, td2, flags)
508	struct thread *td;
509	struct proc *p2;
510	struct thread *td2;
511	int flags;
512{
513	struct proc *p1 = td->td_proc;
514
515	if ((flags & RFPROC) == 0) {
516		/*
517		 * Divorce the memory, if it is shared, essentially
518		 * this changes shared memory amongst threads, into
519		 * COW locally.
520		 */
521		if ((flags & RFMEM) == 0) {
522			if (p1->p_vmspace->vm_refcnt > 1) {
523				vmspace_unshare(p1);
524			}
525		}
526		cpu_fork(td, p2, td2, flags);
527		return;
528	}
529
530	if (flags & RFMEM) {
531		p2->p_vmspace = p1->p_vmspace;
532		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
533	}
534
535	while (vm_page_count_severe()) {
536		VM_WAIT;
537	}
538
539	if ((flags & RFMEM) == 0) {
540		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
541		if (p1->p_vmspace->vm_shm)
542			shmfork(p1, p2);
543	}
544
545	/*
546	 * cpu_fork will copy and update the pcb, set up the kernel stack,
547	 * and make the child ready to run.
548	 */
549	cpu_fork(td, p2, td2, flags);
550}
551
552/*
553 * Called after process has been wait(2)'ed apon and is being reaped.
554 * The idea is to reclaim resources that we could not reclaim while
555 * the process was still executing.
556 */
557void
558vm_waitproc(p)
559	struct proc *p;
560{
561
562	vmspace_exitfree(p);		/* and clean-out the vmspace */
563}
564
565/*
566 * Set default limits for VM system.
567 * Called for proc 0, and then inherited by all others.
568 *
569 * XXX should probably act directly on proc0.
570 */
571static void
572vm_init_limits(udata)
573	void *udata;
574{
575	struct proc *p = udata;
576	struct plimit *limp;
577	int rss_limit;
578
579	/*
580	 * Set up the initial limits on process VM. Set the maximum resident
581	 * set size to be half of (reasonably) available memory.  Since this
582	 * is a soft limit, it comes into effect only when the system is out
583	 * of memory - half of main memory helps to favor smaller processes,
584	 * and reduces thrashing of the object cache.
585	 */
586	limp = p->p_limit;
587	limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
588	limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
589	limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
590	limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
591	/* limit the limit to no less than 2MB */
592	rss_limit = max(VMCNT_GET(free_count), 512);
593	limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
594	limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
595}
596
597void
598faultin(p)
599	struct proc *p;
600{
601#ifdef NO_SWAPPING
602
603	PROC_LOCK_ASSERT(p, MA_OWNED);
604	if ((p->p_sflag & PS_INMEM) == 0)
605		panic("faultin: proc swapped out with NO_SWAPPING!");
606#else /* !NO_SWAPPING */
607	struct thread *td;
608
609	PROC_LOCK_ASSERT(p, MA_OWNED);
610	/*
611	 * If another process is swapping in this process,
612	 * just wait until it finishes.
613	 */
614	if (p->p_sflag & PS_SWAPPINGIN)
615		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
616	else if ((p->p_sflag & PS_INMEM) == 0) {
617		/*
618		 * Don't let another thread swap process p out while we are
619		 * busy swapping it in.
620		 */
621		++p->p_lock;
622		mtx_lock_spin(&sched_lock);
623		p->p_sflag |= PS_SWAPPINGIN;
624		mtx_unlock_spin(&sched_lock);
625		PROC_UNLOCK(p);
626
627		FOREACH_THREAD_IN_PROC(p, td)
628			vm_thread_swapin(td);
629
630		PROC_LOCK(p);
631		mtx_lock_spin(&sched_lock);
632		p->p_sflag &= ~PS_SWAPPINGIN;
633		p->p_sflag |= PS_INMEM;
634		FOREACH_THREAD_IN_PROC(p, td) {
635			TD_CLR_SWAPPED(td);
636			if (TD_CAN_RUN(td))
637				setrunnable(td);
638		}
639		mtx_unlock_spin(&sched_lock);
640
641		wakeup(&p->p_sflag);
642
643		/* Allow other threads to swap p out now. */
644		--p->p_lock;
645	}
646#endif /* NO_SWAPPING */
647}
648
649/*
650 * This swapin algorithm attempts to swap-in processes only if there
651 * is enough space for them.  Of course, if a process waits for a long
652 * time, it will be swapped in anyway.
653 *
654 *  XXXKSE - process with the thread with highest priority counts..
655 *
656 * Giant is held on entry.
657 */
658/* ARGSUSED*/
659static void
660scheduler(dummy)
661	void *dummy;
662{
663	struct proc *p;
664	struct thread *td;
665	int pri;
666	struct proc *pp;
667	int ppri;
668
669	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
670	mtx_unlock(&Giant);
671
672loop:
673	if (vm_page_count_min()) {
674		VM_WAIT;
675		mtx_lock_spin(&sched_lock);
676		proc0_rescan = 0;
677		mtx_unlock_spin(&sched_lock);
678		goto loop;
679	}
680
681	pp = NULL;
682	ppri = INT_MIN;
683	sx_slock(&allproc_lock);
684	FOREACH_PROC_IN_SYSTEM(p) {
685		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
686			continue;
687		}
688		mtx_lock_spin(&sched_lock);
689		FOREACH_THREAD_IN_PROC(p, td) {
690			/*
691			 * An otherwise runnable thread of a process
692			 * swapped out has only the TDI_SWAPPED bit set.
693			 *
694			 */
695			if (td->td_inhibitors == TDI_SWAPPED) {
696				pri = p->p_swtime + td->td_slptime;
697				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
698					pri -= p->p_nice * 8;
699				}
700
701				/*
702				 * if this thread is higher priority
703				 * and there is enough space, then select
704				 * this process instead of the previous
705				 * selection.
706				 */
707				if (pri > ppri) {
708					pp = p;
709					ppri = pri;
710				}
711			}
712		}
713		mtx_unlock_spin(&sched_lock);
714	}
715	sx_sunlock(&allproc_lock);
716
717	/*
718	 * Nothing to do, back to sleep.
719	 */
720	if ((p = pp) == NULL) {
721		mtx_lock_spin(&sched_lock);
722		if (!proc0_rescan) {
723			TD_SET_IWAIT(&thread0);
724			mi_switch(SW_VOL, NULL);
725		}
726		proc0_rescan = 0;
727		mtx_unlock_spin(&sched_lock);
728		goto loop;
729	}
730	PROC_LOCK(p);
731
732	/*
733	 * Another process may be bringing or may have already
734	 * brought this process in while we traverse all threads.
735	 * Or, this process may even be being swapped out again.
736	 */
737	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
738		PROC_UNLOCK(p);
739		mtx_lock_spin(&sched_lock);
740		proc0_rescan = 0;
741		mtx_unlock_spin(&sched_lock);
742		goto loop;
743	}
744
745	mtx_lock_spin(&sched_lock);
746	p->p_sflag &= ~PS_SWAPINREQ;
747	mtx_unlock_spin(&sched_lock);
748
749	/*
750	 * We would like to bring someone in. (only if there is space).
751	 * [What checks the space? ]
752	 */
753	faultin(p);
754	PROC_UNLOCK(p);
755	mtx_lock_spin(&sched_lock);
756	p->p_swtime = 0;
757	proc0_rescan = 0;
758	mtx_unlock_spin(&sched_lock);
759	goto loop;
760}
761
762void kick_proc0(void)
763{
764	struct thread *td = &thread0;
765
766
767	if (TD_AWAITING_INTR(td)) {
768		CTR2(KTR_INTR, "%s: sched_add %d", __func__, 0);
769		TD_CLR_IWAIT(td);
770		sched_add(td, SRQ_INTR);
771	} else {
772		proc0_rescan = 1;
773		CTR2(KTR_INTR, "%s: state %d",
774		    __func__, td->td_state);
775	}
776
777}
778
779
780#ifndef NO_SWAPPING
781
782/*
783 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
784 */
785static int swap_idle_threshold1 = 2;
786SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
787    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
788
789/*
790 * Swap_idle_threshold2 is the time that a process can be idle before
791 * it will be swapped out, if idle swapping is enabled.
792 */
793static int swap_idle_threshold2 = 10;
794SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
795    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
796
797/*
798 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
799 * procs and unwire their u-areas.  We try to always "swap" at least one
800 * process in case we need the room for a swapin.
801 * If any procs have been sleeping/stopped for at least maxslp seconds,
802 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
803 * if any, otherwise the longest-resident process.
804 */
805void
806swapout_procs(action)
807int action;
808{
809	struct proc *p;
810	struct thread *td;
811	int didswap = 0;
812
813retry:
814	sx_slock(&allproc_lock);
815	FOREACH_PROC_IN_SYSTEM(p) {
816		struct vmspace *vm;
817		int minslptime = 100000;
818
819		/*
820		 * Watch out for a process in
821		 * creation.  It may have no
822		 * address space or lock yet.
823		 */
824		mtx_lock_spin(&sched_lock);
825		if (p->p_state == PRS_NEW) {
826			mtx_unlock_spin(&sched_lock);
827			continue;
828		}
829		mtx_unlock_spin(&sched_lock);
830
831		/*
832		 * An aio daemon switches its
833		 * address space while running.
834		 * Perform a quick check whether
835		 * a process has P_SYSTEM.
836		 */
837		if ((p->p_flag & P_SYSTEM) != 0)
838			continue;
839
840		/*
841		 * Do not swapout a process that
842		 * is waiting for VM data
843		 * structures as there is a possible
844		 * deadlock.  Test this first as
845		 * this may block.
846		 *
847		 * Lock the map until swapout
848		 * finishes, or a thread of this
849		 * process may attempt to alter
850		 * the map.
851		 */
852		vm = vmspace_acquire_ref(p);
853		if (vm == NULL)
854			continue;
855		if (!vm_map_trylock(&vm->vm_map))
856			goto nextproc1;
857
858		PROC_LOCK(p);
859		if (p->p_lock != 0 ||
860		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
861		    ) != 0) {
862			goto nextproc2;
863		}
864		/*
865		 * only aiod changes vmspace, however it will be
866		 * skipped because of the if statement above checking
867		 * for P_SYSTEM
868		 */
869		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
870			goto nextproc2;
871
872		switch (p->p_state) {
873		default:
874			/* Don't swap out processes in any sort
875			 * of 'special' state. */
876			break;
877
878		case PRS_NORMAL:
879			mtx_lock_spin(&sched_lock);
880			/*
881			 * do not swapout a realtime process
882			 * Check all the thread groups..
883			 */
884			FOREACH_THREAD_IN_PROC(p, td) {
885				if (PRI_IS_REALTIME(td->td_pri_class))
886					goto nextproc;
887
888				/*
889				 * Guarantee swap_idle_threshold1
890				 * time in memory.
891				 */
892				if (td->td_slptime < swap_idle_threshold1)
893					goto nextproc;
894
895				/*
896				 * Do not swapout a process if it is
897				 * waiting on a critical event of some
898				 * kind or there is a thread whose
899				 * pageable memory may be accessed.
900				 *
901				 * This could be refined to support
902				 * swapping out a thread.
903				 */
904				if ((td->td_priority) < PSOCK ||
905				    !thread_safetoswapout(td))
906					goto nextproc;
907				/*
908				 * If the system is under memory stress,
909				 * or if we are swapping
910				 * idle processes >= swap_idle_threshold2,
911				 * then swap the process out.
912				 */
913				if (((action & VM_SWAP_NORMAL) == 0) &&
914				    (((action & VM_SWAP_IDLE) == 0) ||
915				    (td->td_slptime < swap_idle_threshold2)))
916					goto nextproc;
917
918				if (minslptime > td->td_slptime)
919					minslptime = td->td_slptime;
920			}
921
922			/*
923			 * If the pageout daemon didn't free enough pages,
924			 * or if this process is idle and the system is
925			 * configured to swap proactively, swap it out.
926			 */
927			if ((action & VM_SWAP_NORMAL) ||
928				((action & VM_SWAP_IDLE) &&
929				 (minslptime > swap_idle_threshold2))) {
930				swapout(p);
931				didswap++;
932				mtx_unlock_spin(&sched_lock);
933				PROC_UNLOCK(p);
934				vm_map_unlock(&vm->vm_map);
935				vmspace_free(vm);
936				sx_sunlock(&allproc_lock);
937				goto retry;
938			}
939nextproc:
940			mtx_unlock_spin(&sched_lock);
941		}
942nextproc2:
943		PROC_UNLOCK(p);
944		vm_map_unlock(&vm->vm_map);
945nextproc1:
946		vmspace_free(vm);
947		continue;
948	}
949	sx_sunlock(&allproc_lock);
950	/*
951	 * If we swapped something out, and another process needed memory,
952	 * then wakeup the sched process.
953	 */
954	if (didswap)
955		wakeup(&proc0);
956}
957
958static void
959swapout(p)
960	struct proc *p;
961{
962	struct thread *td;
963
964	PROC_LOCK_ASSERT(p, MA_OWNED);
965	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
966#if defined(SWAP_DEBUG)
967	printf("swapping out %d\n", p->p_pid);
968#endif
969
970	/*
971	 * The states of this process and its threads may have changed
972	 * by now.  Assuming that there is only one pageout daemon thread,
973	 * this process should still be in memory.
974	 */
975	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
976		("swapout: lost a swapout race?"));
977
978#if defined(INVARIANTS)
979	/*
980	 * Make sure that all threads are safe to be swapped out.
981	 *
982	 * Alternatively, we could swap out only safe threads.
983	 */
984	FOREACH_THREAD_IN_PROC(p, td) {
985		KASSERT(thread_safetoswapout(td),
986			("swapout: there is a thread not safe for swapout"));
987	}
988#endif /* INVARIANTS */
989
990	++p->p_stats->p_ru.ru_nswap;
991	/*
992	 * remember the process resident count
993	 */
994	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
995
996	p->p_sflag &= ~PS_INMEM;
997	p->p_sflag |= PS_SWAPPINGOUT;
998	PROC_UNLOCK(p);
999	FOREACH_THREAD_IN_PROC(p, td)
1000		TD_SET_SWAPPED(td);
1001	mtx_unlock_spin(&sched_lock);
1002
1003	FOREACH_THREAD_IN_PROC(p, td)
1004		vm_thread_swapout(td);
1005
1006	PROC_LOCK(p);
1007	mtx_lock_spin(&sched_lock);
1008	p->p_sflag &= ~PS_SWAPPINGOUT;
1009	p->p_swtime = 0;
1010}
1011#endif /* !NO_SWAPPING */
1012