vm_glue.c revision 146554
1/*-
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51 *  School of Computer Science
52 *  Carnegie Mellon University
53 *  Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 146554 2005-05-23 23:01:53Z ups $");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/resourcevar.h>
73#include <sys/shm.h>
74#include <sys/vmmeter.h>
75#include <sys/sx.h>
76#include <sys/sysctl.h>
77
78#include <sys/kernel.h>
79#include <sys/ktr.h>
80#include <sys/unistd.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_page.h>
87#include <vm/vm_pageout.h>
88#include <vm/vm_object.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_pager.h>
92#include <vm/swap_pager.h>
93
94extern int maxslp;
95
96/*
97 * System initialization
98 *
99 * Note: proc0 from proc.h
100 */
101static void vm_init_limits(void *);
102SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
103
104/*
105 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
106 *
107 * Note: run scheduling should be divorced from the vm system.
108 */
109static void scheduler(void *);
110SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
111
112#ifndef NO_SWAPPING
113static void swapout(struct proc *);
114#endif
115
116
117static volatile int proc0_rescan;
118
119
120/*
121 * MPSAFE
122 *
123 * WARNING!  This code calls vm_map_check_protection() which only checks
124 * the associated vm_map_entry range.  It does not determine whether the
125 * contents of the memory is actually readable or writable.  In most cases
126 * just checking the vm_map_entry is sufficient within the kernel's address
127 * space.
128 */
129int
130kernacc(addr, len, rw)
131	void *addr;
132	int len, rw;
133{
134	boolean_t rv;
135	vm_offset_t saddr, eaddr;
136	vm_prot_t prot;
137
138	KASSERT((rw & ~VM_PROT_ALL) == 0,
139	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
140
141	if ((vm_offset_t)addr + len > kernel_map->max_offset ||
142	    (vm_offset_t)addr + len < (vm_offset_t)addr)
143		return (FALSE);
144
145	prot = rw;
146	saddr = trunc_page((vm_offset_t)addr);
147	eaddr = round_page((vm_offset_t)addr + len);
148	vm_map_lock_read(kernel_map);
149	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
150	vm_map_unlock_read(kernel_map);
151	return (rv == TRUE);
152}
153
154/*
155 * MPSAFE
156 *
157 * WARNING!  This code calls vm_map_check_protection() which only checks
158 * the associated vm_map_entry range.  It does not determine whether the
159 * contents of the memory is actually readable or writable.  vmapbuf(),
160 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
161 * used in conjuction with this call.
162 */
163int
164useracc(addr, len, rw)
165	void *addr;
166	int len, rw;
167{
168	boolean_t rv;
169	vm_prot_t prot;
170	vm_map_t map;
171
172	KASSERT((rw & ~VM_PROT_ALL) == 0,
173	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
174	prot = rw;
175	map = &curproc->p_vmspace->vm_map;
176	if ((vm_offset_t)addr + len > vm_map_max(map) ||
177	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
178		return (FALSE);
179	}
180	vm_map_lock_read(map);
181	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
182	    round_page((vm_offset_t)addr + len), prot);
183	vm_map_unlock_read(map);
184	return (rv == TRUE);
185}
186
187int
188vslock(void *addr, size_t len)
189{
190	vm_offset_t end, last, start;
191	vm_size_t npages;
192	int error;
193
194	last = (vm_offset_t)addr + len;
195	start = trunc_page((vm_offset_t)addr);
196	end = round_page(last);
197	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
198		return (EINVAL);
199	npages = atop(end - start);
200	if (npages > vm_page_max_wired)
201		return (ENOMEM);
202	PROC_LOCK(curproc);
203	if (ptoa(npages +
204	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
205	    lim_cur(curproc, RLIMIT_MEMLOCK)) {
206		PROC_UNLOCK(curproc);
207		return (ENOMEM);
208	}
209	PROC_UNLOCK(curproc);
210#if 0
211	/*
212	 * XXX - not yet
213	 *
214	 * The limit for transient usage of wired pages should be
215	 * larger than for "permanent" wired pages (mlock()).
216	 *
217	 * Also, the sysctl code, which is the only present user
218	 * of vslock(), does a hard loop on EAGAIN.
219	 */
220	if (npages + cnt.v_wire_count > vm_page_max_wired)
221		return (EAGAIN);
222#endif
223	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
224	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
225	/*
226	 * Return EFAULT on error to match copy{in,out}() behaviour
227	 * rather than returning ENOMEM like mlock() would.
228	 */
229	return (error == KERN_SUCCESS ? 0 : EFAULT);
230}
231
232void
233vsunlock(void *addr, size_t len)
234{
235
236	/* Rely on the parameter sanity checks performed by vslock(). */
237	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
238	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
239	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
240}
241
242#ifndef KSTACK_MAX_PAGES
243#define KSTACK_MAX_PAGES 32
244#endif
245
246/*
247 * Create the kernel stack (including pcb for i386) for a new thread.
248 * This routine directly affects the fork perf for a process and
249 * create performance for a thread.
250 */
251void
252vm_thread_new(struct thread *td, int pages)
253{
254	vm_object_t ksobj;
255	vm_offset_t ks;
256	vm_page_t m, ma[KSTACK_MAX_PAGES];
257	int i;
258
259	/* Bounds check */
260	if (pages <= 1)
261		pages = KSTACK_PAGES;
262	else if (pages > KSTACK_MAX_PAGES)
263		pages = KSTACK_MAX_PAGES;
264	/*
265	 * Allocate an object for the kstack.
266	 */
267	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
268	td->td_kstack_obj = ksobj;
269	/*
270	 * Get a kernel virtual address for this thread's kstack.
271	 */
272	ks = kmem_alloc_nofault(kernel_map,
273	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
274	if (ks == 0)
275		panic("vm_thread_new: kstack allocation failed");
276	if (KSTACK_GUARD_PAGES != 0) {
277		pmap_qremove(ks, KSTACK_GUARD_PAGES);
278		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
279	}
280	td->td_kstack = ks;
281	/*
282	 * Knowing the number of pages allocated is useful when you
283	 * want to deallocate them.
284	 */
285	td->td_kstack_pages = pages;
286	/*
287	 * For the length of the stack, link in a real page of ram for each
288	 * page of stack.
289	 */
290	VM_OBJECT_LOCK(ksobj);
291	for (i = 0; i < pages; i++) {
292		/*
293		 * Get a kernel stack page.
294		 */
295		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
296		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
297		ma[i] = m;
298		m->valid = VM_PAGE_BITS_ALL;
299	}
300	VM_OBJECT_UNLOCK(ksobj);
301	pmap_qenter(ks, ma, pages);
302}
303
304/*
305 * Dispose of a thread's kernel stack.
306 */
307void
308vm_thread_dispose(struct thread *td)
309{
310	vm_object_t ksobj;
311	vm_offset_t ks;
312	vm_page_t m;
313	int i, pages;
314
315	pages = td->td_kstack_pages;
316	ksobj = td->td_kstack_obj;
317	ks = td->td_kstack;
318	pmap_qremove(ks, pages);
319	VM_OBJECT_LOCK(ksobj);
320	for (i = 0; i < pages; i++) {
321		m = vm_page_lookup(ksobj, i);
322		if (m == NULL)
323			panic("vm_thread_dispose: kstack already missing?");
324		vm_page_lock_queues();
325		vm_page_unwire(m, 0);
326		vm_page_free(m);
327		vm_page_unlock_queues();
328	}
329	VM_OBJECT_UNLOCK(ksobj);
330	vm_object_deallocate(ksobj);
331	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
332	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
333}
334
335/*
336 * Allow a thread's kernel stack to be paged out.
337 */
338void
339vm_thread_swapout(struct thread *td)
340{
341	vm_object_t ksobj;
342	vm_page_t m;
343	int i, pages;
344
345	cpu_thread_swapout(td);
346	pages = td->td_kstack_pages;
347	ksobj = td->td_kstack_obj;
348	pmap_qremove(td->td_kstack, pages);
349	VM_OBJECT_LOCK(ksobj);
350	for (i = 0; i < pages; i++) {
351		m = vm_page_lookup(ksobj, i);
352		if (m == NULL)
353			panic("vm_thread_swapout: kstack already missing?");
354		vm_page_lock_queues();
355		vm_page_dirty(m);
356		vm_page_unwire(m, 0);
357		vm_page_unlock_queues();
358	}
359	VM_OBJECT_UNLOCK(ksobj);
360}
361
362/*
363 * Bring the kernel stack for a specified thread back in.
364 */
365void
366vm_thread_swapin(struct thread *td)
367{
368	vm_object_t ksobj;
369	vm_page_t m, ma[KSTACK_MAX_PAGES];
370	int i, pages, rv;
371
372	pages = td->td_kstack_pages;
373	ksobj = td->td_kstack_obj;
374	VM_OBJECT_LOCK(ksobj);
375	for (i = 0; i < pages; i++) {
376		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
377		if (m->valid != VM_PAGE_BITS_ALL) {
378			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
379			if (rv != VM_PAGER_OK)
380				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
381			m = vm_page_lookup(ksobj, i);
382			m->valid = VM_PAGE_BITS_ALL;
383		}
384		ma[i] = m;
385		vm_page_lock_queues();
386		vm_page_wire(m);
387		vm_page_wakeup(m);
388		vm_page_unlock_queues();
389	}
390	VM_OBJECT_UNLOCK(ksobj);
391	pmap_qenter(td->td_kstack, ma, pages);
392	cpu_thread_swapin(td);
393}
394
395/*
396 * Set up a variable-sized alternate kstack.
397 */
398void
399vm_thread_new_altkstack(struct thread *td, int pages)
400{
401
402	td->td_altkstack = td->td_kstack;
403	td->td_altkstack_obj = td->td_kstack_obj;
404	td->td_altkstack_pages = td->td_kstack_pages;
405
406	vm_thread_new(td, pages);
407}
408
409/*
410 * Restore the original kstack.
411 */
412void
413vm_thread_dispose_altkstack(struct thread *td)
414{
415
416	vm_thread_dispose(td);
417
418	td->td_kstack = td->td_altkstack;
419	td->td_kstack_obj = td->td_altkstack_obj;
420	td->td_kstack_pages = td->td_altkstack_pages;
421	td->td_altkstack = 0;
422	td->td_altkstack_obj = NULL;
423	td->td_altkstack_pages = 0;
424}
425
426/*
427 * Implement fork's actions on an address space.
428 * Here we arrange for the address space to be copied or referenced,
429 * allocate a user struct (pcb and kernel stack), then call the
430 * machine-dependent layer to fill those in and make the new process
431 * ready to run.  The new process is set up so that it returns directly
432 * to user mode to avoid stack copying and relocation problems.
433 */
434void
435vm_forkproc(td, p2, td2, flags)
436	struct thread *td;
437	struct proc *p2;
438	struct thread *td2;
439	int flags;
440{
441	struct proc *p1 = td->td_proc;
442
443	if ((flags & RFPROC) == 0) {
444		/*
445		 * Divorce the memory, if it is shared, essentially
446		 * this changes shared memory amongst threads, into
447		 * COW locally.
448		 */
449		if ((flags & RFMEM) == 0) {
450			if (p1->p_vmspace->vm_refcnt > 1) {
451				vmspace_unshare(p1);
452			}
453		}
454		cpu_fork(td, p2, td2, flags);
455		return;
456	}
457
458	if (flags & RFMEM) {
459		p2->p_vmspace = p1->p_vmspace;
460		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
461	}
462
463	while (vm_page_count_severe()) {
464		VM_WAIT;
465	}
466
467	if ((flags & RFMEM) == 0) {
468		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
469		if (p1->p_vmspace->vm_shm)
470			shmfork(p1, p2);
471	}
472
473	/*
474	 * cpu_fork will copy and update the pcb, set up the kernel stack,
475	 * and make the child ready to run.
476	 */
477	cpu_fork(td, p2, td2, flags);
478}
479
480/*
481 * Called after process has been wait(2)'ed apon and is being reaped.
482 * The idea is to reclaim resources that we could not reclaim while
483 * the process was still executing.
484 */
485void
486vm_waitproc(p)
487	struct proc *p;
488{
489
490	vmspace_exitfree(p);		/* and clean-out the vmspace */
491}
492
493/*
494 * Set default limits for VM system.
495 * Called for proc 0, and then inherited by all others.
496 *
497 * XXX should probably act directly on proc0.
498 */
499static void
500vm_init_limits(udata)
501	void *udata;
502{
503	struct proc *p = udata;
504	struct plimit *limp;
505	int rss_limit;
506
507	/*
508	 * Set up the initial limits on process VM. Set the maximum resident
509	 * set size to be half of (reasonably) available memory.  Since this
510	 * is a soft limit, it comes into effect only when the system is out
511	 * of memory - half of main memory helps to favor smaller processes,
512	 * and reduces thrashing of the object cache.
513	 */
514	limp = p->p_limit;
515	limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
516	limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
517	limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
518	limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
519	/* limit the limit to no less than 2MB */
520	rss_limit = max(cnt.v_free_count, 512);
521	limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
522	limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
523}
524
525void
526faultin(p)
527	struct proc *p;
528{
529#ifdef NO_SWAPPING
530
531	PROC_LOCK_ASSERT(p, MA_OWNED);
532	if ((p->p_sflag & PS_INMEM) == 0)
533		panic("faultin: proc swapped out with NO_SWAPPING!");
534#else /* !NO_SWAPPING */
535	struct thread *td;
536
537	PROC_LOCK_ASSERT(p, MA_OWNED);
538	/*
539	 * If another process is swapping in this process,
540	 * just wait until it finishes.
541	 */
542	if (p->p_sflag & PS_SWAPPINGIN)
543		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
544	else if ((p->p_sflag & PS_INMEM) == 0) {
545		/*
546		 * Don't let another thread swap process p out while we are
547		 * busy swapping it in.
548		 */
549		++p->p_lock;
550		mtx_lock_spin(&sched_lock);
551		p->p_sflag |= PS_SWAPPINGIN;
552		mtx_unlock_spin(&sched_lock);
553		PROC_UNLOCK(p);
554
555		FOREACH_THREAD_IN_PROC(p, td)
556			vm_thread_swapin(td);
557
558		PROC_LOCK(p);
559		mtx_lock_spin(&sched_lock);
560		p->p_sflag &= ~PS_SWAPPINGIN;
561		p->p_sflag |= PS_INMEM;
562		FOREACH_THREAD_IN_PROC(p, td) {
563			TD_CLR_SWAPPED(td);
564			if (TD_CAN_RUN(td))
565				setrunnable(td);
566		}
567		mtx_unlock_spin(&sched_lock);
568
569		wakeup(&p->p_sflag);
570
571		/* Allow other threads to swap p out now. */
572		--p->p_lock;
573	}
574#endif /* NO_SWAPPING */
575}
576
577/*
578 * This swapin algorithm attempts to swap-in processes only if there
579 * is enough space for them.  Of course, if a process waits for a long
580 * time, it will be swapped in anyway.
581 *
582 *  XXXKSE - process with the thread with highest priority counts..
583 *
584 * Giant is held on entry.
585 */
586/* ARGSUSED*/
587static void
588scheduler(dummy)
589	void *dummy;
590{
591	struct proc *p;
592	struct thread *td;
593	int pri;
594	struct proc *pp;
595	int ppri;
596
597	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
598	mtx_unlock(&Giant);
599
600loop:
601	if (vm_page_count_min()) {
602		VM_WAIT;
603		mtx_lock_spin(&sched_lock);
604		proc0_rescan = 0;
605		mtx_unlock_spin(&sched_lock);
606		goto loop;
607	}
608
609	pp = NULL;
610	ppri = INT_MIN;
611	sx_slock(&allproc_lock);
612	FOREACH_PROC_IN_SYSTEM(p) {
613		struct ksegrp *kg;
614		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
615			continue;
616		}
617		mtx_lock_spin(&sched_lock);
618		FOREACH_THREAD_IN_PROC(p, td) {
619			/*
620			 * An otherwise runnable thread of a process
621			 * swapped out has only the TDI_SWAPPED bit set.
622			 *
623			 */
624			if (td->td_inhibitors == TDI_SWAPPED) {
625				kg = td->td_ksegrp;
626				pri = p->p_swtime + kg->kg_slptime;
627				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
628					pri -= p->p_nice * 8;
629				}
630
631				/*
632				 * if this ksegrp is higher priority
633				 * and there is enough space, then select
634				 * this process instead of the previous
635				 * selection.
636				 */
637				if (pri > ppri) {
638					pp = p;
639					ppri = pri;
640				}
641			}
642		}
643		mtx_unlock_spin(&sched_lock);
644	}
645	sx_sunlock(&allproc_lock);
646
647	/*
648	 * Nothing to do, back to sleep.
649	 */
650	if ((p = pp) == NULL) {
651		mtx_lock_spin(&sched_lock);
652		if (!proc0_rescan) {
653			TD_SET_IWAIT(&thread0);
654			mi_switch(SW_VOL, NULL);
655		}
656		proc0_rescan = 0;
657		mtx_unlock_spin(&sched_lock);
658		goto loop;
659	}
660	PROC_LOCK(p);
661
662	/*
663	 * Another process may be bringing or may have already
664	 * brought this process in while we traverse all threads.
665	 * Or, this process may even be being swapped out again.
666	 */
667	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
668		PROC_UNLOCK(p);
669		mtx_lock_spin(&sched_lock);
670		proc0_rescan = 0;
671		mtx_unlock_spin(&sched_lock);
672		goto loop;
673	}
674
675	mtx_lock_spin(&sched_lock);
676	p->p_sflag &= ~PS_SWAPINREQ;
677	mtx_unlock_spin(&sched_lock);
678
679	/*
680	 * We would like to bring someone in. (only if there is space).
681	 * [What checks the space? ]
682	 */
683	faultin(p);
684	PROC_UNLOCK(p);
685	mtx_lock_spin(&sched_lock);
686	p->p_swtime = 0;
687	proc0_rescan = 0;
688	mtx_unlock_spin(&sched_lock);
689	goto loop;
690}
691
692void kick_proc0(void)
693{
694	struct thread *td = &thread0;
695
696
697	if (TD_AWAITING_INTR(td)) {
698		CTR2(KTR_INTR, "%s: setrunqueue %d", __func__, 0);
699		TD_CLR_IWAIT(td);
700		setrunqueue(td, SRQ_INTR);
701	} else {
702		proc0_rescan = 1;
703		CTR2(KTR_INTR, "%s: state %d",
704		    __func__, td->td_state);
705	}
706
707}
708
709
710#ifndef NO_SWAPPING
711
712/*
713 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
714 */
715static int swap_idle_threshold1 = 2;
716SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
717    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
718
719/*
720 * Swap_idle_threshold2 is the time that a process can be idle before
721 * it will be swapped out, if idle swapping is enabled.
722 */
723static int swap_idle_threshold2 = 10;
724SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
725    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
726
727/*
728 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
729 * procs and unwire their u-areas.  We try to always "swap" at least one
730 * process in case we need the room for a swapin.
731 * If any procs have been sleeping/stopped for at least maxslp seconds,
732 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
733 * if any, otherwise the longest-resident process.
734 */
735void
736swapout_procs(action)
737int action;
738{
739	struct proc *p;
740	struct thread *td;
741	struct ksegrp *kg;
742	int didswap = 0;
743
744retry:
745	sx_slock(&allproc_lock);
746	FOREACH_PROC_IN_SYSTEM(p) {
747		struct vmspace *vm;
748		int minslptime = 100000;
749
750		/*
751		 * Watch out for a process in
752		 * creation.  It may have no
753		 * address space or lock yet.
754		 */
755		mtx_lock_spin(&sched_lock);
756		if (p->p_state == PRS_NEW) {
757			mtx_unlock_spin(&sched_lock);
758			continue;
759		}
760		mtx_unlock_spin(&sched_lock);
761
762		/*
763		 * An aio daemon switches its
764		 * address space while running.
765		 * Perform a quick check whether
766		 * a process has P_SYSTEM.
767		 */
768		if ((p->p_flag & P_SYSTEM) != 0)
769			continue;
770
771		/*
772		 * Do not swapout a process that
773		 * is waiting for VM data
774		 * structures as there is a possible
775		 * deadlock.  Test this first as
776		 * this may block.
777		 *
778		 * Lock the map until swapout
779		 * finishes, or a thread of this
780		 * process may attempt to alter
781		 * the map.
782		 */
783		PROC_LOCK(p);
784		vm = p->p_vmspace;
785		KASSERT(vm != NULL,
786			("swapout_procs: a process has no address space"));
787		atomic_add_int(&vm->vm_refcnt, 1);
788		PROC_UNLOCK(p);
789		if (!vm_map_trylock(&vm->vm_map))
790			goto nextproc1;
791
792		PROC_LOCK(p);
793		if (p->p_lock != 0 ||
794		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
795		    ) != 0) {
796			goto nextproc2;
797		}
798		/*
799		 * only aiod changes vmspace, however it will be
800		 * skipped because of the if statement above checking
801		 * for P_SYSTEM
802		 */
803		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
804			goto nextproc2;
805
806		switch (p->p_state) {
807		default:
808			/* Don't swap out processes in any sort
809			 * of 'special' state. */
810			break;
811
812		case PRS_NORMAL:
813			mtx_lock_spin(&sched_lock);
814			/*
815			 * do not swapout a realtime process
816			 * Check all the thread groups..
817			 */
818			FOREACH_KSEGRP_IN_PROC(p, kg) {
819				if (PRI_IS_REALTIME(kg->kg_pri_class))
820					goto nextproc;
821
822				/*
823				 * Guarantee swap_idle_threshold1
824				 * time in memory.
825				 */
826				if (kg->kg_slptime < swap_idle_threshold1)
827					goto nextproc;
828
829				/*
830				 * Do not swapout a process if it is
831				 * waiting on a critical event of some
832				 * kind or there is a thread whose
833				 * pageable memory may be accessed.
834				 *
835				 * This could be refined to support
836				 * swapping out a thread.
837				 */
838				FOREACH_THREAD_IN_GROUP(kg, td) {
839					if ((td->td_priority) < PSOCK ||
840					    !thread_safetoswapout(td))
841						goto nextproc;
842				}
843				/*
844				 * If the system is under memory stress,
845				 * or if we are swapping
846				 * idle processes >= swap_idle_threshold2,
847				 * then swap the process out.
848				 */
849				if (((action & VM_SWAP_NORMAL) == 0) &&
850				    (((action & VM_SWAP_IDLE) == 0) ||
851				    (kg->kg_slptime < swap_idle_threshold2)))
852					goto nextproc;
853
854				if (minslptime > kg->kg_slptime)
855					minslptime = kg->kg_slptime;
856			}
857
858			/*
859			 * If the pageout daemon didn't free enough pages,
860			 * or if this process is idle and the system is
861			 * configured to swap proactively, swap it out.
862			 */
863			if ((action & VM_SWAP_NORMAL) ||
864				((action & VM_SWAP_IDLE) &&
865				 (minslptime > swap_idle_threshold2))) {
866				swapout(p);
867				didswap++;
868				mtx_unlock_spin(&sched_lock);
869				PROC_UNLOCK(p);
870				vm_map_unlock(&vm->vm_map);
871				vmspace_free(vm);
872				sx_sunlock(&allproc_lock);
873				goto retry;
874			}
875nextproc:
876			mtx_unlock_spin(&sched_lock);
877		}
878nextproc2:
879		PROC_UNLOCK(p);
880		vm_map_unlock(&vm->vm_map);
881nextproc1:
882		vmspace_free(vm);
883		continue;
884	}
885	sx_sunlock(&allproc_lock);
886	/*
887	 * If we swapped something out, and another process needed memory,
888	 * then wakeup the sched process.
889	 */
890	if (didswap)
891		wakeup(&proc0);
892}
893
894static void
895swapout(p)
896	struct proc *p;
897{
898	struct thread *td;
899
900	PROC_LOCK_ASSERT(p, MA_OWNED);
901	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
902#if defined(SWAP_DEBUG)
903	printf("swapping out %d\n", p->p_pid);
904#endif
905
906	/*
907	 * The states of this process and its threads may have changed
908	 * by now.  Assuming that there is only one pageout daemon thread,
909	 * this process should still be in memory.
910	 */
911	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
912		("swapout: lost a swapout race?"));
913
914#if defined(INVARIANTS)
915	/*
916	 * Make sure that all threads are safe to be swapped out.
917	 *
918	 * Alternatively, we could swap out only safe threads.
919	 */
920	FOREACH_THREAD_IN_PROC(p, td) {
921		KASSERT(thread_safetoswapout(td),
922			("swapout: there is a thread not safe for swapout"));
923	}
924#endif /* INVARIANTS */
925
926	++p->p_stats->p_ru.ru_nswap;
927	/*
928	 * remember the process resident count
929	 */
930	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
931
932	p->p_sflag &= ~PS_INMEM;
933	p->p_sflag |= PS_SWAPPINGOUT;
934	PROC_UNLOCK(p);
935	FOREACH_THREAD_IN_PROC(p, td)
936		TD_SET_SWAPPED(td);
937	mtx_unlock_spin(&sched_lock);
938
939	FOREACH_THREAD_IN_PROC(p, td)
940		vm_thread_swapout(td);
941
942	PROC_LOCK(p);
943	mtx_lock_spin(&sched_lock);
944	p->p_sflag &= ~PS_SWAPPINGOUT;
945	p->p_swtime = 0;
946}
947#endif /* !NO_SWAPPING */
948