vm_glue.c revision 136923
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 4. Neither the name of the University nor the names of its contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
33 *
34 *
35 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36 * All rights reserved.
37 *
38 * Permission to use, copy, modify and distribute this software and
39 * its documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
43 *
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
46 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
47 *
48 * Carnegie Mellon requests users of this software to return to
49 *
50 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
51 *  School of Computer Science
52 *  Carnegie Mellon University
53 *  Pittsburgh PA 15213-3890
54 *
55 * any improvements or extensions that they make and grant Carnegie the
56 * rights to redistribute these changes.
57 */
58
59#include <sys/cdefs.h>
60__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 136923 2004-10-24 18:46:32Z alc $");
61
62#include "opt_vm.h"
63#include "opt_kstack_pages.h"
64#include "opt_kstack_max_pages.h"
65
66#include <sys/param.h>
67#include <sys/systm.h>
68#include <sys/limits.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/resourcevar.h>
73#include <sys/shm.h>
74#include <sys/vmmeter.h>
75#include <sys/sx.h>
76#include <sys/sysctl.h>
77
78#include <sys/kernel.h>
79#include <sys/ktr.h>
80#include <sys/unistd.h>
81
82#include <vm/vm.h>
83#include <vm/vm_param.h>
84#include <vm/pmap.h>
85#include <vm/vm_map.h>
86#include <vm/vm_page.h>
87#include <vm/vm_pageout.h>
88#include <vm/vm_object.h>
89#include <vm/vm_kern.h>
90#include <vm/vm_extern.h>
91#include <vm/vm_pager.h>
92#include <vm/swap_pager.h>
93
94#include <sys/user.h>
95
96extern int maxslp;
97
98/*
99 * System initialization
100 *
101 * Note: proc0 from proc.h
102 */
103static void vm_init_limits(void *);
104SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
105
106/*
107 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
108 *
109 * Note: run scheduling should be divorced from the vm system.
110 */
111static void scheduler(void *);
112SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
113
114#ifndef NO_SWAPPING
115static void swapout(struct proc *);
116static void vm_proc_swapin(struct proc *p);
117static void vm_proc_swapout(struct proc *p);
118#endif
119
120/*
121 * MPSAFE
122 *
123 * WARNING!  This code calls vm_map_check_protection() which only checks
124 * the associated vm_map_entry range.  It does not determine whether the
125 * contents of the memory is actually readable or writable.  In most cases
126 * just checking the vm_map_entry is sufficient within the kernel's address
127 * space.
128 */
129int
130kernacc(addr, len, rw)
131	void *addr;
132	int len, rw;
133{
134	boolean_t rv;
135	vm_offset_t saddr, eaddr;
136	vm_prot_t prot;
137
138	KASSERT((rw & ~VM_PROT_ALL) == 0,
139	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
140	prot = rw;
141	saddr = trunc_page((vm_offset_t)addr);
142	eaddr = round_page((vm_offset_t)addr + len);
143	vm_map_lock_read(kernel_map);
144	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
145	vm_map_unlock_read(kernel_map);
146	return (rv == TRUE);
147}
148
149/*
150 * MPSAFE
151 *
152 * WARNING!  This code calls vm_map_check_protection() which only checks
153 * the associated vm_map_entry range.  It does not determine whether the
154 * contents of the memory is actually readable or writable.  vmapbuf(),
155 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
156 * used in conjuction with this call.
157 */
158int
159useracc(addr, len, rw)
160	void *addr;
161	int len, rw;
162{
163	boolean_t rv;
164	vm_prot_t prot;
165	vm_map_t map;
166
167	KASSERT((rw & ~VM_PROT_ALL) == 0,
168	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
169	prot = rw;
170	map = &curproc->p_vmspace->vm_map;
171	if ((vm_offset_t)addr + len > vm_map_max(map) ||
172	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
173		return (FALSE);
174	}
175	vm_map_lock_read(map);
176	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
177	    round_page((vm_offset_t)addr + len), prot);
178	vm_map_unlock_read(map);
179	return (rv == TRUE);
180}
181
182int
183vslock(void *addr, size_t len)
184{
185	vm_offset_t end, last, start;
186	vm_size_t npages;
187	int error;
188
189	last = (vm_offset_t)addr + len;
190	start = trunc_page((vm_offset_t)addr);
191	end = round_page(last);
192	if (last < (vm_offset_t)addr || end < (vm_offset_t)addr)
193		return (EINVAL);
194	npages = atop(end - start);
195	if (npages > vm_page_max_wired)
196		return (ENOMEM);
197	PROC_LOCK(curproc);
198	if (ptoa(npages +
199	    pmap_wired_count(vm_map_pmap(&curproc->p_vmspace->vm_map))) >
200	    lim_cur(curproc, RLIMIT_MEMLOCK)) {
201		PROC_UNLOCK(curproc);
202		return (ENOMEM);
203	}
204	PROC_UNLOCK(curproc);
205#if 0
206	/*
207	 * XXX - not yet
208	 *
209	 * The limit for transient usage of wired pages should be
210	 * larger than for "permanent" wired pages (mlock()).
211	 *
212	 * Also, the sysctl code, which is the only present user
213	 * of vslock(), does a hard loop on EAGAIN.
214	 */
215	if (npages + cnt.v_wire_count > vm_page_max_wired)
216		return (EAGAIN);
217#endif
218	error = vm_map_wire(&curproc->p_vmspace->vm_map, start, end,
219	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
220	/*
221	 * Return EFAULT on error to match copy{in,out}() behaviour
222	 * rather than returning ENOMEM like mlock() would.
223	 */
224	return (error == KERN_SUCCESS ? 0 : EFAULT);
225}
226
227void
228vsunlock(void *addr, size_t len)
229{
230
231	/* Rely on the parameter sanity checks performed by vslock(). */
232	(void)vm_map_unwire(&curproc->p_vmspace->vm_map,
233	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
234	    VM_MAP_WIRE_SYSTEM | VM_MAP_WIRE_NOHOLES);
235}
236
237/*
238 * Create the U area for a new process.
239 * This routine directly affects the fork perf for a process.
240 */
241void
242vm_proc_new(struct proc *p)
243{
244	vm_page_t ma[UAREA_PAGES];
245	vm_object_t upobj;
246	vm_offset_t up;
247	vm_page_t m;
248	u_int i;
249
250	/*
251	 * Get a kernel virtual address for the U area for this process.
252	 */
253	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
254	if (up == 0)
255		panic("vm_proc_new: upage allocation failed");
256	p->p_uarea = (struct user *)up;
257
258	/*
259	 * Allocate object and page(s) for the U area.
260	 */
261	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
262	p->p_upages_obj = upobj;
263	VM_OBJECT_LOCK(upobj);
264	for (i = 0; i < UAREA_PAGES; i++) {
265		m = vm_page_grab(upobj, i, VM_ALLOC_NOBUSY |
266		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
267		ma[i] = m;
268		m->valid = VM_PAGE_BITS_ALL;
269	}
270	VM_OBJECT_UNLOCK(upobj);
271
272	/*
273	 * Enter the pages into the kernel address space.
274	 */
275	pmap_qenter(up, ma, UAREA_PAGES);
276}
277
278/*
279 * Dispose the U area for a process that has exited.
280 * This routine directly impacts the exit perf of a process.
281 *
282 * XXX UNUSED
283 * U areas of free proc structures are no longer freed and are never
284 * swapped out.  Ideally we would free U areas lazily, when low on memory.
285 */
286void
287vm_proc_dispose(struct proc *p)
288{
289	vm_object_t upobj;
290	vm_offset_t up;
291	vm_page_t m;
292
293	upobj = p->p_upages_obj;
294	VM_OBJECT_LOCK(upobj);
295	if (upobj->resident_page_count != UAREA_PAGES)
296		panic("vm_proc_dispose: incorrect number of pages in upobj");
297	vm_page_lock_queues();
298	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
299		vm_page_busy(m);
300		vm_page_unwire(m, 0);
301		vm_page_free(m);
302	}
303	vm_page_unlock_queues();
304	VM_OBJECT_UNLOCK(upobj);
305	up = (vm_offset_t)p->p_uarea;
306	pmap_qremove(up, UAREA_PAGES);
307	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
308	vm_object_deallocate(upobj);
309}
310
311#ifndef NO_SWAPPING
312/*
313 * Allow the U area for a process to be prejudicially paged out.
314 */
315static void
316vm_proc_swapout(struct proc *p)
317{
318	vm_object_t upobj;
319	vm_offset_t up;
320	vm_page_t m;
321
322	upobj = p->p_upages_obj;
323	VM_OBJECT_LOCK(upobj);
324	if (upobj->resident_page_count != UAREA_PAGES)
325		panic("vm_proc_dispose: incorrect number of pages in upobj");
326	vm_page_lock_queues();
327	TAILQ_FOREACH(m, &upobj->memq, listq) {
328		vm_page_dirty(m);
329		vm_page_unwire(m, 0);
330	}
331	vm_page_unlock_queues();
332	VM_OBJECT_UNLOCK(upobj);
333	up = (vm_offset_t)p->p_uarea;
334	pmap_qremove(up, UAREA_PAGES);
335}
336
337/*
338 * Bring the U area for a specified process back in.
339 */
340static void
341vm_proc_swapin(struct proc *p)
342{
343	vm_page_t ma[UAREA_PAGES];
344	vm_object_t upobj;
345	vm_offset_t up;
346	vm_page_t m;
347	int rv;
348	int i;
349
350	upobj = p->p_upages_obj;
351	VM_OBJECT_LOCK(upobj);
352	for (i = 0; i < UAREA_PAGES; i++) {
353		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
354		if (m->valid != VM_PAGE_BITS_ALL) {
355			rv = vm_pager_get_pages(upobj, &m, 1, 0);
356			if (rv != VM_PAGER_OK)
357				panic("vm_proc_swapin: cannot get upage");
358		}
359		ma[i] = m;
360	}
361	if (upobj->resident_page_count != UAREA_PAGES)
362		panic("vm_proc_swapin: lost pages from upobj");
363	vm_page_lock_queues();
364	TAILQ_FOREACH(m, &upobj->memq, listq) {
365		m->valid = VM_PAGE_BITS_ALL;
366		vm_page_wire(m);
367		vm_page_wakeup(m);
368	}
369	vm_page_unlock_queues();
370	VM_OBJECT_UNLOCK(upobj);
371	up = (vm_offset_t)p->p_uarea;
372	pmap_qenter(up, ma, UAREA_PAGES);
373}
374
375/*
376 * Swap in the UAREAs of all processes swapped out to the given device.
377 * The pages in the UAREA are marked dirty and their swap metadata is freed.
378 */
379void
380vm_proc_swapin_all(struct swdevt *devidx)
381{
382	struct proc *p;
383	vm_object_t object;
384	vm_page_t m;
385
386retry:
387	sx_slock(&allproc_lock);
388	FOREACH_PROC_IN_SYSTEM(p) {
389		PROC_LOCK(p);
390		object = p->p_upages_obj;
391		if (object != NULL) {
392			VM_OBJECT_LOCK(object);
393			if (swap_pager_isswapped(object, devidx)) {
394				VM_OBJECT_UNLOCK(object);
395				sx_sunlock(&allproc_lock);
396				faultin(p);
397				PROC_UNLOCK(p);
398				VM_OBJECT_LOCK(object);
399				vm_page_lock_queues();
400				TAILQ_FOREACH(m, &object->memq, listq)
401					vm_page_dirty(m);
402				vm_page_unlock_queues();
403				swap_pager_freespace(object, 0,
404				    object->un_pager.swp.swp_bcount);
405				VM_OBJECT_UNLOCK(object);
406				goto retry;
407			}
408			VM_OBJECT_UNLOCK(object);
409		}
410		PROC_UNLOCK(p);
411	}
412	sx_sunlock(&allproc_lock);
413}
414#endif
415
416#ifndef KSTACK_MAX_PAGES
417#define KSTACK_MAX_PAGES 32
418#endif
419
420/*
421 * Create the kernel stack (including pcb for i386) for a new thread.
422 * This routine directly affects the fork perf for a process and
423 * create performance for a thread.
424 */
425void
426vm_thread_new(struct thread *td, int pages)
427{
428	vm_object_t ksobj;
429	vm_offset_t ks;
430	vm_page_t m, ma[KSTACK_MAX_PAGES];
431	int i;
432
433	/* Bounds check */
434	if (pages <= 1)
435		pages = KSTACK_PAGES;
436	else if (pages > KSTACK_MAX_PAGES)
437		pages = KSTACK_MAX_PAGES;
438	/*
439	 * Allocate an object for the kstack.
440	 */
441	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
442	td->td_kstack_obj = ksobj;
443	/*
444	 * Get a kernel virtual address for this thread's kstack.
445	 */
446	ks = kmem_alloc_nofault(kernel_map,
447	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
448	if (ks == 0)
449		panic("vm_thread_new: kstack allocation failed");
450	if (KSTACK_GUARD_PAGES != 0) {
451		pmap_qremove(ks, KSTACK_GUARD_PAGES);
452		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
453	}
454	td->td_kstack = ks;
455	/*
456	 * Knowing the number of pages allocated is useful when you
457	 * want to deallocate them.
458	 */
459	td->td_kstack_pages = pages;
460	/*
461	 * For the length of the stack, link in a real page of ram for each
462	 * page of stack.
463	 */
464	VM_OBJECT_LOCK(ksobj);
465	for (i = 0; i < pages; i++) {
466		/*
467		 * Get a kernel stack page.
468		 */
469		m = vm_page_grab(ksobj, i, VM_ALLOC_NOBUSY |
470		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
471		ma[i] = m;
472		m->valid = VM_PAGE_BITS_ALL;
473	}
474	VM_OBJECT_UNLOCK(ksobj);
475	pmap_qenter(ks, ma, pages);
476}
477
478/*
479 * Dispose of a thread's kernel stack.
480 */
481void
482vm_thread_dispose(struct thread *td)
483{
484	vm_object_t ksobj;
485	vm_offset_t ks;
486	vm_page_t m;
487	int i, pages;
488
489	pages = td->td_kstack_pages;
490	ksobj = td->td_kstack_obj;
491	ks = td->td_kstack;
492	pmap_qremove(ks, pages);
493	VM_OBJECT_LOCK(ksobj);
494	for (i = 0; i < pages; i++) {
495		m = vm_page_lookup(ksobj, i);
496		if (m == NULL)
497			panic("vm_thread_dispose: kstack already missing?");
498		vm_page_lock_queues();
499		vm_page_busy(m);
500		vm_page_unwire(m, 0);
501		vm_page_free(m);
502		vm_page_unlock_queues();
503	}
504	VM_OBJECT_UNLOCK(ksobj);
505	vm_object_deallocate(ksobj);
506	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
507	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
508}
509
510/*
511 * Allow a thread's kernel stack to be paged out.
512 */
513void
514vm_thread_swapout(struct thread *td)
515{
516	vm_object_t ksobj;
517	vm_page_t m;
518	int i, pages;
519
520	cpu_thread_swapout(td);
521	pages = td->td_kstack_pages;
522	ksobj = td->td_kstack_obj;
523	pmap_qremove(td->td_kstack, pages);
524	VM_OBJECT_LOCK(ksobj);
525	for (i = 0; i < pages; i++) {
526		m = vm_page_lookup(ksobj, i);
527		if (m == NULL)
528			panic("vm_thread_swapout: kstack already missing?");
529		vm_page_lock_queues();
530		vm_page_dirty(m);
531		vm_page_unwire(m, 0);
532		vm_page_unlock_queues();
533	}
534	VM_OBJECT_UNLOCK(ksobj);
535}
536
537/*
538 * Bring the kernel stack for a specified thread back in.
539 */
540void
541vm_thread_swapin(struct thread *td)
542{
543	vm_object_t ksobj;
544	vm_page_t m, ma[KSTACK_MAX_PAGES];
545	int i, pages, rv;
546
547	pages = td->td_kstack_pages;
548	ksobj = td->td_kstack_obj;
549	VM_OBJECT_LOCK(ksobj);
550	for (i = 0; i < pages; i++) {
551		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
552		if (m->valid != VM_PAGE_BITS_ALL) {
553			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
554			if (rv != VM_PAGER_OK)
555				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
556			m = vm_page_lookup(ksobj, i);
557			m->valid = VM_PAGE_BITS_ALL;
558		}
559		ma[i] = m;
560		vm_page_lock_queues();
561		vm_page_wire(m);
562		vm_page_wakeup(m);
563		vm_page_unlock_queues();
564	}
565	VM_OBJECT_UNLOCK(ksobj);
566	pmap_qenter(td->td_kstack, ma, pages);
567	cpu_thread_swapin(td);
568}
569
570/*
571 * Set up a variable-sized alternate kstack.
572 */
573void
574vm_thread_new_altkstack(struct thread *td, int pages)
575{
576
577	td->td_altkstack = td->td_kstack;
578	td->td_altkstack_obj = td->td_kstack_obj;
579	td->td_altkstack_pages = td->td_kstack_pages;
580
581	vm_thread_new(td, pages);
582}
583
584/*
585 * Restore the original kstack.
586 */
587void
588vm_thread_dispose_altkstack(struct thread *td)
589{
590
591	vm_thread_dispose(td);
592
593	td->td_kstack = td->td_altkstack;
594	td->td_kstack_obj = td->td_altkstack_obj;
595	td->td_kstack_pages = td->td_altkstack_pages;
596	td->td_altkstack = 0;
597	td->td_altkstack_obj = NULL;
598	td->td_altkstack_pages = 0;
599}
600
601/*
602 * Implement fork's actions on an address space.
603 * Here we arrange for the address space to be copied or referenced,
604 * allocate a user struct (pcb and kernel stack), then call the
605 * machine-dependent layer to fill those in and make the new process
606 * ready to run.  The new process is set up so that it returns directly
607 * to user mode to avoid stack copying and relocation problems.
608 */
609void
610vm_forkproc(td, p2, td2, flags)
611	struct thread *td;
612	struct proc *p2;
613	struct thread *td2;
614	int flags;
615{
616	struct proc *p1 = td->td_proc;
617
618	if ((flags & RFPROC) == 0) {
619		/*
620		 * Divorce the memory, if it is shared, essentially
621		 * this changes shared memory amongst threads, into
622		 * COW locally.
623		 */
624		if ((flags & RFMEM) == 0) {
625			if (p1->p_vmspace->vm_refcnt > 1) {
626				vmspace_unshare(p1);
627			}
628		}
629		cpu_fork(td, p2, td2, flags);
630		return;
631	}
632
633	if (flags & RFMEM) {
634		p2->p_vmspace = p1->p_vmspace;
635		atomic_add_int(&p1->p_vmspace->vm_refcnt, 1);
636	}
637
638	while (vm_page_count_severe()) {
639		VM_WAIT;
640	}
641
642	if ((flags & RFMEM) == 0) {
643		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
644		if (p1->p_vmspace->vm_shm)
645			shmfork(p1, p2);
646	}
647
648	/*
649	 * p_stats currently points at fields in the user struct.
650	 * Copy parts of p_stats; zero the rest of p_stats (statistics).
651	 */
652#define	RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
653
654	p2->p_stats = &p2->p_uarea->u_stats;
655	bzero(&p2->p_stats->pstat_startzero,
656	    (unsigned) RANGEOF(struct pstats, pstat_startzero, pstat_endzero));
657	bcopy(&p1->p_stats->pstat_startcopy, &p2->p_stats->pstat_startcopy,
658	    (unsigned) RANGEOF(struct pstats, pstat_startcopy, pstat_endcopy));
659#undef RANGEOF
660
661	/*
662	 * cpu_fork will copy and update the pcb, set up the kernel stack,
663	 * and make the child ready to run.
664	 */
665	cpu_fork(td, p2, td2, flags);
666}
667
668/*
669 * Called after process has been wait(2)'ed apon and is being reaped.
670 * The idea is to reclaim resources that we could not reclaim while
671 * the process was still executing.
672 */
673void
674vm_waitproc(p)
675	struct proc *p;
676{
677
678	vmspace_exitfree(p);		/* and clean-out the vmspace */
679}
680
681/*
682 * Set default limits for VM system.
683 * Called for proc 0, and then inherited by all others.
684 *
685 * XXX should probably act directly on proc0.
686 */
687static void
688vm_init_limits(udata)
689	void *udata;
690{
691	struct proc *p = udata;
692	struct plimit *limp;
693	int rss_limit;
694
695	/*
696	 * Set up the initial limits on process VM. Set the maximum resident
697	 * set size to be half of (reasonably) available memory.  Since this
698	 * is a soft limit, it comes into effect only when the system is out
699	 * of memory - half of main memory helps to favor smaller processes,
700	 * and reduces thrashing of the object cache.
701	 */
702	limp = p->p_limit;
703	limp->pl_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
704	limp->pl_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
705	limp->pl_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
706	limp->pl_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
707	/* limit the limit to no less than 2MB */
708	rss_limit = max(cnt.v_free_count, 512);
709	limp->pl_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
710	limp->pl_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
711}
712
713void
714faultin(p)
715	struct proc *p;
716{
717#ifdef NO_SWAPPING
718
719	PROC_LOCK_ASSERT(p, MA_OWNED);
720	if ((p->p_sflag & PS_INMEM) == 0)
721		panic("faultin: proc swapped out with NO_SWAPPING!");
722#else /* !NO_SWAPPING */
723	struct thread *td;
724
725	GIANT_REQUIRED;
726	PROC_LOCK_ASSERT(p, MA_OWNED);
727	/*
728	 * If another process is swapping in this process,
729	 * just wait until it finishes.
730	 */
731	if (p->p_sflag & PS_SWAPPINGIN)
732		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
733	else if ((p->p_sflag & PS_INMEM) == 0) {
734		/*
735		 * Don't let another thread swap process p out while we are
736		 * busy swapping it in.
737		 */
738		++p->p_lock;
739		mtx_lock_spin(&sched_lock);
740		p->p_sflag |= PS_SWAPPINGIN;
741		mtx_unlock_spin(&sched_lock);
742		PROC_UNLOCK(p);
743
744		vm_proc_swapin(p);
745		FOREACH_THREAD_IN_PROC(p, td)
746			vm_thread_swapin(td);
747
748		PROC_LOCK(p);
749		mtx_lock_spin(&sched_lock);
750		p->p_sflag &= ~PS_SWAPPINGIN;
751		p->p_sflag |= PS_INMEM;
752		FOREACH_THREAD_IN_PROC(p, td) {
753			TD_CLR_SWAPPED(td);
754			if (TD_CAN_RUN(td))
755				setrunnable(td);
756		}
757		mtx_unlock_spin(&sched_lock);
758
759		wakeup(&p->p_sflag);
760
761		/* Allow other threads to swap p out now. */
762		--p->p_lock;
763	}
764#endif /* NO_SWAPPING */
765}
766
767/*
768 * This swapin algorithm attempts to swap-in processes only if there
769 * is enough space for them.  Of course, if a process waits for a long
770 * time, it will be swapped in anyway.
771 *
772 *  XXXKSE - process with the thread with highest priority counts..
773 *
774 * Giant is still held at this point, to be released in tsleep.
775 */
776/* ARGSUSED*/
777static void
778scheduler(dummy)
779	void *dummy;
780{
781	struct proc *p;
782	struct thread *td;
783	int pri;
784	struct proc *pp;
785	int ppri;
786
787	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
788	/* GIANT_REQUIRED */
789
790loop:
791	if (vm_page_count_min()) {
792		VM_WAIT;
793		goto loop;
794	}
795
796	pp = NULL;
797	ppri = INT_MIN;
798	sx_slock(&allproc_lock);
799	FOREACH_PROC_IN_SYSTEM(p) {
800		struct ksegrp *kg;
801		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
802			continue;
803		}
804		mtx_lock_spin(&sched_lock);
805		FOREACH_THREAD_IN_PROC(p, td) {
806			/*
807			 * An otherwise runnable thread of a process
808			 * swapped out has only the TDI_SWAPPED bit set.
809			 *
810			 */
811			if (td->td_inhibitors == TDI_SWAPPED) {
812				kg = td->td_ksegrp;
813				pri = p->p_swtime + kg->kg_slptime;
814				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
815					pri -= p->p_nice * 8;
816				}
817
818				/*
819				 * if this ksegrp is higher priority
820				 * and there is enough space, then select
821				 * this process instead of the previous
822				 * selection.
823				 */
824				if (pri > ppri) {
825					pp = p;
826					ppri = pri;
827				}
828			}
829		}
830		mtx_unlock_spin(&sched_lock);
831	}
832	sx_sunlock(&allproc_lock);
833
834	/*
835	 * Nothing to do, back to sleep.
836	 */
837	if ((p = pp) == NULL) {
838		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
839		goto loop;
840	}
841	PROC_LOCK(p);
842
843	/*
844	 * Another process may be bringing or may have already
845	 * brought this process in while we traverse all threads.
846	 * Or, this process may even be being swapped out again.
847	 */
848	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
849		PROC_UNLOCK(p);
850		goto loop;
851	}
852
853	mtx_lock_spin(&sched_lock);
854	p->p_sflag &= ~PS_SWAPINREQ;
855	mtx_unlock_spin(&sched_lock);
856
857	/*
858	 * We would like to bring someone in. (only if there is space).
859	 * [What checks the space? ]
860	 */
861	faultin(p);
862	PROC_UNLOCK(p);
863	mtx_lock_spin(&sched_lock);
864	p->p_swtime = 0;
865	mtx_unlock_spin(&sched_lock);
866	goto loop;
867}
868
869#ifndef NO_SWAPPING
870
871/*
872 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
873 */
874static int swap_idle_threshold1 = 2;
875SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
876    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
877
878/*
879 * Swap_idle_threshold2 is the time that a process can be idle before
880 * it will be swapped out, if idle swapping is enabled.
881 */
882static int swap_idle_threshold2 = 10;
883SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
884    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
885
886/*
887 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
888 * procs and unwire their u-areas.  We try to always "swap" at least one
889 * process in case we need the room for a swapin.
890 * If any procs have been sleeping/stopped for at least maxslp seconds,
891 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
892 * if any, otherwise the longest-resident process.
893 */
894void
895swapout_procs(action)
896int action;
897{
898	struct proc *p;
899	struct thread *td;
900	struct ksegrp *kg;
901	int didswap = 0;
902
903	GIANT_REQUIRED;
904
905retry:
906	sx_slock(&allproc_lock);
907	FOREACH_PROC_IN_SYSTEM(p) {
908		struct vmspace *vm;
909		int minslptime = 100000;
910
911		/*
912		 * Watch out for a process in
913		 * creation.  It may have no
914		 * address space or lock yet.
915		 */
916		mtx_lock_spin(&sched_lock);
917		if (p->p_state == PRS_NEW) {
918			mtx_unlock_spin(&sched_lock);
919			continue;
920		}
921		mtx_unlock_spin(&sched_lock);
922
923		/*
924		 * An aio daemon switches its
925		 * address space while running.
926		 * Perform a quick check whether
927		 * a process has P_SYSTEM.
928		 */
929		if ((p->p_flag & P_SYSTEM) != 0)
930			continue;
931
932		/*
933		 * Do not swapout a process that
934		 * is waiting for VM data
935		 * structures as there is a possible
936		 * deadlock.  Test this first as
937		 * this may block.
938		 *
939		 * Lock the map until swapout
940		 * finishes, or a thread of this
941		 * process may attempt to alter
942		 * the map.
943		 */
944		PROC_LOCK(p);
945		vm = p->p_vmspace;
946		KASSERT(vm != NULL,
947			("swapout_procs: a process has no address space"));
948		atomic_add_int(&vm->vm_refcnt, 1);
949		PROC_UNLOCK(p);
950		if (!vm_map_trylock(&vm->vm_map))
951			goto nextproc1;
952
953		PROC_LOCK(p);
954		if (p->p_lock != 0 ||
955		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
956		    ) != 0) {
957			goto nextproc2;
958		}
959		/*
960		 * only aiod changes vmspace, however it will be
961		 * skipped because of the if statement above checking
962		 * for P_SYSTEM
963		 */
964		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
965			goto nextproc2;
966
967		switch (p->p_state) {
968		default:
969			/* Don't swap out processes in any sort
970			 * of 'special' state. */
971			break;
972
973		case PRS_NORMAL:
974			mtx_lock_spin(&sched_lock);
975			/*
976			 * do not swapout a realtime process
977			 * Check all the thread groups..
978			 */
979			FOREACH_KSEGRP_IN_PROC(p, kg) {
980				if (PRI_IS_REALTIME(kg->kg_pri_class))
981					goto nextproc;
982
983				/*
984				 * Guarantee swap_idle_threshold1
985				 * time in memory.
986				 */
987				if (kg->kg_slptime < swap_idle_threshold1)
988					goto nextproc;
989
990				/*
991				 * Do not swapout a process if it is
992				 * waiting on a critical event of some
993				 * kind or there is a thread whose
994				 * pageable memory may be accessed.
995				 *
996				 * This could be refined to support
997				 * swapping out a thread.
998				 */
999				FOREACH_THREAD_IN_GROUP(kg, td) {
1000					if ((td->td_priority) < PSOCK ||
1001					    !thread_safetoswapout(td))
1002						goto nextproc;
1003				}
1004				/*
1005				 * If the system is under memory stress,
1006				 * or if we are swapping
1007				 * idle processes >= swap_idle_threshold2,
1008				 * then swap the process out.
1009				 */
1010				if (((action & VM_SWAP_NORMAL) == 0) &&
1011				    (((action & VM_SWAP_IDLE) == 0) ||
1012				    (kg->kg_slptime < swap_idle_threshold2)))
1013					goto nextproc;
1014
1015				if (minslptime > kg->kg_slptime)
1016					minslptime = kg->kg_slptime;
1017			}
1018
1019			/*
1020			 * If the pageout daemon didn't free enough pages,
1021			 * or if this process is idle and the system is
1022			 * configured to swap proactively, swap it out.
1023			 */
1024			if ((action & VM_SWAP_NORMAL) ||
1025				((action & VM_SWAP_IDLE) &&
1026				 (minslptime > swap_idle_threshold2))) {
1027				swapout(p);
1028				didswap++;
1029				mtx_unlock_spin(&sched_lock);
1030				PROC_UNLOCK(p);
1031				vm_map_unlock(&vm->vm_map);
1032				vmspace_free(vm);
1033				sx_sunlock(&allproc_lock);
1034				goto retry;
1035			}
1036nextproc:
1037			mtx_unlock_spin(&sched_lock);
1038		}
1039nextproc2:
1040		PROC_UNLOCK(p);
1041		vm_map_unlock(&vm->vm_map);
1042nextproc1:
1043		vmspace_free(vm);
1044		continue;
1045	}
1046	sx_sunlock(&allproc_lock);
1047	/*
1048	 * If we swapped something out, and another process needed memory,
1049	 * then wakeup the sched process.
1050	 */
1051	if (didswap)
1052		wakeup(&proc0);
1053}
1054
1055static void
1056swapout(p)
1057	struct proc *p;
1058{
1059	struct thread *td;
1060
1061	PROC_LOCK_ASSERT(p, MA_OWNED);
1062	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
1063#if defined(SWAP_DEBUG)
1064	printf("swapping out %d\n", p->p_pid);
1065#endif
1066
1067	/*
1068	 * The states of this process and its threads may have changed
1069	 * by now.  Assuming that there is only one pageout daemon thread,
1070	 * this process should still be in memory.
1071	 */
1072	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
1073		("swapout: lost a swapout race?"));
1074
1075#if defined(INVARIANTS)
1076	/*
1077	 * Make sure that all threads are safe to be swapped out.
1078	 *
1079	 * Alternatively, we could swap out only safe threads.
1080	 */
1081	FOREACH_THREAD_IN_PROC(p, td) {
1082		KASSERT(thread_safetoswapout(td),
1083			("swapout: there is a thread not safe for swapout"));
1084	}
1085#endif /* INVARIANTS */
1086
1087	++p->p_stats->p_ru.ru_nswap;
1088	/*
1089	 * remember the process resident count
1090	 */
1091	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1092
1093	p->p_sflag &= ~PS_INMEM;
1094	p->p_sflag |= PS_SWAPPINGOUT;
1095	PROC_UNLOCK(p);
1096	FOREACH_THREAD_IN_PROC(p, td)
1097		TD_SET_SWAPPED(td);
1098	mtx_unlock_spin(&sched_lock);
1099
1100	vm_proc_swapout(p);
1101	FOREACH_THREAD_IN_PROC(p, td)
1102		vm_thread_swapout(td);
1103
1104	PROC_LOCK(p);
1105	mtx_lock_spin(&sched_lock);
1106	p->p_sflag &= ~PS_SWAPPINGOUT;
1107	p->p_swtime = 0;
1108}
1109#endif /* !NO_SWAPPING */
1110