vm_glue.c revision 125193
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 125193 2004-01-29 12:35:11Z bde $");
65
66#include "opt_vm.h"
67#include "opt_kstack_pages.h"
68#include "opt_kstack_max_pages.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/limits.h>
73#include <sys/lock.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/resourcevar.h>
77#include <sys/shm.h>
78#include <sys/vmmeter.h>
79#include <sys/sx.h>
80#include <sys/sysctl.h>
81
82#include <sys/kernel.h>
83#include <sys/ktr.h>
84#include <sys/unistd.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_object.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_pager.h>
96#include <vm/swap_pager.h>
97
98#include <sys/user.h>
99
100extern int maxslp;
101
102/*
103 * System initialization
104 *
105 * Note: proc0 from proc.h
106 */
107static void vm_init_limits(void *);
108SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
109
110/*
111 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
112 *
113 * Note: run scheduling should be divorced from the vm system.
114 */
115static void scheduler(void *);
116SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_ANY, scheduler, NULL)
117
118#ifndef NO_SWAPPING
119static void swapout(struct proc *);
120static void vm_proc_swapin(struct proc *p);
121static void vm_proc_swapout(struct proc *p);
122#endif
123
124/*
125 * MPSAFE
126 *
127 * WARNING!  This code calls vm_map_check_protection() which only checks
128 * the associated vm_map_entry range.  It does not determine whether the
129 * contents of the memory is actually readable or writable.  In most cases
130 * just checking the vm_map_entry is sufficient within the kernel's address
131 * space.
132 */
133int
134kernacc(addr, len, rw)
135	void *addr;
136	int len, rw;
137{
138	boolean_t rv;
139	vm_offset_t saddr, eaddr;
140	vm_prot_t prot;
141
142	KASSERT((rw & ~VM_PROT_ALL) == 0,
143	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
144	prot = rw;
145	saddr = trunc_page((vm_offset_t)addr);
146	eaddr = round_page((vm_offset_t)addr + len);
147	vm_map_lock_read(kernel_map);
148	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
149	vm_map_unlock_read(kernel_map);
150	return (rv == TRUE);
151}
152
153/*
154 * MPSAFE
155 *
156 * WARNING!  This code calls vm_map_check_protection() which only checks
157 * the associated vm_map_entry range.  It does not determine whether the
158 * contents of the memory is actually readable or writable.  vmapbuf(),
159 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
160 * used in conjuction with this call.
161 */
162int
163useracc(addr, len, rw)
164	void *addr;
165	int len, rw;
166{
167	boolean_t rv;
168	vm_prot_t prot;
169	vm_map_t map;
170
171	KASSERT((rw & ~VM_PROT_ALL) == 0,
172	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
173	prot = rw;
174	map = &curproc->p_vmspace->vm_map;
175	if ((vm_offset_t)addr + len > vm_map_max(map) ||
176	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
177		return (FALSE);
178	}
179	vm_map_lock_read(map);
180	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
181	    round_page((vm_offset_t)addr + len), prot);
182	vm_map_unlock_read(map);
183	return (rv == TRUE);
184}
185
186/*
187 * MPSAFE
188 */
189void
190vslock(addr, len)
191	void *addr;
192	u_int len;
193{
194
195	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
196	    round_page((vm_offset_t)addr + len),
197	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
198}
199
200/*
201 * MPSAFE
202 */
203void
204vsunlock(addr, len)
205	void *addr;
206	u_int len;
207{
208
209	vm_map_unwire(&curproc->p_vmspace->vm_map,
210	    trunc_page((vm_offset_t)addr),
211	    round_page((vm_offset_t)addr + len),
212	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
213}
214
215/*
216 * Create the U area for a new process.
217 * This routine directly affects the fork perf for a process.
218 */
219void
220vm_proc_new(struct proc *p)
221{
222	vm_page_t ma[UAREA_PAGES];
223	vm_object_t upobj;
224	vm_offset_t up;
225	vm_page_t m;
226	u_int i;
227
228	/*
229	 * Get a kernel virtual address for the U area for this process.
230	 */
231	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
232	if (up == 0)
233		panic("vm_proc_new: upage allocation failed");
234	p->p_uarea = (struct user *)up;
235
236	/*
237	 * Allocate object and page(s) for the U area.
238	 */
239	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
240	p->p_upages_obj = upobj;
241	VM_OBJECT_LOCK(upobj);
242	for (i = 0; i < UAREA_PAGES; i++) {
243		m = vm_page_grab(upobj, i,
244		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
245		ma[i] = m;
246
247		vm_page_lock_queues();
248		vm_page_wakeup(m);
249		m->valid = VM_PAGE_BITS_ALL;
250		vm_page_unlock_queues();
251	}
252	VM_OBJECT_UNLOCK(upobj);
253
254	/*
255	 * Enter the pages into the kernel address space.
256	 */
257	pmap_qenter(up, ma, UAREA_PAGES);
258}
259
260/*
261 * Dispose the U area for a process that has exited.
262 * This routine directly impacts the exit perf of a process.
263 * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
264 */
265void
266vm_proc_dispose(struct proc *p)
267{
268	vm_object_t upobj;
269	vm_offset_t up;
270	vm_page_t m;
271
272	upobj = p->p_upages_obj;
273	VM_OBJECT_LOCK(upobj);
274	if (upobj->resident_page_count != UAREA_PAGES)
275		panic("vm_proc_dispose: incorrect number of pages in upobj");
276	vm_page_lock_queues();
277	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
278		vm_page_busy(m);
279		vm_page_unwire(m, 0);
280		vm_page_free(m);
281	}
282	vm_page_unlock_queues();
283	VM_OBJECT_UNLOCK(upobj);
284	up = (vm_offset_t)p->p_uarea;
285	pmap_qremove(up, UAREA_PAGES);
286	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
287	vm_object_deallocate(upobj);
288}
289
290#ifndef NO_SWAPPING
291/*
292 * Allow the U area for a process to be prejudicially paged out.
293 */
294static void
295vm_proc_swapout(struct proc *p)
296{
297	vm_object_t upobj;
298	vm_offset_t up;
299	vm_page_t m;
300
301	upobj = p->p_upages_obj;
302	VM_OBJECT_LOCK(upobj);
303	if (upobj->resident_page_count != UAREA_PAGES)
304		panic("vm_proc_dispose: incorrect number of pages in upobj");
305	vm_page_lock_queues();
306	TAILQ_FOREACH(m, &upobj->memq, listq) {
307		vm_page_dirty(m);
308		vm_page_unwire(m, 0);
309	}
310	vm_page_unlock_queues();
311	VM_OBJECT_UNLOCK(upobj);
312	up = (vm_offset_t)p->p_uarea;
313	pmap_qremove(up, UAREA_PAGES);
314}
315
316/*
317 * Bring the U area for a specified process back in.
318 */
319static void
320vm_proc_swapin(struct proc *p)
321{
322	vm_page_t ma[UAREA_PAGES];
323	vm_object_t upobj;
324	vm_offset_t up;
325	vm_page_t m;
326	int rv;
327	int i;
328
329	upobj = p->p_upages_obj;
330	VM_OBJECT_LOCK(upobj);
331	for (i = 0; i < UAREA_PAGES; i++) {
332		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
333		if (m->valid != VM_PAGE_BITS_ALL) {
334			rv = vm_pager_get_pages(upobj, &m, 1, 0);
335			if (rv != VM_PAGER_OK)
336				panic("vm_proc_swapin: cannot get upage");
337		}
338		ma[i] = m;
339	}
340	if (upobj->resident_page_count != UAREA_PAGES)
341		panic("vm_proc_swapin: lost pages from upobj");
342	vm_page_lock_queues();
343	TAILQ_FOREACH(m, &upobj->memq, listq) {
344		m->valid = VM_PAGE_BITS_ALL;
345		vm_page_wire(m);
346		vm_page_wakeup(m);
347	}
348	vm_page_unlock_queues();
349	VM_OBJECT_UNLOCK(upobj);
350	up = (vm_offset_t)p->p_uarea;
351	pmap_qenter(up, ma, UAREA_PAGES);
352}
353
354/*
355 * Swap in the UAREAs of all processes swapped out to the given device.
356 * The pages in the UAREA are marked dirty and their swap metadata is freed.
357 */
358void
359vm_proc_swapin_all(struct swdevt *devidx)
360{
361	struct proc *p;
362	vm_object_t object;
363	vm_page_t m;
364
365retry:
366	sx_slock(&allproc_lock);
367	FOREACH_PROC_IN_SYSTEM(p) {
368		PROC_LOCK(p);
369		object = p->p_upages_obj;
370		if (object != NULL) {
371			VM_OBJECT_LOCK(object);
372			if (swap_pager_isswapped(object, devidx)) {
373				VM_OBJECT_UNLOCK(object);
374				sx_sunlock(&allproc_lock);
375				faultin(p);
376				PROC_UNLOCK(p);
377				VM_OBJECT_LOCK(object);
378				vm_page_lock_queues();
379				TAILQ_FOREACH(m, &object->memq, listq)
380					vm_page_dirty(m);
381				vm_page_unlock_queues();
382				swap_pager_freespace(object, 0,
383				    object->un_pager.swp.swp_bcount);
384				VM_OBJECT_UNLOCK(object);
385				goto retry;
386			}
387			VM_OBJECT_UNLOCK(object);
388		}
389		PROC_UNLOCK(p);
390	}
391	sx_sunlock(&allproc_lock);
392}
393#endif
394
395#ifndef KSTACK_MAX_PAGES
396#define KSTACK_MAX_PAGES 32
397#endif
398
399/*
400 * Create the kernel stack (including pcb for i386) for a new thread.
401 * This routine directly affects the fork perf for a process and
402 * create performance for a thread.
403 */
404void
405vm_thread_new(struct thread *td, int pages)
406{
407	vm_object_t ksobj;
408	vm_offset_t ks;
409	vm_page_t m, ma[KSTACK_MAX_PAGES];
410	int i;
411
412	/* Bounds check */
413	if (pages <= 1)
414		pages = KSTACK_PAGES;
415	else if (pages > KSTACK_MAX_PAGES)
416		pages = KSTACK_MAX_PAGES;
417	/*
418	 * Allocate an object for the kstack.
419	 */
420	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
421	td->td_kstack_obj = ksobj;
422	/*
423	 * Get a kernel virtual address for this thread's kstack.
424	 */
425	ks = kmem_alloc_nofault(kernel_map,
426	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
427	if (ks == 0)
428		panic("vm_thread_new: kstack allocation failed");
429	if (KSTACK_GUARD_PAGES != 0) {
430		pmap_qremove(ks, KSTACK_GUARD_PAGES);
431		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
432	}
433	td->td_kstack = ks;
434	/*
435	 * Knowing the number of pages allocated is useful when you
436	 * want to deallocate them.
437	 */
438	td->td_kstack_pages = pages;
439	/*
440	 * For the length of the stack, link in a real page of ram for each
441	 * page of stack.
442	 */
443	VM_OBJECT_LOCK(ksobj);
444	for (i = 0; i < pages; i++) {
445		/*
446		 * Get a kernel stack page.
447		 */
448		m = vm_page_grab(ksobj, i,
449		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
450		ma[i] = m;
451		vm_page_lock_queues();
452		vm_page_wakeup(m);
453		m->valid = VM_PAGE_BITS_ALL;
454		vm_page_unlock_queues();
455	}
456	VM_OBJECT_UNLOCK(ksobj);
457	pmap_qenter(ks, ma, pages);
458}
459
460/*
461 * Dispose of a thread's kernel stack.
462 */
463void
464vm_thread_dispose(struct thread *td)
465{
466	vm_object_t ksobj;
467	vm_offset_t ks;
468	vm_page_t m;
469	int i, pages;
470
471	pages = td->td_kstack_pages;
472	ksobj = td->td_kstack_obj;
473	ks = td->td_kstack;
474	pmap_qremove(ks, pages);
475	VM_OBJECT_LOCK(ksobj);
476	for (i = 0; i < pages; i++) {
477		m = vm_page_lookup(ksobj, i);
478		if (m == NULL)
479			panic("vm_thread_dispose: kstack already missing?");
480		vm_page_lock_queues();
481		vm_page_busy(m);
482		vm_page_unwire(m, 0);
483		vm_page_free(m);
484		vm_page_unlock_queues();
485	}
486	VM_OBJECT_UNLOCK(ksobj);
487	vm_object_deallocate(ksobj);
488	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
489	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
490}
491
492/*
493 * Allow a thread's kernel stack to be paged out.
494 */
495void
496vm_thread_swapout(struct thread *td)
497{
498	vm_object_t ksobj;
499	vm_page_t m;
500	int i, pages;
501
502	cpu_thread_swapout(td);
503	pages = td->td_kstack_pages;
504	ksobj = td->td_kstack_obj;
505	pmap_qremove(td->td_kstack, pages);
506	VM_OBJECT_LOCK(ksobj);
507	for (i = 0; i < pages; i++) {
508		m = vm_page_lookup(ksobj, i);
509		if (m == NULL)
510			panic("vm_thread_swapout: kstack already missing?");
511		vm_page_lock_queues();
512		vm_page_dirty(m);
513		vm_page_unwire(m, 0);
514		vm_page_unlock_queues();
515	}
516	VM_OBJECT_UNLOCK(ksobj);
517}
518
519/*
520 * Bring the kernel stack for a specified thread back in.
521 */
522void
523vm_thread_swapin(struct thread *td)
524{
525	vm_object_t ksobj;
526	vm_page_t m, ma[KSTACK_MAX_PAGES];
527	int i, pages, rv;
528
529	pages = td->td_kstack_pages;
530	ksobj = td->td_kstack_obj;
531	VM_OBJECT_LOCK(ksobj);
532	for (i = 0; i < pages; i++) {
533		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
534		if (m->valid != VM_PAGE_BITS_ALL) {
535			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
536			if (rv != VM_PAGER_OK)
537				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
538			m = vm_page_lookup(ksobj, i);
539			m->valid = VM_PAGE_BITS_ALL;
540		}
541		ma[i] = m;
542		vm_page_lock_queues();
543		vm_page_wire(m);
544		vm_page_wakeup(m);
545		vm_page_unlock_queues();
546	}
547	VM_OBJECT_UNLOCK(ksobj);
548	pmap_qenter(td->td_kstack, ma, pages);
549	cpu_thread_swapin(td);
550}
551
552/*
553 * Set up a variable-sized alternate kstack.
554 */
555void
556vm_thread_new_altkstack(struct thread *td, int pages)
557{
558
559	td->td_altkstack = td->td_kstack;
560	td->td_altkstack_obj = td->td_kstack_obj;
561	td->td_altkstack_pages = td->td_kstack_pages;
562
563	vm_thread_new(td, pages);
564}
565
566/*
567 * Restore the original kstack.
568 */
569void
570vm_thread_dispose_altkstack(struct thread *td)
571{
572
573	vm_thread_dispose(td);
574
575	td->td_kstack = td->td_altkstack;
576	td->td_kstack_obj = td->td_altkstack_obj;
577	td->td_kstack_pages = td->td_altkstack_pages;
578	td->td_altkstack = 0;
579	td->td_altkstack_obj = NULL;
580	td->td_altkstack_pages = 0;
581}
582
583/*
584 * Implement fork's actions on an address space.
585 * Here we arrange for the address space to be copied or referenced,
586 * allocate a user struct (pcb and kernel stack), then call the
587 * machine-dependent layer to fill those in and make the new process
588 * ready to run.  The new process is set up so that it returns directly
589 * to user mode to avoid stack copying and relocation problems.
590 */
591void
592vm_forkproc(td, p2, td2, flags)
593	struct thread *td;
594	struct proc *p2;
595	struct thread *td2;
596	int flags;
597{
598	struct proc *p1 = td->td_proc;
599	struct user *up;
600
601	GIANT_REQUIRED;
602
603	if ((flags & RFPROC) == 0) {
604		/*
605		 * Divorce the memory, if it is shared, essentially
606		 * this changes shared memory amongst threads, into
607		 * COW locally.
608		 */
609		if ((flags & RFMEM) == 0) {
610			if (p1->p_vmspace->vm_refcnt > 1) {
611				vmspace_unshare(p1);
612			}
613		}
614		cpu_fork(td, p2, td2, flags);
615		return;
616	}
617
618	if (flags & RFMEM) {
619		p2->p_vmspace = p1->p_vmspace;
620		p1->p_vmspace->vm_refcnt++;
621	}
622
623	while (vm_page_count_severe()) {
624		VM_WAIT;
625	}
626
627	if ((flags & RFMEM) == 0) {
628		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
629
630		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
631
632		if (p1->p_vmspace->vm_shm)
633			shmfork(p1, p2);
634	}
635
636	/* XXXKSE this is unsatisfactory but should be adequate */
637	up = p2->p_uarea;
638	MPASS(p2->p_sigacts != NULL);
639
640	/*
641	 * p_stats currently points at fields in the user struct
642	 * but not at &u, instead at p_addr. Copy parts of
643	 * p_stats; zero the rest of p_stats (statistics).
644	 */
645	p2->p_stats = &up->u_stats;
646	bzero(&up->u_stats.pstat_startzero,
647	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
648		(caddr_t) &up->u_stats.pstat_startzero));
649	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
650	    ((caddr_t) &up->u_stats.pstat_endcopy -
651		(caddr_t) &up->u_stats.pstat_startcopy));
652
653	/*
654	 * cpu_fork will copy and update the pcb, set up the kernel stack,
655	 * and make the child ready to run.
656	 */
657	cpu_fork(td, p2, td2, flags);
658}
659
660/*
661 * Called after process has been wait(2)'ed apon and is being reaped.
662 * The idea is to reclaim resources that we could not reclaim while
663 * the process was still executing.
664 */
665void
666vm_waitproc(p)
667	struct proc *p;
668{
669
670	GIANT_REQUIRED;
671	vmspace_exitfree(p);		/* and clean-out the vmspace */
672}
673
674/*
675 * Set default limits for VM system.
676 * Called for proc 0, and then inherited by all others.
677 *
678 * XXX should probably act directly on proc0.
679 */
680static void
681vm_init_limits(udata)
682	void *udata;
683{
684	struct proc *p = udata;
685	int rss_limit;
686
687	/*
688	 * Set up the initial limits on process VM. Set the maximum resident
689	 * set size to be half of (reasonably) available memory.  Since this
690	 * is a soft limit, it comes into effect only when the system is out
691	 * of memory - half of main memory helps to favor smaller processes,
692	 * and reduces thrashing of the object cache.
693	 */
694	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
695	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
696	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
697	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
698	/* limit the limit to no less than 2MB */
699	rss_limit = max(cnt.v_free_count, 512);
700	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
701	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
702}
703
704void
705faultin(p)
706	struct proc *p;
707{
708#ifdef NO_SWAPPING
709
710	PROC_LOCK_ASSERT(p, MA_OWNED);
711	if ((p->p_sflag & PS_INMEM) == 0)
712		panic("faultin: proc swapped out with NO_SWAPPING!");
713#else /* !NO_SWAPPING */
714	struct thread *td;
715
716	GIANT_REQUIRED;
717	PROC_LOCK_ASSERT(p, MA_OWNED);
718	/*
719	 * If another process is swapping in this process,
720	 * just wait until it finishes.
721	 */
722	if (p->p_sflag & PS_SWAPPINGIN)
723		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
724	else if ((p->p_sflag & PS_INMEM) == 0) {
725		/*
726		 * Don't let another thread swap process p out while we are
727		 * busy swapping it in.
728		 */
729		++p->p_lock;
730		mtx_lock_spin(&sched_lock);
731		p->p_sflag |= PS_SWAPPINGIN;
732		mtx_unlock_spin(&sched_lock);
733		PROC_UNLOCK(p);
734
735		vm_proc_swapin(p);
736		FOREACH_THREAD_IN_PROC(p, td)
737			vm_thread_swapin(td);
738
739		PROC_LOCK(p);
740		mtx_lock_spin(&sched_lock);
741		p->p_sflag &= ~PS_SWAPPINGIN;
742		p->p_sflag |= PS_INMEM;
743		FOREACH_THREAD_IN_PROC(p, td) {
744			TD_CLR_SWAPPED(td);
745			if (TD_CAN_RUN(td))
746				setrunnable(td);
747		}
748		mtx_unlock_spin(&sched_lock);
749
750		wakeup(&p->p_sflag);
751
752		/* Allow other threads to swap p out now. */
753		--p->p_lock;
754	}
755#endif /* NO_SWAPPING */
756}
757
758/*
759 * This swapin algorithm attempts to swap-in processes only if there
760 * is enough space for them.  Of course, if a process waits for a long
761 * time, it will be swapped in anyway.
762 *
763 *  XXXKSE - process with the thread with highest priority counts..
764 *
765 * Giant is still held at this point, to be released in tsleep.
766 */
767/* ARGSUSED*/
768static void
769scheduler(dummy)
770	void *dummy;
771{
772	struct proc *p;
773	struct thread *td;
774	int pri;
775	struct proc *pp;
776	int ppri;
777
778	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
779	/* GIANT_REQUIRED */
780
781loop:
782	if (vm_page_count_min()) {
783		VM_WAIT;
784		goto loop;
785	}
786
787	pp = NULL;
788	ppri = INT_MIN;
789	sx_slock(&allproc_lock);
790	FOREACH_PROC_IN_SYSTEM(p) {
791		struct ksegrp *kg;
792		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
793			continue;
794		}
795		mtx_lock_spin(&sched_lock);
796		FOREACH_THREAD_IN_PROC(p, td) {
797			/*
798			 * An otherwise runnable thread of a process
799			 * swapped out has only the TDI_SWAPPED bit set.
800			 *
801			 */
802			if (td->td_inhibitors == TDI_SWAPPED) {
803				kg = td->td_ksegrp;
804				pri = p->p_swtime + kg->kg_slptime;
805				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
806					pri -= kg->kg_nice * 8;
807				}
808
809				/*
810				 * if this ksegrp is higher priority
811				 * and there is enough space, then select
812				 * this process instead of the previous
813				 * selection.
814				 */
815				if (pri > ppri) {
816					pp = p;
817					ppri = pri;
818				}
819			}
820		}
821		mtx_unlock_spin(&sched_lock);
822	}
823	sx_sunlock(&allproc_lock);
824
825	/*
826	 * Nothing to do, back to sleep.
827	 */
828	if ((p = pp) == NULL) {
829		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
830		goto loop;
831	}
832	PROC_LOCK(p);
833
834	/*
835	 * Another process may be bringing or may have already
836	 * brought this process in while we traverse all threads.
837	 * Or, this process may even be being swapped out again.
838	 */
839	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
840		PROC_UNLOCK(p);
841		goto loop;
842	}
843
844	mtx_lock_spin(&sched_lock);
845	p->p_sflag &= ~PS_SWAPINREQ;
846	mtx_unlock_spin(&sched_lock);
847
848	/*
849	 * We would like to bring someone in. (only if there is space).
850	 * [What checks the space? ]
851	 */
852	faultin(p);
853	PROC_UNLOCK(p);
854	mtx_lock_spin(&sched_lock);
855	p->p_swtime = 0;
856	mtx_unlock_spin(&sched_lock);
857	goto loop;
858}
859
860#ifndef NO_SWAPPING
861
862/*
863 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
864 */
865static int swap_idle_threshold1 = 2;
866SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
867    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
868
869/*
870 * Swap_idle_threshold2 is the time that a process can be idle before
871 * it will be swapped out, if idle swapping is enabled.
872 */
873static int swap_idle_threshold2 = 10;
874SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
875    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
876
877/*
878 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
879 * procs and unwire their u-areas.  We try to always "swap" at least one
880 * process in case we need the room for a swapin.
881 * If any procs have been sleeping/stopped for at least maxslp seconds,
882 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
883 * if any, otherwise the longest-resident process.
884 */
885void
886swapout_procs(action)
887int action;
888{
889	struct proc *p;
890	struct thread *td;
891	struct ksegrp *kg;
892	int didswap = 0;
893
894	GIANT_REQUIRED;
895
896retry:
897	sx_slock(&allproc_lock);
898	FOREACH_PROC_IN_SYSTEM(p) {
899		struct vmspace *vm;
900		int minslptime = 100000;
901
902		/*
903		 * Watch out for a process in
904		 * creation.  It may have no
905		 * address space or lock yet.
906		 */
907		mtx_lock_spin(&sched_lock);
908		if (p->p_state == PRS_NEW) {
909			mtx_unlock_spin(&sched_lock);
910			continue;
911		}
912		mtx_unlock_spin(&sched_lock);
913
914		/*
915		 * An aio daemon switches its
916		 * address space while running.
917		 * Perform a quick check whether
918		 * a process has P_SYSTEM.
919		 */
920		if ((p->p_flag & P_SYSTEM) != 0)
921			continue;
922
923		/*
924		 * Do not swapout a process that
925		 * is waiting for VM data
926		 * structures as there is a possible
927		 * deadlock.  Test this first as
928		 * this may block.
929		 *
930		 * Lock the map until swapout
931		 * finishes, or a thread of this
932		 * process may attempt to alter
933		 * the map.
934		 */
935		PROC_LOCK(p);
936		vm = p->p_vmspace;
937		KASSERT(vm != NULL,
938			("swapout_procs: a process has no address space"));
939		++vm->vm_refcnt;
940		PROC_UNLOCK(p);
941		if (!vm_map_trylock(&vm->vm_map))
942			goto nextproc1;
943
944		PROC_LOCK(p);
945		if (p->p_lock != 0 ||
946		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
947		    ) != 0) {
948			goto nextproc2;
949		}
950		/*
951		 * only aiod changes vmspace, however it will be
952		 * skipped because of the if statement above checking
953		 * for P_SYSTEM
954		 */
955		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
956			goto nextproc2;
957
958		switch (p->p_state) {
959		default:
960			/* Don't swap out processes in any sort
961			 * of 'special' state. */
962			break;
963
964		case PRS_NORMAL:
965			mtx_lock_spin(&sched_lock);
966			/*
967			 * do not swapout a realtime process
968			 * Check all the thread groups..
969			 */
970			FOREACH_KSEGRP_IN_PROC(p, kg) {
971				if (PRI_IS_REALTIME(kg->kg_pri_class))
972					goto nextproc;
973
974				/*
975				 * Guarantee swap_idle_threshold1
976				 * time in memory.
977				 */
978				if (kg->kg_slptime < swap_idle_threshold1)
979					goto nextproc;
980
981				/*
982				 * Do not swapout a process if it is
983				 * waiting on a critical event of some
984				 * kind or there is a thread whose
985				 * pageable memory may be accessed.
986				 *
987				 * This could be refined to support
988				 * swapping out a thread.
989				 */
990				FOREACH_THREAD_IN_GROUP(kg, td) {
991					if ((td->td_priority) < PSOCK ||
992					    !thread_safetoswapout(td))
993						goto nextproc;
994				}
995				/*
996				 * If the system is under memory stress,
997				 * or if we are swapping
998				 * idle processes >= swap_idle_threshold2,
999				 * then swap the process out.
1000				 */
1001				if (((action & VM_SWAP_NORMAL) == 0) &&
1002				    (((action & VM_SWAP_IDLE) == 0) ||
1003				    (kg->kg_slptime < swap_idle_threshold2)))
1004					goto nextproc;
1005
1006				if (minslptime > kg->kg_slptime)
1007					minslptime = kg->kg_slptime;
1008			}
1009
1010			/*
1011			 * If the process has been asleep for awhile and had
1012			 * most of its pages taken away already, swap it out.
1013			 */
1014			if ((action & VM_SWAP_NORMAL) ||
1015				((action & VM_SWAP_IDLE) &&
1016				 (minslptime > swap_idle_threshold2))) {
1017				swapout(p);
1018				didswap++;
1019				mtx_unlock_spin(&sched_lock);
1020				PROC_UNLOCK(p);
1021				vm_map_unlock(&vm->vm_map);
1022				vmspace_free(vm);
1023				sx_sunlock(&allproc_lock);
1024				goto retry;
1025			}
1026nextproc:
1027			mtx_unlock_spin(&sched_lock);
1028		}
1029nextproc2:
1030		PROC_UNLOCK(p);
1031		vm_map_unlock(&vm->vm_map);
1032nextproc1:
1033		vmspace_free(vm);
1034		continue;
1035	}
1036	sx_sunlock(&allproc_lock);
1037	/*
1038	 * If we swapped something out, and another process needed memory,
1039	 * then wakeup the sched process.
1040	 */
1041	if (didswap)
1042		wakeup(&proc0);
1043}
1044
1045static void
1046swapout(p)
1047	struct proc *p;
1048{
1049	struct thread *td;
1050
1051	PROC_LOCK_ASSERT(p, MA_OWNED);
1052	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
1053#if defined(SWAP_DEBUG)
1054	printf("swapping out %d\n", p->p_pid);
1055#endif
1056
1057	/*
1058	 * The states of this process and its threads may have changed
1059	 * by now.  Assuming that there is only one pageout daemon thread,
1060	 * this process should still be in memory.
1061	 */
1062	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
1063		("swapout: lost a swapout race?"));
1064
1065#if defined(INVARIANTS)
1066	/*
1067	 * Make sure that all threads are safe to be swapped out.
1068	 *
1069	 * Alternatively, we could swap out only safe threads.
1070	 */
1071	FOREACH_THREAD_IN_PROC(p, td) {
1072		KASSERT(thread_safetoswapout(td),
1073			("swapout: there is a thread not safe for swapout"));
1074	}
1075#endif /* INVARIANTS */
1076
1077	++p->p_stats->p_ru.ru_nswap;
1078	/*
1079	 * remember the process resident count
1080	 */
1081	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1082
1083	p->p_sflag &= ~PS_INMEM;
1084	p->p_sflag |= PS_SWAPPINGOUT;
1085	PROC_UNLOCK(p);
1086	FOREACH_THREAD_IN_PROC(p, td)
1087		TD_SET_SWAPPED(td);
1088	mtx_unlock_spin(&sched_lock);
1089
1090	vm_proc_swapout(p);
1091	FOREACH_THREAD_IN_PROC(p, td)
1092		vm_thread_swapout(td);
1093
1094	PROC_LOCK(p);
1095	mtx_lock_spin(&sched_lock);
1096	p->p_sflag &= ~PS_SWAPPINGOUT;
1097	p->p_swtime = 0;
1098}
1099#endif /* !NO_SWAPPING */
1100