vm_glue.c revision 120811
1104834Sobrien/*
289857Sobrien * Copyright (c) 1991, 1993
389857Sobrien *	The Regents of the University of California.  All rights reserved.
489857Sobrien *
589857Sobrien * This code is derived from software contributed to Berkeley by
689857Sobrien * The Mach Operating System project at Carnegie-Mellon University.
789857Sobrien *
889857Sobrien * Redistribution and use in source and binary forms, with or without
989857Sobrien * modification, are permitted provided that the following conditions
1089857Sobrien * are met:
1189857Sobrien * 1. Redistributions of source code must retain the above copyright
1289857Sobrien *    notice, this list of conditions and the following disclaimer.
1389857Sobrien * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 120811 2003-10-05 12:41:08Z bms $");
65
66#include "opt_vm.h"
67#include "opt_kstack_pages.h"
68#include "opt_kstack_max_pages.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/limits.h>
73#include <sys/lock.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/resourcevar.h>
77#include <sys/shm.h>
78#include <sys/vmmeter.h>
79#include <sys/sx.h>
80#include <sys/sysctl.h>
81
82#include <sys/kernel.h>
83#include <sys/ktr.h>
84#include <sys/unistd.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_object.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_pager.h>
96#include <vm/swap_pager.h>
97
98#include <sys/user.h>
99
100extern int maxslp;
101
102/*
103 * System initialization
104 *
105 * Note: proc0 from proc.h
106 */
107static void vm_init_limits(void *);
108SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
109
110/*
111 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
112 *
113 * Note: run scheduling should be divorced from the vm system.
114 */
115static void scheduler(void *);
116SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
117
118#ifndef NO_SWAPPING
119static void swapout(struct proc *);
120static void vm_proc_swapin(struct proc *p);
121static void vm_proc_swapout(struct proc *p);
122#endif
123
124/*
125 * MPSAFE
126 *
127 * WARNING!  This code calls vm_map_check_protection() which only checks
128 * the associated vm_map_entry range.  It does not determine whether the
129 * contents of the memory is actually readable or writable.  In most cases
130 * just checking the vm_map_entry is sufficient within the kernel's address
131 * space.
132 */
133int
134kernacc(addr, len, rw)
135	void *addr;
136	int len, rw;
137{
138	boolean_t rv;
139	vm_offset_t saddr, eaddr;
140	vm_prot_t prot;
141
142	KASSERT((rw & ~VM_PROT_ALL) == 0,
143	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
144	prot = rw;
145	saddr = trunc_page((vm_offset_t)addr);
146	eaddr = round_page((vm_offset_t)addr + len);
147	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
148	return (rv == TRUE);
149}
150
151/*
152 * MPSAFE
153 *
154 * WARNING!  This code calls vm_map_check_protection() which only checks
155 * the associated vm_map_entry range.  It does not determine whether the
156 * contents of the memory is actually readable or writable.  vmapbuf(),
157 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
158 * used in conjuction with this call.
159 */
160int
161useracc(addr, len, rw)
162	void *addr;
163	int len, rw;
164{
165	boolean_t rv;
166	vm_prot_t prot;
167	vm_map_t map;
168
169	KASSERT((rw & ~VM_PROT_ALL) == 0,
170	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
171	prot = rw;
172	map = &curproc->p_vmspace->vm_map;
173	if ((vm_offset_t)addr + len > vm_map_max(map) ||
174	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
175		return (FALSE);
176	}
177	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
178	    round_page((vm_offset_t)addr + len), prot);
179	return (rv == TRUE);
180}
181
182/*
183 * MPSAFE
184 */
185void
186vslock(addr, len)
187	void *addr;
188	u_int len;
189{
190
191	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
192	    round_page((vm_offset_t)addr + len),
193	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
194}
195
196/*
197 * MPSAFE
198 */
199void
200vsunlock(addr, len)
201	void *addr;
202	u_int len;
203{
204
205	vm_map_unwire(&curproc->p_vmspace->vm_map,
206	    trunc_page((vm_offset_t)addr),
207	    round_page((vm_offset_t)addr + len),
208	    VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES);
209}
210
211/*
212 * Create the U area for a new process.
213 * This routine directly affects the fork perf for a process.
214 */
215void
216vm_proc_new(struct proc *p)
217{
218	vm_page_t ma[UAREA_PAGES];
219	vm_object_t upobj;
220	vm_offset_t up;
221	vm_page_t m;
222	u_int i;
223
224	/*
225	 * Get a kernel virtual address for the U area for this process.
226	 */
227	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
228	if (up == 0)
229		panic("vm_proc_new: upage allocation failed");
230	p->p_uarea = (struct user *)up;
231
232	/*
233	 * Allocate object and page(s) for the U area.
234	 */
235	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
236	p->p_upages_obj = upobj;
237	VM_OBJECT_LOCK(upobj);
238	for (i = 0; i < UAREA_PAGES; i++) {
239		m = vm_page_grab(upobj, i,
240		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
241		ma[i] = m;
242
243		vm_page_lock_queues();
244		vm_page_wakeup(m);
245		m->valid = VM_PAGE_BITS_ALL;
246		vm_page_unlock_queues();
247	}
248	VM_OBJECT_UNLOCK(upobj);
249
250	/*
251	 * Enter the pages into the kernel address space.
252	 */
253	pmap_qenter(up, ma, UAREA_PAGES);
254}
255
256/*
257 * Dispose the U area for a process that has exited.
258 * This routine directly impacts the exit perf of a process.
259 * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
260 */
261void
262vm_proc_dispose(struct proc *p)
263{
264	vm_object_t upobj;
265	vm_offset_t up;
266	vm_page_t m;
267
268	upobj = p->p_upages_obj;
269	VM_OBJECT_LOCK(upobj);
270	if (upobj->resident_page_count != UAREA_PAGES)
271		panic("vm_proc_dispose: incorrect number of pages in upobj");
272	vm_page_lock_queues();
273	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
274		vm_page_busy(m);
275		vm_page_unwire(m, 0);
276		vm_page_free(m);
277	}
278	vm_page_unlock_queues();
279	VM_OBJECT_UNLOCK(upobj);
280	up = (vm_offset_t)p->p_uarea;
281	pmap_qremove(up, UAREA_PAGES);
282	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
283	vm_object_deallocate(upobj);
284}
285
286#ifndef NO_SWAPPING
287/*
288 * Allow the U area for a process to be prejudicially paged out.
289 */
290static void
291vm_proc_swapout(struct proc *p)
292{
293	vm_object_t upobj;
294	vm_offset_t up;
295	vm_page_t m;
296
297	upobj = p->p_upages_obj;
298	VM_OBJECT_LOCK(upobj);
299	if (upobj->resident_page_count != UAREA_PAGES)
300		panic("vm_proc_dispose: incorrect number of pages in upobj");
301	vm_page_lock_queues();
302	TAILQ_FOREACH(m, &upobj->memq, listq) {
303		vm_page_dirty(m);
304		vm_page_unwire(m, 0);
305	}
306	vm_page_unlock_queues();
307	VM_OBJECT_UNLOCK(upobj);
308	up = (vm_offset_t)p->p_uarea;
309	pmap_qremove(up, UAREA_PAGES);
310}
311
312/*
313 * Bring the U area for a specified process back in.
314 */
315static void
316vm_proc_swapin(struct proc *p)
317{
318	vm_page_t ma[UAREA_PAGES];
319	vm_object_t upobj;
320	vm_offset_t up;
321	vm_page_t m;
322	int rv;
323	int i;
324
325	upobj = p->p_upages_obj;
326	VM_OBJECT_LOCK(upobj);
327	for (i = 0; i < UAREA_PAGES; i++) {
328		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
329		if (m->valid != VM_PAGE_BITS_ALL) {
330			rv = vm_pager_get_pages(upobj, &m, 1, 0);
331			if (rv != VM_PAGER_OK)
332				panic("vm_proc_swapin: cannot get upage");
333		}
334		ma[i] = m;
335	}
336	if (upobj->resident_page_count != UAREA_PAGES)
337		panic("vm_proc_swapin: lost pages from upobj");
338	vm_page_lock_queues();
339	TAILQ_FOREACH(m, &upobj->memq, listq) {
340		m->valid = VM_PAGE_BITS_ALL;
341		vm_page_wire(m);
342		vm_page_wakeup(m);
343	}
344	vm_page_unlock_queues();
345	VM_OBJECT_UNLOCK(upobj);
346	up = (vm_offset_t)p->p_uarea;
347	pmap_qenter(up, ma, UAREA_PAGES);
348}
349
350/*
351 * Swap in the UAREAs of all processes swapped out to the given device.
352 * The pages in the UAREA are marked dirty and their swap metadata is freed.
353 */
354void
355vm_proc_swapin_all(struct swdevt *devidx)
356{
357	struct proc *p;
358	vm_object_t object;
359	vm_page_t m;
360
361retry:
362	sx_slock(&allproc_lock);
363	FOREACH_PROC_IN_SYSTEM(p) {
364		PROC_LOCK(p);
365		object = p->p_upages_obj;
366		if (object != NULL) {
367			VM_OBJECT_LOCK(object);
368			if (swap_pager_isswapped(object, devidx)) {
369				VM_OBJECT_UNLOCK(object);
370				sx_sunlock(&allproc_lock);
371				faultin(p);
372				PROC_UNLOCK(p);
373				VM_OBJECT_LOCK(object);
374				vm_page_lock_queues();
375				TAILQ_FOREACH(m, &object->memq, listq)
376					vm_page_dirty(m);
377				vm_page_unlock_queues();
378				swap_pager_freespace(object, 0,
379				    object->un_pager.swp.swp_bcount);
380				VM_OBJECT_UNLOCK(object);
381				goto retry;
382			}
383			VM_OBJECT_UNLOCK(object);
384		}
385		PROC_UNLOCK(p);
386	}
387	sx_sunlock(&allproc_lock);
388}
389#endif
390
391#ifndef KSTACK_MAX_PAGES
392#define KSTACK_MAX_PAGES 32
393#endif
394
395/*
396 * Create the kernel stack (including pcb for i386) for a new thread.
397 * This routine directly affects the fork perf for a process and
398 * create performance for a thread.
399 */
400void
401vm_thread_new(struct thread *td, int pages)
402{
403	vm_object_t ksobj;
404	vm_offset_t ks;
405	vm_page_t m, ma[KSTACK_MAX_PAGES];
406	int i;
407
408	/* Bounds check */
409	if (pages <= 1)
410		pages = KSTACK_PAGES;
411	else if (pages > KSTACK_MAX_PAGES)
412		pages = KSTACK_MAX_PAGES;
413	/*
414	 * Allocate an object for the kstack.
415	 */
416	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
417	td->td_kstack_obj = ksobj;
418	/*
419	 * Get a kernel virtual address for this thread's kstack.
420	 */
421	ks = kmem_alloc_nofault(kernel_map,
422	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
423	if (ks == 0)
424		panic("vm_thread_new: kstack allocation failed");
425	if (KSTACK_GUARD_PAGES != 0) {
426		pmap_qremove(ks, KSTACK_GUARD_PAGES);
427		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
428	}
429	td->td_kstack = ks;
430	/*
431	 * Knowing the number of pages allocated is useful when you
432	 * want to deallocate them.
433	 */
434	td->td_kstack_pages = pages;
435	/*
436	 * For the length of the stack, link in a real page of ram for each
437	 * page of stack.
438	 */
439	VM_OBJECT_LOCK(ksobj);
440	for (i = 0; i < pages; i++) {
441		/*
442		 * Get a kernel stack page.
443		 */
444		m = vm_page_grab(ksobj, i,
445		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
446		ma[i] = m;
447		vm_page_lock_queues();
448		vm_page_wakeup(m);
449		m->valid = VM_PAGE_BITS_ALL;
450		vm_page_unlock_queues();
451	}
452	VM_OBJECT_UNLOCK(ksobj);
453	pmap_qenter(ks, ma, pages);
454}
455
456/*
457 * Dispose of a thread's kernel stack.
458 */
459void
460vm_thread_dispose(struct thread *td)
461{
462	vm_object_t ksobj;
463	vm_offset_t ks;
464	vm_page_t m;
465	int i, pages;
466
467	pages = td->td_kstack_pages;
468	ksobj = td->td_kstack_obj;
469	ks = td->td_kstack;
470	pmap_qremove(ks, pages);
471	VM_OBJECT_LOCK(ksobj);
472	for (i = 0; i < pages; i++) {
473		m = vm_page_lookup(ksobj, i);
474		if (m == NULL)
475			panic("vm_thread_dispose: kstack already missing?");
476		vm_page_lock_queues();
477		vm_page_busy(m);
478		vm_page_unwire(m, 0);
479		vm_page_free(m);
480		vm_page_unlock_queues();
481	}
482	VM_OBJECT_UNLOCK(ksobj);
483	vm_object_deallocate(ksobj);
484	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
485	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
486}
487
488/*
489 * Allow a thread's kernel stack to be paged out.
490 */
491void
492vm_thread_swapout(struct thread *td)
493{
494	vm_object_t ksobj;
495	vm_page_t m;
496	int i, pages;
497
498	cpu_thread_swapout(td);
499	pages = td->td_kstack_pages;
500	ksobj = td->td_kstack_obj;
501	pmap_qremove(td->td_kstack, pages);
502	VM_OBJECT_LOCK(ksobj);
503	for (i = 0; i < pages; i++) {
504		m = vm_page_lookup(ksobj, i);
505		if (m == NULL)
506			panic("vm_thread_swapout: kstack already missing?");
507		vm_page_lock_queues();
508		vm_page_dirty(m);
509		vm_page_unwire(m, 0);
510		vm_page_unlock_queues();
511	}
512	VM_OBJECT_UNLOCK(ksobj);
513}
514
515/*
516 * Bring the kernel stack for a specified thread back in.
517 */
518void
519vm_thread_swapin(struct thread *td)
520{
521	vm_object_t ksobj;
522	vm_page_t m, ma[KSTACK_MAX_PAGES];
523	int i, pages, rv;
524
525	pages = td->td_kstack_pages;
526	ksobj = td->td_kstack_obj;
527	VM_OBJECT_LOCK(ksobj);
528	for (i = 0; i < pages; i++) {
529		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
530		if (m->valid != VM_PAGE_BITS_ALL) {
531			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
532			if (rv != VM_PAGER_OK)
533				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
534			m = vm_page_lookup(ksobj, i);
535			m->valid = VM_PAGE_BITS_ALL;
536		}
537		ma[i] = m;
538		vm_page_lock_queues();
539		vm_page_wire(m);
540		vm_page_wakeup(m);
541		vm_page_unlock_queues();
542	}
543	VM_OBJECT_UNLOCK(ksobj);
544	pmap_qenter(td->td_kstack, ma, pages);
545	cpu_thread_swapin(td);
546}
547
548/*
549 * Set up a variable-sized alternate kstack.
550 */
551void
552vm_thread_new_altkstack(struct thread *td, int pages)
553{
554
555	td->td_altkstack = td->td_kstack;
556	td->td_altkstack_obj = td->td_kstack_obj;
557	td->td_altkstack_pages = td->td_kstack_pages;
558
559	vm_thread_new(td, pages);
560}
561
562/*
563 * Restore the original kstack.
564 */
565void
566vm_thread_dispose_altkstack(struct thread *td)
567{
568
569	vm_thread_dispose(td);
570
571	td->td_kstack = td->td_altkstack;
572	td->td_kstack_obj = td->td_altkstack_obj;
573	td->td_kstack_pages = td->td_altkstack_pages;
574	td->td_altkstack = 0;
575	td->td_altkstack_obj = NULL;
576	td->td_altkstack_pages = 0;
577}
578
579/*
580 * Implement fork's actions on an address space.
581 * Here we arrange for the address space to be copied or referenced,
582 * allocate a user struct (pcb and kernel stack), then call the
583 * machine-dependent layer to fill those in and make the new process
584 * ready to run.  The new process is set up so that it returns directly
585 * to user mode to avoid stack copying and relocation problems.
586 */
587void
588vm_forkproc(td, p2, td2, flags)
589	struct thread *td;
590	struct proc *p2;
591	struct thread *td2;
592	int flags;
593{
594	struct proc *p1 = td->td_proc;
595	struct user *up;
596
597	GIANT_REQUIRED;
598
599	if ((flags & RFPROC) == 0) {
600		/*
601		 * Divorce the memory, if it is shared, essentially
602		 * this changes shared memory amongst threads, into
603		 * COW locally.
604		 */
605		if ((flags & RFMEM) == 0) {
606			if (p1->p_vmspace->vm_refcnt > 1) {
607				vmspace_unshare(p1);
608			}
609		}
610		cpu_fork(td, p2, td2, flags);
611		return;
612	}
613
614	if (flags & RFMEM) {
615		p2->p_vmspace = p1->p_vmspace;
616		p1->p_vmspace->vm_refcnt++;
617	}
618
619	while (vm_page_count_severe()) {
620		VM_WAIT;
621	}
622
623	if ((flags & RFMEM) == 0) {
624		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
625
626		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
627
628		if (p1->p_vmspace->vm_shm)
629			shmfork(p1, p2);
630	}
631
632	/* XXXKSE this is unsatisfactory but should be adequate */
633	up = p2->p_uarea;
634	MPASS(p2->p_sigacts != NULL);
635
636	/*
637	 * p_stats currently points at fields in the user struct
638	 * but not at &u, instead at p_addr. Copy parts of
639	 * p_stats; zero the rest of p_stats (statistics).
640	 */
641	p2->p_stats = &up->u_stats;
642	bzero(&up->u_stats.pstat_startzero,
643	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
644		(caddr_t) &up->u_stats.pstat_startzero));
645	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
646	    ((caddr_t) &up->u_stats.pstat_endcopy -
647		(caddr_t) &up->u_stats.pstat_startcopy));
648
649	/*
650	 * cpu_fork will copy and update the pcb, set up the kernel stack,
651	 * and make the child ready to run.
652	 */
653	cpu_fork(td, p2, td2, flags);
654}
655
656/*
657 * Called after process has been wait(2)'ed apon and is being reaped.
658 * The idea is to reclaim resources that we could not reclaim while
659 * the process was still executing.
660 */
661void
662vm_waitproc(p)
663	struct proc *p;
664{
665
666	GIANT_REQUIRED;
667	vmspace_exitfree(p);		/* and clean-out the vmspace */
668}
669
670/*
671 * Set default limits for VM system.
672 * Called for proc 0, and then inherited by all others.
673 *
674 * XXX should probably act directly on proc0.
675 */
676static void
677vm_init_limits(udata)
678	void *udata;
679{
680	struct proc *p = udata;
681	int rss_limit;
682
683	/*
684	 * Set up the initial limits on process VM. Set the maximum resident
685	 * set size to be half of (reasonably) available memory.  Since this
686	 * is a soft limit, it comes into effect only when the system is out
687	 * of memory - half of main memory helps to favor smaller processes,
688	 * and reduces thrashing of the object cache.
689	 */
690	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
691	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
692	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
693	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
694	/* limit the limit to no less than 2MB */
695	rss_limit = max(cnt.v_free_count, 512);
696	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
697	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
698}
699
700void
701faultin(p)
702	struct proc *p;
703{
704#ifdef NO_SWAPPING
705
706	PROC_LOCK_ASSERT(p, MA_OWNED);
707	if ((p->p_sflag & PS_INMEM) == 0)
708		panic("faultin: proc swapped out with NO_SWAPPING!");
709#else /* !NO_SWAPPING */
710	struct thread *td;
711
712	GIANT_REQUIRED;
713	PROC_LOCK_ASSERT(p, MA_OWNED);
714	/*
715	 * If another process is swapping in this process,
716	 * just wait until it finishes.
717	 */
718	if (p->p_sflag & PS_SWAPPINGIN)
719		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
720	else if ((p->p_sflag & PS_INMEM) == 0) {
721		/*
722		 * Don't let another thread swap process p out while we are
723		 * busy swapping it in.
724		 */
725		++p->p_lock;
726		mtx_lock_spin(&sched_lock);
727		p->p_sflag |= PS_SWAPPINGIN;
728		mtx_unlock_spin(&sched_lock);
729		PROC_UNLOCK(p);
730
731		vm_proc_swapin(p);
732		FOREACH_THREAD_IN_PROC(p, td)
733			vm_thread_swapin(td);
734
735		PROC_LOCK(p);
736		mtx_lock_spin(&sched_lock);
737		p->p_sflag &= ~PS_SWAPPINGIN;
738		p->p_sflag |= PS_INMEM;
739		FOREACH_THREAD_IN_PROC(p, td) {
740			TD_CLR_SWAPPED(td);
741			if (TD_CAN_RUN(td))
742				setrunnable(td);
743		}
744		mtx_unlock_spin(&sched_lock);
745
746		wakeup(&p->p_sflag);
747
748		/* Allow other threads to swap p out now. */
749		--p->p_lock;
750	}
751#endif /* NO_SWAPPING */
752}
753
754/*
755 * This swapin algorithm attempts to swap-in processes only if there
756 * is enough space for them.  Of course, if a process waits for a long
757 * time, it will be swapped in anyway.
758 *
759 *  XXXKSE - process with the thread with highest priority counts..
760 *
761 * Giant is still held at this point, to be released in tsleep.
762 */
763/* ARGSUSED*/
764static void
765scheduler(dummy)
766	void *dummy;
767{
768	struct proc *p;
769	struct thread *td;
770	int pri;
771	struct proc *pp;
772	int ppri;
773
774	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
775	/* GIANT_REQUIRED */
776
777loop:
778	if (vm_page_count_min()) {
779		VM_WAIT;
780		goto loop;
781	}
782
783	pp = NULL;
784	ppri = INT_MIN;
785	sx_slock(&allproc_lock);
786	FOREACH_PROC_IN_SYSTEM(p) {
787		struct ksegrp *kg;
788		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
789			continue;
790		}
791		mtx_lock_spin(&sched_lock);
792		FOREACH_THREAD_IN_PROC(p, td) {
793			/*
794			 * An otherwise runnable thread of a process
795			 * swapped out has only the TDI_SWAPPED bit set.
796			 *
797			 */
798			if (td->td_inhibitors == TDI_SWAPPED) {
799				kg = td->td_ksegrp;
800				pri = p->p_swtime + kg->kg_slptime;
801				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
802					pri -= kg->kg_nice * 8;
803				}
804
805				/*
806				 * if this ksegrp is higher priority
807				 * and there is enough space, then select
808				 * this process instead of the previous
809				 * selection.
810				 */
811				if (pri > ppri) {
812					pp = p;
813					ppri = pri;
814				}
815			}
816		}
817		mtx_unlock_spin(&sched_lock);
818	}
819	sx_sunlock(&allproc_lock);
820
821	/*
822	 * Nothing to do, back to sleep.
823	 */
824	if ((p = pp) == NULL) {
825		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
826		goto loop;
827	}
828	PROC_LOCK(p);
829
830	/*
831	 * Another process may be bringing or may have already
832	 * brought this process in while we traverse all threads.
833	 * Or, this process may even be being swapped out again.
834	 */
835	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
836		PROC_UNLOCK(p);
837		goto loop;
838	}
839
840	mtx_lock_spin(&sched_lock);
841	p->p_sflag &= ~PS_SWAPINREQ;
842	mtx_unlock_spin(&sched_lock);
843
844	/*
845	 * We would like to bring someone in. (only if there is space).
846	 * [What checks the space? ]
847	 */
848	faultin(p);
849	PROC_UNLOCK(p);
850	mtx_lock_spin(&sched_lock);
851	p->p_swtime = 0;
852	mtx_unlock_spin(&sched_lock);
853	goto loop;
854}
855
856#ifndef NO_SWAPPING
857
858/*
859 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
860 */
861static int swap_idle_threshold1 = 2;
862SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
863    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
864
865/*
866 * Swap_idle_threshold2 is the time that a process can be idle before
867 * it will be swapped out, if idle swapping is enabled.
868 */
869static int swap_idle_threshold2 = 10;
870SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
871    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
872
873/*
874 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
875 * procs and unwire their u-areas.  We try to always "swap" at least one
876 * process in case we need the room for a swapin.
877 * If any procs have been sleeping/stopped for at least maxslp seconds,
878 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
879 * if any, otherwise the longest-resident process.
880 */
881void
882swapout_procs(action)
883int action;
884{
885	struct proc *p;
886	struct thread *td;
887	struct ksegrp *kg;
888	int didswap = 0;
889
890	GIANT_REQUIRED;
891
892retry:
893	sx_slock(&allproc_lock);
894	FOREACH_PROC_IN_SYSTEM(p) {
895		struct vmspace *vm;
896		int minslptime = 100000;
897
898		/*
899		 * Watch out for a process in
900		 * creation.  It may have no
901		 * address space or lock yet.
902		 */
903		mtx_lock_spin(&sched_lock);
904		if (p->p_state == PRS_NEW) {
905			mtx_unlock_spin(&sched_lock);
906			continue;
907		}
908		mtx_unlock_spin(&sched_lock);
909
910		/*
911		 * An aio daemon switches its
912		 * address space while running.
913		 * Perform a quick check whether
914		 * a process has P_SYSTEM.
915		 */
916		if ((p->p_flag & P_SYSTEM) != 0)
917			continue;
918
919		/*
920		 * Do not swapout a process that
921		 * is waiting for VM data
922		 * structures as there is a possible
923		 * deadlock.  Test this first as
924		 * this may block.
925		 *
926		 * Lock the map until swapout
927		 * finishes, or a thread of this
928		 * process may attempt to alter
929		 * the map.
930		 */
931		PROC_LOCK(p);
932		vm = p->p_vmspace;
933		KASSERT(vm != NULL,
934			("swapout_procs: a process has no address space"));
935		++vm->vm_refcnt;
936		PROC_UNLOCK(p);
937		if (!vm_map_trylock(&vm->vm_map))
938			goto nextproc1;
939
940		PROC_LOCK(p);
941		if (p->p_lock != 0 ||
942		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
943		    ) != 0) {
944			goto nextproc2;
945		}
946		/*
947		 * only aiod changes vmspace, however it will be
948		 * skipped because of the if statement above checking
949		 * for P_SYSTEM
950		 */
951		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
952			goto nextproc2;
953
954		switch (p->p_state) {
955		default:
956			/* Don't swap out processes in any sort
957			 * of 'special' state. */
958			break;
959
960		case PRS_NORMAL:
961			mtx_lock_spin(&sched_lock);
962			/*
963			 * do not swapout a realtime process
964			 * Check all the thread groups..
965			 */
966			FOREACH_KSEGRP_IN_PROC(p, kg) {
967				if (PRI_IS_REALTIME(kg->kg_pri_class))
968					goto nextproc;
969
970				/*
971				 * Guarantee swap_idle_threshold1
972				 * time in memory.
973				 */
974				if (kg->kg_slptime < swap_idle_threshold1)
975					goto nextproc;
976
977				/*
978				 * Do not swapout a process if it is
979				 * waiting on a critical event of some
980				 * kind or there is a thread whose
981				 * pageable memory may be accessed.
982				 *
983				 * This could be refined to support
984				 * swapping out a thread.
985				 */
986				FOREACH_THREAD_IN_GROUP(kg, td) {
987					if ((td->td_priority) < PSOCK ||
988					    !thread_safetoswapout(td))
989						goto nextproc;
990				}
991				/*
992				 * If the system is under memory stress,
993				 * or if we are swapping
994				 * idle processes >= swap_idle_threshold2,
995				 * then swap the process out.
996				 */
997				if (((action & VM_SWAP_NORMAL) == 0) &&
998				    (((action & VM_SWAP_IDLE) == 0) ||
999				    (kg->kg_slptime < swap_idle_threshold2)))
1000					goto nextproc;
1001
1002				if (minslptime > kg->kg_slptime)
1003					minslptime = kg->kg_slptime;
1004			}
1005
1006			/*
1007			 * If the process has been asleep for awhile and had
1008			 * most of its pages taken away already, swap it out.
1009			 */
1010			if ((action & VM_SWAP_NORMAL) ||
1011				((action & VM_SWAP_IDLE) &&
1012				 (minslptime > swap_idle_threshold2))) {
1013				swapout(p);
1014				didswap++;
1015				mtx_unlock_spin(&sched_lock);
1016				PROC_UNLOCK(p);
1017				vm_map_unlock(&vm->vm_map);
1018				vmspace_free(vm);
1019				sx_sunlock(&allproc_lock);
1020				goto retry;
1021			}
1022nextproc:
1023			mtx_unlock_spin(&sched_lock);
1024		}
1025nextproc2:
1026		PROC_UNLOCK(p);
1027		vm_map_unlock(&vm->vm_map);
1028nextproc1:
1029		vmspace_free(vm);
1030		continue;
1031	}
1032	sx_sunlock(&allproc_lock);
1033	/*
1034	 * If we swapped something out, and another process needed memory,
1035	 * then wakeup the sched process.
1036	 */
1037	if (didswap)
1038		wakeup(&proc0);
1039}
1040
1041static void
1042swapout(p)
1043	struct proc *p;
1044{
1045	struct thread *td;
1046
1047	PROC_LOCK_ASSERT(p, MA_OWNED);
1048	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
1049#if defined(SWAP_DEBUG)
1050	printf("swapping out %d\n", p->p_pid);
1051#endif
1052
1053	/*
1054	 * The states of this process and its threads may have changed
1055	 * by now.  Assuming that there is only one pageout daemon thread,
1056	 * this process should still be in memory.
1057	 */
1058	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
1059		("swapout: lost a swapout race?"));
1060
1061#if defined(INVARIANTS)
1062	/*
1063	 * Make sure that all threads are safe to be swapped out.
1064	 *
1065	 * Alternatively, we could swap out only safe threads.
1066	 */
1067	FOREACH_THREAD_IN_PROC(p, td) {
1068		KASSERT(thread_safetoswapout(td),
1069			("swapout: there is a thread not safe for swapout"));
1070	}
1071#endif /* INVARIANTS */
1072
1073	++p->p_stats->p_ru.ru_nswap;
1074	/*
1075	 * remember the process resident count
1076	 */
1077	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1078
1079	p->p_sflag &= ~PS_INMEM;
1080	p->p_sflag |= PS_SWAPPINGOUT;
1081	PROC_UNLOCK(p);
1082	FOREACH_THREAD_IN_PROC(p, td)
1083		TD_SET_SWAPPED(td);
1084	mtx_unlock_spin(&sched_lock);
1085
1086	vm_proc_swapout(p);
1087	FOREACH_THREAD_IN_PROC(p, td)
1088		vm_thread_swapout(td);
1089
1090	PROC_LOCK(p);
1091	mtx_lock_spin(&sched_lock);
1092	p->p_sflag &= ~PS_SWAPPINGOUT;
1093	p->p_swtime = 0;
1094}
1095#endif /* !NO_SWAPPING */
1096