vm_glue.c revision 118390
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 */
62
63#include <sys/cdefs.h>
64__FBSDID("$FreeBSD: head/sys/vm/vm_glue.c 118390 2003-08-03 13:35:31Z phk $");
65
66#include "opt_vm.h"
67#include "opt_kstack_pages.h"
68#include "opt_kstack_max_pages.h"
69
70#include <sys/param.h>
71#include <sys/systm.h>
72#include <sys/limits.h>
73#include <sys/lock.h>
74#include <sys/mutex.h>
75#include <sys/proc.h>
76#include <sys/resourcevar.h>
77#include <sys/shm.h>
78#include <sys/vmmeter.h>
79#include <sys/sx.h>
80#include <sys/sysctl.h>
81
82#include <sys/kernel.h>
83#include <sys/ktr.h>
84#include <sys/unistd.h>
85
86#include <vm/vm.h>
87#include <vm/vm_param.h>
88#include <vm/pmap.h>
89#include <vm/vm_map.h>
90#include <vm/vm_page.h>
91#include <vm/vm_pageout.h>
92#include <vm/vm_object.h>
93#include <vm/vm_kern.h>
94#include <vm/vm_extern.h>
95#include <vm/vm_pager.h>
96#include <vm/swap_pager.h>
97
98#include <sys/user.h>
99
100extern int maxslp;
101
102/*
103 * System initialization
104 *
105 * Note: proc0 from proc.h
106 */
107static void vm_init_limits(void *);
108SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
109
110/*
111 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
112 *
113 * Note: run scheduling should be divorced from the vm system.
114 */
115static void scheduler(void *);
116SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
117
118#ifndef NO_SWAPPING
119static void swapout(struct proc *);
120static void vm_proc_swapin(struct proc *p);
121static void vm_proc_swapout(struct proc *p);
122#endif
123
124/*
125 * MPSAFE
126 *
127 * WARNING!  This code calls vm_map_check_protection() which only checks
128 * the associated vm_map_entry range.  It does not determine whether the
129 * contents of the memory is actually readable or writable.  In most cases
130 * just checking the vm_map_entry is sufficient within the kernel's address
131 * space.
132 */
133int
134kernacc(addr, len, rw)
135	void *addr;
136	int len, rw;
137{
138	boolean_t rv;
139	vm_offset_t saddr, eaddr;
140	vm_prot_t prot;
141
142	KASSERT((rw & ~VM_PROT_ALL) == 0,
143	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
144	prot = rw;
145	saddr = trunc_page((vm_offset_t)addr);
146	eaddr = round_page((vm_offset_t)addr + len);
147	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
148	return (rv == TRUE);
149}
150
151/*
152 * MPSAFE
153 *
154 * WARNING!  This code calls vm_map_check_protection() which only checks
155 * the associated vm_map_entry range.  It does not determine whether the
156 * contents of the memory is actually readable or writable.  vmapbuf(),
157 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
158 * used in conjuction with this call.
159 */
160int
161useracc(addr, len, rw)
162	void *addr;
163	int len, rw;
164{
165	boolean_t rv;
166	vm_prot_t prot;
167	vm_map_t map;
168
169	KASSERT((rw & ~VM_PROT_ALL) == 0,
170	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
171	prot = rw;
172	map = &curproc->p_vmspace->vm_map;
173	if ((vm_offset_t)addr + len > vm_map_max(map) ||
174	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
175		return (FALSE);
176	}
177	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
178	    round_page((vm_offset_t)addr + len), prot);
179	return (rv == TRUE);
180}
181
182/*
183 * MPSAFE
184 */
185void
186vslock(addr, len)
187	void *addr;
188	u_int len;
189{
190
191	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
192	    round_page((vm_offset_t)addr + len), FALSE);
193}
194
195/*
196 * MPSAFE
197 */
198void
199vsunlock(addr, len)
200	void *addr;
201	u_int len;
202{
203
204	vm_map_unwire(&curproc->p_vmspace->vm_map,
205	    trunc_page((vm_offset_t)addr),
206	    round_page((vm_offset_t)addr + len), FALSE);
207}
208
209/*
210 * Create the U area for a new process.
211 * This routine directly affects the fork perf for a process.
212 */
213void
214vm_proc_new(struct proc *p)
215{
216	vm_page_t ma[UAREA_PAGES];
217	vm_object_t upobj;
218	vm_offset_t up;
219	vm_page_t m;
220	u_int i;
221
222	/*
223	 * Allocate object for the upage.
224	 */
225	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
226	p->p_upages_obj = upobj;
227
228	/*
229	 * Get a kernel virtual address for the U area for this process.
230	 */
231	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
232	if (up == 0)
233		panic("vm_proc_new: upage allocation failed");
234	p->p_uarea = (struct user *)up;
235
236	for (i = 0; i < UAREA_PAGES; i++) {
237		/*
238		 * Get a uarea page.
239		 */
240		m = vm_page_grab(upobj, i,
241		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
242		ma[i] = m;
243
244		vm_page_lock_queues();
245		vm_page_wakeup(m);
246		vm_page_flag_clear(m, PG_ZERO);
247		m->valid = VM_PAGE_BITS_ALL;
248		vm_page_unlock_queues();
249	}
250
251	/*
252	 * Enter the pages into the kernel address space.
253	 */
254	pmap_qenter(up, ma, UAREA_PAGES);
255}
256
257/*
258 * Dispose the U area for a process that has exited.
259 * This routine directly impacts the exit perf of a process.
260 * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
261 */
262void
263vm_proc_dispose(struct proc *p)
264{
265	vm_object_t upobj;
266	vm_offset_t up;
267	vm_page_t m;
268
269	upobj = p->p_upages_obj;
270	VM_OBJECT_LOCK(upobj);
271	if (upobj->resident_page_count != UAREA_PAGES)
272		panic("vm_proc_dispose: incorrect number of pages in upobj");
273	vm_page_lock_queues();
274	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
275		vm_page_busy(m);
276		vm_page_unwire(m, 0);
277		vm_page_free(m);
278	}
279	vm_page_unlock_queues();
280	VM_OBJECT_UNLOCK(upobj);
281	up = (vm_offset_t)p->p_uarea;
282	pmap_qremove(up, UAREA_PAGES);
283	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
284	vm_object_deallocate(upobj);
285}
286
287#ifndef NO_SWAPPING
288/*
289 * Allow the U area for a process to be prejudicially paged out.
290 */
291static void
292vm_proc_swapout(struct proc *p)
293{
294	vm_object_t upobj;
295	vm_offset_t up;
296	vm_page_t m;
297
298	upobj = p->p_upages_obj;
299	VM_OBJECT_LOCK(upobj);
300	if (upobj->resident_page_count != UAREA_PAGES)
301		panic("vm_proc_dispose: incorrect number of pages in upobj");
302	vm_page_lock_queues();
303	TAILQ_FOREACH(m, &upobj->memq, listq) {
304		vm_page_dirty(m);
305		vm_page_unwire(m, 0);
306	}
307	vm_page_unlock_queues();
308	VM_OBJECT_UNLOCK(upobj);
309	up = (vm_offset_t)p->p_uarea;
310	pmap_qremove(up, UAREA_PAGES);
311}
312
313/*
314 * Bring the U area for a specified process back in.
315 */
316static void
317vm_proc_swapin(struct proc *p)
318{
319	vm_page_t ma[UAREA_PAGES];
320	vm_object_t upobj;
321	vm_offset_t up;
322	vm_page_t m;
323	int rv;
324	int i;
325
326	upobj = p->p_upages_obj;
327	VM_OBJECT_LOCK(upobj);
328	for (i = 0; i < UAREA_PAGES; i++) {
329		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
330		if (m->valid != VM_PAGE_BITS_ALL) {
331			rv = vm_pager_get_pages(upobj, &m, 1, 0);
332			if (rv != VM_PAGER_OK)
333				panic("vm_proc_swapin: cannot get upage");
334		}
335		ma[i] = m;
336	}
337	if (upobj->resident_page_count != UAREA_PAGES)
338		panic("vm_proc_swapin: lost pages from upobj");
339	vm_page_lock_queues();
340	TAILQ_FOREACH(m, &upobj->memq, listq) {
341		m->valid = VM_PAGE_BITS_ALL;
342		vm_page_wire(m);
343		vm_page_wakeup(m);
344	}
345	vm_page_unlock_queues();
346	VM_OBJECT_UNLOCK(upobj);
347	up = (vm_offset_t)p->p_uarea;
348	pmap_qenter(up, ma, UAREA_PAGES);
349}
350
351/*
352 * Swap in the UAREAs of all processes swapped out to the given device.
353 * The pages in the UAREA are marked dirty and their swap metadata is freed.
354 */
355void
356vm_proc_swapin_all(struct swdevt *devidx)
357{
358	struct proc *p;
359	vm_object_t object;
360	vm_page_t m;
361
362retry:
363	sx_slock(&allproc_lock);
364	FOREACH_PROC_IN_SYSTEM(p) {
365		PROC_LOCK(p);
366		object = p->p_upages_obj;
367		if (object != NULL) {
368			VM_OBJECT_LOCK(object);
369			if (swap_pager_isswapped(object, devidx)) {
370				VM_OBJECT_UNLOCK(object);
371				sx_sunlock(&allproc_lock);
372				faultin(p);
373				PROC_UNLOCK(p);
374				VM_OBJECT_LOCK(object);
375				vm_page_lock_queues();
376				TAILQ_FOREACH(m, &object->memq, listq)
377					vm_page_dirty(m);
378				vm_page_unlock_queues();
379				swap_pager_freespace(object, 0,
380				    object->un_pager.swp.swp_bcount);
381				VM_OBJECT_UNLOCK(object);
382				goto retry;
383			}
384			VM_OBJECT_UNLOCK(object);
385		}
386		PROC_UNLOCK(p);
387	}
388	sx_sunlock(&allproc_lock);
389}
390#endif
391
392#ifndef KSTACK_MAX_PAGES
393#define KSTACK_MAX_PAGES 32
394#endif
395
396/*
397 * Create the kernel stack (including pcb for i386) for a new thread.
398 * This routine directly affects the fork perf for a process and
399 * create performance for a thread.
400 */
401void
402vm_thread_new(struct thread *td, int pages)
403{
404	vm_object_t ksobj;
405	vm_offset_t ks;
406	vm_page_t m, ma[KSTACK_MAX_PAGES];
407	int i;
408
409	/* Bounds check */
410	if (pages <= 1)
411		pages = KSTACK_PAGES;
412	else if (pages > KSTACK_MAX_PAGES)
413		pages = KSTACK_MAX_PAGES;
414	/*
415	 * Allocate an object for the kstack.
416	 */
417	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
418	td->td_kstack_obj = ksobj;
419	/*
420	 * Get a kernel virtual address for this thread's kstack.
421	 */
422	ks = kmem_alloc_nofault(kernel_map,
423	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
424	if (ks == 0)
425		panic("vm_thread_new: kstack allocation failed");
426	if (KSTACK_GUARD_PAGES != 0) {
427		pmap_qremove(ks, KSTACK_GUARD_PAGES);
428		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
429	}
430	td->td_kstack = ks;
431	/*
432	 * Knowing the number of pages allocated is useful when you
433	 * want to deallocate them.
434	 */
435	td->td_kstack_pages = pages;
436	/*
437	 * For the length of the stack, link in a real page of ram for each
438	 * page of stack.
439	 */
440	VM_OBJECT_LOCK(ksobj);
441	for (i = 0; i < pages; i++) {
442		/*
443		 * Get a kernel stack page.
444		 */
445		m = vm_page_grab(ksobj, i,
446		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
447		ma[i] = m;
448		vm_page_lock_queues();
449		vm_page_wakeup(m);
450		m->valid = VM_PAGE_BITS_ALL;
451		vm_page_unlock_queues();
452	}
453	VM_OBJECT_UNLOCK(ksobj);
454	pmap_qenter(ks, ma, pages);
455}
456
457/*
458 * Dispose of a thread's kernel stack.
459 */
460void
461vm_thread_dispose(struct thread *td)
462{
463	vm_object_t ksobj;
464	vm_offset_t ks;
465	vm_page_t m;
466	int i, pages;
467
468	pages = td->td_kstack_pages;
469	ksobj = td->td_kstack_obj;
470	ks = td->td_kstack;
471	pmap_qremove(ks, pages);
472	VM_OBJECT_LOCK(ksobj);
473	for (i = 0; i < pages; i++) {
474		m = vm_page_lookup(ksobj, i);
475		if (m == NULL)
476			panic("vm_thread_dispose: kstack already missing?");
477		vm_page_lock_queues();
478		vm_page_busy(m);
479		vm_page_unwire(m, 0);
480		vm_page_free(m);
481		vm_page_unlock_queues();
482	}
483	VM_OBJECT_UNLOCK(ksobj);
484	vm_object_deallocate(ksobj);
485	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
486	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
487}
488
489/*
490 * Allow a thread's kernel stack to be paged out.
491 */
492void
493vm_thread_swapout(struct thread *td)
494{
495	vm_object_t ksobj;
496	vm_page_t m;
497	int i, pages;
498
499#ifdef	__alpha__
500	/*
501	 * Make sure we aren't fpcurthread.
502	 */
503	alpha_fpstate_save(td, 1);
504#endif
505	pages = td->td_kstack_pages;
506	ksobj = td->td_kstack_obj;
507	pmap_qremove(td->td_kstack, pages);
508	VM_OBJECT_LOCK(ksobj);
509	for (i = 0; i < pages; i++) {
510		m = vm_page_lookup(ksobj, i);
511		if (m == NULL)
512			panic("vm_thread_swapout: kstack already missing?");
513		vm_page_lock_queues();
514		vm_page_dirty(m);
515		vm_page_unwire(m, 0);
516		vm_page_unlock_queues();
517	}
518	VM_OBJECT_UNLOCK(ksobj);
519}
520
521/*
522 * Bring the kernel stack for a specified thread back in.
523 */
524void
525vm_thread_swapin(struct thread *td)
526{
527	vm_object_t ksobj;
528	vm_page_t m, ma[KSTACK_MAX_PAGES];
529	int i, pages, rv;
530
531	pages = td->td_kstack_pages;
532	ksobj = td->td_kstack_obj;
533	VM_OBJECT_LOCK(ksobj);
534	for (i = 0; i < pages; i++) {
535		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
536		if (m->valid != VM_PAGE_BITS_ALL) {
537			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
538			if (rv != VM_PAGER_OK)
539				panic("vm_thread_swapin: cannot get kstack for proc: %d", td->td_proc->p_pid);
540			m = vm_page_lookup(ksobj, i);
541			m->valid = VM_PAGE_BITS_ALL;
542		}
543		ma[i] = m;
544		vm_page_lock_queues();
545		vm_page_wire(m);
546		vm_page_wakeup(m);
547		vm_page_unlock_queues();
548	}
549	VM_OBJECT_UNLOCK(ksobj);
550	pmap_qenter(td->td_kstack, ma, pages);
551#ifdef	__alpha__
552	/*
553	 * The pcb may be at a different physical address now so cache the
554	 * new address.
555	 */
556	td->td_md.md_pcbpaddr = (void *)vtophys((vm_offset_t)td->td_pcb);
557#endif
558}
559
560/*
561 * Set up a variable-sized alternate kstack.
562 */
563void
564vm_thread_new_altkstack(struct thread *td, int pages)
565{
566
567	td->td_altkstack = td->td_kstack;
568	td->td_altkstack_obj = td->td_kstack_obj;
569	td->td_altkstack_pages = td->td_kstack_pages;
570
571	vm_thread_new(td, pages);
572}
573
574/*
575 * Restore the original kstack.
576 */
577void
578vm_thread_dispose_altkstack(struct thread *td)
579{
580
581	vm_thread_dispose(td);
582
583	td->td_kstack = td->td_altkstack;
584	td->td_kstack_obj = td->td_altkstack_obj;
585	td->td_kstack_pages = td->td_altkstack_pages;
586	td->td_altkstack = 0;
587	td->td_altkstack_obj = NULL;
588	td->td_altkstack_pages = 0;
589}
590
591/*
592 * Implement fork's actions on an address space.
593 * Here we arrange for the address space to be copied or referenced,
594 * allocate a user struct (pcb and kernel stack), then call the
595 * machine-dependent layer to fill those in and make the new process
596 * ready to run.  The new process is set up so that it returns directly
597 * to user mode to avoid stack copying and relocation problems.
598 */
599void
600vm_forkproc(td, p2, td2, flags)
601	struct thread *td;
602	struct proc *p2;
603	struct thread *td2;
604	int flags;
605{
606	struct proc *p1 = td->td_proc;
607	struct user *up;
608
609	GIANT_REQUIRED;
610
611	if ((flags & RFPROC) == 0) {
612		/*
613		 * Divorce the memory, if it is shared, essentially
614		 * this changes shared memory amongst threads, into
615		 * COW locally.
616		 */
617		if ((flags & RFMEM) == 0) {
618			if (p1->p_vmspace->vm_refcnt > 1) {
619				vmspace_unshare(p1);
620			}
621		}
622		cpu_fork(td, p2, td2, flags);
623		return;
624	}
625
626	if (flags & RFMEM) {
627		p2->p_vmspace = p1->p_vmspace;
628		p1->p_vmspace->vm_refcnt++;
629	}
630
631	while (vm_page_count_severe()) {
632		VM_WAIT;
633	}
634
635	if ((flags & RFMEM) == 0) {
636		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
637
638		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
639
640		if (p1->p_vmspace->vm_shm)
641			shmfork(p1, p2);
642	}
643
644	/* XXXKSE this is unsatisfactory but should be adequate */
645	up = p2->p_uarea;
646	MPASS(p2->p_sigacts != NULL);
647
648	/*
649	 * p_stats currently points at fields in the user struct
650	 * but not at &u, instead at p_addr. Copy parts of
651	 * p_stats; zero the rest of p_stats (statistics).
652	 */
653	p2->p_stats = &up->u_stats;
654	bzero(&up->u_stats.pstat_startzero,
655	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
656		(caddr_t) &up->u_stats.pstat_startzero));
657	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
658	    ((caddr_t) &up->u_stats.pstat_endcopy -
659		(caddr_t) &up->u_stats.pstat_startcopy));
660
661	/*
662	 * cpu_fork will copy and update the pcb, set up the kernel stack,
663	 * and make the child ready to run.
664	 */
665	cpu_fork(td, p2, td2, flags);
666}
667
668/*
669 * Called after process has been wait(2)'ed apon and is being reaped.
670 * The idea is to reclaim resources that we could not reclaim while
671 * the process was still executing.
672 */
673void
674vm_waitproc(p)
675	struct proc *p;
676{
677
678	GIANT_REQUIRED;
679	vmspace_exitfree(p);		/* and clean-out the vmspace */
680}
681
682/*
683 * Set default limits for VM system.
684 * Called for proc 0, and then inherited by all others.
685 *
686 * XXX should probably act directly on proc0.
687 */
688static void
689vm_init_limits(udata)
690	void *udata;
691{
692	struct proc *p = udata;
693	int rss_limit;
694
695	/*
696	 * Set up the initial limits on process VM. Set the maximum resident
697	 * set size to be half of (reasonably) available memory.  Since this
698	 * is a soft limit, it comes into effect only when the system is out
699	 * of memory - half of main memory helps to favor smaller processes,
700	 * and reduces thrashing of the object cache.
701	 */
702	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
703	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
704	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
705	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
706	/* limit the limit to no less than 2MB */
707	rss_limit = max(cnt.v_free_count, 512);
708	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
709	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
710}
711
712void
713faultin(p)
714	struct proc *p;
715{
716#ifdef NO_SWAPPING
717
718	PROC_LOCK_ASSERT(p, MA_OWNED);
719	if ((p->p_sflag & PS_INMEM) == 0)
720		panic("faultin: proc swapped out with NO_SWAPPING!");
721#else /* !NO_SWAPPING */
722	struct thread *td;
723
724	GIANT_REQUIRED;
725	PROC_LOCK_ASSERT(p, MA_OWNED);
726	/*
727	 * If another process is swapping in this process,
728	 * just wait until it finishes.
729	 */
730	if (p->p_sflag & PS_SWAPPINGIN)
731		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
732	else if ((p->p_sflag & PS_INMEM) == 0) {
733		/*
734		 * Don't let another thread swap process p out while we are
735		 * busy swapping it in.
736		 */
737		++p->p_lock;
738		mtx_lock_spin(&sched_lock);
739		p->p_sflag |= PS_SWAPPINGIN;
740		mtx_unlock_spin(&sched_lock);
741		PROC_UNLOCK(p);
742
743		vm_proc_swapin(p);
744		FOREACH_THREAD_IN_PROC(p, td)
745			vm_thread_swapin(td);
746
747		PROC_LOCK(p);
748		mtx_lock_spin(&sched_lock);
749		p->p_sflag &= ~PS_SWAPPINGIN;
750		p->p_sflag |= PS_INMEM;
751		FOREACH_THREAD_IN_PROC(p, td) {
752			TD_CLR_SWAPPED(td);
753			if (TD_CAN_RUN(td))
754				setrunnable(td);
755		}
756		mtx_unlock_spin(&sched_lock);
757
758		wakeup(&p->p_sflag);
759
760		/* Allow other threads to swap p out now. */
761		--p->p_lock;
762	}
763#endif /* NO_SWAPPING */
764}
765
766/*
767 * This swapin algorithm attempts to swap-in processes only if there
768 * is enough space for them.  Of course, if a process waits for a long
769 * time, it will be swapped in anyway.
770 *
771 *  XXXKSE - process with the thread with highest priority counts..
772 *
773 * Giant is still held at this point, to be released in tsleep.
774 */
775/* ARGSUSED*/
776static void
777scheduler(dummy)
778	void *dummy;
779{
780	struct proc *p;
781	struct thread *td;
782	int pri;
783	struct proc *pp;
784	int ppri;
785
786	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
787	/* GIANT_REQUIRED */
788
789loop:
790	if (vm_page_count_min()) {
791		VM_WAIT;
792		goto loop;
793	}
794
795	pp = NULL;
796	ppri = INT_MIN;
797	sx_slock(&allproc_lock);
798	FOREACH_PROC_IN_SYSTEM(p) {
799		struct ksegrp *kg;
800		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
801			continue;
802		}
803		mtx_lock_spin(&sched_lock);
804		FOREACH_THREAD_IN_PROC(p, td) {
805			/*
806			 * An otherwise runnable thread of a process
807			 * swapped out has only the TDI_SWAPPED bit set.
808			 *
809			 */
810			if (td->td_inhibitors == TDI_SWAPPED) {
811				kg = td->td_ksegrp;
812				pri = p->p_swtime + kg->kg_slptime;
813				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
814					pri -= kg->kg_nice * 8;
815				}
816
817				/*
818				 * if this ksegrp is higher priority
819				 * and there is enough space, then select
820				 * this process instead of the previous
821				 * selection.
822				 */
823				if (pri > ppri) {
824					pp = p;
825					ppri = pri;
826				}
827			}
828		}
829		mtx_unlock_spin(&sched_lock);
830	}
831	sx_sunlock(&allproc_lock);
832
833	/*
834	 * Nothing to do, back to sleep.
835	 */
836	if ((p = pp) == NULL) {
837		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
838		goto loop;
839	}
840	PROC_LOCK(p);
841
842	/*
843	 * Another process may be bringing or may have already
844	 * brought this process in while we traverse all threads.
845	 * Or, this process may even be being swapped out again.
846	 */
847	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
848		PROC_UNLOCK(p);
849		goto loop;
850	}
851
852	mtx_lock_spin(&sched_lock);
853	p->p_sflag &= ~PS_SWAPINREQ;
854	mtx_unlock_spin(&sched_lock);
855
856	/*
857	 * We would like to bring someone in. (only if there is space).
858	 * [What checks the space? ]
859	 */
860	faultin(p);
861	PROC_UNLOCK(p);
862	mtx_lock_spin(&sched_lock);
863	p->p_swtime = 0;
864	mtx_unlock_spin(&sched_lock);
865	goto loop;
866}
867
868#ifndef NO_SWAPPING
869
870/*
871 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
872 */
873static int swap_idle_threshold1 = 2;
874SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
875    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
876
877/*
878 * Swap_idle_threshold2 is the time that a process can be idle before
879 * it will be swapped out, if idle swapping is enabled.
880 */
881static int swap_idle_threshold2 = 10;
882SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
883    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
884
885/*
886 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
887 * procs and unwire their u-areas.  We try to always "swap" at least one
888 * process in case we need the room for a swapin.
889 * If any procs have been sleeping/stopped for at least maxslp seconds,
890 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
891 * if any, otherwise the longest-resident process.
892 */
893void
894swapout_procs(action)
895int action;
896{
897	struct proc *p;
898	struct thread *td;
899	struct ksegrp *kg;
900	int didswap = 0;
901
902	GIANT_REQUIRED;
903
904retry:
905	sx_slock(&allproc_lock);
906	FOREACH_PROC_IN_SYSTEM(p) {
907		struct vmspace *vm;
908		int minslptime = 100000;
909
910		/*
911		 * Watch out for a process in
912		 * creation.  It may have no
913		 * address space or lock yet.
914		 */
915		mtx_lock_spin(&sched_lock);
916		if (p->p_state == PRS_NEW) {
917			mtx_unlock_spin(&sched_lock);
918			continue;
919		}
920		mtx_unlock_spin(&sched_lock);
921
922		/*
923		 * An aio daemon switches its
924		 * address space while running.
925		 * Perform a quick check whether
926		 * a process has P_SYSTEM.
927		 */
928		if ((p->p_flag & P_SYSTEM) != 0)
929			continue;
930
931		/*
932		 * Do not swapout a process that
933		 * is waiting for VM data
934		 * structures as there is a possible
935		 * deadlock.  Test this first as
936		 * this may block.
937		 *
938		 * Lock the map until swapout
939		 * finishes, or a thread of this
940		 * process may attempt to alter
941		 * the map.
942		 */
943		PROC_LOCK(p);
944		vm = p->p_vmspace;
945		KASSERT(vm != NULL,
946			("swapout_procs: a process has no address space"));
947		++vm->vm_refcnt;
948		PROC_UNLOCK(p);
949		if (!vm_map_trylock(&vm->vm_map))
950			goto nextproc1;
951
952		PROC_LOCK(p);
953		if (p->p_lock != 0 ||
954		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
955		    ) != 0) {
956			goto nextproc2;
957		}
958		/*
959		 * only aiod changes vmspace, however it will be
960		 * skipped because of the if statement above checking
961		 * for P_SYSTEM
962		 */
963		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
964			goto nextproc2;
965
966		switch (p->p_state) {
967		default:
968			/* Don't swap out processes in any sort
969			 * of 'special' state. */
970			break;
971
972		case PRS_NORMAL:
973			mtx_lock_spin(&sched_lock);
974			/*
975			 * do not swapout a realtime process
976			 * Check all the thread groups..
977			 */
978			FOREACH_KSEGRP_IN_PROC(p, kg) {
979				if (PRI_IS_REALTIME(kg->kg_pri_class))
980					goto nextproc;
981
982				/*
983				 * Guarantee swap_idle_threshold1
984				 * time in memory.
985				 */
986				if (kg->kg_slptime < swap_idle_threshold1)
987					goto nextproc;
988
989				/*
990				 * Do not swapout a process if it is
991				 * waiting on a critical event of some
992				 * kind or there is a thread whose
993				 * pageable memory may be accessed.
994				 *
995				 * This could be refined to support
996				 * swapping out a thread.
997				 */
998				FOREACH_THREAD_IN_GROUP(kg, td) {
999					if ((td->td_priority) < PSOCK ||
1000					    !thread_safetoswapout(td))
1001						goto nextproc;
1002				}
1003				/*
1004				 * If the system is under memory stress,
1005				 * or if we are swapping
1006				 * idle processes >= swap_idle_threshold2,
1007				 * then swap the process out.
1008				 */
1009				if (((action & VM_SWAP_NORMAL) == 0) &&
1010				    (((action & VM_SWAP_IDLE) == 0) ||
1011				    (kg->kg_slptime < swap_idle_threshold2)))
1012					goto nextproc;
1013
1014				if (minslptime > kg->kg_slptime)
1015					minslptime = kg->kg_slptime;
1016			}
1017
1018			/*
1019			 * If the process has been asleep for awhile and had
1020			 * most of its pages taken away already, swap it out.
1021			 */
1022			if ((action & VM_SWAP_NORMAL) ||
1023				((action & VM_SWAP_IDLE) &&
1024				 (minslptime > swap_idle_threshold2))) {
1025				swapout(p);
1026				didswap++;
1027				mtx_unlock_spin(&sched_lock);
1028				PROC_UNLOCK(p);
1029				vm_map_unlock(&vm->vm_map);
1030				vmspace_free(vm);
1031				sx_sunlock(&allproc_lock);
1032				goto retry;
1033			}
1034nextproc:
1035			mtx_unlock_spin(&sched_lock);
1036		}
1037nextproc2:
1038		PROC_UNLOCK(p);
1039		vm_map_unlock(&vm->vm_map);
1040nextproc1:
1041		vmspace_free(vm);
1042		continue;
1043	}
1044	sx_sunlock(&allproc_lock);
1045	/*
1046	 * If we swapped something out, and another process needed memory,
1047	 * then wakeup the sched process.
1048	 */
1049	if (didswap)
1050		wakeup(&proc0);
1051}
1052
1053static void
1054swapout(p)
1055	struct proc *p;
1056{
1057	struct thread *td;
1058
1059	PROC_LOCK_ASSERT(p, MA_OWNED);
1060	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
1061#if defined(SWAP_DEBUG)
1062	printf("swapping out %d\n", p->p_pid);
1063#endif
1064
1065	/*
1066	 * The states of this process and its threads may have changed
1067	 * by now.  Assuming that there is only one pageout daemon thread,
1068	 * this process should still be in memory.
1069	 */
1070	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
1071		("swapout: lost a swapout race?"));
1072
1073#if defined(INVARIANTS)
1074	/*
1075	 * Make sure that all threads are safe to be swapped out.
1076	 *
1077	 * Alternatively, we could swap out only safe threads.
1078	 */
1079	FOREACH_THREAD_IN_PROC(p, td) {
1080		KASSERT(thread_safetoswapout(td),
1081			("swapout: there is a thread not safe for swapout"));
1082	}
1083#endif /* INVARIANTS */
1084
1085	++p->p_stats->p_ru.ru_nswap;
1086	/*
1087	 * remember the process resident count
1088	 */
1089	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
1090
1091	p->p_sflag &= ~PS_INMEM;
1092	p->p_sflag |= PS_SWAPPINGOUT;
1093	PROC_UNLOCK(p);
1094	FOREACH_THREAD_IN_PROC(p, td)
1095		TD_SET_SWAPPED(td);
1096	mtx_unlock_spin(&sched_lock);
1097
1098	vm_proc_swapout(p);
1099	FOREACH_THREAD_IN_PROC(p, td)
1100		vm_thread_swapout(td);
1101
1102	PROC_LOCK(p);
1103	mtx_lock_spin(&sched_lock);
1104	p->p_sflag &= ~PS_SWAPPINGOUT;
1105	p->p_swtime = 0;
1106}
1107#endif /* !NO_SWAPPING */
1108