vm_glue.c revision 115522
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 *
62 * $FreeBSD: head/sys/vm/vm_glue.c 115522 2003-05-31 19:51:05Z phk $
63 */
64
65#include "opt_vm.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/limits.h>
70#include <sys/lock.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/resourcevar.h>
74#include <sys/shm.h>
75#include <sys/vmmeter.h>
76#include <sys/sx.h>
77#include <sys/sysctl.h>
78
79#include <sys/kernel.h>
80#include <sys/ktr.h>
81#include <sys/unistd.h>
82
83#include <vm/vm.h>
84#include <vm/vm_param.h>
85#include <vm/pmap.h>
86#include <vm/vm_map.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_object.h>
90#include <vm/vm_kern.h>
91#include <vm/vm_extern.h>
92#include <vm/vm_pager.h>
93#include <vm/swap_pager.h>
94
95#include <sys/user.h>
96
97extern int maxslp;
98
99/*
100 * System initialization
101 *
102 * Note: proc0 from proc.h
103 */
104static void vm_init_limits(void *);
105SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
106
107/*
108 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
109 *
110 * Note: run scheduling should be divorced from the vm system.
111 */
112static void scheduler(void *);
113SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
114
115#ifndef NO_SWAPPING
116static void swapout(struct proc *);
117static void vm_proc_swapin(struct proc *p);
118static void vm_proc_swapout(struct proc *p);
119#endif
120
121/*
122 * MPSAFE
123 *
124 * WARNING!  This code calls vm_map_check_protection() which only checks
125 * the associated vm_map_entry range.  It does not determine whether the
126 * contents of the memory is actually readable or writable.  In most cases
127 * just checking the vm_map_entry is sufficient within the kernel's address
128 * space.
129 */
130int
131kernacc(addr, len, rw)
132	void *addr;
133	int len, rw;
134{
135	boolean_t rv;
136	vm_offset_t saddr, eaddr;
137	vm_prot_t prot;
138
139	KASSERT((rw & ~VM_PROT_ALL) == 0,
140	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
141	prot = rw;
142	saddr = trunc_page((vm_offset_t)addr);
143	eaddr = round_page((vm_offset_t)addr + len);
144	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
145	return (rv == TRUE);
146}
147
148/*
149 * MPSAFE
150 *
151 * WARNING!  This code calls vm_map_check_protection() which only checks
152 * the associated vm_map_entry range.  It does not determine whether the
153 * contents of the memory is actually readable or writable.  vmapbuf(),
154 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
155 * used in conjuction with this call.
156 */
157int
158useracc(addr, len, rw)
159	void *addr;
160	int len, rw;
161{
162	boolean_t rv;
163	vm_prot_t prot;
164	vm_map_t map;
165
166	KASSERT((rw & ~VM_PROT_ALL) == 0,
167	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
168	prot = rw;
169	map = &curproc->p_vmspace->vm_map;
170	if ((vm_offset_t)addr + len > vm_map_max(map) ||
171	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
172		return (FALSE);
173	}
174	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
175	    round_page((vm_offset_t)addr + len), prot);
176	return (rv == TRUE);
177}
178
179/*
180 * MPSAFE
181 */
182void
183vslock(addr, len)
184	void *addr;
185	u_int len;
186{
187
188	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
189	    round_page((vm_offset_t)addr + len), FALSE);
190}
191
192/*
193 * MPSAFE
194 */
195void
196vsunlock(addr, len)
197	void *addr;
198	u_int len;
199{
200
201	vm_map_unwire(&curproc->p_vmspace->vm_map,
202	    trunc_page((vm_offset_t)addr),
203	    round_page((vm_offset_t)addr + len), FALSE);
204}
205
206/*
207 * Create the U area for a new process.
208 * This routine directly affects the fork perf for a process.
209 */
210void
211vm_proc_new(struct proc *p)
212{
213	vm_page_t ma[UAREA_PAGES];
214	vm_object_t upobj;
215	vm_offset_t up;
216	vm_page_t m;
217	u_int i;
218
219	/*
220	 * Allocate object for the upage.
221	 */
222	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
223	p->p_upages_obj = upobj;
224
225	/*
226	 * Get a kernel virtual address for the U area for this process.
227	 */
228	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
229	if (up == 0)
230		panic("vm_proc_new: upage allocation failed");
231	p->p_uarea = (struct user *)up;
232
233	for (i = 0; i < UAREA_PAGES; i++) {
234		/*
235		 * Get a uarea page.
236		 */
237		m = vm_page_grab(upobj, i,
238		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
239		ma[i] = m;
240
241		vm_page_lock_queues();
242		vm_page_wakeup(m);
243		vm_page_flag_clear(m, PG_ZERO);
244		m->valid = VM_PAGE_BITS_ALL;
245		vm_page_unlock_queues();
246	}
247
248	/*
249	 * Enter the pages into the kernel address space.
250	 */
251	pmap_qenter(up, ma, UAREA_PAGES);
252}
253
254/*
255 * Dispose the U area for a process that has exited.
256 * This routine directly impacts the exit perf of a process.
257 * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
258 */
259void
260vm_proc_dispose(struct proc *p)
261{
262	vm_object_t upobj;
263	vm_offset_t up;
264	vm_page_t m;
265
266	upobj = p->p_upages_obj;
267	VM_OBJECT_LOCK(upobj);
268	if (upobj->resident_page_count != UAREA_PAGES)
269		panic("vm_proc_dispose: incorrect number of pages in upobj");
270	vm_page_lock_queues();
271	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
272		vm_page_busy(m);
273		vm_page_unwire(m, 0);
274		vm_page_free(m);
275	}
276	vm_page_unlock_queues();
277	VM_OBJECT_UNLOCK(upobj);
278	up = (vm_offset_t)p->p_uarea;
279	pmap_qremove(up, UAREA_PAGES);
280	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
281	vm_object_deallocate(upobj);
282}
283
284#ifndef NO_SWAPPING
285/*
286 * Allow the U area for a process to be prejudicially paged out.
287 */
288static void
289vm_proc_swapout(struct proc *p)
290{
291	vm_object_t upobj;
292	vm_offset_t up;
293	vm_page_t m;
294
295	upobj = p->p_upages_obj;
296	VM_OBJECT_LOCK(upobj);
297	if (upobj->resident_page_count != UAREA_PAGES)
298		panic("vm_proc_dispose: incorrect number of pages in upobj");
299	vm_page_lock_queues();
300	TAILQ_FOREACH(m, &upobj->memq, listq) {
301		vm_page_dirty(m);
302		vm_page_unwire(m, 0);
303	}
304	vm_page_unlock_queues();
305	VM_OBJECT_UNLOCK(upobj);
306	up = (vm_offset_t)p->p_uarea;
307	pmap_qremove(up, UAREA_PAGES);
308}
309
310/*
311 * Bring the U area for a specified process back in.
312 */
313static void
314vm_proc_swapin(struct proc *p)
315{
316	vm_page_t ma[UAREA_PAGES];
317	vm_object_t upobj;
318	vm_offset_t up;
319	vm_page_t m;
320	int rv;
321	int i;
322
323	upobj = p->p_upages_obj;
324	for (i = 0; i < UAREA_PAGES; i++) {
325		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
326		if (m->valid != VM_PAGE_BITS_ALL) {
327			rv = vm_pager_get_pages(upobj, &m, 1, 0);
328			if (rv != VM_PAGER_OK)
329				panic("vm_proc_swapin: cannot get upage");
330		}
331		ma[i] = m;
332	}
333	VM_OBJECT_LOCK(upobj);
334	if (upobj->resident_page_count != UAREA_PAGES)
335		panic("vm_proc_swapin: lost pages from upobj");
336	vm_page_lock_queues();
337	TAILQ_FOREACH(m, &upobj->memq, listq) {
338		m->valid = VM_PAGE_BITS_ALL;
339		vm_page_wire(m);
340		vm_page_wakeup(m);
341	}
342	vm_page_unlock_queues();
343	VM_OBJECT_UNLOCK(upobj);
344	up = (vm_offset_t)p->p_uarea;
345	pmap_qenter(up, ma, UAREA_PAGES);
346}
347
348/*
349 * Swap in the UAREAs of all processes swapped out to the given device.
350 * The pages in the UAREA are marked dirty and their swap metadata is freed.
351 */
352void
353vm_proc_swapin_all(int devidx)
354{
355	struct proc *p;
356	vm_object_t object;
357	vm_page_t m;
358
359retry:
360	sx_slock(&allproc_lock);
361	FOREACH_PROC_IN_SYSTEM(p) {
362		PROC_LOCK(p);
363		object = p->p_upages_obj;
364		if (object != NULL) {
365			VM_OBJECT_LOCK(object);
366			if (swap_pager_isswapped(object, devidx)) {
367				VM_OBJECT_UNLOCK(object);
368				sx_sunlock(&allproc_lock);
369				faultin(p);
370				PROC_UNLOCK(p);
371				VM_OBJECT_LOCK(object);
372				vm_page_lock_queues();
373				TAILQ_FOREACH(m, &object->memq, listq)
374					vm_page_dirty(m);
375				vm_page_unlock_queues();
376				swap_pager_freespace(object, 0,
377				    object->un_pager.swp.swp_bcount);
378				VM_OBJECT_UNLOCK(object);
379				goto retry;
380			}
381			VM_OBJECT_UNLOCK(object);
382		}
383		PROC_UNLOCK(p);
384	}
385	sx_sunlock(&allproc_lock);
386}
387#endif
388
389/*
390 * Implement fork's actions on an address space.
391 * Here we arrange for the address space to be copied or referenced,
392 * allocate a user struct (pcb and kernel stack), then call the
393 * machine-dependent layer to fill those in and make the new process
394 * ready to run.  The new process is set up so that it returns directly
395 * to user mode to avoid stack copying and relocation problems.
396 */
397void
398vm_forkproc(td, p2, td2, flags)
399	struct thread *td;
400	struct proc *p2;
401	struct thread *td2;
402	int flags;
403{
404	struct proc *p1 = td->td_proc;
405	struct user *up;
406
407	GIANT_REQUIRED;
408
409	if ((flags & RFPROC) == 0) {
410		/*
411		 * Divorce the memory, if it is shared, essentially
412		 * this changes shared memory amongst threads, into
413		 * COW locally.
414		 */
415		if ((flags & RFMEM) == 0) {
416			if (p1->p_vmspace->vm_refcnt > 1) {
417				vmspace_unshare(p1);
418			}
419		}
420		cpu_fork(td, p2, td2, flags);
421		return;
422	}
423
424	if (flags & RFMEM) {
425		p2->p_vmspace = p1->p_vmspace;
426		p1->p_vmspace->vm_refcnt++;
427	}
428
429	while (vm_page_count_severe()) {
430		VM_WAIT;
431	}
432
433	if ((flags & RFMEM) == 0) {
434		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
435
436		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
437
438		if (p1->p_vmspace->vm_shm)
439			shmfork(p1, p2);
440	}
441
442	/* XXXKSE this is unsatisfactory but should be adequate */
443	up = p2->p_uarea;
444	MPASS(p2->p_sigacts != NULL);
445
446	/*
447	 * p_stats currently points at fields in the user struct
448	 * but not at &u, instead at p_addr. Copy parts of
449	 * p_stats; zero the rest of p_stats (statistics).
450	 */
451	p2->p_stats = &up->u_stats;
452	bzero(&up->u_stats.pstat_startzero,
453	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
454		(caddr_t) &up->u_stats.pstat_startzero));
455	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
456	    ((caddr_t) &up->u_stats.pstat_endcopy -
457		(caddr_t) &up->u_stats.pstat_startcopy));
458
459	/*
460	 * cpu_fork will copy and update the pcb, set up the kernel stack,
461	 * and make the child ready to run.
462	 */
463	cpu_fork(td, p2, td2, flags);
464}
465
466/*
467 * Called after process has been wait(2)'ed apon and is being reaped.
468 * The idea is to reclaim resources that we could not reclaim while
469 * the process was still executing.
470 */
471void
472vm_waitproc(p)
473	struct proc *p;
474{
475
476	GIANT_REQUIRED;
477	cpu_wait(p);
478	vmspace_exitfree(p);		/* and clean-out the vmspace */
479}
480
481/*
482 * Set default limits for VM system.
483 * Called for proc 0, and then inherited by all others.
484 *
485 * XXX should probably act directly on proc0.
486 */
487static void
488vm_init_limits(udata)
489	void *udata;
490{
491	struct proc *p = udata;
492	int rss_limit;
493
494	/*
495	 * Set up the initial limits on process VM. Set the maximum resident
496	 * set size to be half of (reasonably) available memory.  Since this
497	 * is a soft limit, it comes into effect only when the system is out
498	 * of memory - half of main memory helps to favor smaller processes,
499	 * and reduces thrashing of the object cache.
500	 */
501	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
502	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
503	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
504	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
505	/* limit the limit to no less than 2MB */
506	rss_limit = max(cnt.v_free_count, 512);
507	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
508	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
509}
510
511void
512faultin(p)
513	struct proc *p;
514{
515#ifdef NO_SWAPPING
516
517	PROC_LOCK_ASSERT(p, MA_OWNED);
518	if ((p->p_sflag & PS_INMEM) == 0)
519		panic("faultin: proc swapped out with NO_SWAPPING!");
520#else /* !NO_SWAPPING */
521	struct thread *td;
522
523	GIANT_REQUIRED;
524	PROC_LOCK_ASSERT(p, MA_OWNED);
525	/*
526	 * If another process is swapping in this process,
527	 * just wait until it finishes.
528	 */
529	if (p->p_sflag & PS_SWAPPINGIN)
530		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
531	else if ((p->p_sflag & PS_INMEM) == 0) {
532		/*
533		 * Don't let another thread swap process p out while we are
534		 * busy swapping it in.
535		 */
536		++p->p_lock;
537		mtx_lock_spin(&sched_lock);
538		p->p_sflag |= PS_SWAPPINGIN;
539		mtx_unlock_spin(&sched_lock);
540		PROC_UNLOCK(p);
541
542		vm_proc_swapin(p);
543		FOREACH_THREAD_IN_PROC(p, td)
544			pmap_swapin_thread(td);
545
546		PROC_LOCK(p);
547		mtx_lock_spin(&sched_lock);
548		p->p_sflag &= ~PS_SWAPPINGIN;
549		p->p_sflag |= PS_INMEM;
550		FOREACH_THREAD_IN_PROC(p, td) {
551			TD_CLR_SWAPPED(td);
552			if (TD_CAN_RUN(td))
553				setrunnable(td);
554		}
555		mtx_unlock_spin(&sched_lock);
556
557		wakeup(&p->p_sflag);
558
559		/* Allow other threads to swap p out now. */
560		--p->p_lock;
561	}
562#endif /* NO_SWAPPING */
563}
564
565/*
566 * This swapin algorithm attempts to swap-in processes only if there
567 * is enough space for them.  Of course, if a process waits for a long
568 * time, it will be swapped in anyway.
569 *
570 *  XXXKSE - process with the thread with highest priority counts..
571 *
572 * Giant is still held at this point, to be released in tsleep.
573 */
574/* ARGSUSED*/
575static void
576scheduler(dummy)
577	void *dummy;
578{
579	struct proc *p;
580	struct thread *td;
581	int pri;
582	struct proc *pp;
583	int ppri;
584
585	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
586	/* GIANT_REQUIRED */
587
588loop:
589	if (vm_page_count_min()) {
590		VM_WAIT;
591		goto loop;
592	}
593
594	pp = NULL;
595	ppri = INT_MIN;
596	sx_slock(&allproc_lock);
597	FOREACH_PROC_IN_SYSTEM(p) {
598		struct ksegrp *kg;
599		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
600			continue;
601		}
602		mtx_lock_spin(&sched_lock);
603		FOREACH_THREAD_IN_PROC(p, td) {
604			/*
605			 * An otherwise runnable thread of a process
606			 * swapped out has only the TDI_SWAPPED bit set.
607			 *
608			 */
609			if (td->td_inhibitors == TDI_SWAPPED) {
610				kg = td->td_ksegrp;
611				pri = p->p_swtime + kg->kg_slptime;
612				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
613					pri -= kg->kg_nice * 8;
614				}
615
616				/*
617				 * if this ksegrp is higher priority
618				 * and there is enough space, then select
619				 * this process instead of the previous
620				 * selection.
621				 */
622				if (pri > ppri) {
623					pp = p;
624					ppri = pri;
625				}
626			}
627		}
628		mtx_unlock_spin(&sched_lock);
629	}
630	sx_sunlock(&allproc_lock);
631
632	/*
633	 * Nothing to do, back to sleep.
634	 */
635	if ((p = pp) == NULL) {
636		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
637		goto loop;
638	}
639	PROC_LOCK(p);
640
641	/*
642	 * Another process may be bringing or may have already
643	 * brought this process in while we traverse all threads.
644	 * Or, this process may even be being swapped out again.
645	 */
646	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
647		PROC_UNLOCK(p);
648		goto loop;
649	}
650
651	mtx_lock_spin(&sched_lock);
652	p->p_sflag &= ~PS_SWAPINREQ;
653	mtx_unlock_spin(&sched_lock);
654
655	/*
656	 * We would like to bring someone in. (only if there is space).
657	 * [What checks the space? ]
658	 */
659	faultin(p);
660	PROC_UNLOCK(p);
661	mtx_lock_spin(&sched_lock);
662	p->p_swtime = 0;
663	mtx_unlock_spin(&sched_lock);
664	goto loop;
665}
666
667#ifndef NO_SWAPPING
668
669/*
670 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
671 */
672static int swap_idle_threshold1 = 2;
673SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
674    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
675
676/*
677 * Swap_idle_threshold2 is the time that a process can be idle before
678 * it will be swapped out, if idle swapping is enabled.
679 */
680static int swap_idle_threshold2 = 10;
681SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
682    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
683
684/*
685 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
686 * procs and unwire their u-areas.  We try to always "swap" at least one
687 * process in case we need the room for a swapin.
688 * If any procs have been sleeping/stopped for at least maxslp seconds,
689 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
690 * if any, otherwise the longest-resident process.
691 */
692void
693swapout_procs(action)
694int action;
695{
696	struct proc *p;
697	struct thread *td;
698	struct ksegrp *kg;
699	int didswap = 0;
700
701	GIANT_REQUIRED;
702
703retry:
704	sx_slock(&allproc_lock);
705	FOREACH_PROC_IN_SYSTEM(p) {
706		struct vmspace *vm;
707		int minslptime = 100000;
708
709		/*
710		 * Watch out for a process in
711		 * creation.  It may have no
712		 * address space or lock yet.
713		 */
714		mtx_lock_spin(&sched_lock);
715		if (p->p_state == PRS_NEW) {
716			mtx_unlock_spin(&sched_lock);
717			continue;
718		}
719		mtx_unlock_spin(&sched_lock);
720
721		/*
722		 * An aio daemon switches its
723		 * address space while running.
724		 * Perform a quick check whether
725		 * a process has P_SYSTEM.
726		 */
727		if ((p->p_flag & P_SYSTEM) != 0)
728			continue;
729
730		/*
731		 * Do not swapout a process that
732		 * is waiting for VM data
733		 * structures as there is a possible
734		 * deadlock.  Test this first as
735		 * this may block.
736		 *
737		 * Lock the map until swapout
738		 * finishes, or a thread of this
739		 * process may attempt to alter
740		 * the map.
741		 */
742		PROC_LOCK(p);
743		vm = p->p_vmspace;
744		KASSERT(vm != NULL,
745			("swapout_procs: a process has no address space"));
746		++vm->vm_refcnt;
747		PROC_UNLOCK(p);
748		if (!vm_map_trylock(&vm->vm_map))
749			goto nextproc1;
750
751		PROC_LOCK(p);
752		if (p->p_lock != 0 ||
753		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
754		    ) != 0) {
755			goto nextproc2;
756		}
757		/*
758		 * only aiod changes vmspace, however it will be
759		 * skipped because of the if statement above checking
760		 * for P_SYSTEM
761		 */
762		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
763			goto nextproc2;
764
765		switch (p->p_state) {
766		default:
767			/* Don't swap out processes in any sort
768			 * of 'special' state. */
769			break;
770
771		case PRS_NORMAL:
772			mtx_lock_spin(&sched_lock);
773			/*
774			 * do not swapout a realtime process
775			 * Check all the thread groups..
776			 */
777			FOREACH_KSEGRP_IN_PROC(p, kg) {
778				if (PRI_IS_REALTIME(kg->kg_pri_class))
779					goto nextproc;
780
781				/*
782				 * Guarantee swap_idle_threshold1
783				 * time in memory.
784				 */
785				if (kg->kg_slptime < swap_idle_threshold1)
786					goto nextproc;
787
788				/*
789				 * Do not swapout a process if it is
790				 * waiting on a critical event of some
791				 * kind or there is a thread whose
792				 * pageable memory may be accessed.
793				 *
794				 * This could be refined to support
795				 * swapping out a thread.
796				 */
797				FOREACH_THREAD_IN_GROUP(kg, td) {
798					if ((td->td_priority) < PSOCK ||
799					    !thread_safetoswapout(td))
800						goto nextproc;
801				}
802				/*
803				 * If the system is under memory stress,
804				 * or if we are swapping
805				 * idle processes >= swap_idle_threshold2,
806				 * then swap the process out.
807				 */
808				if (((action & VM_SWAP_NORMAL) == 0) &&
809				    (((action & VM_SWAP_IDLE) == 0) ||
810				    (kg->kg_slptime < swap_idle_threshold2)))
811					goto nextproc;
812
813				if (minslptime > kg->kg_slptime)
814					minslptime = kg->kg_slptime;
815			}
816
817			/*
818			 * If the process has been asleep for awhile and had
819			 * most of its pages taken away already, swap it out.
820			 */
821			if ((action & VM_SWAP_NORMAL) ||
822				((action & VM_SWAP_IDLE) &&
823				 (minslptime > swap_idle_threshold2))) {
824				swapout(p);
825				didswap++;
826				mtx_unlock_spin(&sched_lock);
827				PROC_UNLOCK(p);
828				vm_map_unlock(&vm->vm_map);
829				vmspace_free(vm);
830				sx_sunlock(&allproc_lock);
831				goto retry;
832			}
833nextproc:
834			mtx_unlock_spin(&sched_lock);
835		}
836nextproc2:
837		PROC_UNLOCK(p);
838		vm_map_unlock(&vm->vm_map);
839nextproc1:
840		vmspace_free(vm);
841		continue;
842	}
843	sx_sunlock(&allproc_lock);
844	/*
845	 * If we swapped something out, and another process needed memory,
846	 * then wakeup the sched process.
847	 */
848	if (didswap)
849		wakeup(&proc0);
850}
851
852static void
853swapout(p)
854	struct proc *p;
855{
856	struct thread *td;
857
858	PROC_LOCK_ASSERT(p, MA_OWNED);
859	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
860#if defined(SWAP_DEBUG)
861	printf("swapping out %d\n", p->p_pid);
862#endif
863
864	/*
865	 * The states of this process and its threads may have changed
866	 * by now.  Assuming that there is only one pageout daemon thread,
867	 * this process should still be in memory.
868	 */
869	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
870		("swapout: lost a swapout race?"));
871
872#if defined(INVARIANTS)
873	/*
874	 * Make sure that all threads are safe to be swapped out.
875	 *
876	 * Alternatively, we could swap out only safe threads.
877	 */
878	FOREACH_THREAD_IN_PROC(p, td) {
879		KASSERT(thread_safetoswapout(td),
880			("swapout: there is a thread not safe for swapout"));
881	}
882#endif /* INVARIANTS */
883
884	++p->p_stats->p_ru.ru_nswap;
885	/*
886	 * remember the process resident count
887	 */
888	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
889
890	p->p_sflag &= ~PS_INMEM;
891	p->p_sflag |= PS_SWAPPINGOUT;
892	PROC_UNLOCK(p);
893	FOREACH_THREAD_IN_PROC(p, td)
894		TD_SET_SWAPPED(td);
895	mtx_unlock_spin(&sched_lock);
896
897	vm_proc_swapout(p);
898	FOREACH_THREAD_IN_PROC(p, td)
899		pmap_swapout_thread(td);
900
901	PROC_LOCK(p);
902	mtx_lock_spin(&sched_lock);
903	p->p_sflag &= ~PS_SWAPPINGOUT;
904	p->p_swtime = 0;
905}
906#endif /* !NO_SWAPPING */
907