vm_glue.c revision 114216
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 *
62 * $FreeBSD: head/sys/vm/vm_glue.c 114216 2003-04-29 13:36:06Z kan $
63 */
64
65#include "opt_vm.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/limits.h>
70#include <sys/lock.h>
71#include <sys/mutex.h>
72#include <sys/proc.h>
73#include <sys/resourcevar.h>
74#include <sys/shm.h>
75#include <sys/vmmeter.h>
76#include <sys/sx.h>
77#include <sys/sysctl.h>
78
79#include <sys/kernel.h>
80#include <sys/ktr.h>
81#include <sys/unistd.h>
82
83#include <vm/vm.h>
84#include <vm/vm_param.h>
85#include <vm/pmap.h>
86#include <vm/vm_map.h>
87#include <vm/vm_page.h>
88#include <vm/vm_pageout.h>
89#include <vm/vm_object.h>
90#include <vm/vm_kern.h>
91#include <vm/vm_extern.h>
92#include <vm/vm_pager.h>
93#include <vm/swap_pager.h>
94
95#include <sys/user.h>
96
97extern int maxslp;
98
99/*
100 * System initialization
101 *
102 * Note: proc0 from proc.h
103 */
104static void vm_init_limits(void *);
105SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
106
107/*
108 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
109 *
110 * Note: run scheduling should be divorced from the vm system.
111 */
112static void scheduler(void *);
113SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
114
115#ifndef NO_SWAPPING
116static void swapout(struct proc *);
117static void vm_proc_swapin(struct proc *p);
118static void vm_proc_swapout(struct proc *p);
119#endif
120
121/*
122 * MPSAFE
123 *
124 * WARNING!  This code calls vm_map_check_protection() which only checks
125 * the associated vm_map_entry range.  It does not determine whether the
126 * contents of the memory is actually readable or writable.  In most cases
127 * just checking the vm_map_entry is sufficient within the kernel's address
128 * space.
129 */
130int
131kernacc(addr, len, rw)
132	void *addr;
133	int len, rw;
134{
135	boolean_t rv;
136	vm_offset_t saddr, eaddr;
137	vm_prot_t prot;
138
139	KASSERT((rw & ~VM_PROT_ALL) == 0,
140	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
141	prot = rw;
142	saddr = trunc_page((vm_offset_t)addr);
143	eaddr = round_page((vm_offset_t)addr + len);
144	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
145	return (rv == TRUE);
146}
147
148/*
149 * MPSAFE
150 *
151 * WARNING!  This code calls vm_map_check_protection() which only checks
152 * the associated vm_map_entry range.  It does not determine whether the
153 * contents of the memory is actually readable or writable.  vmapbuf(),
154 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
155 * used in conjuction with this call.
156 */
157int
158useracc(addr, len, rw)
159	void *addr;
160	int len, rw;
161{
162	boolean_t rv;
163	vm_prot_t prot;
164	vm_map_t map;
165
166	KASSERT((rw & ~VM_PROT_ALL) == 0,
167	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
168	prot = rw;
169	map = &curproc->p_vmspace->vm_map;
170	if ((vm_offset_t)addr + len > vm_map_max(map) ||
171	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
172		return (FALSE);
173	}
174	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
175	    round_page((vm_offset_t)addr + len), prot);
176	return (rv == TRUE);
177}
178
179/*
180 * MPSAFE
181 */
182void
183vslock(addr, len)
184	void *addr;
185	u_int len;
186{
187
188	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
189	    round_page((vm_offset_t)addr + len), FALSE);
190}
191
192/*
193 * MPSAFE
194 */
195void
196vsunlock(addr, len)
197	void *addr;
198	u_int len;
199{
200
201	vm_map_unwire(&curproc->p_vmspace->vm_map,
202	    trunc_page((vm_offset_t)addr),
203	    round_page((vm_offset_t)addr + len), FALSE);
204}
205
206/*
207 * Create the U area for a new process.
208 * This routine directly affects the fork perf for a process.
209 */
210void
211vm_proc_new(struct proc *p)
212{
213	vm_page_t ma[UAREA_PAGES];
214	vm_object_t upobj;
215	vm_offset_t up;
216	vm_page_t m;
217	u_int i;
218
219	/*
220	 * Allocate object for the upage.
221	 */
222	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
223	p->p_upages_obj = upobj;
224
225	/*
226	 * Get a kernel virtual address for the U area for this process.
227	 */
228	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
229	if (up == 0)
230		panic("vm_proc_new: upage allocation failed");
231	p->p_uarea = (struct user *)up;
232
233	for (i = 0; i < UAREA_PAGES; i++) {
234		/*
235		 * Get a uarea page.
236		 */
237		m = vm_page_grab(upobj, i,
238		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
239		ma[i] = m;
240
241		vm_page_lock_queues();
242		vm_page_wakeup(m);
243		vm_page_flag_clear(m, PG_ZERO);
244		m->valid = VM_PAGE_BITS_ALL;
245		vm_page_unlock_queues();
246	}
247
248	/*
249	 * Enter the pages into the kernel address space.
250	 */
251	pmap_qenter(up, ma, UAREA_PAGES);
252}
253
254/*
255 * Dispose the U area for a process that has exited.
256 * This routine directly impacts the exit perf of a process.
257 * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
258 */
259void
260vm_proc_dispose(struct proc *p)
261{
262	vm_object_t upobj;
263	vm_offset_t up;
264	vm_page_t m;
265
266	upobj = p->p_upages_obj;
267	VM_OBJECT_LOCK(upobj);
268	if (upobj->resident_page_count != UAREA_PAGES)
269		panic("vm_proc_dispose: incorrect number of pages in upobj");
270	vm_page_lock_queues();
271	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
272		vm_page_busy(m);
273		vm_page_unwire(m, 0);
274		vm_page_free(m);
275	}
276	vm_page_unlock_queues();
277	VM_OBJECT_UNLOCK(upobj);
278	up = (vm_offset_t)p->p_uarea;
279	pmap_qremove(up, UAREA_PAGES);
280	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
281	vm_object_deallocate(upobj);
282}
283
284#ifndef NO_SWAPPING
285/*
286 * Allow the U area for a process to be prejudicially paged out.
287 */
288static void
289vm_proc_swapout(struct proc *p)
290{
291	vm_object_t upobj;
292	vm_offset_t up;
293	vm_page_t m;
294
295	upobj = p->p_upages_obj;
296	VM_OBJECT_LOCK(upobj);
297	if (upobj->resident_page_count != UAREA_PAGES)
298		panic("vm_proc_dispose: incorrect number of pages in upobj");
299	vm_page_lock_queues();
300	TAILQ_FOREACH(m, &upobj->memq, listq) {
301		vm_page_dirty(m);
302		vm_page_unwire(m, 0);
303	}
304	vm_page_unlock_queues();
305	VM_OBJECT_UNLOCK(upobj);
306	up = (vm_offset_t)p->p_uarea;
307	pmap_qremove(up, UAREA_PAGES);
308}
309
310/*
311 * Bring the U area for a specified process back in.
312 */
313static void
314vm_proc_swapin(struct proc *p)
315{
316	vm_page_t ma[UAREA_PAGES];
317	vm_object_t upobj;
318	vm_offset_t up;
319	vm_page_t m;
320	int rv;
321	int i;
322
323	upobj = p->p_upages_obj;
324	for (i = 0; i < UAREA_PAGES; i++) {
325		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
326		if (m->valid != VM_PAGE_BITS_ALL) {
327			rv = vm_pager_get_pages(upobj, &m, 1, 0);
328			if (rv != VM_PAGER_OK)
329				panic("vm_proc_swapin: cannot get upage");
330		}
331		ma[i] = m;
332	}
333	VM_OBJECT_LOCK(upobj);
334	if (upobj->resident_page_count != UAREA_PAGES)
335		panic("vm_proc_swapin: lost pages from upobj");
336	vm_page_lock_queues();
337	TAILQ_FOREACH(m, &upobj->memq, listq) {
338		m->valid = VM_PAGE_BITS_ALL;
339		vm_page_wire(m);
340		vm_page_wakeup(m);
341	}
342	vm_page_unlock_queues();
343	VM_OBJECT_UNLOCK(upobj);
344	up = (vm_offset_t)p->p_uarea;
345	pmap_qenter(up, ma, UAREA_PAGES);
346}
347
348/*
349 * Swap in the UAREAs of all processes swapped out to the given device.
350 * The pages in the UAREA are marked dirty and their swap metadata is freed.
351 */
352void
353vm_proc_swapin_all(int devidx)
354{
355	struct proc *p;
356	vm_object_t object;
357	vm_page_t m;
358
359retry:
360	sx_slock(&allproc_lock);
361	FOREACH_PROC_IN_SYSTEM(p) {
362		PROC_LOCK(p);
363		object = p->p_upages_obj;
364		if (object != NULL) {
365			VM_OBJECT_LOCK(object);
366			if (swap_pager_isswapped(object, devidx)) {
367				VM_OBJECT_UNLOCK(object);
368				sx_sunlock(&allproc_lock);
369				faultin(p);
370				PROC_UNLOCK(p);
371				VM_OBJECT_LOCK(object);
372				vm_page_lock_queues();
373				TAILQ_FOREACH(m, &object->memq, listq)
374					vm_page_dirty(m);
375				vm_page_unlock_queues();
376				swap_pager_freespace(object, 0,
377				    object->un_pager.swp.swp_bcount);
378				VM_OBJECT_UNLOCK(object);
379				goto retry;
380			}
381			VM_OBJECT_UNLOCK(object);
382		}
383		PROC_UNLOCK(p);
384	}
385	sx_sunlock(&allproc_lock);
386}
387#endif
388
389/*
390 * Implement fork's actions on an address space.
391 * Here we arrange for the address space to be copied or referenced,
392 * allocate a user struct (pcb and kernel stack), then call the
393 * machine-dependent layer to fill those in and make the new process
394 * ready to run.  The new process is set up so that it returns directly
395 * to user mode to avoid stack copying and relocation problems.
396 */
397void
398vm_forkproc(td, p2, td2, flags)
399	struct thread *td;
400	struct proc *p2;
401	struct thread *td2;
402	int flags;
403{
404	struct proc *p1 = td->td_proc;
405	struct user *up;
406
407	GIANT_REQUIRED;
408
409	if ((flags & RFPROC) == 0) {
410		/*
411		 * Divorce the memory, if it is shared, essentially
412		 * this changes shared memory amongst threads, into
413		 * COW locally.
414		 */
415		if ((flags & RFMEM) == 0) {
416			if (p1->p_vmspace->vm_refcnt > 1) {
417				vmspace_unshare(p1);
418			}
419		}
420		cpu_fork(td, p2, td2, flags);
421		return;
422	}
423
424	if (flags & RFMEM) {
425		p2->p_vmspace = p1->p_vmspace;
426		p1->p_vmspace->vm_refcnt++;
427	}
428
429	while (vm_page_count_severe()) {
430		VM_WAIT;
431	}
432
433	if ((flags & RFMEM) == 0) {
434		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
435
436		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
437
438		if (p1->p_vmspace->vm_shm)
439			shmfork(p1, p2);
440	}
441
442	/* XXXKSE this is unsatisfactory but should be adequate */
443	up = p2->p_uarea;
444
445	/*
446	 * p_stats currently points at fields in the user struct
447	 * but not at &u, instead at p_addr. Copy parts of
448	 * p_stats; zero the rest of p_stats (statistics).
449	 *
450	 * If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
451	 * to share sigacts, so we use the up->u_sigacts.
452	 */
453	p2->p_stats = &up->u_stats;
454	if (p2->p_sigacts == NULL) {
455		if (p2->p_procsig->ps_refcnt != 1)
456			printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
457		p2->p_sigacts = &up->u_sigacts;
458		up->u_sigacts = *p1->p_sigacts;
459	}
460
461	bzero(&up->u_stats.pstat_startzero,
462	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
463		(caddr_t) &up->u_stats.pstat_startzero));
464	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
465	    ((caddr_t) &up->u_stats.pstat_endcopy -
466		(caddr_t) &up->u_stats.pstat_startcopy));
467
468
469	/*
470	 * cpu_fork will copy and update the pcb, set up the kernel stack,
471	 * and make the child ready to run.
472	 */
473	cpu_fork(td, p2, td2, flags);
474}
475
476/*
477 * Called after process has been wait(2)'ed apon and is being reaped.
478 * The idea is to reclaim resources that we could not reclaim while
479 * the process was still executing.
480 */
481void
482vm_waitproc(p)
483	struct proc *p;
484{
485
486	GIANT_REQUIRED;
487	cpu_wait(p);
488	vmspace_exitfree(p);		/* and clean-out the vmspace */
489}
490
491/*
492 * Set default limits for VM system.
493 * Called for proc 0, and then inherited by all others.
494 *
495 * XXX should probably act directly on proc0.
496 */
497static void
498vm_init_limits(udata)
499	void *udata;
500{
501	struct proc *p = udata;
502	int rss_limit;
503
504	/*
505	 * Set up the initial limits on process VM. Set the maximum resident
506	 * set size to be half of (reasonably) available memory.  Since this
507	 * is a soft limit, it comes into effect only when the system is out
508	 * of memory - half of main memory helps to favor smaller processes,
509	 * and reduces thrashing of the object cache.
510	 */
511	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
512	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
513	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
514	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
515	/* limit the limit to no less than 2MB */
516	rss_limit = max(cnt.v_free_count, 512);
517	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
518	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
519}
520
521void
522faultin(p)
523	struct proc *p;
524{
525#ifdef NO_SWAPPING
526
527	PROC_LOCK_ASSERT(p, MA_OWNED);
528	if ((p->p_sflag & PS_INMEM) == 0)
529		panic("faultin: proc swapped out with NO_SWAPPING!");
530#else /* !NO_SWAPPING */
531	struct thread *td;
532
533	GIANT_REQUIRED;
534	PROC_LOCK_ASSERT(p, MA_OWNED);
535	/*
536	 * If another process is swapping in this process,
537	 * just wait until it finishes.
538	 */
539	if (p->p_sflag & PS_SWAPPINGIN)
540		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
541	else if ((p->p_sflag & PS_INMEM) == 0) {
542		/*
543		 * Don't let another thread swap process p out while we are
544		 * busy swapping it in.
545		 */
546		++p->p_lock;
547		mtx_lock_spin(&sched_lock);
548		p->p_sflag |= PS_SWAPPINGIN;
549		mtx_unlock_spin(&sched_lock);
550		PROC_UNLOCK(p);
551
552		vm_proc_swapin(p);
553		FOREACH_THREAD_IN_PROC(p, td)
554			pmap_swapin_thread(td);
555
556		PROC_LOCK(p);
557		mtx_lock_spin(&sched_lock);
558		p->p_sflag &= ~PS_SWAPPINGIN;
559		p->p_sflag |= PS_INMEM;
560		FOREACH_THREAD_IN_PROC(p, td) {
561			TD_CLR_SWAPPED(td);
562			if (TD_CAN_RUN(td))
563				setrunnable(td);
564		}
565		mtx_unlock_spin(&sched_lock);
566
567		wakeup(&p->p_sflag);
568
569		/* Allow other threads to swap p out now. */
570		--p->p_lock;
571	}
572#endif /* NO_SWAPPING */
573}
574
575/*
576 * This swapin algorithm attempts to swap-in processes only if there
577 * is enough space for them.  Of course, if a process waits for a long
578 * time, it will be swapped in anyway.
579 *
580 *  XXXKSE - process with the thread with highest priority counts..
581 *
582 * Giant is still held at this point, to be released in tsleep.
583 */
584/* ARGSUSED*/
585static void
586scheduler(dummy)
587	void *dummy;
588{
589	struct proc *p;
590	struct thread *td;
591	int pri;
592	struct proc *pp;
593	int ppri;
594
595	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
596	/* GIANT_REQUIRED */
597
598loop:
599	if (vm_page_count_min()) {
600		VM_WAIT;
601		goto loop;
602	}
603
604	pp = NULL;
605	ppri = INT_MIN;
606	sx_slock(&allproc_lock);
607	FOREACH_PROC_IN_SYSTEM(p) {
608		struct ksegrp *kg;
609		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
610			continue;
611		}
612		mtx_lock_spin(&sched_lock);
613		FOREACH_THREAD_IN_PROC(p, td) {
614			/*
615			 * An otherwise runnable thread of a process
616			 * swapped out has only the TDI_SWAPPED bit set.
617			 *
618			 */
619			if (td->td_inhibitors == TDI_SWAPPED) {
620				kg = td->td_ksegrp;
621				pri = p->p_swtime + kg->kg_slptime;
622				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
623					pri -= kg->kg_nice * 8;
624				}
625
626				/*
627				 * if this ksegrp is higher priority
628				 * and there is enough space, then select
629				 * this process instead of the previous
630				 * selection.
631				 */
632				if (pri > ppri) {
633					pp = p;
634					ppri = pri;
635				}
636			}
637		}
638		mtx_unlock_spin(&sched_lock);
639	}
640	sx_sunlock(&allproc_lock);
641
642	/*
643	 * Nothing to do, back to sleep.
644	 */
645	if ((p = pp) == NULL) {
646		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
647		goto loop;
648	}
649	PROC_LOCK(p);
650
651	/*
652	 * Another process may be bringing or may have already
653	 * brought this process in while we traverse all threads.
654	 * Or, this process may even be being swapped out again.
655	 */
656	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
657		PROC_UNLOCK(p);
658		goto loop;
659	}
660
661	mtx_lock_spin(&sched_lock);
662	p->p_sflag &= ~PS_SWAPINREQ;
663	mtx_unlock_spin(&sched_lock);
664
665	/*
666	 * We would like to bring someone in. (only if there is space).
667	 * [What checks the space? ]
668	 */
669	faultin(p);
670	PROC_UNLOCK(p);
671	mtx_lock_spin(&sched_lock);
672	p->p_swtime = 0;
673	mtx_unlock_spin(&sched_lock);
674	goto loop;
675}
676
677#ifndef NO_SWAPPING
678
679/*
680 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
681 */
682static int swap_idle_threshold1 = 2;
683SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
684    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
685
686/*
687 * Swap_idle_threshold2 is the time that a process can be idle before
688 * it will be swapped out, if idle swapping is enabled.
689 */
690static int swap_idle_threshold2 = 10;
691SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
692    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
693
694/*
695 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
696 * procs and unwire their u-areas.  We try to always "swap" at least one
697 * process in case we need the room for a swapin.
698 * If any procs have been sleeping/stopped for at least maxslp seconds,
699 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
700 * if any, otherwise the longest-resident process.
701 */
702void
703swapout_procs(action)
704int action;
705{
706	struct proc *p;
707	struct thread *td;
708	struct ksegrp *kg;
709	struct proc *outp, *outp2;
710	int outpri, outpri2;
711	int didswap = 0;
712
713	GIANT_REQUIRED;
714
715	outp = outp2 = NULL;
716	outpri = outpri2 = INT_MIN;
717retry:
718	sx_slock(&allproc_lock);
719	FOREACH_PROC_IN_SYSTEM(p) {
720		struct vmspace *vm;
721		int minslptime = 100000;
722
723		/*
724		 * Watch out for a process in
725		 * creation.  It may have no
726		 * address space or lock yet.
727		 */
728		mtx_lock_spin(&sched_lock);
729		if (p->p_state == PRS_NEW) {
730			mtx_unlock_spin(&sched_lock);
731			continue;
732		}
733		mtx_unlock_spin(&sched_lock);
734
735		/*
736		 * An aio daemon switches its
737		 * address space while running.
738		 * Perform a quick check whether
739		 * a process has P_SYSTEM.
740		 */
741		if ((p->p_flag & P_SYSTEM) != 0)
742			continue;
743
744		/*
745		 * Do not swapout a process that
746		 * is waiting for VM data
747		 * structures as there is a possible
748		 * deadlock.  Test this first as
749		 * this may block.
750		 *
751		 * Lock the map until swapout
752		 * finishes, or a thread of this
753		 * process may attempt to alter
754		 * the map.
755		 */
756		PROC_LOCK(p);
757		vm = p->p_vmspace;
758		KASSERT(vm != NULL,
759			("swapout_procs: a process has no address space"));
760		++vm->vm_refcnt;
761		PROC_UNLOCK(p);
762		if (!vm_map_trylock(&vm->vm_map))
763			goto nextproc1;
764
765		PROC_LOCK(p);
766		if (p->p_lock != 0 ||
767		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
768		    ) != 0) {
769			goto nextproc2;
770		}
771		/*
772		 * only aiod changes vmspace, however it will be
773		 * skipped because of the if statement above checking
774		 * for P_SYSTEM
775		 */
776		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
777			goto nextproc2;
778
779		switch (p->p_state) {
780		default:
781			/* Don't swap out processes in any sort
782			 * of 'special' state. */
783			break;
784
785		case PRS_NORMAL:
786			mtx_lock_spin(&sched_lock);
787			/*
788			 * do not swapout a realtime process
789			 * Check all the thread groups..
790			 */
791			FOREACH_KSEGRP_IN_PROC(p, kg) {
792				if (PRI_IS_REALTIME(kg->kg_pri_class))
793					goto nextproc;
794
795				/*
796				 * Guarantee swap_idle_threshold1
797				 * time in memory.
798				 */
799				if (kg->kg_slptime < swap_idle_threshold1)
800					goto nextproc;
801
802				/*
803				 * Do not swapout a process if it is
804				 * waiting on a critical event of some
805				 * kind or there is a thread whose
806				 * pageable memory may be accessed.
807				 *
808				 * This could be refined to support
809				 * swapping out a thread.
810				 */
811				FOREACH_THREAD_IN_GROUP(kg, td) {
812					if ((td->td_priority) < PSOCK ||
813					    !thread_safetoswapout(td))
814						goto nextproc;
815				}
816				/*
817				 * If the system is under memory stress,
818				 * or if we are swapping
819				 * idle processes >= swap_idle_threshold2,
820				 * then swap the process out.
821				 */
822				if (((action & VM_SWAP_NORMAL) == 0) &&
823				    (((action & VM_SWAP_IDLE) == 0) ||
824				    (kg->kg_slptime < swap_idle_threshold2)))
825					goto nextproc;
826
827				if (minslptime > kg->kg_slptime)
828					minslptime = kg->kg_slptime;
829			}
830
831			/*
832			 * If the process has been asleep for awhile and had
833			 * most of its pages taken away already, swap it out.
834			 */
835			if ((action & VM_SWAP_NORMAL) ||
836				((action & VM_SWAP_IDLE) &&
837				 (minslptime > swap_idle_threshold2))) {
838				swapout(p);
839				didswap++;
840				mtx_unlock_spin(&sched_lock);
841				PROC_UNLOCK(p);
842				vm_map_unlock(&vm->vm_map);
843				vmspace_free(vm);
844				sx_sunlock(&allproc_lock);
845				goto retry;
846			}
847nextproc:
848			mtx_unlock_spin(&sched_lock);
849		}
850nextproc2:
851		PROC_UNLOCK(p);
852		vm_map_unlock(&vm->vm_map);
853nextproc1:
854		vmspace_free(vm);
855		continue;
856	}
857	sx_sunlock(&allproc_lock);
858	/*
859	 * If we swapped something out, and another process needed memory,
860	 * then wakeup the sched process.
861	 */
862	if (didswap)
863		wakeup(&proc0);
864}
865
866static void
867swapout(p)
868	struct proc *p;
869{
870	struct thread *td;
871
872	PROC_LOCK_ASSERT(p, MA_OWNED);
873	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
874#if defined(SWAP_DEBUG)
875	printf("swapping out %d\n", p->p_pid);
876#endif
877
878	/*
879	 * The states of this process and its threads may have changed
880	 * by now.  Assuming that there is only one pageout daemon thread,
881	 * this process should still be in memory.
882	 */
883	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
884		("swapout: lost a swapout race?"));
885
886#if defined(INVARIANTS)
887	/*
888	 * Make sure that all threads are safe to be swapped out.
889	 *
890	 * Alternatively, we could swap out only safe threads.
891	 */
892	FOREACH_THREAD_IN_PROC(p, td) {
893		KASSERT(thread_safetoswapout(td),
894			("swapout: there is a thread not safe for swapout"));
895	}
896#endif /* INVARIANTS */
897
898	++p->p_stats->p_ru.ru_nswap;
899	/*
900	 * remember the process resident count
901	 */
902	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
903
904	p->p_sflag &= ~PS_INMEM;
905	p->p_sflag |= PS_SWAPPINGOUT;
906	PROC_UNLOCK(p);
907	FOREACH_THREAD_IN_PROC(p, td)
908		TD_SET_SWAPPED(td);
909	mtx_unlock_spin(&sched_lock);
910
911	vm_proc_swapout(p);
912	FOREACH_THREAD_IN_PROC(p, td)
913		pmap_swapout_thread(td);
914
915	PROC_LOCK(p);
916	mtx_lock_spin(&sched_lock);
917	p->p_sflag &= ~PS_SWAPPINGOUT;
918	p->p_swtime = 0;
919}
920#endif /* !NO_SWAPPING */
921