vm_glue.c revision 114019
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 *
62 * $FreeBSD: head/sys/vm/vm_glue.c 114019 2003-04-25 16:30:02Z alc $
63 */
64
65#include "opt_vm.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/resourcevar.h>
73#include <sys/shm.h>
74#include <sys/vmmeter.h>
75#include <sys/sx.h>
76#include <sys/sysctl.h>
77
78#include <sys/kernel.h>
79#include <sys/ktr.h>
80#include <sys/unistd.h>
81
82#include <machine/limits.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_page.h>
89#include <vm/vm_pageout.h>
90#include <vm/vm_object.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/vm_pager.h>
94#include <vm/swap_pager.h>
95
96#include <sys/user.h>
97
98extern int maxslp;
99
100/*
101 * System initialization
102 *
103 * Note: proc0 from proc.h
104 */
105static void vm_init_limits(void *);
106SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
107
108/*
109 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
110 *
111 * Note: run scheduling should be divorced from the vm system.
112 */
113static void scheduler(void *);
114SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
115
116#ifndef NO_SWAPPING
117static void swapout(struct proc *);
118static void vm_proc_swapin(struct proc *p);
119static void vm_proc_swapout(struct proc *p);
120#endif
121
122/*
123 * MPSAFE
124 *
125 * WARNING!  This code calls vm_map_check_protection() which only checks
126 * the associated vm_map_entry range.  It does not determine whether the
127 * contents of the memory is actually readable or writable.  In most cases
128 * just checking the vm_map_entry is sufficient within the kernel's address
129 * space.
130 */
131int
132kernacc(addr, len, rw)
133	void *addr;
134	int len, rw;
135{
136	boolean_t rv;
137	vm_offset_t saddr, eaddr;
138	vm_prot_t prot;
139
140	KASSERT((rw & ~VM_PROT_ALL) == 0,
141	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
142	prot = rw;
143	saddr = trunc_page((vm_offset_t)addr);
144	eaddr = round_page((vm_offset_t)addr + len);
145	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
146	return (rv == TRUE);
147}
148
149/*
150 * MPSAFE
151 *
152 * WARNING!  This code calls vm_map_check_protection() which only checks
153 * the associated vm_map_entry range.  It does not determine whether the
154 * contents of the memory is actually readable or writable.  vmapbuf(),
155 * vm_fault_quick(), or copyin()/copout()/su*()/fu*() functions should be
156 * used in conjuction with this call.
157 */
158int
159useracc(addr, len, rw)
160	void *addr;
161	int len, rw;
162{
163	boolean_t rv;
164	vm_prot_t prot;
165	vm_map_t map;
166
167	KASSERT((rw & ~VM_PROT_ALL) == 0,
168	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
169	prot = rw;
170	map = &curproc->p_vmspace->vm_map;
171	if ((vm_offset_t)addr + len > vm_map_max(map) ||
172	    (vm_offset_t)addr + len < (vm_offset_t)addr) {
173		return (FALSE);
174	}
175	rv = vm_map_check_protection(map, trunc_page((vm_offset_t)addr),
176	    round_page((vm_offset_t)addr + len), prot);
177	return (rv == TRUE);
178}
179
180/*
181 * MPSAFE
182 */
183void
184vslock(addr, len)
185	void *addr;
186	u_int len;
187{
188
189	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
190	    round_page((vm_offset_t)addr + len), FALSE);
191}
192
193/*
194 * MPSAFE
195 */
196void
197vsunlock(addr, len)
198	void *addr;
199	u_int len;
200{
201
202	vm_map_unwire(&curproc->p_vmspace->vm_map,
203	    trunc_page((vm_offset_t)addr),
204	    round_page((vm_offset_t)addr + len), FALSE);
205}
206
207/*
208 * Create the U area for a new process.
209 * This routine directly affects the fork perf for a process.
210 */
211void
212vm_proc_new(struct proc *p)
213{
214	vm_page_t ma[UAREA_PAGES];
215	vm_object_t upobj;
216	vm_offset_t up;
217	vm_page_t m;
218	u_int i;
219
220	/*
221	 * Allocate object for the upage.
222	 */
223	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
224	p->p_upages_obj = upobj;
225
226	/*
227	 * Get a kernel virtual address for the U area for this process.
228	 */
229	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
230	if (up == 0)
231		panic("vm_proc_new: upage allocation failed");
232	p->p_uarea = (struct user *)up;
233
234	for (i = 0; i < UAREA_PAGES; i++) {
235		/*
236		 * Get a uarea page.
237		 */
238		m = vm_page_grab(upobj, i,
239		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
240		ma[i] = m;
241
242		vm_page_lock_queues();
243		vm_page_wakeup(m);
244		vm_page_flag_clear(m, PG_ZERO);
245		m->valid = VM_PAGE_BITS_ALL;
246		vm_page_unlock_queues();
247	}
248
249	/*
250	 * Enter the pages into the kernel address space.
251	 */
252	pmap_qenter(up, ma, UAREA_PAGES);
253}
254
255/*
256 * Dispose the U area for a process that has exited.
257 * This routine directly impacts the exit perf of a process.
258 * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
259 */
260void
261vm_proc_dispose(struct proc *p)
262{
263	vm_object_t upobj;
264	vm_offset_t up;
265	vm_page_t m;
266
267	upobj = p->p_upages_obj;
268	VM_OBJECT_LOCK(upobj);
269	if (upobj->resident_page_count != UAREA_PAGES)
270		panic("vm_proc_dispose: incorrect number of pages in upobj");
271	vm_page_lock_queues();
272	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
273		vm_page_busy(m);
274		vm_page_unwire(m, 0);
275		vm_page_free(m);
276	}
277	vm_page_unlock_queues();
278	VM_OBJECT_UNLOCK(upobj);
279	up = (vm_offset_t)p->p_uarea;
280	pmap_qremove(up, UAREA_PAGES);
281	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
282	vm_object_deallocate(upobj);
283}
284
285#ifndef NO_SWAPPING
286/*
287 * Allow the U area for a process to be prejudicially paged out.
288 */
289static void
290vm_proc_swapout(struct proc *p)
291{
292	vm_object_t upobj;
293	vm_offset_t up;
294	vm_page_t m;
295
296	upobj = p->p_upages_obj;
297	VM_OBJECT_LOCK(upobj);
298	if (upobj->resident_page_count != UAREA_PAGES)
299		panic("vm_proc_dispose: incorrect number of pages in upobj");
300	vm_page_lock_queues();
301	TAILQ_FOREACH(m, &upobj->memq, listq) {
302		vm_page_dirty(m);
303		vm_page_unwire(m, 0);
304	}
305	vm_page_unlock_queues();
306	VM_OBJECT_UNLOCK(upobj);
307	up = (vm_offset_t)p->p_uarea;
308	pmap_qremove(up, UAREA_PAGES);
309}
310
311/*
312 * Bring the U area for a specified process back in.
313 */
314static void
315vm_proc_swapin(struct proc *p)
316{
317	vm_page_t ma[UAREA_PAGES];
318	vm_object_t upobj;
319	vm_offset_t up;
320	vm_page_t m;
321	int rv;
322	int i;
323
324	upobj = p->p_upages_obj;
325	for (i = 0; i < UAREA_PAGES; i++) {
326		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
327		if (m->valid != VM_PAGE_BITS_ALL) {
328			rv = vm_pager_get_pages(upobj, &m, 1, 0);
329			if (rv != VM_PAGER_OK)
330				panic("vm_proc_swapin: cannot get upage");
331		}
332		ma[i] = m;
333	}
334	VM_OBJECT_LOCK(upobj);
335	if (upobj->resident_page_count != UAREA_PAGES)
336		panic("vm_proc_swapin: lost pages from upobj");
337	vm_page_lock_queues();
338	TAILQ_FOREACH(m, &upobj->memq, listq) {
339		m->valid = VM_PAGE_BITS_ALL;
340		vm_page_wire(m);
341		vm_page_wakeup(m);
342	}
343	vm_page_unlock_queues();
344	VM_OBJECT_UNLOCK(upobj);
345	up = (vm_offset_t)p->p_uarea;
346	pmap_qenter(up, ma, UAREA_PAGES);
347}
348
349/*
350 * Swap in the UAREAs of all processes swapped out to the given device.
351 * The pages in the UAREA are marked dirty and their swap metadata is freed.
352 */
353void
354vm_proc_swapin_all(int devidx)
355{
356	struct proc *p;
357	vm_object_t object;
358	vm_page_t m;
359
360retry:
361	sx_slock(&allproc_lock);
362	FOREACH_PROC_IN_SYSTEM(p) {
363		PROC_LOCK(p);
364
365		object = p->p_upages_obj;
366		if (object != NULL &&
367		    swap_pager_isswapped(p->p_upages_obj, devidx)) {
368			sx_sunlock(&allproc_lock);
369			faultin(p);
370			PROC_UNLOCK(p);
371			VM_OBJECT_LOCK(object);
372			vm_page_lock_queues();
373			TAILQ_FOREACH(m, &object->memq, listq)
374				vm_page_dirty(m);
375			vm_page_unlock_queues();
376			swap_pager_freespace(object, 0,
377			    object->un_pager.swp.swp_bcount);
378			VM_OBJECT_UNLOCK(object);
379			goto retry;
380		}
381
382		PROC_UNLOCK(p);
383	}
384	sx_sunlock(&allproc_lock);
385}
386#endif
387
388/*
389 * Implement fork's actions on an address space.
390 * Here we arrange for the address space to be copied or referenced,
391 * allocate a user struct (pcb and kernel stack), then call the
392 * machine-dependent layer to fill those in and make the new process
393 * ready to run.  The new process is set up so that it returns directly
394 * to user mode to avoid stack copying and relocation problems.
395 */
396void
397vm_forkproc(td, p2, td2, flags)
398	struct thread *td;
399	struct proc *p2;
400	struct thread *td2;
401	int flags;
402{
403	struct proc *p1 = td->td_proc;
404	struct user *up;
405
406	GIANT_REQUIRED;
407
408	if ((flags & RFPROC) == 0) {
409		/*
410		 * Divorce the memory, if it is shared, essentially
411		 * this changes shared memory amongst threads, into
412		 * COW locally.
413		 */
414		if ((flags & RFMEM) == 0) {
415			if (p1->p_vmspace->vm_refcnt > 1) {
416				vmspace_unshare(p1);
417			}
418		}
419		cpu_fork(td, p2, td2, flags);
420		return;
421	}
422
423	if (flags & RFMEM) {
424		p2->p_vmspace = p1->p_vmspace;
425		p1->p_vmspace->vm_refcnt++;
426	}
427
428	while (vm_page_count_severe()) {
429		VM_WAIT;
430	}
431
432	if ((flags & RFMEM) == 0) {
433		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
434
435		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
436
437		if (p1->p_vmspace->vm_shm)
438			shmfork(p1, p2);
439	}
440
441	/* XXXKSE this is unsatisfactory but should be adequate */
442	up = p2->p_uarea;
443
444	/*
445	 * p_stats currently points at fields in the user struct
446	 * but not at &u, instead at p_addr. Copy parts of
447	 * p_stats; zero the rest of p_stats (statistics).
448	 *
449	 * If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
450	 * to share sigacts, so we use the up->u_sigacts.
451	 */
452	p2->p_stats = &up->u_stats;
453	if (p2->p_sigacts == NULL) {
454		if (p2->p_procsig->ps_refcnt != 1)
455			printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
456		p2->p_sigacts = &up->u_sigacts;
457		up->u_sigacts = *p1->p_sigacts;
458	}
459
460	bzero(&up->u_stats.pstat_startzero,
461	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
462		(caddr_t) &up->u_stats.pstat_startzero));
463	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
464	    ((caddr_t) &up->u_stats.pstat_endcopy -
465		(caddr_t) &up->u_stats.pstat_startcopy));
466
467
468	/*
469	 * cpu_fork will copy and update the pcb, set up the kernel stack,
470	 * and make the child ready to run.
471	 */
472	cpu_fork(td, p2, td2, flags);
473}
474
475/*
476 * Called after process has been wait(2)'ed apon and is being reaped.
477 * The idea is to reclaim resources that we could not reclaim while
478 * the process was still executing.
479 */
480void
481vm_waitproc(p)
482	struct proc *p;
483{
484
485	GIANT_REQUIRED;
486	cpu_wait(p);
487	vmspace_exitfree(p);		/* and clean-out the vmspace */
488}
489
490/*
491 * Set default limits for VM system.
492 * Called for proc 0, and then inherited by all others.
493 *
494 * XXX should probably act directly on proc0.
495 */
496static void
497vm_init_limits(udata)
498	void *udata;
499{
500	struct proc *p = udata;
501	int rss_limit;
502
503	/*
504	 * Set up the initial limits on process VM. Set the maximum resident
505	 * set size to be half of (reasonably) available memory.  Since this
506	 * is a soft limit, it comes into effect only when the system is out
507	 * of memory - half of main memory helps to favor smaller processes,
508	 * and reduces thrashing of the object cache.
509	 */
510	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
511	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
512	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
513	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
514	/* limit the limit to no less than 2MB */
515	rss_limit = max(cnt.v_free_count, 512);
516	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
517	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
518}
519
520void
521faultin(p)
522	struct proc *p;
523{
524#ifdef NO_SWAPPING
525
526	PROC_LOCK_ASSERT(p, MA_OWNED);
527	if ((p->p_sflag & PS_INMEM) == 0)
528		panic("faultin: proc swapped out with NO_SWAPPING!");
529#else /* !NO_SWAPPING */
530	struct thread *td;
531
532	GIANT_REQUIRED;
533	PROC_LOCK_ASSERT(p, MA_OWNED);
534	/*
535	 * If another process is swapping in this process,
536	 * just wait until it finishes.
537	 */
538	if (p->p_sflag & PS_SWAPPINGIN)
539		msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
540	else if ((p->p_sflag & PS_INMEM) == 0) {
541		/*
542		 * Don't let another thread swap process p out while we are
543		 * busy swapping it in.
544		 */
545		++p->p_lock;
546		mtx_lock_spin(&sched_lock);
547		p->p_sflag |= PS_SWAPPINGIN;
548		mtx_unlock_spin(&sched_lock);
549		PROC_UNLOCK(p);
550
551		vm_proc_swapin(p);
552		FOREACH_THREAD_IN_PROC(p, td)
553			pmap_swapin_thread(td);
554
555		PROC_LOCK(p);
556		mtx_lock_spin(&sched_lock);
557		p->p_sflag &= ~PS_SWAPPINGIN;
558		p->p_sflag |= PS_INMEM;
559		FOREACH_THREAD_IN_PROC(p, td) {
560			TD_CLR_SWAPPED(td);
561			if (TD_CAN_RUN(td))
562				setrunnable(td);
563		}
564		mtx_unlock_spin(&sched_lock);
565
566		wakeup(&p->p_sflag);
567
568		/* Allow other threads to swap p out now. */
569		--p->p_lock;
570	}
571#endif /* NO_SWAPPING */
572}
573
574/*
575 * This swapin algorithm attempts to swap-in processes only if there
576 * is enough space for them.  Of course, if a process waits for a long
577 * time, it will be swapped in anyway.
578 *
579 *  XXXKSE - process with the thread with highest priority counts..
580 *
581 * Giant is still held at this point, to be released in tsleep.
582 */
583/* ARGSUSED*/
584static void
585scheduler(dummy)
586	void *dummy;
587{
588	struct proc *p;
589	struct thread *td;
590	int pri;
591	struct proc *pp;
592	int ppri;
593
594	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
595	/* GIANT_REQUIRED */
596
597loop:
598	if (vm_page_count_min()) {
599		VM_WAIT;
600		goto loop;
601	}
602
603	pp = NULL;
604	ppri = INT_MIN;
605	sx_slock(&allproc_lock);
606	FOREACH_PROC_IN_SYSTEM(p) {
607		struct ksegrp *kg;
608		if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
609			continue;
610		}
611		mtx_lock_spin(&sched_lock);
612		FOREACH_THREAD_IN_PROC(p, td) {
613			/*
614			 * An otherwise runnable thread of a process
615			 * swapped out has only the TDI_SWAPPED bit set.
616			 *
617			 */
618			if (td->td_inhibitors == TDI_SWAPPED) {
619				kg = td->td_ksegrp;
620				pri = p->p_swtime + kg->kg_slptime;
621				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
622					pri -= kg->kg_nice * 8;
623				}
624
625				/*
626				 * if this ksegrp is higher priority
627				 * and there is enough space, then select
628				 * this process instead of the previous
629				 * selection.
630				 */
631				if (pri > ppri) {
632					pp = p;
633					ppri = pri;
634				}
635			}
636		}
637		mtx_unlock_spin(&sched_lock);
638	}
639	sx_sunlock(&allproc_lock);
640
641	/*
642	 * Nothing to do, back to sleep.
643	 */
644	if ((p = pp) == NULL) {
645		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
646		goto loop;
647	}
648	PROC_LOCK(p);
649
650	/*
651	 * Another process may be bringing or may have already
652	 * brought this process in while we traverse all threads.
653	 * Or, this process may even be being swapped out again.
654	 */
655	if (p->p_sflag & (PS_INMEM | PS_SWAPPINGOUT | PS_SWAPPINGIN)) {
656		PROC_UNLOCK(p);
657		goto loop;
658	}
659
660	mtx_lock_spin(&sched_lock);
661	p->p_sflag &= ~PS_SWAPINREQ;
662	mtx_unlock_spin(&sched_lock);
663
664	/*
665	 * We would like to bring someone in. (only if there is space).
666	 * [What checks the space? ]
667	 */
668	faultin(p);
669	PROC_UNLOCK(p);
670	mtx_lock_spin(&sched_lock);
671	p->p_swtime = 0;
672	mtx_unlock_spin(&sched_lock);
673	goto loop;
674}
675
676#ifndef NO_SWAPPING
677
678/*
679 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
680 */
681static int swap_idle_threshold1 = 2;
682SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1, CTLFLAG_RW,
683    &swap_idle_threshold1, 0, "Guaranteed swapped in time for a process");
684
685/*
686 * Swap_idle_threshold2 is the time that a process can be idle before
687 * it will be swapped out, if idle swapping is enabled.
688 */
689static int swap_idle_threshold2 = 10;
690SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2, CTLFLAG_RW,
691    &swap_idle_threshold2, 0, "Time before a process will be swapped out");
692
693/*
694 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
695 * procs and unwire their u-areas.  We try to always "swap" at least one
696 * process in case we need the room for a swapin.
697 * If any procs have been sleeping/stopped for at least maxslp seconds,
698 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
699 * if any, otherwise the longest-resident process.
700 */
701void
702swapout_procs(action)
703int action;
704{
705	struct proc *p;
706	struct thread *td;
707	struct ksegrp *kg;
708	struct proc *outp, *outp2;
709	int outpri, outpri2;
710	int didswap = 0;
711
712	GIANT_REQUIRED;
713
714	outp = outp2 = NULL;
715	outpri = outpri2 = INT_MIN;
716retry:
717	sx_slock(&allproc_lock);
718	FOREACH_PROC_IN_SYSTEM(p) {
719		struct vmspace *vm;
720		int minslptime = 100000;
721
722		/*
723		 * Watch out for a process in
724		 * creation.  It may have no
725		 * address space or lock yet.
726		 */
727		mtx_lock_spin(&sched_lock);
728		if (p->p_state == PRS_NEW) {
729			mtx_unlock_spin(&sched_lock);
730			continue;
731		}
732		mtx_unlock_spin(&sched_lock);
733
734		/*
735		 * An aio daemon switches its
736		 * address space while running.
737		 * Perform a quick check whether
738		 * a process has P_SYSTEM.
739		 */
740		PROC_LOCK(p);
741		if ((p->p_flag & P_SYSTEM) != 0) {
742			PROC_UNLOCK(p);
743			continue;
744		}
745
746		/*
747		 * Do not swapout a process that
748		 * is waiting for VM data
749		 * structures as there is a possible
750		 * deadlock.  Test this first as
751		 * this may block.
752		 *
753		 * Lock the map until swapout
754		 * finishes, or a thread of this
755		 * process may attempt to alter
756		 * the map.
757		 */
758		vm = p->p_vmspace;
759		KASSERT(vm != NULL,
760			("swapout_procs: a process has no address space"));
761		++vm->vm_refcnt;
762		PROC_UNLOCK(p);
763		if (!vm_map_trylock(&vm->vm_map))
764			goto nextproc1;
765
766		PROC_LOCK(p);
767		if (p->p_lock != 0 ||
768		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
769		    ) != 0) {
770			goto nextproc2;
771		}
772		/*
773		 * only aiod changes vmspace, however it will be
774		 * skipped because of the if statement above checking
775		 * for P_SYSTEM
776		 */
777		if ((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) != PS_INMEM)
778			goto nextproc2;
779
780		mtx_lock_spin(&sched_lock);
781		switch (p->p_state) {
782		default:
783			/* Don't swap out processes in any sort
784			 * of 'special' state. */
785			goto nextproc;
786
787		case PRS_NORMAL:
788			/*
789			 * do not swapout a realtime process
790			 * Check all the thread groups..
791			 */
792			FOREACH_KSEGRP_IN_PROC(p, kg) {
793				if (PRI_IS_REALTIME(kg->kg_pri_class))
794					goto nextproc;
795
796				/*
797				 * Guarantee swap_idle_threshold1
798				 * time in memory.
799				 */
800				if (kg->kg_slptime < swap_idle_threshold1)
801					goto nextproc;
802
803				/*
804				 * Do not swapout a process if it is
805				 * waiting on a critical event of some
806				 * kind or there is a thread whose
807				 * pageable memory may be accessed.
808				 *
809				 * This could be refined to support
810				 * swapping out a thread.
811				 */
812				FOREACH_THREAD_IN_GROUP(kg, td) {
813					if ((td->td_priority) < PSOCK ||
814					    !thread_safetoswapout(td))
815						goto nextproc;
816				}
817				/*
818				 * If the system is under memory stress,
819				 * or if we are swapping
820				 * idle processes >= swap_idle_threshold2,
821				 * then swap the process out.
822				 */
823				if (((action & VM_SWAP_NORMAL) == 0) &&
824				    (((action & VM_SWAP_IDLE) == 0) ||
825				    (kg->kg_slptime < swap_idle_threshold2)))
826					goto nextproc;
827
828				if (minslptime > kg->kg_slptime)
829					minslptime = kg->kg_slptime;
830			}
831
832			/*
833			 * If the process has been asleep for awhile and had
834			 * most of its pages taken away already, swap it out.
835			 */
836			if ((action & VM_SWAP_NORMAL) ||
837				((action & VM_SWAP_IDLE) &&
838				 (minslptime > swap_idle_threshold2))) {
839				swapout(p);
840				didswap++;
841				mtx_unlock_spin(&sched_lock);
842				PROC_UNLOCK(p);
843				vm_map_unlock(&vm->vm_map);
844				vmspace_free(vm);
845				sx_sunlock(&allproc_lock);
846				goto retry;
847			}
848		}
849nextproc:
850		mtx_unlock_spin(&sched_lock);
851nextproc2:
852		PROC_UNLOCK(p);
853		vm_map_unlock(&vm->vm_map);
854nextproc1:
855		vmspace_free(vm);
856		continue;
857	}
858	sx_sunlock(&allproc_lock);
859	/*
860	 * If we swapped something out, and another process needed memory,
861	 * then wakeup the sched process.
862	 */
863	if (didswap)
864		wakeup(&proc0);
865}
866
867static void
868swapout(p)
869	struct proc *p;
870{
871	struct thread *td;
872
873	PROC_LOCK_ASSERT(p, MA_OWNED);
874	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
875#if defined(SWAP_DEBUG)
876	printf("swapping out %d\n", p->p_pid);
877#endif
878
879	/*
880	 * The states of this process and its threads may have changed
881	 * by now.  Assuming that there is only one pageout daemon thread,
882	 * this process should still be in memory.
883	 */
884	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPINGOUT|PS_SWAPPINGIN)) == PS_INMEM,
885		("swapout: lost a swapout race?"));
886
887#if defined(INVARIANTS)
888	/*
889	 * Make sure that all threads are safe to be swapped out.
890	 *
891	 * Alternatively, we could swap out only safe threads.
892	 */
893	FOREACH_THREAD_IN_PROC(p, td) {
894		KASSERT(thread_safetoswapout(td),
895			("swapout: there is a thread not safe for swapout"));
896	}
897#endif /* INVARIANTS */
898
899	++p->p_stats->p_ru.ru_nswap;
900	/*
901	 * remember the process resident count
902	 */
903	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
904
905	p->p_sflag &= ~PS_INMEM;
906	p->p_sflag |= PS_SWAPPINGOUT;
907	PROC_UNLOCK(p);
908	FOREACH_THREAD_IN_PROC(p, td)
909		TD_SET_SWAPPED(td);
910	mtx_unlock_spin(&sched_lock);
911
912	vm_proc_swapout(p);
913	FOREACH_THREAD_IN_PROC(p, td)
914		pmap_swapout_thread(td);
915
916	PROC_LOCK(p);
917	mtx_lock_spin(&sched_lock);
918	p->p_sflag &= ~PS_SWAPPINGOUT;
919	p->p_swtime = 0;
920}
921#endif /* !NO_SWAPPING */
922