vm_glue.c revision 103123
1/*
2 * Copyright (c) 1991, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * The Mach Operating System project at Carnegie-Mellon University.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *	This product includes software developed by the University of
19 *	California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 *    may be used to endorse or promote products derived from this software
22 *    without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 *	from: @(#)vm_glue.c	8.6 (Berkeley) 1/5/94
37 *
38 *
39 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40 * All rights reserved.
41 *
42 * Permission to use, copy, modify and distribute this software and
43 * its documentation is hereby granted, provided that both the copyright
44 * notice and this permission notice appear in all copies of the
45 * software, derivative works or modified versions, and any portions
46 * thereof, and that both notices appear in supporting documentation.
47 *
48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51 *
52 * Carnegie Mellon requests users of this software to return to
53 *
54 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55 *  School of Computer Science
56 *  Carnegie Mellon University
57 *  Pittsburgh PA 15213-3890
58 *
59 * any improvements or extensions that they make and grant Carnegie the
60 * rights to redistribute these changes.
61 *
62 * $FreeBSD: head/sys/vm/vm_glue.c 103123 2002-09-09 09:05:06Z tanimura $
63 */
64
65#include "opt_vm.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/lock.h>
70#include <sys/mutex.h>
71#include <sys/proc.h>
72#include <sys/resourcevar.h>
73#include <sys/shm.h>
74#include <sys/vmmeter.h>
75#include <sys/sx.h>
76#include <sys/sysctl.h>
77
78#include <sys/kernel.h>
79#include <sys/ktr.h>
80#include <sys/unistd.h>
81
82#include <machine/limits.h>
83
84#include <vm/vm.h>
85#include <vm/vm_param.h>
86#include <vm/pmap.h>
87#include <vm/vm_map.h>
88#include <vm/vm_page.h>
89#include <vm/vm_pageout.h>
90#include <vm/vm_object.h>
91#include <vm/vm_kern.h>
92#include <vm/vm_extern.h>
93#include <vm/vm_pager.h>
94
95#include <sys/user.h>
96
97extern int maxslp;
98
99/*
100 * System initialization
101 *
102 * Note: proc0 from proc.h
103 */
104static void vm_init_limits(void *);
105SYSINIT(vm_limits, SI_SUB_VM_CONF, SI_ORDER_FIRST, vm_init_limits, &proc0)
106
107/*
108 * THIS MUST BE THE LAST INITIALIZATION ITEM!!!
109 *
110 * Note: run scheduling should be divorced from the vm system.
111 */
112static void scheduler(void *);
113SYSINIT(scheduler, SI_SUB_RUN_SCHEDULER, SI_ORDER_FIRST, scheduler, NULL)
114
115#ifndef NO_SWAPPING
116static void swapout(struct proc *);
117static void vm_proc_swapin(struct proc *p);
118static void vm_proc_swapout(struct proc *p);
119#endif
120
121/*
122 * MPSAFE
123 */
124int
125kernacc(addr, len, rw)
126	caddr_t addr;
127	int len, rw;
128{
129	boolean_t rv;
130	vm_offset_t saddr, eaddr;
131	vm_prot_t prot;
132
133	KASSERT((rw & ~VM_PROT_ALL) == 0,
134	    ("illegal ``rw'' argument to kernacc (%x)\n", rw));
135	prot = rw;
136	saddr = trunc_page((vm_offset_t)addr);
137	eaddr = round_page((vm_offset_t)addr + len);
138	rv = vm_map_check_protection(kernel_map, saddr, eaddr, prot);
139	return (rv == TRUE);
140}
141
142/*
143 * MPSAFE
144 */
145int
146useracc(addr, len, rw)
147	caddr_t addr;
148	int len, rw;
149{
150	boolean_t rv;
151	vm_prot_t prot;
152
153	KASSERT((rw & ~VM_PROT_ALL) == 0,
154	    ("illegal ``rw'' argument to useracc (%x)\n", rw));
155	prot = rw;
156	/*
157	 * XXX - check separately to disallow access to user area and user
158	 * page tables - they are in the map.
159	 *
160	 * XXX - VM_MAXUSER_ADDRESS is an end address, not a max.  It was once
161	 * only used (as an end address) in trap.c.  Use it as an end address
162	 * here too.  This bogusness has spread.  I just fixed where it was
163	 * used as a max in vm_mmap.c.
164	 */
165	if ((vm_offset_t) addr + len > /* XXX */ VM_MAXUSER_ADDRESS
166	    || (vm_offset_t) addr + len < (vm_offset_t) addr) {
167		return (FALSE);
168	}
169	rv = vm_map_check_protection(&curproc->p_vmspace->vm_map,
170	    trunc_page((vm_offset_t)addr), round_page((vm_offset_t)addr + len),
171	    prot);
172	return (rv == TRUE);
173}
174
175/*
176 * MPSAFE
177 */
178void
179vslock(addr, len)
180	caddr_t addr;
181	u_int len;
182{
183
184	vm_map_wire(&curproc->p_vmspace->vm_map, trunc_page((vm_offset_t)addr),
185	    round_page((vm_offset_t)addr + len), FALSE);
186}
187
188/*
189 * MPSAFE
190 */
191void
192vsunlock(addr, len)
193	caddr_t addr;
194	u_int len;
195{
196
197	vm_map_unwire(&curproc->p_vmspace->vm_map,
198	    trunc_page((vm_offset_t)addr),
199	    round_page((vm_offset_t)addr + len), FALSE);
200}
201
202/*
203 * Create the U area for a new process.
204 * This routine directly affects the fork perf for a process.
205 */
206void
207vm_proc_new(struct proc *p)
208{
209	vm_page_t ma[UAREA_PAGES];
210	vm_object_t upobj;
211	vm_offset_t up;
212	vm_page_t m;
213	u_int i;
214
215	/*
216	 * Allocate object for the upage.
217	 */
218	upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
219	p->p_upages_obj = upobj;
220
221	/*
222	 * Get a kernel virtual address for the U area for this process.
223	 */
224	up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
225	if (up == 0)
226		panic("vm_proc_new: upage allocation failed");
227	p->p_uarea = (struct user *)up;
228
229	for (i = 0; i < UAREA_PAGES; i++) {
230		/*
231		 * Get a uarea page.
232		 */
233		m = vm_page_grab(upobj, i,
234		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
235		ma[i] = m;
236
237		vm_page_wakeup(m);
238		vm_page_flag_clear(m, PG_ZERO);
239		m->valid = VM_PAGE_BITS_ALL;
240	}
241
242	/*
243	 * Enter the pages into the kernel address space.
244	 */
245	pmap_qenter(up, ma, UAREA_PAGES);
246}
247
248/*
249 * Dispose the U area for a process that has exited.
250 * This routine directly impacts the exit perf of a process.
251 * XXX proc_zone is marked UMA_ZONE_NOFREE, so this should never be called.
252 */
253void
254vm_proc_dispose(struct proc *p)
255{
256	vm_object_t upobj;
257	vm_offset_t up;
258	vm_page_t m;
259
260	upobj = p->p_upages_obj;
261	if (upobj->resident_page_count != UAREA_PAGES)
262		panic("vm_proc_dispose: incorrect number of pages in upobj");
263	vm_page_lock_queues();
264	while ((m = TAILQ_FIRST(&upobj->memq)) != NULL) {
265		vm_page_busy(m);
266		vm_page_unwire(m, 0);
267		vm_page_free(m);
268	}
269	vm_page_unlock_queues();
270	up = (vm_offset_t)p->p_uarea;
271	pmap_qremove(up, UAREA_PAGES);
272	kmem_free(kernel_map, up, UAREA_PAGES * PAGE_SIZE);
273	vm_object_deallocate(upobj);
274}
275
276#ifndef NO_SWAPPING
277/*
278 * Allow the U area for a process to be prejudicially paged out.
279 */
280void
281vm_proc_swapout(struct proc *p)
282{
283	vm_object_t upobj;
284	vm_offset_t up;
285	vm_page_t m;
286
287	upobj = p->p_upages_obj;
288	if (upobj->resident_page_count != UAREA_PAGES)
289		panic("vm_proc_dispose: incorrect number of pages in upobj");
290	vm_page_lock_queues();
291	TAILQ_FOREACH(m, &upobj->memq, listq) {
292		vm_page_dirty(m);
293		vm_page_unwire(m, 0);
294	}
295	vm_page_unlock_queues();
296	up = (vm_offset_t)p->p_uarea;
297	pmap_qremove(up, UAREA_PAGES);
298}
299
300/*
301 * Bring the U area for a specified process back in.
302 */
303void
304vm_proc_swapin(struct proc *p)
305{
306	vm_page_t ma[UAREA_PAGES];
307	vm_object_t upobj;
308	vm_offset_t up;
309	vm_page_t m;
310	int rv;
311	int i;
312
313	upobj = p->p_upages_obj;
314	for (i = 0; i < UAREA_PAGES; i++) {
315		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
316		if (m->valid != VM_PAGE_BITS_ALL) {
317			rv = vm_pager_get_pages(upobj, &m, 1, 0);
318			if (rv != VM_PAGER_OK)
319				panic("vm_proc_swapin: cannot get upage");
320		}
321		ma[i] = m;
322	}
323	if (upobj->resident_page_count != UAREA_PAGES)
324		panic("vm_proc_swapin: lost pages from upobj");
325	vm_page_lock_queues();
326	TAILQ_FOREACH(m, &upobj->memq, listq) {
327		m->valid = VM_PAGE_BITS_ALL;
328		vm_page_wire(m);
329		vm_page_wakeup(m);
330	}
331	vm_page_unlock_queues();
332	up = (vm_offset_t)p->p_uarea;
333	pmap_qenter(up, ma, UAREA_PAGES);
334}
335#endif
336
337/*
338 * Implement fork's actions on an address space.
339 * Here we arrange for the address space to be copied or referenced,
340 * allocate a user struct (pcb and kernel stack), then call the
341 * machine-dependent layer to fill those in and make the new process
342 * ready to run.  The new process is set up so that it returns directly
343 * to user mode to avoid stack copying and relocation problems.
344 */
345void
346vm_forkproc(td, p2, td2, flags)
347	struct thread *td;
348	struct proc *p2;
349	struct thread *td2;
350	int flags;
351{
352	struct proc *p1 = td->td_proc;
353	struct user *up;
354
355	GIANT_REQUIRED;
356
357	if ((flags & RFPROC) == 0) {
358		/*
359		 * Divorce the memory, if it is shared, essentially
360		 * this changes shared memory amongst threads, into
361		 * COW locally.
362		 */
363		if ((flags & RFMEM) == 0) {
364			if (p1->p_vmspace->vm_refcnt > 1) {
365				vmspace_unshare(p1);
366			}
367		}
368		cpu_fork(td, p2, td2, flags);
369		return;
370	}
371
372	if (flags & RFMEM) {
373		p2->p_vmspace = p1->p_vmspace;
374		p1->p_vmspace->vm_refcnt++;
375	}
376
377	while (vm_page_count_severe()) {
378		VM_WAIT;
379	}
380
381	if ((flags & RFMEM) == 0) {
382		p2->p_vmspace = vmspace_fork(p1->p_vmspace);
383
384		pmap_pinit2(vmspace_pmap(p2->p_vmspace));
385
386		if (p1->p_vmspace->vm_shm)
387			shmfork(p1, p2);
388	}
389
390	/* XXXKSE this is unsatisfactory but should be adequate */
391	up = p2->p_uarea;
392
393	/*
394	 * p_stats currently points at fields in the user struct
395	 * but not at &u, instead at p_addr. Copy parts of
396	 * p_stats; zero the rest of p_stats (statistics).
397	 *
398	 * If procsig->ps_refcnt is 1 and p2->p_sigacts is NULL we dont' need
399	 * to share sigacts, so we use the up->u_sigacts.
400	 */
401	p2->p_stats = &up->u_stats;
402	if (p2->p_sigacts == NULL) {
403		if (p2->p_procsig->ps_refcnt != 1)
404			printf ("PID:%d NULL sigacts with refcnt not 1!\n",p2->p_pid);
405		p2->p_sigacts = &up->u_sigacts;
406		up->u_sigacts = *p1->p_sigacts;
407	}
408
409	bzero(&up->u_stats.pstat_startzero,
410	    (unsigned) ((caddr_t) &up->u_stats.pstat_endzero -
411		(caddr_t) &up->u_stats.pstat_startzero));
412	bcopy(&p1->p_stats->pstat_startcopy, &up->u_stats.pstat_startcopy,
413	    ((caddr_t) &up->u_stats.pstat_endcopy -
414		(caddr_t) &up->u_stats.pstat_startcopy));
415
416
417	/*
418	 * cpu_fork will copy and update the pcb, set up the kernel stack,
419	 * and make the child ready to run.
420	 */
421	cpu_fork(td, p2, td2, flags);
422}
423
424/*
425 * Called after process has been wait(2)'ed apon and is being reaped.
426 * The idea is to reclaim resources that we could not reclaim while
427 * the process was still executing.
428 */
429void
430vm_waitproc(p)
431	struct proc *p;
432{
433
434	GIANT_REQUIRED;
435	cpu_wait(p);
436	vmspace_exitfree(p);		/* and clean-out the vmspace */
437}
438
439/*
440 * Set default limits for VM system.
441 * Called for proc 0, and then inherited by all others.
442 *
443 * XXX should probably act directly on proc0.
444 */
445static void
446vm_init_limits(udata)
447	void *udata;
448{
449	struct proc *p = udata;
450	int rss_limit;
451
452	/*
453	 * Set up the initial limits on process VM. Set the maximum resident
454	 * set size to be half of (reasonably) available memory.  Since this
455	 * is a soft limit, it comes into effect only when the system is out
456	 * of memory - half of main memory helps to favor smaller processes,
457	 * and reduces thrashing of the object cache.
458	 */
459	p->p_rlimit[RLIMIT_STACK].rlim_cur = dflssiz;
460	p->p_rlimit[RLIMIT_STACK].rlim_max = maxssiz;
461	p->p_rlimit[RLIMIT_DATA].rlim_cur = dfldsiz;
462	p->p_rlimit[RLIMIT_DATA].rlim_max = maxdsiz;
463	/* limit the limit to no less than 2MB */
464	rss_limit = max(cnt.v_free_count, 512);
465	p->p_rlimit[RLIMIT_RSS].rlim_cur = ptoa(rss_limit);
466	p->p_rlimit[RLIMIT_RSS].rlim_max = RLIM_INFINITY;
467}
468
469void
470faultin(p)
471	struct proc *p;
472{
473
474	GIANT_REQUIRED;
475	PROC_LOCK_ASSERT(p, MA_OWNED);
476	mtx_assert(&sched_lock, MA_OWNED);
477#ifdef NO_SWAPPING
478	if ((p->p_sflag & PS_INMEM) == 0)
479		panic("faultin: proc swapped out with NO_SWAPPING!");
480#else
481	if ((p->p_sflag & PS_INMEM) == 0) {
482		struct thread *td;
483
484		++p->p_lock;
485		/*
486		 * If another process is swapping in this process,
487		 * just wait until it finishes.
488		 */
489		if (p->p_sflag & PS_SWAPPINGIN) {
490			mtx_unlock_spin(&sched_lock);
491			msleep(&p->p_sflag, &p->p_mtx, PVM, "faultin", 0);
492			mtx_lock_spin(&sched_lock);
493			--p->p_lock;
494			return;
495		}
496
497		p->p_sflag |= PS_SWAPPINGIN;
498		mtx_unlock_spin(&sched_lock);
499		PROC_UNLOCK(p);
500
501		vm_proc_swapin(p);
502		FOREACH_THREAD_IN_PROC (p, td)
503			pmap_swapin_thread(td);
504
505		PROC_LOCK(p);
506		mtx_lock_spin(&sched_lock);
507		p->p_sflag &= ~PS_SWAPPINGIN;
508		p->p_sflag |= PS_INMEM;
509		FOREACH_THREAD_IN_PROC (p, td)
510			if (td->td_state == TDS_SWAPPED)
511				setrunqueue(td);
512
513		wakeup(&p->p_sflag);
514
515		/* undo the effect of setting SLOCK above */
516		--p->p_lock;
517	}
518#endif
519}
520
521/*
522 * This swapin algorithm attempts to swap-in processes only if there
523 * is enough space for them.  Of course, if a process waits for a long
524 * time, it will be swapped in anyway.
525 *
526 *  XXXKSE - process with the thread with highest priority counts..
527 *
528 * Giant is still held at this point, to be released in tsleep.
529 */
530/* ARGSUSED*/
531static void
532scheduler(dummy)
533	void *dummy;
534{
535	struct proc *p;
536	struct thread *td;
537	int pri;
538	struct proc *pp;
539	int ppri;
540
541	mtx_assert(&Giant, MA_OWNED | MA_NOTRECURSED);
542	/* GIANT_REQUIRED */
543
544loop:
545	if (vm_page_count_min()) {
546		VM_WAIT;
547		goto loop;
548	}
549
550	pp = NULL;
551	ppri = INT_MIN;
552	sx_slock(&allproc_lock);
553	FOREACH_PROC_IN_SYSTEM(p) {
554		struct ksegrp *kg;
555		if (p->p_sflag & (PS_INMEM | PS_SWAPPING | PS_SWAPPINGIN)) {
556			continue;
557		}
558		mtx_lock_spin(&sched_lock);
559		FOREACH_THREAD_IN_PROC(p, td) {
560			/*
561			 * A runnable thread of a process swapped out is in
562			 * TDS_SWAPPED.
563			 */
564			if (td->td_state == TDS_SWAPPED) {
565				kg = td->td_ksegrp;
566				pri = p->p_swtime + kg->kg_slptime;
567				if ((p->p_sflag & PS_SWAPINREQ) == 0) {
568					pri -= kg->kg_nice * 8;
569				}
570
571				/*
572				 * if this ksegrp is higher priority
573				 * and there is enough space, then select
574				 * this process instead of the previous
575				 * selection.
576				 */
577				if (pri > ppri) {
578					pp = p;
579					ppri = pri;
580				}
581			}
582		}
583		mtx_unlock_spin(&sched_lock);
584	}
585	sx_sunlock(&allproc_lock);
586
587	/*
588	 * Nothing to do, back to sleep.
589	 */
590	if ((p = pp) == NULL) {
591		tsleep(&proc0, PVM, "sched", maxslp * hz / 2);
592		goto loop;
593	}
594	PROC_LOCK(p);
595	mtx_lock_spin(&sched_lock);
596
597	/*
598	 * Another process may be bringing or may have already
599	 * brought this process in while we traverse all threads.
600	 * Or, this process may even be being swapped out again.
601	 */
602	if (p->p_sflag & (PS_INMEM|PS_SWAPPING|PS_SWAPPINGIN)) {
603		mtx_unlock_spin(&sched_lock);
604		PROC_UNLOCK(p);
605		goto loop;
606	}
607
608	p->p_sflag &= ~PS_SWAPINREQ;
609
610	/*
611	 * We would like to bring someone in. (only if there is space).
612	 * [What checks the space? ]
613	 */
614	faultin(p);
615	PROC_UNLOCK(p);
616	p->p_swtime = 0;
617	mtx_unlock_spin(&sched_lock);
618	goto loop;
619}
620
621#ifndef NO_SWAPPING
622
623/*
624 * Swap_idle_threshold1 is the guaranteed swapped in time for a process
625 */
626static int swap_idle_threshold1 = 2;
627SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold1,
628	CTLFLAG_RW, &swap_idle_threshold1, 0, "");
629
630/*
631 * Swap_idle_threshold2 is the time that a process can be idle before
632 * it will be swapped out, if idle swapping is enabled.
633 */
634static int swap_idle_threshold2 = 10;
635SYSCTL_INT(_vm, OID_AUTO, swap_idle_threshold2,
636	CTLFLAG_RW, &swap_idle_threshold2, 0, "");
637
638/*
639 * Swapout is driven by the pageout daemon.  Very simple, we find eligible
640 * procs and unwire their u-areas.  We try to always "swap" at least one
641 * process in case we need the room for a swapin.
642 * If any procs have been sleeping/stopped for at least maxslp seconds,
643 * they are swapped.  Else, we swap the longest-sleeping or stopped process,
644 * if any, otherwise the longest-resident process.
645 */
646void
647swapout_procs(action)
648int action;
649{
650	struct proc *p;
651	struct thread *td;
652	struct ksegrp *kg;
653	struct proc *outp, *outp2;
654	int outpri, outpri2;
655	int didswap = 0;
656
657	GIANT_REQUIRED;
658
659	outp = outp2 = NULL;
660	outpri = outpri2 = INT_MIN;
661retry:
662	sx_slock(&allproc_lock);
663	FOREACH_PROC_IN_SYSTEM(p) {
664		struct vmspace *vm;
665		int minslptime = 100000;
666
667		/*
668		 * Do not swapout a process that
669		 * is waiting for VM data
670		 * structures there is a possible
671		 * deadlock.  Test this first as
672		 * this may block.
673		 *
674		 * Lock the map until swapout
675		 * finishes, or a thread of this
676		 * process may attempt to alter
677		 * the map.
678		 *
679		 * Watch out for a process in
680		 * creation.  It may have no
681		 * address space yet.
682		 *
683		 * An aio daemon switches its
684		 * address space while running.
685		 * Perform a quick check whether
686		 * a process has P_SYSTEM.
687		 */
688		PROC_LOCK(p);
689		if ((p->p_flag & P_SYSTEM) != 0) {
690			PROC_UNLOCK(p);
691			continue;
692		}
693		mtx_lock_spin(&sched_lock);
694		if (p->p_state == PRS_NEW) {
695			mtx_unlock_spin(&sched_lock);
696			PROC_UNLOCK(p);
697			continue;
698		}
699		vm = p->p_vmspace;
700		KASSERT(vm != NULL,
701			("swapout_procs: a process has no address space"));
702		++vm->vm_refcnt;
703		mtx_unlock_spin(&sched_lock);
704		PROC_UNLOCK(p);
705		if (!vm_map_trylock(&vm->vm_map))
706			goto nextproc1;
707
708		PROC_LOCK(p);
709		if (p->p_lock != 0 ||
710		    (p->p_flag & (P_STOPPED_SINGLE|P_TRACED|P_SYSTEM|P_WEXIT)
711		    ) != 0) {
712			goto nextproc2;
713		}
714		/*
715		 * only aiod changes vmspace, however it will be
716		 * skipped because of the if statement above checking
717		 * for P_SYSTEM
718		 */
719		mtx_lock_spin(&sched_lock);
720		if ((p->p_sflag & (PS_INMEM|PS_SWAPPING|PS_SWAPPINGIN)) != PS_INMEM)
721			goto nextproc;
722
723		switch (p->p_state) {
724		default:
725			/* Don't swap out processes in any sort
726			 * of 'special' state. */
727			goto nextproc;
728
729		case PRS_NORMAL:
730			/*
731			 * do not swapout a realtime process
732			 * Check all the thread groups..
733			 */
734			FOREACH_KSEGRP_IN_PROC(p, kg) {
735				if (PRI_IS_REALTIME(kg->kg_pri_class))
736					goto nextproc;
737
738				/*
739				 * Guarantee swap_idle_threshold1
740				 * time in memory.
741				 */
742				if (kg->kg_slptime < swap_idle_threshold1)
743					goto nextproc;
744
745				/*
746				 * Do not swapout a process if it is
747				 * waiting on a critical event of some
748				 * kind or there is a thread whose
749				 * pageable memory may be accessed.
750				 *
751				 * This could be refined to support
752				 * swapping out a thread.
753				 */
754				FOREACH_THREAD_IN_GROUP(kg, td) {
755					if ((td->td_priority) < PSOCK ||
756					    !thread_safetoswapout(td))
757						goto nextproc;
758				}
759				/*
760				 * If the system is under memory stress,
761				 * or if we are swapping
762				 * idle processes >= swap_idle_threshold2,
763				 * then swap the process out.
764				 */
765				if (((action & VM_SWAP_NORMAL) == 0) &&
766				    (((action & VM_SWAP_IDLE) == 0) ||
767				    (kg->kg_slptime < swap_idle_threshold2)))
768					goto nextproc;
769
770				if (minslptime > kg->kg_slptime)
771					minslptime = kg->kg_slptime;
772			}
773
774			/*
775			 * If the process has been asleep for awhile and had
776			 * most of its pages taken away already, swap it out.
777			 */
778			if ((action & VM_SWAP_NORMAL) ||
779				((action & VM_SWAP_IDLE) &&
780				 (minslptime > swap_idle_threshold2))) {
781				swapout(p);
782				didswap++;
783
784				/*
785				 * swapout() unlocks a proc lock. This is
786				 * ugly, but avoids superfluous lock.
787				 */
788				mtx_unlock_spin(&sched_lock);
789				vm_map_unlock(&vm->vm_map);
790				vmspace_free(vm);
791				sx_sunlock(&allproc_lock);
792				goto retry;
793			}
794		}
795nextproc:
796		mtx_unlock_spin(&sched_lock);
797nextproc2:
798		PROC_UNLOCK(p);
799		vm_map_unlock(&vm->vm_map);
800nextproc1:
801		vmspace_free(vm);
802		continue;
803	}
804	sx_sunlock(&allproc_lock);
805	/*
806	 * If we swapped something out, and another process needed memory,
807	 * then wakeup the sched process.
808	 */
809	if (didswap)
810		wakeup(&proc0);
811}
812
813static void
814swapout(p)
815	struct proc *p;
816{
817	struct thread *td;
818
819	PROC_LOCK_ASSERT(p, MA_OWNED);
820	mtx_assert(&sched_lock, MA_OWNED | MA_NOTRECURSED);
821#if defined(SWAP_DEBUG)
822	printf("swapping out %d\n", p->p_pid);
823#endif
824
825	/*
826	 * The states of this process and its threads may have changed
827	 * by now.  Assuming that there is only one pageout daemon thread,
828	 * this process should still be in memory.
829	 */
830	KASSERT((p->p_sflag & (PS_INMEM|PS_SWAPPING|PS_SWAPPINGIN)) == PS_INMEM,
831		("swapout: lost a swapout race?"));
832
833#if defined(INVARIANTS)
834	/*
835	 * Make sure that all threads are safe to be swapped out.
836	 *
837	 * Alternatively, we could swap out only safe threads.
838	 */
839	FOREACH_THREAD_IN_PROC(p, td) {
840		KASSERT(thread_safetoswapout(td),
841			("swapout: there is a thread not safe for swapout"));
842	}
843#endif /* INVARIANTS */
844
845	++p->p_stats->p_ru.ru_nswap;
846	/*
847	 * remember the process resident count
848	 */
849	p->p_vmspace->vm_swrss = vmspace_resident_count(p->p_vmspace);
850
851	PROC_UNLOCK(p);
852	FOREACH_THREAD_IN_PROC (p, td)
853		if (td->td_state == TDS_RUNQ) {	/* XXXKSE */
854			remrunqueue(td);	/* XXXKSE */
855			td->td_state = TDS_SWAPPED;
856		}
857	p->p_sflag &= ~PS_INMEM;
858	p->p_sflag |= PS_SWAPPING;
859	mtx_unlock_spin(&sched_lock);
860
861	vm_proc_swapout(p);
862	FOREACH_THREAD_IN_PROC(p, td)
863		pmap_swapout_thread(td);
864	mtx_lock_spin(&sched_lock);
865	p->p_sflag &= ~PS_SWAPPING;
866	p->p_swtime = 0;
867}
868#endif /* !NO_SWAPPING */
869