ffs_alloc.c revision 37555
1/*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
34 * $Id: ffs_alloc.c,v 1.49 1998/03/30 09:55:50 phk Exp $
35 */
36
37#include "opt_quota.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/buf.h>
42#include <sys/proc.h>
43#include <sys/vnode.h>
44#include <sys/mount.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/syslog.h>
48
49#include <ufs/ufs/quota.h>
50#include <ufs/ufs/inode.h>
51#include <ufs/ufs/ufsmount.h>
52
53#include <ufs/ffs/fs.h>
54#include <ufs/ffs/ffs_extern.h>
55
56typedef ufs_daddr_t allocfcn_t __P((struct inode *ip, int cg, ufs_daddr_t bpref,
57				  int size));
58
59static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
60static ufs_daddr_t
61	      ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
62#ifdef DIAGNOSTIC
63static int	ffs_checkblk __P((struct inode *, ufs_daddr_t, long));
64#endif
65static void	ffs_clusteracct	__P((struct fs *, struct cg *, ufs_daddr_t,
66				     int));
67#ifdef notyet
68static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t,
69	    int));
70#endif
71static ino_t	ffs_dirpref __P((struct fs *));
72static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
73static void	ffs_fserr __P((struct fs *, u_int, char *));
74static u_long	ffs_hashalloc
75		    __P((struct inode *, int, long, int, allocfcn_t *));
76static ino_t	ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
77static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t,
78	    int));
79
80/*
81 * Allocate a block in the file system.
82 *
83 * The size of the requested block is given, which must be some
84 * multiple of fs_fsize and <= fs_bsize.
85 * A preference may be optionally specified. If a preference is given
86 * the following hierarchy is used to allocate a block:
87 *   1) allocate the requested block.
88 *   2) allocate a rotationally optimal block in the same cylinder.
89 *   3) allocate a block in the same cylinder group.
90 *   4) quadradically rehash into other cylinder groups, until an
91 *      available block is located.
92 * If no block preference is given the following heirarchy is used
93 * to allocate a block:
94 *   1) allocate a block in the cylinder group that contains the
95 *      inode for the file.
96 *   2) quadradically rehash into other cylinder groups, until an
97 *      available block is located.
98 */
99int
100ffs_alloc(ip, lbn, bpref, size, cred, bnp)
101	register struct inode *ip;
102	ufs_daddr_t lbn, bpref;
103	int size;
104	struct ucred *cred;
105	ufs_daddr_t *bnp;
106{
107	register struct fs *fs;
108	ufs_daddr_t bno;
109	int cg;
110#ifdef QUOTA
111	int error;
112#endif
113
114	*bnp = 0;
115	fs = ip->i_fs;
116#ifdef DIAGNOSTIC
117	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
118		printf("dev = 0x%lx, bsize = %ld, size = %d, fs = %s\n",
119		    (u_long)ip->i_dev, (long)fs->fs_bsize, size, fs->fs_fsmnt);
120		panic("ffs_alloc: bad size");
121	}
122	if (cred == NOCRED)
123		panic("ffs_alloc: missing credential");
124#endif /* DIAGNOSTIC */
125	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
126		goto nospace;
127	if (cred->cr_uid != 0 &&
128	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
129		goto nospace;
130#ifdef QUOTA
131	error = chkdq(ip, (long)btodb(size), cred, 0);
132	if (error)
133		return (error);
134#endif
135	if (bpref >= fs->fs_size)
136		bpref = 0;
137	if (bpref == 0)
138		cg = ino_to_cg(fs, ip->i_number);
139	else
140		cg = dtog(fs, bpref);
141	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
142					 ffs_alloccg);
143	if (bno > 0) {
144		ip->i_blocks += btodb(size);
145		ip->i_flag |= IN_CHANGE | IN_UPDATE;
146		*bnp = bno;
147		return (0);
148	}
149#ifdef QUOTA
150	/*
151	 * Restore user's disk quota because allocation failed.
152	 */
153	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
154#endif
155nospace:
156	ffs_fserr(fs, cred->cr_uid, "file system full");
157	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
158	return (ENOSPC);
159}
160
161/*
162 * Reallocate a fragment to a bigger size
163 *
164 * The number and size of the old block is given, and a preference
165 * and new size is also specified. The allocator attempts to extend
166 * the original block. Failing that, the regular block allocator is
167 * invoked to get an appropriate block.
168 */
169int
170ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
171	register struct inode *ip;
172	ufs_daddr_t lbprev;
173	ufs_daddr_t bpref;
174	int osize, nsize;
175	struct ucred *cred;
176	struct buf **bpp;
177{
178	register struct fs *fs;
179	struct buf *bp;
180	int cg, request, error;
181	ufs_daddr_t bprev, bno;
182
183	*bpp = 0;
184	fs = ip->i_fs;
185#ifdef DIAGNOSTIC
186	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
187	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
188		printf(
189		"dev = 0x%lx, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
190		    (u_long)ip->i_dev, (long)fs->fs_bsize, osize,
191		    nsize, fs->fs_fsmnt);
192		panic("ffs_realloccg: bad size");
193	}
194	if (cred == NOCRED)
195		panic("ffs_realloccg: missing credential");
196#endif /* DIAGNOSTIC */
197	if (cred->cr_uid != 0 &&
198	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
199		goto nospace;
200	if ((bprev = ip->i_db[lbprev]) == 0) {
201		printf("dev = 0x%lx, bsize = %ld, bprev = %ld, fs = %s\n",
202		    (u_long)ip->i_dev, (long)fs->fs_bsize, (long)bprev,
203		    fs->fs_fsmnt);
204		panic("ffs_realloccg: bad bprev");
205	}
206	/*
207	 * Allocate the extra space in the buffer.
208	 */
209	error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp);
210	if (error) {
211		brelse(bp);
212		return (error);
213	}
214
215	if( bp->b_blkno == bp->b_lblkno) {
216		if( lbprev >= NDADDR)
217			panic("ffs_realloccg: lbprev out of range");
218		bp->b_blkno = fsbtodb(fs, bprev);
219	}
220
221#ifdef QUOTA
222	error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
223	if (error) {
224		brelse(bp);
225		return (error);
226	}
227#endif
228	/*
229	 * Check for extension in the existing location.
230	 */
231	cg = dtog(fs, bprev);
232	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
233	if (bno) {
234		if (bp->b_blkno != fsbtodb(fs, bno))
235			panic("ffs_realloccg: bad blockno");
236		ip->i_blocks += btodb(nsize - osize);
237		ip->i_flag |= IN_CHANGE | IN_UPDATE;
238		allocbuf(bp, nsize);
239		bp->b_flags |= B_DONE;
240		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
241		*bpp = bp;
242		return (0);
243	}
244	/*
245	 * Allocate a new disk location.
246	 */
247	if (bpref >= fs->fs_size)
248		bpref = 0;
249	switch ((int)fs->fs_optim) {
250	case FS_OPTSPACE:
251		/*
252		 * Allocate an exact sized fragment. Although this makes
253		 * best use of space, we will waste time relocating it if
254		 * the file continues to grow. If the fragmentation is
255		 * less than half of the minimum free reserve, we choose
256		 * to begin optimizing for time.
257		 */
258		request = nsize;
259		if (fs->fs_minfree <= 5 ||
260		    fs->fs_cstotal.cs_nffree >
261		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
262			break;
263		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
264			fs->fs_fsmnt);
265		fs->fs_optim = FS_OPTTIME;
266		break;
267	case FS_OPTTIME:
268		/*
269		 * At this point we have discovered a file that is trying to
270		 * grow a small fragment to a larger fragment. To save time,
271		 * we allocate a full sized block, then free the unused portion.
272		 * If the file continues to grow, the `ffs_fragextend' call
273		 * above will be able to grow it in place without further
274		 * copying. If aberrant programs cause disk fragmentation to
275		 * grow within 2% of the free reserve, we choose to begin
276		 * optimizing for space.
277		 */
278		request = fs->fs_bsize;
279		if (fs->fs_cstotal.cs_nffree <
280		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
281			break;
282		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
283			fs->fs_fsmnt);
284		fs->fs_optim = FS_OPTSPACE;
285		break;
286	default:
287		printf("dev = 0x%lx, optim = %ld, fs = %s\n",
288		    (u_long)ip->i_dev, (long)fs->fs_optim, fs->fs_fsmnt);
289		panic("ffs_realloccg: bad optim");
290		/* NOTREACHED */
291	}
292	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
293					 ffs_alloccg);
294	if (bno > 0) {
295		bp->b_blkno = fsbtodb(fs, bno);
296		if (!DOINGSOFTDEP(ITOV(ip)))
297			ffs_blkfree(ip, bprev, (long)osize);
298		if (nsize < request)
299			ffs_blkfree(ip, bno + numfrags(fs, nsize),
300			    (long)(request - nsize));
301		ip->i_blocks += btodb(nsize - osize);
302		ip->i_flag |= IN_CHANGE | IN_UPDATE;
303		allocbuf(bp, nsize);
304		bp->b_flags |= B_DONE;
305		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
306		*bpp = bp;
307		return (0);
308	}
309#ifdef QUOTA
310	/*
311	 * Restore user's disk quota because allocation failed.
312	 */
313	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
314#endif
315	brelse(bp);
316nospace:
317	/*
318	 * no space available
319	 */
320	ffs_fserr(fs, cred->cr_uid, "file system full");
321	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
322	return (ENOSPC);
323}
324
325#ifdef notyet
326/*
327 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
328 *
329 * The vnode and an array of buffer pointers for a range of sequential
330 * logical blocks to be made contiguous is given. The allocator attempts
331 * to find a range of sequential blocks starting as close as possible to
332 * an fs_rotdelay offset from the end of the allocation for the logical
333 * block immediately preceeding the current range. If successful, the
334 * physical block numbers in the buffer pointers and in the inode are
335 * changed to reflect the new allocation. If unsuccessful, the allocation
336 * is left unchanged. The success in doing the reallocation is returned.
337 * Note that the error return is not reflected back to the user. Rather
338 * the previous block allocation will be used.
339 */
340static int doasyncfree = 1;
341SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
342
343static int doreallocblks = 1;
344SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
345
346static int prtrealloc = 0;
347#endif
348
349int
350ffs_reallocblks(ap)
351	struct vop_reallocblks_args /* {
352		struct vnode *a_vp;
353		struct cluster_save *a_buflist;
354	} */ *ap;
355{
356#if !defined (not_yes)
357	return (ENOSPC);
358#else
359	struct fs *fs;
360	struct inode *ip;
361	struct vnode *vp;
362	struct buf *sbp, *ebp;
363	ufs_daddr_t *bap, *sbap, *ebap = 0;
364	struct cluster_save *buflist;
365	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
366	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
367	int i, len, start_lvl, end_lvl, pref, ssize;
368	struct timeval tv;
369
370	if (doreallocblks == 0)
371		return (ENOSPC);
372	vp = ap->a_vp;
373	ip = VTOI(vp);
374	fs = ip->i_fs;
375	if (fs->fs_contigsumsize <= 0)
376		return (ENOSPC);
377	buflist = ap->a_buflist;
378	len = buflist->bs_nchildren;
379	start_lbn = buflist->bs_children[0]->b_lblkno;
380	end_lbn = start_lbn + len - 1;
381#ifdef DIAGNOSTIC
382	for (i = 0; i < len; i++)
383		if (!ffs_checkblk(ip,
384		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
385			panic("ffs_reallocblks: unallocated block 1");
386	for (i = 1; i < len; i++)
387		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
388			panic("ffs_reallocblks: non-logical cluster");
389	blkno = buflist->bs_children[0]->b_blkno;
390	ssize = fsbtodb(fs, fs->fs_frag);
391	for (i = 1; i < len - 1; i++)
392		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
393			panic("ffs_reallocblks: non-physical cluster %d", i);
394#endif
395	/*
396	 * If the latest allocation is in a new cylinder group, assume that
397	 * the filesystem has decided to move and do not force it back to
398	 * the previous cylinder group.
399	 */
400	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
401	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
402		return (ENOSPC);
403	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
404	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
405		return (ENOSPC);
406	/*
407	 * Get the starting offset and block map for the first block.
408	 */
409	if (start_lvl == 0) {
410		sbap = &ip->i_db[0];
411		soff = start_lbn;
412	} else {
413		idp = &start_ap[start_lvl - 1];
414		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
415			brelse(sbp);
416			return (ENOSPC);
417		}
418		sbap = (ufs_daddr_t *)sbp->b_data;
419		soff = idp->in_off;
420	}
421	/*
422	 * Find the preferred location for the cluster.
423	 */
424	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
425	/*
426	 * If the block range spans two block maps, get the second map.
427	 */
428	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
429		ssize = len;
430	} else {
431#ifdef DIAGNOSTIC
432		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
433			panic("ffs_reallocblk: start == end");
434#endif
435		ssize = len - (idp->in_off + 1);
436		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
437			goto fail;
438		ebap = (ufs_daddr_t *)ebp->b_data;
439	}
440	/*
441	 * Search the block map looking for an allocation of the desired size.
442	 */
443	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
444	    len, ffs_clusteralloc)) == 0)
445		goto fail;
446	/*
447	 * We have found a new contiguous block.
448	 *
449	 * First we have to replace the old block pointers with the new
450	 * block pointers in the inode and indirect blocks associated
451	 * with the file.
452	 */
453#ifdef DEBUG
454	if (prtrealloc)
455		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
456		    start_lbn, end_lbn);
457#endif
458	blkno = newblk;
459	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
460		if (i == ssize) {
461			bap = ebap;
462			soff = -i;
463		}
464#ifdef DIAGNOSTIC
465		if (!ffs_checkblk(ip,
466		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
467			panic("ffs_reallocblks: unallocated block 2");
468		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
469			panic("ffs_reallocblks: alloc mismatch");
470#endif
471#ifdef DEBUG
472		if (prtrealloc)
473			printf(" %d,", *bap);
474#endif
475		if (DOINGSOFTDEP(vp)) {
476			if (sbap == &ip->i_db[0] && i < ssize)
477				softdep_setup_allocdirect(ip, start_lbn + i,
478				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
479				    buflist->bs_children[i]);
480			else
481				softdep_setup_allocindir_page(ip, start_lbn + i,
482				    i < ssize ? sbp : ebp, soff + i, blkno,
483				    *bap, buflist->bs_children[i]);
484		}
485		*bap++ = blkno;
486	}
487	/*
488	 * Next we must write out the modified inode and indirect blocks.
489	 * For strict correctness, the writes should be synchronous since
490	 * the old block values may have been written to disk. In practise
491	 * they are almost never written, but if we are concerned about
492	 * strict correctness, the `doasyncfree' flag should be set to zero.
493	 *
494	 * The test on `doasyncfree' should be changed to test a flag
495	 * that shows whether the associated buffers and inodes have
496	 * been written. The flag should be set when the cluster is
497	 * started and cleared whenever the buffer or inode is flushed.
498	 * We can then check below to see if it is set, and do the
499	 * synchronous write only when it has been cleared.
500	 */
501	if (sbap != &ip->i_db[0]) {
502		if (doasyncfree)
503			bdwrite(sbp);
504		else
505			bwrite(sbp);
506	} else {
507		ip->i_flag |= IN_CHANGE | IN_UPDATE;
508		if (!doasyncfree) {
509			gettime(&tv);
510			UFS_UPDATE(vp, &tv, &tv, 1);
511		}
512	}
513	if (ssize < len)
514		if (doasyncfree)
515			bdwrite(ebp);
516		else
517			bwrite(ebp);
518	/*
519	 * Last, free the old blocks and assign the new blocks to the buffers.
520	 */
521#ifdef DEBUG
522	if (prtrealloc)
523		printf("\n\tnew:");
524#endif
525	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
526		if (!DOINGSOFTDEP(vp))
527			ffs_blkfree(ip,
528			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
529			    fs->fs_bsize);
530		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
531#ifdef DEBUG
532		if (!ffs_checkblk(ip,
533		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
534			panic("ffs_reallocblks: unallocated block 3");
535		if (prtrealloc)
536			printf(" %d,", blkno);
537#endif
538	}
539#ifdef DEBUG
540	if (prtrealloc) {
541		prtrealloc--;
542		printf("\n");
543	}
544#endif
545	return (0);
546
547fail:
548	if (ssize < len)
549		brelse(ebp);
550	if (sbap != &ip->i_db[0])
551		brelse(sbp);
552	return (ENOSPC);
553#endif
554}
555
556/*
557 * Allocate an inode in the file system.
558 *
559 * If allocating a directory, use ffs_dirpref to select the inode.
560 * If allocating in a directory, the following hierarchy is followed:
561 *   1) allocate the preferred inode.
562 *   2) allocate an inode in the same cylinder group.
563 *   3) quadradically rehash into other cylinder groups, until an
564 *      available inode is located.
565 * If no inode preference is given the following heirarchy is used
566 * to allocate an inode:
567 *   1) allocate an inode in cylinder group 0.
568 *   2) quadradically rehash into other cylinder groups, until an
569 *      available inode is located.
570 */
571int
572ffs_valloc(pvp, mode, cred, vpp)
573	struct vnode *pvp;
574	int mode;
575	struct ucred *cred;
576	struct vnode **vpp;
577{
578	register struct inode *pip;
579	register struct fs *fs;
580	register struct inode *ip;
581	ino_t ino, ipref;
582	int cg, error;
583
584	*vpp = NULL;
585	pip = VTOI(pvp);
586	fs = pip->i_fs;
587	if (fs->fs_cstotal.cs_nifree == 0)
588		goto noinodes;
589
590	if ((mode & IFMT) == IFDIR)
591		ipref = ffs_dirpref(fs);
592	else
593		ipref = pip->i_number;
594	if (ipref >= fs->fs_ncg * fs->fs_ipg)
595		ipref = 0;
596	cg = ino_to_cg(fs, ipref);
597	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
598					(allocfcn_t *)ffs_nodealloccg);
599	if (ino == 0)
600		goto noinodes;
601	error = VFS_VGET(pvp->v_mount, ino, vpp);
602	if (error) {
603		UFS_VFREE(pvp, ino, mode);
604		return (error);
605	}
606	ip = VTOI(*vpp);
607	if (ip->i_mode) {
608		printf("mode = 0%o, inum = %lu, fs = %s\n",
609		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
610		panic("ffs_valloc: dup alloc");
611	}
612	if (ip->i_blocks) {				/* XXX */
613		printf("free inode %s/%lu had %ld blocks\n",
614		    fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
615		ip->i_blocks = 0;
616	}
617	ip->i_flags = 0;
618	/*
619	 * Set up a new generation number for this inode.
620	 */
621	if (ip->i_gen == 0 || ++ip->i_gen == 0)
622		ip->i_gen = random() / 2 + 1;
623	return (0);
624noinodes:
625	ffs_fserr(fs, cred->cr_uid, "out of inodes");
626	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
627	return (ENOSPC);
628}
629
630/*
631 * Find a cylinder to place a directory.
632 *
633 * The policy implemented by this algorithm is to select from
634 * among those cylinder groups with above the average number of
635 * free inodes, the one with the smallest number of directories.
636 */
637static ino_t
638ffs_dirpref(fs)
639	register struct fs *fs;
640{
641	int cg, minndir, mincg, avgifree;
642
643	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
644	minndir = fs->fs_ipg;
645	mincg = 0;
646	for (cg = 0; cg < fs->fs_ncg; cg++)
647		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
648		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
649			mincg = cg;
650			minndir = fs->fs_cs(fs, cg).cs_ndir;
651		}
652	return ((ino_t)(fs->fs_ipg * mincg));
653}
654
655/*
656 * Select the desired position for the next block in a file.  The file is
657 * logically divided into sections. The first section is composed of the
658 * direct blocks. Each additional section contains fs_maxbpg blocks.
659 *
660 * If no blocks have been allocated in the first section, the policy is to
661 * request a block in the same cylinder group as the inode that describes
662 * the file. If no blocks have been allocated in any other section, the
663 * policy is to place the section in a cylinder group with a greater than
664 * average number of free blocks.  An appropriate cylinder group is found
665 * by using a rotor that sweeps the cylinder groups. When a new group of
666 * blocks is needed, the sweep begins in the cylinder group following the
667 * cylinder group from which the previous allocation was made. The sweep
668 * continues until a cylinder group with greater than the average number
669 * of free blocks is found. If the allocation is for the first block in an
670 * indirect block, the information on the previous allocation is unavailable;
671 * here a best guess is made based upon the logical block number being
672 * allocated.
673 *
674 * If a section is already partially allocated, the policy is to
675 * contiguously allocate fs_maxcontig blocks.  The end of one of these
676 * contiguous blocks and the beginning of the next is physically separated
677 * so that the disk head will be in transit between them for at least
678 * fs_rotdelay milliseconds.  This is to allow time for the processor to
679 * schedule another I/O transfer.
680 */
681ufs_daddr_t
682ffs_blkpref(ip, lbn, indx, bap)
683	struct inode *ip;
684	ufs_daddr_t lbn;
685	int indx;
686	ufs_daddr_t *bap;
687{
688	register struct fs *fs;
689	register int cg;
690	int avgbfree, startcg;
691	ufs_daddr_t nextblk;
692
693	fs = ip->i_fs;
694	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
695		if (lbn < NDADDR) {
696			cg = ino_to_cg(fs, ip->i_number);
697			return (fs->fs_fpg * cg + fs->fs_frag);
698		}
699		/*
700		 * Find a cylinder with greater than average number of
701		 * unused data blocks.
702		 */
703		if (indx == 0 || bap[indx - 1] == 0)
704			startcg =
705			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
706		else
707			startcg = dtog(fs, bap[indx - 1]) + 1;
708		startcg %= fs->fs_ncg;
709		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
710		for (cg = startcg; cg < fs->fs_ncg; cg++)
711			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
712				fs->fs_cgrotor = cg;
713				return (fs->fs_fpg * cg + fs->fs_frag);
714			}
715		for (cg = 0; cg <= startcg; cg++)
716			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
717				fs->fs_cgrotor = cg;
718				return (fs->fs_fpg * cg + fs->fs_frag);
719			}
720		return (0);
721	}
722	/*
723	 * One or more previous blocks have been laid out. If less
724	 * than fs_maxcontig previous blocks are contiguous, the
725	 * next block is requested contiguously, otherwise it is
726	 * requested rotationally delayed by fs_rotdelay milliseconds.
727	 */
728	nextblk = bap[indx - 1] + fs->fs_frag;
729	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
730	    bap[indx - fs->fs_maxcontig] +
731	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
732		return (nextblk);
733	/*
734	 * Here we convert ms of delay to frags as:
735	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
736	 *	((sect/frag) * (ms/sec))
737	 * then round up to the next block.
738	 */
739	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
740	    (NSPF(fs) * 1000), fs->fs_frag);
741	return (nextblk);
742}
743
744/*
745 * Implement the cylinder overflow algorithm.
746 *
747 * The policy implemented by this algorithm is:
748 *   1) allocate the block in its requested cylinder group.
749 *   2) quadradically rehash on the cylinder group number.
750 *   3) brute force search for a free block.
751 */
752/*VARARGS5*/
753static u_long
754ffs_hashalloc(ip, cg, pref, size, allocator)
755	struct inode *ip;
756	int cg;
757	long pref;
758	int size;	/* size for data blocks, mode for inodes */
759	allocfcn_t *allocator;
760{
761	register struct fs *fs;
762	long result;	/* XXX why not same type as we return? */
763	int i, icg = cg;
764
765	fs = ip->i_fs;
766	/*
767	 * 1: preferred cylinder group
768	 */
769	result = (*allocator)(ip, cg, pref, size);
770	if (result)
771		return (result);
772	/*
773	 * 2: quadratic rehash
774	 */
775	for (i = 1; i < fs->fs_ncg; i *= 2) {
776		cg += i;
777		if (cg >= fs->fs_ncg)
778			cg -= fs->fs_ncg;
779		result = (*allocator)(ip, cg, 0, size);
780		if (result)
781			return (result);
782	}
783	/*
784	 * 3: brute force search
785	 * Note that we start at i == 2, since 0 was checked initially,
786	 * and 1 is always checked in the quadratic rehash.
787	 */
788	cg = (icg + 2) % fs->fs_ncg;
789	for (i = 2; i < fs->fs_ncg; i++) {
790		result = (*allocator)(ip, cg, 0, size);
791		if (result)
792			return (result);
793		cg++;
794		if (cg == fs->fs_ncg)
795			cg = 0;
796	}
797	return (0);
798}
799
800/*
801 * Determine whether a fragment can be extended.
802 *
803 * Check to see if the necessary fragments are available, and
804 * if they are, allocate them.
805 */
806static ufs_daddr_t
807ffs_fragextend(ip, cg, bprev, osize, nsize)
808	struct inode *ip;
809	int cg;
810	long bprev;
811	int osize, nsize;
812{
813	register struct fs *fs;
814	register struct cg *cgp;
815	struct buf *bp;
816	long bno;
817	int frags, bbase;
818	int i, error;
819
820	fs = ip->i_fs;
821	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
822		return (0);
823	frags = numfrags(fs, nsize);
824	bbase = fragnum(fs, bprev);
825	if (bbase > fragnum(fs, (bprev + frags - 1))) {
826		/* cannot extend across a block boundary */
827		return (0);
828	}
829	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
830		(int)fs->fs_cgsize, NOCRED, &bp);
831	if (error) {
832		brelse(bp);
833		return (0);
834	}
835	cgp = (struct cg *)bp->b_data;
836	if (!cg_chkmagic(cgp)) {
837		brelse(bp);
838		return (0);
839	}
840	cgp->cg_time = time_second;
841	bno = dtogd(fs, bprev);
842	for (i = numfrags(fs, osize); i < frags; i++)
843		if (isclr(cg_blksfree(cgp), bno + i)) {
844			brelse(bp);
845			return (0);
846		}
847	/*
848	 * the current fragment can be extended
849	 * deduct the count on fragment being extended into
850	 * increase the count on the remaining fragment (if any)
851	 * allocate the extended piece
852	 */
853	for (i = frags; i < fs->fs_frag - bbase; i++)
854		if (isclr(cg_blksfree(cgp), bno + i))
855			break;
856	cgp->cg_frsum[i - numfrags(fs, osize)]--;
857	if (i != frags)
858		cgp->cg_frsum[i - frags]++;
859	for (i = numfrags(fs, osize); i < frags; i++) {
860		clrbit(cg_blksfree(cgp), bno + i);
861		cgp->cg_cs.cs_nffree--;
862		fs->fs_cstotal.cs_nffree--;
863		fs->fs_cs(fs, cg).cs_nffree--;
864	}
865	fs->fs_fmod = 1;
866	if (DOINGSOFTDEP(ITOV(ip)))
867		softdep_setup_blkmapdep(bp, fs, bprev);
868	bdwrite(bp);
869	return (bprev);
870}
871
872/*
873 * Determine whether a block can be allocated.
874 *
875 * Check to see if a block of the appropriate size is available,
876 * and if it is, allocate it.
877 */
878static ufs_daddr_t
879ffs_alloccg(ip, cg, bpref, size)
880	struct inode *ip;
881	int cg;
882	ufs_daddr_t bpref;
883	int size;
884{
885	register struct fs *fs;
886	register struct cg *cgp;
887	struct buf *bp;
888	register int i;
889	ufs_daddr_t bno, blkno;
890	int allocsiz, error, frags;
891
892	fs = ip->i_fs;
893	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
894		return (0);
895	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
896		(int)fs->fs_cgsize, NOCRED, &bp);
897	if (error) {
898		brelse(bp);
899		return (0);
900	}
901	cgp = (struct cg *)bp->b_data;
902	if (!cg_chkmagic(cgp) ||
903	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
904		brelse(bp);
905		return (0);
906	}
907	cgp->cg_time = time_second;
908	if (size == fs->fs_bsize) {
909		bno = ffs_alloccgblk(ip, bp, bpref);
910		bdwrite(bp);
911		return (bno);
912	}
913	/*
914	 * check to see if any fragments are already available
915	 * allocsiz is the size which will be allocated, hacking
916	 * it down to a smaller size if necessary
917	 */
918	frags = numfrags(fs, size);
919	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
920		if (cgp->cg_frsum[allocsiz] != 0)
921			break;
922	if (allocsiz == fs->fs_frag) {
923		/*
924		 * no fragments were available, so a block will be
925		 * allocated, and hacked up
926		 */
927		if (cgp->cg_cs.cs_nbfree == 0) {
928			brelse(bp);
929			return (0);
930		}
931		bno = ffs_alloccgblk(ip, bp, bpref);
932		bpref = dtogd(fs, bno);
933		for (i = frags; i < fs->fs_frag; i++)
934			setbit(cg_blksfree(cgp), bpref + i);
935		i = fs->fs_frag - frags;
936		cgp->cg_cs.cs_nffree += i;
937		fs->fs_cstotal.cs_nffree += i;
938		fs->fs_cs(fs, cg).cs_nffree += i;
939		fs->fs_fmod = 1;
940		cgp->cg_frsum[i]++;
941		bdwrite(bp);
942		return (bno);
943	}
944	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
945	if (bno < 0) {
946		brelse(bp);
947		return (0);
948	}
949	for (i = 0; i < frags; i++)
950		clrbit(cg_blksfree(cgp), bno + i);
951	cgp->cg_cs.cs_nffree -= frags;
952	fs->fs_cstotal.cs_nffree -= frags;
953	fs->fs_cs(fs, cg).cs_nffree -= frags;
954	fs->fs_fmod = 1;
955	cgp->cg_frsum[allocsiz]--;
956	if (frags != allocsiz)
957		cgp->cg_frsum[allocsiz - frags]++;
958	blkno = cg * fs->fs_fpg + bno;
959	if (DOINGSOFTDEP(ITOV(ip)))
960		softdep_setup_blkmapdep(bp, fs, blkno);
961	bdwrite(bp);
962	return ((u_long)blkno);
963}
964
965/*
966 * Allocate a block in a cylinder group.
967 *
968 * This algorithm implements the following policy:
969 *   1) allocate the requested block.
970 *   2) allocate a rotationally optimal block in the same cylinder.
971 *   3) allocate the next available block on the block rotor for the
972 *      specified cylinder group.
973 * Note that this routine only allocates fs_bsize blocks; these
974 * blocks may be fragmented by the routine that allocates them.
975 */
976static ufs_daddr_t
977ffs_alloccgblk(ip, bp, bpref)
978	struct inode *ip;
979	struct buf *bp;
980	ufs_daddr_t bpref;
981{
982	struct fs *fs;
983	struct cg *cgp;
984	ufs_daddr_t bno, blkno;
985	int cylno, pos, delta;
986	short *cylbp;
987	register int i;
988
989	fs = ip->i_fs;
990	cgp = (struct cg *)bp->b_data;
991	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
992		bpref = cgp->cg_rotor;
993		goto norot;
994	}
995	bpref = blknum(fs, bpref);
996	bpref = dtogd(fs, bpref);
997	/*
998	 * if the requested block is available, use it
999	 */
1000	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
1001		bno = bpref;
1002		goto gotit;
1003	}
1004	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1005		/*
1006		 * Block layout information is not available.
1007		 * Leaving bpref unchanged means we take the
1008		 * next available free block following the one
1009		 * we just allocated. Hopefully this will at
1010		 * least hit a track cache on drives of unknown
1011		 * geometry (e.g. SCSI).
1012		 */
1013		goto norot;
1014	}
1015	/*
1016	 * check for a block available on the same cylinder
1017	 */
1018	cylno = cbtocylno(fs, bpref);
1019	if (cg_blktot(cgp)[cylno] == 0)
1020		goto norot;
1021	/*
1022	 * check the summary information to see if a block is
1023	 * available in the requested cylinder starting at the
1024	 * requested rotational position and proceeding around.
1025	 */
1026	cylbp = cg_blks(fs, cgp, cylno);
1027	pos = cbtorpos(fs, bpref);
1028	for (i = pos; i < fs->fs_nrpos; i++)
1029		if (cylbp[i] > 0)
1030			break;
1031	if (i == fs->fs_nrpos)
1032		for (i = 0; i < pos; i++)
1033			if (cylbp[i] > 0)
1034				break;
1035	if (cylbp[i] > 0) {
1036		/*
1037		 * found a rotational position, now find the actual
1038		 * block. A panic if none is actually there.
1039		 */
1040		pos = cylno % fs->fs_cpc;
1041		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1042		if (fs_postbl(fs, pos)[i] == -1) {
1043			printf("pos = %d, i = %d, fs = %s\n",
1044			    pos, i, fs->fs_fsmnt);
1045			panic("ffs_alloccgblk: cyl groups corrupted");
1046		}
1047		for (i = fs_postbl(fs, pos)[i];; ) {
1048			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
1049				bno = blkstofrags(fs, (bno + i));
1050				goto gotit;
1051			}
1052			delta = fs_rotbl(fs)[i];
1053			if (delta <= 0 ||
1054			    delta + i > fragstoblks(fs, fs->fs_fpg))
1055				break;
1056			i += delta;
1057		}
1058		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1059		panic("ffs_alloccgblk: can't find blk in cyl");
1060	}
1061norot:
1062	/*
1063	 * no blocks in the requested cylinder, so take next
1064	 * available one in this cylinder group.
1065	 */
1066	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1067	if (bno < 0)
1068		return (0);
1069	cgp->cg_rotor = bno;
1070gotit:
1071	blkno = fragstoblks(fs, bno);
1072	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
1073	ffs_clusteracct(fs, cgp, blkno, -1);
1074	cgp->cg_cs.cs_nbfree--;
1075	fs->fs_cstotal.cs_nbfree--;
1076	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1077	cylno = cbtocylno(fs, bno);
1078	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1079	cg_blktot(cgp)[cylno]--;
1080	fs->fs_fmod = 1;
1081	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1082	if (DOINGSOFTDEP(ITOV(ip)))
1083		softdep_setup_blkmapdep(bp, fs, blkno);
1084	return (blkno);
1085}
1086
1087#ifdef notyet
1088/*
1089 * Determine whether a cluster can be allocated.
1090 *
1091 * We do not currently check for optimal rotational layout if there
1092 * are multiple choices in the same cylinder group. Instead we just
1093 * take the first one that we find following bpref.
1094 */
1095static ufs_daddr_t
1096ffs_clusteralloc(ip, cg, bpref, len)
1097	struct inode *ip;
1098	int cg;
1099	ufs_daddr_t bpref;
1100	int len;
1101{
1102	register struct fs *fs;
1103	register struct cg *cgp;
1104	struct buf *bp;
1105	int i, got, run, bno, bit, map;
1106	u_char *mapp;
1107	int32_t *lp;
1108
1109	fs = ip->i_fs;
1110	if (fs->fs_maxcluster[cg] < len)
1111		return (NULL);
1112	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1113	    NOCRED, &bp))
1114		goto fail;
1115	cgp = (struct cg *)bp->b_data;
1116	if (!cg_chkmagic(cgp))
1117		goto fail;
1118	/*
1119	 * Check to see if a cluster of the needed size (or bigger) is
1120	 * available in this cylinder group.
1121	 */
1122	lp = &cg_clustersum(cgp)[len];
1123	for (i = len; i <= fs->fs_contigsumsize; i++)
1124		if (*lp++ > 0)
1125			break;
1126	if (i > fs->fs_contigsumsize) {
1127		/*
1128		 * This is the first time looking for a cluster in this
1129		 * cylinder group. Update the cluster summary information
1130		 * to reflect the true maximum sized cluster so that
1131		 * future cluster allocation requests can avoid reading
1132		 * the cylinder group map only to find no clusters.
1133		 */
1134		lp = &cg_clustersum(cgp)[len - 1];
1135		for (i = len - 1; i > 0; i--)
1136			if (*lp-- > 0)
1137				break;
1138		fs->fs_maxcluster[cg] = i;
1139		goto fail;
1140	}
1141	/*
1142	 * Search the cluster map to find a big enough cluster.
1143	 * We take the first one that we find, even if it is larger
1144	 * than we need as we prefer to get one close to the previous
1145	 * block allocation. We do not search before the current
1146	 * preference point as we do not want to allocate a block
1147	 * that is allocated before the previous one (as we will
1148	 * then have to wait for another pass of the elevator
1149	 * algorithm before it will be read). We prefer to fail and
1150	 * be recalled to try an allocation in the next cylinder group.
1151	 */
1152	if (dtog(fs, bpref) != cg)
1153		bpref = 0;
1154	else
1155		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1156	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1157	map = *mapp++;
1158	bit = 1 << (bpref % NBBY);
1159	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1160		if ((map & bit) == 0) {
1161			run = 0;
1162		} else {
1163			run++;
1164			if (run == len)
1165				break;
1166		}
1167		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1168			bit <<= 1;
1169		} else {
1170			map = *mapp++;
1171			bit = 1;
1172		}
1173	}
1174	if (got >= cgp->cg_nclusterblks)
1175		goto fail;
1176	/*
1177	 * Allocate the cluster that we have found.
1178	 */
1179	for (i = 1; i <= len; i++)
1180		if (!ffs_isblock(fs, cg_blksfree(cgp), got - run + i))
1181			panic("ffs_clusteralloc: map mismatch");
1182	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1183	if (dtog(fs, bno) != cg)
1184		panic("ffs_clusteralloc: allocated out of group");
1185	len = blkstofrags(fs, len);
1186	for (i = 0; i < len; i += fs->fs_frag)
1187		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1188			panic("ffs_clusteralloc: lost block");
1189	bdwrite(bp);
1190	return (bno);
1191
1192fail:
1193	brelse(bp);
1194	return (0);
1195}
1196#endif
1197
1198/*
1199 * Determine whether an inode can be allocated.
1200 *
1201 * Check to see if an inode is available, and if it is,
1202 * allocate it using the following policy:
1203 *   1) allocate the requested inode.
1204 *   2) allocate the next available inode after the requested
1205 *      inode in the specified cylinder group.
1206 */
1207static ino_t
1208ffs_nodealloccg(ip, cg, ipref, mode)
1209	struct inode *ip;
1210	int cg;
1211	ufs_daddr_t ipref;
1212	int mode;
1213{
1214	register struct fs *fs;
1215	register struct cg *cgp;
1216	struct buf *bp;
1217	int error, start, len, loc, map, i;
1218
1219	fs = ip->i_fs;
1220	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1221		return (0);
1222	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1223		(int)fs->fs_cgsize, NOCRED, &bp);
1224	if (error) {
1225		brelse(bp);
1226		return (0);
1227	}
1228	cgp = (struct cg *)bp->b_data;
1229	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1230		brelse(bp);
1231		return (0);
1232	}
1233	cgp->cg_time = time_second;
1234	if (ipref) {
1235		ipref %= fs->fs_ipg;
1236		if (isclr(cg_inosused(cgp), ipref))
1237			goto gotit;
1238	}
1239	start = cgp->cg_irotor / NBBY;
1240	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1241	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1242	if (loc == 0) {
1243		len = start + 1;
1244		start = 0;
1245		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1246		if (loc == 0) {
1247			printf("cg = %d, irotor = %ld, fs = %s\n",
1248			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1249			panic("ffs_nodealloccg: map corrupted");
1250			/* NOTREACHED */
1251		}
1252	}
1253	i = start + len - loc;
1254	map = cg_inosused(cgp)[i];
1255	ipref = i * NBBY;
1256	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1257		if ((map & i) == 0) {
1258			cgp->cg_irotor = ipref;
1259			goto gotit;
1260		}
1261	}
1262	printf("fs = %s\n", fs->fs_fsmnt);
1263	panic("ffs_nodealloccg: block not in map");
1264	/* NOTREACHED */
1265gotit:
1266	if (DOINGSOFTDEP(ITOV(ip)))
1267		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1268	setbit(cg_inosused(cgp), ipref);
1269	cgp->cg_cs.cs_nifree--;
1270	fs->fs_cstotal.cs_nifree--;
1271	fs->fs_cs(fs, cg).cs_nifree--;
1272	fs->fs_fmod = 1;
1273	if ((mode & IFMT) == IFDIR) {
1274		cgp->cg_cs.cs_ndir++;
1275		fs->fs_cstotal.cs_ndir++;
1276		fs->fs_cs(fs, cg).cs_ndir++;
1277	}
1278	bdwrite(bp);
1279	return (cg * fs->fs_ipg + ipref);
1280}
1281
1282/*
1283 * Free a block or fragment.
1284 *
1285 * The specified block or fragment is placed back in the
1286 * free map. If a fragment is deallocated, a possible
1287 * block reassembly is checked.
1288 */
1289void
1290ffs_blkfree(ip, bno, size)
1291	register struct inode *ip;
1292	ufs_daddr_t bno;
1293	long size;
1294{
1295	register struct fs *fs;
1296	register struct cg *cgp;
1297	struct buf *bp;
1298	ufs_daddr_t blkno;
1299	int i, error, cg, blk, frags, bbase;
1300
1301	fs = ip->i_fs;
1302	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1303	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1304		printf("dev=0x%lx, bno = %d, bsize = %d, size = %ld, fs = %s\n",
1305		    (u_long)ip->i_dev, bno, fs->fs_bsize, size, fs->fs_fsmnt);
1306		panic("ffs_blkfree: bad size");
1307	}
1308	cg = dtog(fs, bno);
1309	if ((u_int)bno >= fs->fs_size) {
1310		printf("bad block %ld, ino %lu\n",
1311		    (long)bno, (u_long)ip->i_number);
1312		ffs_fserr(fs, ip->i_uid, "bad block");
1313		return;
1314	}
1315	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1316		(int)fs->fs_cgsize, NOCRED, &bp);
1317	if (error) {
1318		brelse(bp);
1319		return;
1320	}
1321	cgp = (struct cg *)bp->b_data;
1322	if (!cg_chkmagic(cgp)) {
1323		brelse(bp);
1324		return;
1325	}
1326	cgp->cg_time = time_second;
1327	bno = dtogd(fs, bno);
1328	if (size == fs->fs_bsize) {
1329		blkno = fragstoblks(fs, bno);
1330		if (!ffs_isfreeblock(fs, cg_blksfree(cgp), blkno)) {
1331			printf("dev = 0x%lx, block = %ld, fs = %s\n",
1332			    (u_long)ip->i_dev, (long)bno, fs->fs_fsmnt);
1333			panic("ffs_blkfree: freeing free block");
1334		}
1335		ffs_setblock(fs, cg_blksfree(cgp), blkno);
1336		ffs_clusteracct(fs, cgp, blkno, 1);
1337		cgp->cg_cs.cs_nbfree++;
1338		fs->fs_cstotal.cs_nbfree++;
1339		fs->fs_cs(fs, cg).cs_nbfree++;
1340		i = cbtocylno(fs, bno);
1341		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1342		cg_blktot(cgp)[i]++;
1343	} else {
1344		bbase = bno - fragnum(fs, bno);
1345		/*
1346		 * decrement the counts associated with the old frags
1347		 */
1348		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1349		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1350		/*
1351		 * deallocate the fragment
1352		 */
1353		frags = numfrags(fs, size);
1354		for (i = 0; i < frags; i++) {
1355			if (isset(cg_blksfree(cgp), bno + i)) {
1356				printf("dev = 0x%lx, block = %ld, fs = %s\n",
1357				    (u_long)ip->i_dev, (long)(bno + i),
1358				    fs->fs_fsmnt);
1359				panic("ffs_blkfree: freeing free frag");
1360			}
1361			setbit(cg_blksfree(cgp), bno + i);
1362		}
1363		cgp->cg_cs.cs_nffree += i;
1364		fs->fs_cstotal.cs_nffree += i;
1365		fs->fs_cs(fs, cg).cs_nffree += i;
1366		/*
1367		 * add back in counts associated with the new frags
1368		 */
1369		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1370		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1371		/*
1372		 * if a complete block has been reassembled, account for it
1373		 */
1374		blkno = fragstoblks(fs, bbase);
1375		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1376			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1377			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1378			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1379			ffs_clusteracct(fs, cgp, blkno, 1);
1380			cgp->cg_cs.cs_nbfree++;
1381			fs->fs_cstotal.cs_nbfree++;
1382			fs->fs_cs(fs, cg).cs_nbfree++;
1383			i = cbtocylno(fs, bbase);
1384			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1385			cg_blktot(cgp)[i]++;
1386		}
1387	}
1388	fs->fs_fmod = 1;
1389	bdwrite(bp);
1390}
1391
1392#ifdef DIAGNOSTIC
1393/*
1394 * Verify allocation of a block or fragment. Returns true if block or
1395 * fragment is allocated, false if it is free.
1396 */
1397static int
1398ffs_checkblk(ip, bno, size)
1399	struct inode *ip;
1400	ufs_daddr_t bno;
1401	long size;
1402{
1403	struct fs *fs;
1404	struct cg *cgp;
1405	struct buf *bp;
1406	int i, error, frags, free;
1407
1408	fs = ip->i_fs;
1409	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1410		printf("bsize = %ld, size = %ld, fs = %s\n",
1411		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1412		panic("ffs_checkblk: bad size");
1413	}
1414	if ((u_int)bno >= fs->fs_size)
1415		panic("ffs_checkblk: bad block %d", bno);
1416	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1417		(int)fs->fs_cgsize, NOCRED, &bp);
1418	if (error)
1419		panic("ffs_checkblk: cg bread failed");
1420	cgp = (struct cg *)bp->b_data;
1421	if (!cg_chkmagic(cgp))
1422		panic("ffs_checkblk: cg magic mismatch");
1423	bno = dtogd(fs, bno);
1424	if (size == fs->fs_bsize) {
1425		free = ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
1426	} else {
1427		frags = numfrags(fs, size);
1428		for (free = 0, i = 0; i < frags; i++)
1429			if (isset(cg_blksfree(cgp), bno + i))
1430				free++;
1431		if (free != 0 && free != frags)
1432			panic("ffs_checkblk: partially free fragment");
1433	}
1434	brelse(bp);
1435	return (!free);
1436}
1437#endif /* DIAGNOSTIC */
1438
1439/*
1440 * Free an inode.
1441 */
1442int
1443ffs_vfree( pvp, ino, mode)
1444	struct vnode *pvp;
1445	ino_t ino;
1446	int mode;
1447{
1448	if (DOINGSOFTDEP(pvp)) {
1449		softdep_freefile(pvp, ino, mode);
1450		return (0);
1451	}
1452	return (ffs_freefile(pvp, ino, mode));
1453}
1454
1455/*
1456 * Do the actual free operation.
1457 * The specified inode is placed back in the free map.
1458 */
1459 int
1460 ffs_freefile( pvp, ino, mode)
1461	struct vnode *pvp;
1462	ino_t ino;
1463	int mode;
1464{
1465	register struct fs *fs;
1466	register struct cg *cgp;
1467	register struct inode *pip;
1468	struct buf *bp;
1469	int error, cg;
1470
1471	pip = VTOI(pvp);
1472	fs = pip->i_fs;
1473	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1474		panic("ffs_vfree: range: dev = 0x%x, ino = %d, fs = %s",
1475		    pip->i_dev, ino, fs->fs_fsmnt);
1476	cg = ino_to_cg(fs, ino);
1477	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1478		(int)fs->fs_cgsize, NOCRED, &bp);
1479	if (error) {
1480		brelse(bp);
1481		return (error);
1482	}
1483	cgp = (struct cg *)bp->b_data;
1484	if (!cg_chkmagic(cgp)) {
1485		brelse(bp);
1486		return (0);
1487	}
1488	cgp->cg_time = time_second;
1489	ino %= fs->fs_ipg;
1490	if (isclr(cg_inosused(cgp), ino)) {
1491		printf("dev = 0x%lx, ino = %lu, fs = %s\n",
1492		    (u_long)pip->i_dev, (u_long)ino, fs->fs_fsmnt);
1493		if (fs->fs_ronly == 0)
1494			panic("ffs_vfree: freeing free inode");
1495	}
1496	clrbit(cg_inosused(cgp), ino);
1497	if (ino < cgp->cg_irotor)
1498		cgp->cg_irotor = ino;
1499	cgp->cg_cs.cs_nifree++;
1500	fs->fs_cstotal.cs_nifree++;
1501	fs->fs_cs(fs, cg).cs_nifree++;
1502	if ((mode & IFMT) == IFDIR) {
1503		cgp->cg_cs.cs_ndir--;
1504		fs->fs_cstotal.cs_ndir--;
1505		fs->fs_cs(fs, cg).cs_ndir--;
1506	}
1507	fs->fs_fmod = 1;
1508	bdwrite(bp);
1509	return (0);
1510}
1511
1512/*
1513 * Find a block of the specified size in the specified cylinder group.
1514 *
1515 * It is a panic if a request is made to find a block if none are
1516 * available.
1517 */
1518static ufs_daddr_t
1519ffs_mapsearch(fs, cgp, bpref, allocsiz)
1520	register struct fs *fs;
1521	register struct cg *cgp;
1522	ufs_daddr_t bpref;
1523	int allocsiz;
1524{
1525	ufs_daddr_t bno;
1526	int start, len, loc, i;
1527	int blk, field, subfield, pos;
1528
1529	/*
1530	 * find the fragment by searching through the free block
1531	 * map for an appropriate bit pattern
1532	 */
1533	if (bpref)
1534		start = dtogd(fs, bpref) / NBBY;
1535	else
1536		start = cgp->cg_frotor / NBBY;
1537	len = howmany(fs->fs_fpg, NBBY) - start;
1538	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1539		(u_char *)fragtbl[fs->fs_frag],
1540		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1541	if (loc == 0) {
1542		len = start + 1;
1543		start = 0;
1544		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1545			(u_char *)fragtbl[fs->fs_frag],
1546			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1547		if (loc == 0) {
1548			printf("start = %d, len = %d, fs = %s\n",
1549			    start, len, fs->fs_fsmnt);
1550			panic("ffs_alloccg: map corrupted");
1551			/* NOTREACHED */
1552		}
1553	}
1554	bno = (start + len - loc) * NBBY;
1555	cgp->cg_frotor = bno;
1556	/*
1557	 * found the byte in the map
1558	 * sift through the bits to find the selected frag
1559	 */
1560	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1561		blk = blkmap(fs, cg_blksfree(cgp), bno);
1562		blk <<= 1;
1563		field = around[allocsiz];
1564		subfield = inside[allocsiz];
1565		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1566			if ((blk & field) == subfield)
1567				return (bno + pos);
1568			field <<= 1;
1569			subfield <<= 1;
1570		}
1571	}
1572	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1573	panic("ffs_alloccg: block not in map");
1574	return (-1);
1575}
1576
1577/*
1578 * Update the cluster map because of an allocation or free.
1579 *
1580 * Cnt == 1 means free; cnt == -1 means allocating.
1581 */
1582static void
1583ffs_clusteracct(fs, cgp, blkno, cnt)
1584	struct fs *fs;
1585	struct cg *cgp;
1586	ufs_daddr_t blkno;
1587	int cnt;
1588{
1589	int32_t *sump;
1590	int32_t *lp;
1591	u_char *freemapp, *mapp;
1592	int i, start, end, forw, back, map, bit;
1593
1594	if (fs->fs_contigsumsize <= 0)
1595		return;
1596	freemapp = cg_clustersfree(cgp);
1597	sump = cg_clustersum(cgp);
1598	/*
1599	 * Allocate or clear the actual block.
1600	 */
1601	if (cnt > 0)
1602		setbit(freemapp, blkno);
1603	else
1604		clrbit(freemapp, blkno);
1605	/*
1606	 * Find the size of the cluster going forward.
1607	 */
1608	start = blkno + 1;
1609	end = start + fs->fs_contigsumsize;
1610	if (end >= cgp->cg_nclusterblks)
1611		end = cgp->cg_nclusterblks;
1612	mapp = &freemapp[start / NBBY];
1613	map = *mapp++;
1614	bit = 1 << (start % NBBY);
1615	for (i = start; i < end; i++) {
1616		if ((map & bit) == 0)
1617			break;
1618		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1619			bit <<= 1;
1620		} else {
1621			map = *mapp++;
1622			bit = 1;
1623		}
1624	}
1625	forw = i - start;
1626	/*
1627	 * Find the size of the cluster going backward.
1628	 */
1629	start = blkno - 1;
1630	end = start - fs->fs_contigsumsize;
1631	if (end < 0)
1632		end = -1;
1633	mapp = &freemapp[start / NBBY];
1634	map = *mapp--;
1635	bit = 1 << (start % NBBY);
1636	for (i = start; i > end; i--) {
1637		if ((map & bit) == 0)
1638			break;
1639		if ((i & (NBBY - 1)) != 0) {
1640			bit >>= 1;
1641		} else {
1642			map = *mapp--;
1643			bit = 1 << (NBBY - 1);
1644		}
1645	}
1646	back = start - i;
1647	/*
1648	 * Account for old cluster and the possibly new forward and
1649	 * back clusters.
1650	 */
1651	i = back + forw + 1;
1652	if (i > fs->fs_contigsumsize)
1653		i = fs->fs_contigsumsize;
1654	sump[i] += cnt;
1655	if (back > 0)
1656		sump[back] -= cnt;
1657	if (forw > 0)
1658		sump[forw] -= cnt;
1659	/*
1660	 * Update cluster summary information.
1661	 */
1662	lp = &sump[fs->fs_contigsumsize];
1663	for (i = fs->fs_contigsumsize; i > 0; i--)
1664		if (*lp-- > 0)
1665			break;
1666	fs->fs_maxcluster[cgp->cg_cgx] = i;
1667}
1668
1669/*
1670 * Fserr prints the name of a file system with an error diagnostic.
1671 *
1672 * The form of the error message is:
1673 *	fs: error message
1674 */
1675static void
1676ffs_fserr(fs, uid, cp)
1677	struct fs *fs;
1678	u_int uid;
1679	char *cp;
1680{
1681	struct proc *p = curproc;	/* XXX */
1682
1683	log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1684			p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1685}
1686