ffs_alloc.c revision 72645
1/*
2 * Copyright (c) 1982, 1986, 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
34 * $FreeBSD: head/sys/ufs/ffs/ffs_alloc.c 72645 2001-02-18 10:43:53Z asmodai $
35 */
36
37#include "opt_quota.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/bio.h>
42#include <sys/buf.h>
43#include <sys/conf.h>
44#include <sys/proc.h>
45#include <sys/vnode.h>
46#include <sys/mount.h>
47#include <sys/kernel.h>
48#include <sys/sysctl.h>
49#include <sys/syslog.h>
50
51#include <ufs/ufs/extattr.h>
52#include <ufs/ufs/quota.h>
53#include <ufs/ufs/inode.h>
54#include <ufs/ufs/ufs_extern.h>
55#include <ufs/ufs/ufsmount.h>
56
57#include <ufs/ffs/fs.h>
58#include <ufs/ffs/ffs_extern.h>
59
60typedef ufs_daddr_t allocfcn_t __P((struct inode *ip, int cg, ufs_daddr_t bpref,
61				  int size));
62
63static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
64static ufs_daddr_t
65	      ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
66#ifdef DIAGNOSTIC
67static int	ffs_checkblk __P((struct inode *, ufs_daddr_t, long));
68#endif
69static void	ffs_clusteracct	__P((struct fs *, struct cg *, ufs_daddr_t,
70				     int));
71static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t,
72	    int));
73static ino_t	ffs_dirpref __P((struct fs *));
74static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
75static void	ffs_fserr __P((struct fs *, u_int, char *));
76static u_long	ffs_hashalloc
77		    __P((struct inode *, int, long, int, allocfcn_t *));
78static ino_t	ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
79static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t,
80	    int));
81
82/*
83 * Allocate a block in the file system.
84 *
85 * The size of the requested block is given, which must be some
86 * multiple of fs_fsize and <= fs_bsize.
87 * A preference may be optionally specified. If a preference is given
88 * the following hierarchy is used to allocate a block:
89 *   1) allocate the requested block.
90 *   2) allocate a rotationally optimal block in the same cylinder.
91 *   3) allocate a block in the same cylinder group.
92 *   4) quadradically rehash into other cylinder groups, until an
93 *      available block is located.
94 * If no block preference is given the following heirarchy is used
95 * to allocate a block:
96 *   1) allocate a block in the cylinder group that contains the
97 *      inode for the file.
98 *   2) quadradically rehash into other cylinder groups, until an
99 *      available block is located.
100 */
101int
102ffs_alloc(ip, lbn, bpref, size, cred, bnp)
103	register struct inode *ip;
104	ufs_daddr_t lbn, bpref;
105	int size;
106	struct ucred *cred;
107	ufs_daddr_t *bnp;
108{
109	register struct fs *fs;
110	ufs_daddr_t bno;
111	int cg;
112#ifdef QUOTA
113	int error;
114#endif
115
116	*bnp = 0;
117	fs = ip->i_fs;
118#ifdef DIAGNOSTIC
119	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
120		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
121		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
122		    fs->fs_fsmnt);
123		panic("ffs_alloc: bad size");
124	}
125	if (cred == NOCRED)
126		panic("ffs_alloc: missing credential");
127#endif /* DIAGNOSTIC */
128	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
129		goto nospace;
130	if (cred->cr_uid != 0 &&
131	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
132		goto nospace;
133#ifdef QUOTA
134	error = chkdq(ip, (long)btodb(size), cred, 0);
135	if (error)
136		return (error);
137#endif
138	if (bpref >= fs->fs_size)
139		bpref = 0;
140	if (bpref == 0)
141		cg = ino_to_cg(fs, ip->i_number);
142	else
143		cg = dtog(fs, bpref);
144	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
145					 ffs_alloccg);
146	if (bno > 0) {
147		ip->i_blocks += btodb(size);
148		ip->i_flag |= IN_CHANGE | IN_UPDATE;
149		*bnp = bno;
150		return (0);
151	}
152#ifdef QUOTA
153	/*
154	 * Restore user's disk quota because allocation failed.
155	 */
156	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
157#endif
158nospace:
159	ffs_fserr(fs, cred->cr_uid, "file system full");
160	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
161	return (ENOSPC);
162}
163
164/*
165 * Reallocate a fragment to a bigger size
166 *
167 * The number and size of the old block is given, and a preference
168 * and new size is also specified. The allocator attempts to extend
169 * the original block. Failing that, the regular block allocator is
170 * invoked to get an appropriate block.
171 */
172int
173ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
174	register struct inode *ip;
175	ufs_daddr_t lbprev;
176	ufs_daddr_t bpref;
177	int osize, nsize;
178	struct ucred *cred;
179	struct buf **bpp;
180{
181	register struct fs *fs;
182	struct buf *bp;
183	int cg, request, error;
184	ufs_daddr_t bprev, bno;
185
186	*bpp = 0;
187	fs = ip->i_fs;
188#ifdef DIAGNOSTIC
189	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
190		panic("ffs_realloccg: allocation on suspended filesystem");
191	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
192	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
193		printf(
194		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
195		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
196		    nsize, fs->fs_fsmnt);
197		panic("ffs_realloccg: bad size");
198	}
199	if (cred == NOCRED)
200		panic("ffs_realloccg: missing credential");
201#endif /* DIAGNOSTIC */
202	if (cred->cr_uid != 0 &&
203	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
204		goto nospace;
205	if ((bprev = ip->i_db[lbprev]) == 0) {
206		printf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
207		    devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
208		    fs->fs_fsmnt);
209		panic("ffs_realloccg: bad bprev");
210	}
211	/*
212	 * Allocate the extra space in the buffer.
213	 */
214	error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp);
215	if (error) {
216		brelse(bp);
217		return (error);
218	}
219
220	if( bp->b_blkno == bp->b_lblkno) {
221		if( lbprev >= NDADDR)
222			panic("ffs_realloccg: lbprev out of range");
223		bp->b_blkno = fsbtodb(fs, bprev);
224	}
225
226#ifdef QUOTA
227	error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
228	if (error) {
229		brelse(bp);
230		return (error);
231	}
232#endif
233	/*
234	 * Check for extension in the existing location.
235	 */
236	cg = dtog(fs, bprev);
237	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
238	if (bno) {
239		if (bp->b_blkno != fsbtodb(fs, bno))
240			panic("ffs_realloccg: bad blockno");
241		ip->i_blocks += btodb(nsize - osize);
242		ip->i_flag |= IN_CHANGE | IN_UPDATE;
243		allocbuf(bp, nsize);
244		bp->b_flags |= B_DONE;
245		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
246		*bpp = bp;
247		return (0);
248	}
249	/*
250	 * Allocate a new disk location.
251	 */
252	if (bpref >= fs->fs_size)
253		bpref = 0;
254	switch ((int)fs->fs_optim) {
255	case FS_OPTSPACE:
256		/*
257		 * Allocate an exact sized fragment. Although this makes
258		 * best use of space, we will waste time relocating it if
259		 * the file continues to grow. If the fragmentation is
260		 * less than half of the minimum free reserve, we choose
261		 * to begin optimizing for time.
262		 */
263		request = nsize;
264		if (fs->fs_minfree <= 5 ||
265		    fs->fs_cstotal.cs_nffree >
266		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
267			break;
268		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
269			fs->fs_fsmnt);
270		fs->fs_optim = FS_OPTTIME;
271		break;
272	case FS_OPTTIME:
273		/*
274		 * At this point we have discovered a file that is trying to
275		 * grow a small fragment to a larger fragment. To save time,
276		 * we allocate a full sized block, then free the unused portion.
277		 * If the file continues to grow, the `ffs_fragextend' call
278		 * above will be able to grow it in place without further
279		 * copying. If aberrant programs cause disk fragmentation to
280		 * grow within 2% of the free reserve, we choose to begin
281		 * optimizing for space.
282		 */
283		request = fs->fs_bsize;
284		if (fs->fs_cstotal.cs_nffree <
285		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
286			break;
287		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
288			fs->fs_fsmnt);
289		fs->fs_optim = FS_OPTSPACE;
290		break;
291	default:
292		printf("dev = %s, optim = %ld, fs = %s\n",
293		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
294		panic("ffs_realloccg: bad optim");
295		/* NOTREACHED */
296	}
297	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
298					 ffs_alloccg);
299	if (bno > 0) {
300		bp->b_blkno = fsbtodb(fs, bno);
301		if (!DOINGSOFTDEP(ITOV(ip)))
302			ffs_blkfree(ip, bprev, (long)osize);
303		if (nsize < request)
304			ffs_blkfree(ip, bno + numfrags(fs, nsize),
305			    (long)(request - nsize));
306		ip->i_blocks += btodb(nsize - osize);
307		ip->i_flag |= IN_CHANGE | IN_UPDATE;
308		allocbuf(bp, nsize);
309		bp->b_flags |= B_DONE;
310		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
311		*bpp = bp;
312		return (0);
313	}
314#ifdef QUOTA
315	/*
316	 * Restore user's disk quota because allocation failed.
317	 */
318	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
319#endif
320	brelse(bp);
321nospace:
322	/*
323	 * no space available
324	 */
325	ffs_fserr(fs, cred->cr_uid, "file system full");
326	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
327	return (ENOSPC);
328}
329
330SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
331
332/*
333 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
334 *
335 * The vnode and an array of buffer pointers for a range of sequential
336 * logical blocks to be made contiguous is given. The allocator attempts
337 * to find a range of sequential blocks starting as close as possible to
338 * an fs_rotdelay offset from the end of the allocation for the logical
339 * block immediately preceding the current range. If successful, the
340 * physical block numbers in the buffer pointers and in the inode are
341 * changed to reflect the new allocation. If unsuccessful, the allocation
342 * is left unchanged. The success in doing the reallocation is returned.
343 * Note that the error return is not reflected back to the user. Rather
344 * the previous block allocation will be used.
345 */
346static int doasyncfree = 1;
347SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
348
349static int doreallocblks = 1;
350SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
351
352#ifdef DEBUG
353static volatile int prtrealloc = 0;
354#endif
355
356int
357ffs_reallocblks(ap)
358	struct vop_reallocblks_args /* {
359		struct vnode *a_vp;
360		struct cluster_save *a_buflist;
361	} */ *ap;
362{
363	struct fs *fs;
364	struct inode *ip;
365	struct vnode *vp;
366	struct buf *sbp, *ebp;
367	ufs_daddr_t *bap, *sbap, *ebap = 0;
368	struct cluster_save *buflist;
369	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
370	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
371	int i, len, start_lvl, end_lvl, pref, ssize;
372
373	if (doreallocblks == 0)
374		return (ENOSPC);
375	vp = ap->a_vp;
376	ip = VTOI(vp);
377	fs = ip->i_fs;
378	if (fs->fs_contigsumsize <= 0)
379		return (ENOSPC);
380	buflist = ap->a_buflist;
381	len = buflist->bs_nchildren;
382	start_lbn = buflist->bs_children[0]->b_lblkno;
383	end_lbn = start_lbn + len - 1;
384#ifdef DIAGNOSTIC
385	for (i = 0; i < len; i++)
386		if (!ffs_checkblk(ip,
387		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
388			panic("ffs_reallocblks: unallocated block 1");
389	for (i = 1; i < len; i++)
390		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
391			panic("ffs_reallocblks: non-logical cluster");
392	blkno = buflist->bs_children[0]->b_blkno;
393	ssize = fsbtodb(fs, fs->fs_frag);
394	for (i = 1; i < len - 1; i++)
395		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
396			panic("ffs_reallocblks: non-physical cluster %d", i);
397#endif
398	/*
399	 * If the latest allocation is in a new cylinder group, assume that
400	 * the filesystem has decided to move and do not force it back to
401	 * the previous cylinder group.
402	 */
403	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
404	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
405		return (ENOSPC);
406	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
407	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
408		return (ENOSPC);
409	/*
410	 * Get the starting offset and block map for the first block.
411	 */
412	if (start_lvl == 0) {
413		sbap = &ip->i_db[0];
414		soff = start_lbn;
415	} else {
416		idp = &start_ap[start_lvl - 1];
417		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
418			brelse(sbp);
419			return (ENOSPC);
420		}
421		sbap = (ufs_daddr_t *)sbp->b_data;
422		soff = idp->in_off;
423	}
424	/*
425	 * Find the preferred location for the cluster.
426	 */
427	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
428	/*
429	 * If the block range spans two block maps, get the second map.
430	 */
431	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
432		ssize = len;
433	} else {
434#ifdef DIAGNOSTIC
435		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
436			panic("ffs_reallocblk: start == end");
437#endif
438		ssize = len - (idp->in_off + 1);
439		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
440			goto fail;
441		ebap = (ufs_daddr_t *)ebp->b_data;
442	}
443	/*
444	 * Search the block map looking for an allocation of the desired size.
445	 */
446	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
447	    len, ffs_clusteralloc)) == 0)
448		goto fail;
449	/*
450	 * We have found a new contiguous block.
451	 *
452	 * First we have to replace the old block pointers with the new
453	 * block pointers in the inode and indirect blocks associated
454	 * with the file.
455	 */
456#ifdef DEBUG
457	if (prtrealloc)
458		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
459		    start_lbn, end_lbn);
460#endif
461	blkno = newblk;
462	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
463		if (i == ssize) {
464			bap = ebap;
465			soff = -i;
466		}
467#ifdef DIAGNOSTIC
468		if (!ffs_checkblk(ip,
469		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
470			panic("ffs_reallocblks: unallocated block 2");
471		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
472			panic("ffs_reallocblks: alloc mismatch");
473#endif
474#ifdef DEBUG
475		if (prtrealloc)
476			printf(" %d,", *bap);
477#endif
478		if (DOINGSOFTDEP(vp)) {
479			if (sbap == &ip->i_db[0] && i < ssize)
480				softdep_setup_allocdirect(ip, start_lbn + i,
481				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
482				    buflist->bs_children[i]);
483			else
484				softdep_setup_allocindir_page(ip, start_lbn + i,
485				    i < ssize ? sbp : ebp, soff + i, blkno,
486				    *bap, buflist->bs_children[i]);
487		}
488		*bap++ = blkno;
489	}
490	/*
491	 * Next we must write out the modified inode and indirect blocks.
492	 * For strict correctness, the writes should be synchronous since
493	 * the old block values may have been written to disk. In practise
494	 * they are almost never written, but if we are concerned about
495	 * strict correctness, the `doasyncfree' flag should be set to zero.
496	 *
497	 * The test on `doasyncfree' should be changed to test a flag
498	 * that shows whether the associated buffers and inodes have
499	 * been written. The flag should be set when the cluster is
500	 * started and cleared whenever the buffer or inode is flushed.
501	 * We can then check below to see if it is set, and do the
502	 * synchronous write only when it has been cleared.
503	 */
504	if (sbap != &ip->i_db[0]) {
505		if (doasyncfree)
506			bdwrite(sbp);
507		else
508			bwrite(sbp);
509	} else {
510		ip->i_flag |= IN_CHANGE | IN_UPDATE;
511		if (!doasyncfree)
512			UFS_UPDATE(vp, 1);
513	}
514	if (ssize < len) {
515		if (doasyncfree)
516			bdwrite(ebp);
517		else
518			bwrite(ebp);
519	}
520	/*
521	 * Last, free the old blocks and assign the new blocks to the buffers.
522	 */
523#ifdef DEBUG
524	if (prtrealloc)
525		printf("\n\tnew:");
526#endif
527	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
528		if (!DOINGSOFTDEP(vp))
529			ffs_blkfree(ip,
530			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
531			    fs->fs_bsize);
532		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
533#ifdef DIAGNOSTIC
534		if (!ffs_checkblk(ip,
535		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
536			panic("ffs_reallocblks: unallocated block 3");
537#endif
538#ifdef DEBUG
539		if (prtrealloc)
540			printf(" %d,", blkno);
541#endif
542	}
543#ifdef DEBUG
544	if (prtrealloc) {
545		prtrealloc--;
546		printf("\n");
547	}
548#endif
549	return (0);
550
551fail:
552	if (ssize < len)
553		brelse(ebp);
554	if (sbap != &ip->i_db[0])
555		brelse(sbp);
556	return (ENOSPC);
557}
558
559/*
560 * Allocate an inode in the file system.
561 *
562 * If allocating a directory, use ffs_dirpref to select the inode.
563 * If allocating in a directory, the following hierarchy is followed:
564 *   1) allocate the preferred inode.
565 *   2) allocate an inode in the same cylinder group.
566 *   3) quadradically rehash into other cylinder groups, until an
567 *      available inode is located.
568 * If no inode preference is given the following heirarchy is used
569 * to allocate an inode:
570 *   1) allocate an inode in cylinder group 0.
571 *   2) quadradically rehash into other cylinder groups, until an
572 *      available inode is located.
573 */
574int
575ffs_valloc(pvp, mode, cred, vpp)
576	struct vnode *pvp;
577	int mode;
578	struct ucred *cred;
579	struct vnode **vpp;
580{
581	register struct inode *pip;
582	register struct fs *fs;
583	register struct inode *ip;
584	ino_t ino, ipref;
585	int cg, error;
586
587	*vpp = NULL;
588	pip = VTOI(pvp);
589	fs = pip->i_fs;
590	if (fs->fs_cstotal.cs_nifree == 0)
591		goto noinodes;
592
593	if ((mode & IFMT) == IFDIR)
594		ipref = ffs_dirpref(fs);
595	else
596		ipref = pip->i_number;
597	if (ipref >= fs->fs_ncg * fs->fs_ipg)
598		ipref = 0;
599	cg = ino_to_cg(fs, ipref);
600	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
601					(allocfcn_t *)ffs_nodealloccg);
602	if (ino == 0)
603		goto noinodes;
604	error = VFS_VGET(pvp->v_mount, ino, vpp);
605	if (error) {
606		UFS_VFREE(pvp, ino, mode);
607		return (error);
608	}
609	ip = VTOI(*vpp);
610	if (ip->i_mode) {
611		printf("mode = 0%o, inum = %lu, fs = %s\n",
612		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
613		panic("ffs_valloc: dup alloc");
614	}
615	if (ip->i_blocks) {				/* XXX */
616		printf("free inode %s/%lu had %ld blocks\n",
617		    fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
618		ip->i_blocks = 0;
619	}
620	ip->i_flags = 0;
621	/*
622	 * Set up a new generation number for this inode.
623	 */
624	if (ip->i_gen == 0 || ++ip->i_gen == 0)
625		ip->i_gen = random() / 2 + 1;
626	return (0);
627noinodes:
628	ffs_fserr(fs, cred->cr_uid, "out of inodes");
629	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
630	return (ENOSPC);
631}
632
633/*
634 * Find a cylinder to place a directory.
635 *
636 * The policy implemented by this algorithm is to select from
637 * among those cylinder groups with above the average number of
638 * free inodes, the one with the smallest number of directories.
639 */
640static ino_t
641ffs_dirpref(fs)
642	register struct fs *fs;
643{
644	int cg, minndir, mincg, avgifree;
645
646	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
647	minndir = fs->fs_ipg;
648	mincg = 0;
649	for (cg = 0; cg < fs->fs_ncg; cg++)
650		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
651		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
652			mincg = cg;
653			minndir = fs->fs_cs(fs, cg).cs_ndir;
654		}
655	return ((ino_t)(fs->fs_ipg * mincg));
656}
657
658/*
659 * Select the desired position for the next block in a file.  The file is
660 * logically divided into sections. The first section is composed of the
661 * direct blocks. Each additional section contains fs_maxbpg blocks.
662 *
663 * If no blocks have been allocated in the first section, the policy is to
664 * request a block in the same cylinder group as the inode that describes
665 * the file. If no blocks have been allocated in any other section, the
666 * policy is to place the section in a cylinder group with a greater than
667 * average number of free blocks.  An appropriate cylinder group is found
668 * by using a rotor that sweeps the cylinder groups. When a new group of
669 * blocks is needed, the sweep begins in the cylinder group following the
670 * cylinder group from which the previous allocation was made. The sweep
671 * continues until a cylinder group with greater than the average number
672 * of free blocks is found. If the allocation is for the first block in an
673 * indirect block, the information on the previous allocation is unavailable;
674 * here a best guess is made based upon the logical block number being
675 * allocated.
676 *
677 * If a section is already partially allocated, the policy is to
678 * contiguously allocate fs_maxcontig blocks.  The end of one of these
679 * contiguous blocks and the beginning of the next is physically separated
680 * so that the disk head will be in transit between them for at least
681 * fs_rotdelay milliseconds.  This is to allow time for the processor to
682 * schedule another I/O transfer.
683 */
684ufs_daddr_t
685ffs_blkpref(ip, lbn, indx, bap)
686	struct inode *ip;
687	ufs_daddr_t lbn;
688	int indx;
689	ufs_daddr_t *bap;
690{
691	register struct fs *fs;
692	register int cg;
693	int avgbfree, startcg;
694	ufs_daddr_t nextblk;
695
696	fs = ip->i_fs;
697	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
698		if (lbn < NDADDR + NINDIR(fs)) {
699			cg = ino_to_cg(fs, ip->i_number);
700			return (fs->fs_fpg * cg + fs->fs_frag);
701		}
702		/*
703		 * Find a cylinder with greater than average number of
704		 * unused data blocks.
705		 */
706		if (indx == 0 || bap[indx - 1] == 0)
707			startcg =
708			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
709		else
710			startcg = dtog(fs, bap[indx - 1]) + 1;
711		startcg %= fs->fs_ncg;
712		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
713		for (cg = startcg; cg < fs->fs_ncg; cg++)
714			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
715				fs->fs_cgrotor = cg;
716				return (fs->fs_fpg * cg + fs->fs_frag);
717			}
718		for (cg = 0; cg <= startcg; cg++)
719			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
720				fs->fs_cgrotor = cg;
721				return (fs->fs_fpg * cg + fs->fs_frag);
722			}
723		return (0);
724	}
725	/*
726	 * One or more previous blocks have been laid out. If less
727	 * than fs_maxcontig previous blocks are contiguous, the
728	 * next block is requested contiguously, otherwise it is
729	 * requested rotationally delayed by fs_rotdelay milliseconds.
730	 */
731	nextblk = bap[indx - 1] + fs->fs_frag;
732	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
733	    bap[indx - fs->fs_maxcontig] +
734	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
735		return (nextblk);
736	/*
737	 * Here we convert ms of delay to frags as:
738	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
739	 *	((sect/frag) * (ms/sec))
740	 * then round up to the next block.
741	 */
742	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
743	    (NSPF(fs) * 1000), fs->fs_frag);
744	return (nextblk);
745}
746
747/*
748 * Implement the cylinder overflow algorithm.
749 *
750 * The policy implemented by this algorithm is:
751 *   1) allocate the block in its requested cylinder group.
752 *   2) quadradically rehash on the cylinder group number.
753 *   3) brute force search for a free block.
754 */
755/*VARARGS5*/
756static u_long
757ffs_hashalloc(ip, cg, pref, size, allocator)
758	struct inode *ip;
759	int cg;
760	long pref;
761	int size;	/* size for data blocks, mode for inodes */
762	allocfcn_t *allocator;
763{
764	register struct fs *fs;
765	long result;	/* XXX why not same type as we return? */
766	int i, icg = cg;
767
768#ifdef DIAGNOSTIC
769	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
770		panic("ffs_hashalloc: allocation on suspended filesystem");
771#endif
772	fs = ip->i_fs;
773	/*
774	 * 1: preferred cylinder group
775	 */
776	result = (*allocator)(ip, cg, pref, size);
777	if (result)
778		return (result);
779	/*
780	 * 2: quadratic rehash
781	 */
782	for (i = 1; i < fs->fs_ncg; i *= 2) {
783		cg += i;
784		if (cg >= fs->fs_ncg)
785			cg -= fs->fs_ncg;
786		result = (*allocator)(ip, cg, 0, size);
787		if (result)
788			return (result);
789	}
790	/*
791	 * 3: brute force search
792	 * Note that we start at i == 2, since 0 was checked initially,
793	 * and 1 is always checked in the quadratic rehash.
794	 */
795	cg = (icg + 2) % fs->fs_ncg;
796	for (i = 2; i < fs->fs_ncg; i++) {
797		result = (*allocator)(ip, cg, 0, size);
798		if (result)
799			return (result);
800		cg++;
801		if (cg == fs->fs_ncg)
802			cg = 0;
803	}
804	return (0);
805}
806
807/*
808 * Determine whether a fragment can be extended.
809 *
810 * Check to see if the necessary fragments are available, and
811 * if they are, allocate them.
812 */
813static ufs_daddr_t
814ffs_fragextend(ip, cg, bprev, osize, nsize)
815	struct inode *ip;
816	int cg;
817	long bprev;
818	int osize, nsize;
819{
820	register struct fs *fs;
821	register struct cg *cgp;
822	struct buf *bp;
823	long bno;
824	int frags, bbase;
825	int i, error;
826	u_int8_t *blksfree;
827
828	fs = ip->i_fs;
829	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
830		return (0);
831	frags = numfrags(fs, nsize);
832	bbase = fragnum(fs, bprev);
833	if (bbase > fragnum(fs, (bprev + frags - 1))) {
834		/* cannot extend across a block boundary */
835		return (0);
836	}
837	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
838		(int)fs->fs_cgsize, NOCRED, &bp);
839	if (error) {
840		brelse(bp);
841		return (0);
842	}
843	cgp = (struct cg *)bp->b_data;
844	if (!cg_chkmagic(cgp)) {
845		brelse(bp);
846		return (0);
847	}
848	bp->b_xflags |= BX_BKGRDWRITE;
849	cgp->cg_time = time_second;
850	bno = dtogd(fs, bprev);
851	blksfree = cg_blksfree(cgp);
852	for (i = numfrags(fs, osize); i < frags; i++)
853		if (isclr(blksfree, bno + i)) {
854			brelse(bp);
855			return (0);
856		}
857	/*
858	 * the current fragment can be extended
859	 * deduct the count on fragment being extended into
860	 * increase the count on the remaining fragment (if any)
861	 * allocate the extended piece
862	 */
863	for (i = frags; i < fs->fs_frag - bbase; i++)
864		if (isclr(blksfree, bno + i))
865			break;
866	cgp->cg_frsum[i - numfrags(fs, osize)]--;
867	if (i != frags)
868		cgp->cg_frsum[i - frags]++;
869	for (i = numfrags(fs, osize); i < frags; i++) {
870		clrbit(blksfree, bno + i);
871		cgp->cg_cs.cs_nffree--;
872		fs->fs_cstotal.cs_nffree--;
873		fs->fs_cs(fs, cg).cs_nffree--;
874	}
875	fs->fs_fmod = 1;
876	if (DOINGSOFTDEP(ITOV(ip)))
877		softdep_setup_blkmapdep(bp, fs, bprev);
878	bdwrite(bp);
879	return (bprev);
880}
881
882/*
883 * Determine whether a block can be allocated.
884 *
885 * Check to see if a block of the appropriate size is available,
886 * and if it is, allocate it.
887 */
888static ufs_daddr_t
889ffs_alloccg(ip, cg, bpref, size)
890	struct inode *ip;
891	int cg;
892	ufs_daddr_t bpref;
893	int size;
894{
895	register struct fs *fs;
896	register struct cg *cgp;
897	struct buf *bp;
898	register int i;
899	ufs_daddr_t bno, blkno;
900	int allocsiz, error, frags;
901	u_int8_t *blksfree;
902
903	fs = ip->i_fs;
904	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
905		return (0);
906	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
907		(int)fs->fs_cgsize, NOCRED, &bp);
908	if (error) {
909		brelse(bp);
910		return (0);
911	}
912	cgp = (struct cg *)bp->b_data;
913	if (!cg_chkmagic(cgp) ||
914	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
915		brelse(bp);
916		return (0);
917	}
918	bp->b_xflags |= BX_BKGRDWRITE;
919	cgp->cg_time = time_second;
920	if (size == fs->fs_bsize) {
921		bno = ffs_alloccgblk(ip, bp, bpref);
922		bdwrite(bp);
923		return (bno);
924	}
925	/*
926	 * check to see if any fragments are already available
927	 * allocsiz is the size which will be allocated, hacking
928	 * it down to a smaller size if necessary
929	 */
930	blksfree = cg_blksfree(cgp);
931	frags = numfrags(fs, size);
932	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
933		if (cgp->cg_frsum[allocsiz] != 0)
934			break;
935	if (allocsiz == fs->fs_frag) {
936		/*
937		 * no fragments were available, so a block will be
938		 * allocated, and hacked up
939		 */
940		if (cgp->cg_cs.cs_nbfree == 0) {
941			brelse(bp);
942			return (0);
943		}
944		bno = ffs_alloccgblk(ip, bp, bpref);
945		bpref = dtogd(fs, bno);
946		for (i = frags; i < fs->fs_frag; i++)
947			setbit(blksfree, bpref + i);
948		i = fs->fs_frag - frags;
949		cgp->cg_cs.cs_nffree += i;
950		fs->fs_cstotal.cs_nffree += i;
951		fs->fs_cs(fs, cg).cs_nffree += i;
952		fs->fs_fmod = 1;
953		cgp->cg_frsum[i]++;
954		bdwrite(bp);
955		return (bno);
956	}
957	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
958	if (bno < 0) {
959		brelse(bp);
960		return (0);
961	}
962	for (i = 0; i < frags; i++)
963		clrbit(blksfree, bno + i);
964	cgp->cg_cs.cs_nffree -= frags;
965	fs->fs_cstotal.cs_nffree -= frags;
966	fs->fs_cs(fs, cg).cs_nffree -= frags;
967	fs->fs_fmod = 1;
968	cgp->cg_frsum[allocsiz]--;
969	if (frags != allocsiz)
970		cgp->cg_frsum[allocsiz - frags]++;
971	blkno = cg * fs->fs_fpg + bno;
972	if (DOINGSOFTDEP(ITOV(ip)))
973		softdep_setup_blkmapdep(bp, fs, blkno);
974	bdwrite(bp);
975	return ((u_long)blkno);
976}
977
978/*
979 * Allocate a block in a cylinder group.
980 *
981 * This algorithm implements the following policy:
982 *   1) allocate the requested block.
983 *   2) allocate a rotationally optimal block in the same cylinder.
984 *   3) allocate the next available block on the block rotor for the
985 *      specified cylinder group.
986 * Note that this routine only allocates fs_bsize blocks; these
987 * blocks may be fragmented by the routine that allocates them.
988 */
989static ufs_daddr_t
990ffs_alloccgblk(ip, bp, bpref)
991	struct inode *ip;
992	struct buf *bp;
993	ufs_daddr_t bpref;
994{
995	struct fs *fs;
996	struct cg *cgp;
997	ufs_daddr_t bno, blkno;
998	int cylno, pos, delta;
999	short *cylbp;
1000	register int i;
1001	u_int8_t *blksfree;
1002
1003	fs = ip->i_fs;
1004	cgp = (struct cg *)bp->b_data;
1005	blksfree = cg_blksfree(cgp);
1006	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1007		bpref = cgp->cg_rotor;
1008		goto norot;
1009	}
1010	bpref = blknum(fs, bpref);
1011	bpref = dtogd(fs, bpref);
1012	/*
1013	 * if the requested block is available, use it
1014	 */
1015	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bpref))) {
1016		bno = bpref;
1017		goto gotit;
1018	}
1019	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1020		/*
1021		 * Block layout information is not available.
1022		 * Leaving bpref unchanged means we take the
1023		 * next available free block following the one
1024		 * we just allocated. Hopefully this will at
1025		 * least hit a track cache on drives of unknown
1026		 * geometry (e.g. SCSI).
1027		 */
1028		goto norot;
1029	}
1030	/*
1031	 * check for a block available on the same cylinder
1032	 */
1033	cylno = cbtocylno(fs, bpref);
1034	if (cg_blktot(cgp)[cylno] == 0)
1035		goto norot;
1036	/*
1037	 * check the summary information to see if a block is
1038	 * available in the requested cylinder starting at the
1039	 * requested rotational position and proceeding around.
1040	 */
1041	cylbp = cg_blks(fs, cgp, cylno);
1042	pos = cbtorpos(fs, bpref);
1043	for (i = pos; i < fs->fs_nrpos; i++)
1044		if (cylbp[i] > 0)
1045			break;
1046	if (i == fs->fs_nrpos)
1047		for (i = 0; i < pos; i++)
1048			if (cylbp[i] > 0)
1049				break;
1050	if (cylbp[i] > 0) {
1051		/*
1052		 * found a rotational position, now find the actual
1053		 * block. A panic if none is actually there.
1054		 */
1055		pos = cylno % fs->fs_cpc;
1056		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1057		if (fs_postbl(fs, pos)[i] == -1) {
1058			printf("pos = %d, i = %d, fs = %s\n",
1059			    pos, i, fs->fs_fsmnt);
1060			panic("ffs_alloccgblk: cyl groups corrupted");
1061		}
1062		for (i = fs_postbl(fs, pos)[i];; ) {
1063			if (ffs_isblock(fs, blksfree, bno + i)) {
1064				bno = blkstofrags(fs, (bno + i));
1065				goto gotit;
1066			}
1067			delta = fs_rotbl(fs)[i];
1068			if (delta <= 0 ||
1069			    delta + i > fragstoblks(fs, fs->fs_fpg))
1070				break;
1071			i += delta;
1072		}
1073		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1074		panic("ffs_alloccgblk: can't find blk in cyl");
1075	}
1076norot:
1077	/*
1078	 * no blocks in the requested cylinder, so take next
1079	 * available one in this cylinder group.
1080	 */
1081	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1082	if (bno < 0)
1083		return (0);
1084	cgp->cg_rotor = bno;
1085gotit:
1086	blkno = fragstoblks(fs, bno);
1087	ffs_clrblock(fs, blksfree, (long)blkno);
1088	ffs_clusteracct(fs, cgp, blkno, -1);
1089	cgp->cg_cs.cs_nbfree--;
1090	fs->fs_cstotal.cs_nbfree--;
1091	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1092	cylno = cbtocylno(fs, bno);
1093	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1094	cg_blktot(cgp)[cylno]--;
1095	fs->fs_fmod = 1;
1096	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1097	if (DOINGSOFTDEP(ITOV(ip)))
1098		softdep_setup_blkmapdep(bp, fs, blkno);
1099	return (blkno);
1100}
1101
1102/*
1103 * Determine whether a cluster can be allocated.
1104 *
1105 * We do not currently check for optimal rotational layout if there
1106 * are multiple choices in the same cylinder group. Instead we just
1107 * take the first one that we find following bpref.
1108 */
1109static ufs_daddr_t
1110ffs_clusteralloc(ip, cg, bpref, len)
1111	struct inode *ip;
1112	int cg;
1113	ufs_daddr_t bpref;
1114	int len;
1115{
1116	register struct fs *fs;
1117	register struct cg *cgp;
1118	struct buf *bp;
1119	int i, got, run, bno, bit, map;
1120	u_char *mapp;
1121	int32_t *lp;
1122	u_int8_t *blksfree;
1123
1124	fs = ip->i_fs;
1125	if (fs->fs_maxcluster[cg] < len)
1126		return (0);
1127	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1128	    NOCRED, &bp))
1129		goto fail;
1130	cgp = (struct cg *)bp->b_data;
1131	if (!cg_chkmagic(cgp))
1132		goto fail;
1133	bp->b_xflags |= BX_BKGRDWRITE;
1134	/*
1135	 * Check to see if a cluster of the needed size (or bigger) is
1136	 * available in this cylinder group.
1137	 */
1138	lp = &cg_clustersum(cgp)[len];
1139	for (i = len; i <= fs->fs_contigsumsize; i++)
1140		if (*lp++ > 0)
1141			break;
1142	if (i > fs->fs_contigsumsize) {
1143		/*
1144		 * This is the first time looking for a cluster in this
1145		 * cylinder group. Update the cluster summary information
1146		 * to reflect the true maximum sized cluster so that
1147		 * future cluster allocation requests can avoid reading
1148		 * the cylinder group map only to find no clusters.
1149		 */
1150		lp = &cg_clustersum(cgp)[len - 1];
1151		for (i = len - 1; i > 0; i--)
1152			if (*lp-- > 0)
1153				break;
1154		fs->fs_maxcluster[cg] = i;
1155		goto fail;
1156	}
1157	/*
1158	 * Search the cluster map to find a big enough cluster.
1159	 * We take the first one that we find, even if it is larger
1160	 * than we need as we prefer to get one close to the previous
1161	 * block allocation. We do not search before the current
1162	 * preference point as we do not want to allocate a block
1163	 * that is allocated before the previous one (as we will
1164	 * then have to wait for another pass of the elevator
1165	 * algorithm before it will be read). We prefer to fail and
1166	 * be recalled to try an allocation in the next cylinder group.
1167	 */
1168	if (dtog(fs, bpref) != cg)
1169		bpref = 0;
1170	else
1171		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1172	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1173	map = *mapp++;
1174	bit = 1 << (bpref % NBBY);
1175	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1176		if ((map & bit) == 0) {
1177			run = 0;
1178		} else {
1179			run++;
1180			if (run == len)
1181				break;
1182		}
1183		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1184			bit <<= 1;
1185		} else {
1186			map = *mapp++;
1187			bit = 1;
1188		}
1189	}
1190	if (got >= cgp->cg_nclusterblks)
1191		goto fail;
1192	/*
1193	 * Allocate the cluster that we have found.
1194	 */
1195	blksfree = cg_blksfree(cgp);
1196	for (i = 1; i <= len; i++)
1197		if (!ffs_isblock(fs, blksfree, got - run + i))
1198			panic("ffs_clusteralloc: map mismatch");
1199	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1200	if (dtog(fs, bno) != cg)
1201		panic("ffs_clusteralloc: allocated out of group");
1202	len = blkstofrags(fs, len);
1203	for (i = 0; i < len; i += fs->fs_frag)
1204		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1205			panic("ffs_clusteralloc: lost block");
1206	bdwrite(bp);
1207	return (bno);
1208
1209fail:
1210	brelse(bp);
1211	return (0);
1212}
1213
1214/*
1215 * Determine whether an inode can be allocated.
1216 *
1217 * Check to see if an inode is available, and if it is,
1218 * allocate it using the following policy:
1219 *   1) allocate the requested inode.
1220 *   2) allocate the next available inode after the requested
1221 *      inode in the specified cylinder group.
1222 */
1223static ino_t
1224ffs_nodealloccg(ip, cg, ipref, mode)
1225	struct inode *ip;
1226	int cg;
1227	ufs_daddr_t ipref;
1228	int mode;
1229{
1230	register struct fs *fs;
1231	register struct cg *cgp;
1232	struct buf *bp;
1233	u_int8_t *inosused;
1234	int error, start, len, loc, map, i;
1235
1236	fs = ip->i_fs;
1237	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1238		return (0);
1239	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1240		(int)fs->fs_cgsize, NOCRED, &bp);
1241	if (error) {
1242		brelse(bp);
1243		return (0);
1244	}
1245	cgp = (struct cg *)bp->b_data;
1246	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1247		brelse(bp);
1248		return (0);
1249	}
1250	bp->b_xflags |= BX_BKGRDWRITE;
1251	cgp->cg_time = time_second;
1252	inosused = cg_inosused(cgp);
1253	if (ipref) {
1254		ipref %= fs->fs_ipg;
1255		if (isclr(inosused, ipref))
1256			goto gotit;
1257	}
1258	start = cgp->cg_irotor / NBBY;
1259	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1260	loc = skpc(0xff, len, &inosused[start]);
1261	if (loc == 0) {
1262		len = start + 1;
1263		start = 0;
1264		loc = skpc(0xff, len, &inosused[0]);
1265		if (loc == 0) {
1266			printf("cg = %d, irotor = %ld, fs = %s\n",
1267			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1268			panic("ffs_nodealloccg: map corrupted");
1269			/* NOTREACHED */
1270		}
1271	}
1272	i = start + len - loc;
1273	map = inosused[i];
1274	ipref = i * NBBY;
1275	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1276		if ((map & i) == 0) {
1277			cgp->cg_irotor = ipref;
1278			goto gotit;
1279		}
1280	}
1281	printf("fs = %s\n", fs->fs_fsmnt);
1282	panic("ffs_nodealloccg: block not in map");
1283	/* NOTREACHED */
1284gotit:
1285	if (DOINGSOFTDEP(ITOV(ip)))
1286		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1287	setbit(inosused, ipref);
1288	cgp->cg_cs.cs_nifree--;
1289	fs->fs_cstotal.cs_nifree--;
1290	fs->fs_cs(fs, cg).cs_nifree--;
1291	fs->fs_fmod = 1;
1292	if ((mode & IFMT) == IFDIR) {
1293		cgp->cg_cs.cs_ndir++;
1294		fs->fs_cstotal.cs_ndir++;
1295		fs->fs_cs(fs, cg).cs_ndir++;
1296	}
1297	bdwrite(bp);
1298	return (cg * fs->fs_ipg + ipref);
1299}
1300
1301/*
1302 * Free a block or fragment.
1303 *
1304 * The specified block or fragment is placed back in the
1305 * free map. If a fragment is deallocated, a possible
1306 * block reassembly is checked.
1307 */
1308void
1309ffs_blkfree(ip, bno, size)
1310	register struct inode *ip;
1311	ufs_daddr_t bno;
1312	long size;
1313{
1314	register struct fs *fs;
1315	register struct cg *cgp;
1316	struct buf *bp;
1317	ufs_daddr_t blkno;
1318	int i, error, cg, blk, frags, bbase;
1319	u_int8_t *blksfree;
1320#ifdef DIAGNOSTIC
1321	struct vnode *vp;
1322#endif
1323
1324	fs = ip->i_fs;
1325#ifdef DIAGNOSTIC
1326	if ((vp = ITOV(ip)) != NULL && vp->v_mount != NULL &&
1327	    (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED))
1328		panic("ffs_blkfree: deallocation on suspended filesystem");
1329	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1330	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1331		printf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1332		    devtoname(ip->i_dev), (long)bno, (long)fs->fs_bsize, size,
1333		    fs->fs_fsmnt);
1334		panic("ffs_blkfree: bad size");
1335	}
1336#endif
1337	if ((ip->i_devvp->v_flag & VCOPYONWRITE) &&
1338	    ffs_snapblkfree(ip, bno, size))
1339		return;
1340	VOP_FREEBLKS(ip->i_devvp, fsbtodb(fs, bno), size);
1341	cg = dtog(fs, bno);
1342	if ((u_int)bno >= fs->fs_size) {
1343		printf("bad block %ld, ino %lu\n",
1344		    (long)bno, (u_long)ip->i_number);
1345		ffs_fserr(fs, ip->i_uid, "bad block");
1346		return;
1347	}
1348	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1349		(int)fs->fs_cgsize, NOCRED, &bp);
1350	if (error) {
1351		brelse(bp);
1352		return;
1353	}
1354	cgp = (struct cg *)bp->b_data;
1355	if (!cg_chkmagic(cgp)) {
1356		brelse(bp);
1357		return;
1358	}
1359	bp->b_xflags |= BX_BKGRDWRITE;
1360	cgp->cg_time = time_second;
1361	bno = dtogd(fs, bno);
1362	blksfree = cg_blksfree(cgp);
1363	if (size == fs->fs_bsize) {
1364		blkno = fragstoblks(fs, bno);
1365		if (!ffs_isfreeblock(fs, blksfree, blkno)) {
1366			printf("dev = %s, block = %ld, fs = %s\n",
1367			    devtoname(ip->i_dev), (long)bno, fs->fs_fsmnt);
1368			panic("ffs_blkfree: freeing free block");
1369		}
1370		ffs_setblock(fs, blksfree, blkno);
1371		ffs_clusteracct(fs, cgp, blkno, 1);
1372		cgp->cg_cs.cs_nbfree++;
1373		fs->fs_cstotal.cs_nbfree++;
1374		fs->fs_cs(fs, cg).cs_nbfree++;
1375		i = cbtocylno(fs, bno);
1376		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1377		cg_blktot(cgp)[i]++;
1378	} else {
1379		bbase = bno - fragnum(fs, bno);
1380		/*
1381		 * decrement the counts associated with the old frags
1382		 */
1383		blk = blkmap(fs, blksfree, bbase);
1384		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1385		/*
1386		 * deallocate the fragment
1387		 */
1388		frags = numfrags(fs, size);
1389		for (i = 0; i < frags; i++) {
1390			if (isset(blksfree, bno + i)) {
1391				printf("dev = %s, block = %ld, fs = %s\n",
1392				    devtoname(ip->i_dev), (long)(bno + i),
1393				    fs->fs_fsmnt);
1394				panic("ffs_blkfree: freeing free frag");
1395			}
1396			setbit(blksfree, bno + i);
1397		}
1398		cgp->cg_cs.cs_nffree += i;
1399		fs->fs_cstotal.cs_nffree += i;
1400		fs->fs_cs(fs, cg).cs_nffree += i;
1401		/*
1402		 * add back in counts associated with the new frags
1403		 */
1404		blk = blkmap(fs, blksfree, bbase);
1405		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1406		/*
1407		 * if a complete block has been reassembled, account for it
1408		 */
1409		blkno = fragstoblks(fs, bbase);
1410		if (ffs_isblock(fs, blksfree, blkno)) {
1411			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1412			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1413			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1414			ffs_clusteracct(fs, cgp, blkno, 1);
1415			cgp->cg_cs.cs_nbfree++;
1416			fs->fs_cstotal.cs_nbfree++;
1417			fs->fs_cs(fs, cg).cs_nbfree++;
1418			i = cbtocylno(fs, bbase);
1419			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1420			cg_blktot(cgp)[i]++;
1421		}
1422	}
1423	fs->fs_fmod = 1;
1424	bdwrite(bp);
1425}
1426
1427#ifdef DIAGNOSTIC
1428/*
1429 * Verify allocation of a block or fragment. Returns true if block or
1430 * fragment is allocated, false if it is free.
1431 */
1432static int
1433ffs_checkblk(ip, bno, size)
1434	struct inode *ip;
1435	ufs_daddr_t bno;
1436	long size;
1437{
1438	struct fs *fs;
1439	struct cg *cgp;
1440	struct buf *bp;
1441	int i, error, frags, free;
1442	u_int8_t *blksfree;
1443
1444	fs = ip->i_fs;
1445	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1446		printf("bsize = %ld, size = %ld, fs = %s\n",
1447		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1448		panic("ffs_checkblk: bad size");
1449	}
1450	if ((u_int)bno >= fs->fs_size)
1451		panic("ffs_checkblk: bad block %d", bno);
1452	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1453		(int)fs->fs_cgsize, NOCRED, &bp);
1454	if (error)
1455		panic("ffs_checkblk: cg bread failed");
1456	cgp = (struct cg *)bp->b_data;
1457	if (!cg_chkmagic(cgp))
1458		panic("ffs_checkblk: cg magic mismatch");
1459	bp->b_xflags |= BX_BKGRDWRITE;
1460	blksfree = cg_blksfree(cgp);
1461	bno = dtogd(fs, bno);
1462	if (size == fs->fs_bsize) {
1463		free = ffs_isblock(fs, blksfree, fragstoblks(fs, bno));
1464	} else {
1465		frags = numfrags(fs, size);
1466		for (free = 0, i = 0; i < frags; i++)
1467			if (isset(blksfree, bno + i))
1468				free++;
1469		if (free != 0 && free != frags)
1470			panic("ffs_checkblk: partially free fragment");
1471	}
1472	brelse(bp);
1473	return (!free);
1474}
1475#endif /* DIAGNOSTIC */
1476
1477/*
1478 * Free an inode.
1479 */
1480int
1481ffs_vfree( pvp, ino, mode)
1482	struct vnode *pvp;
1483	ino_t ino;
1484	int mode;
1485{
1486	if (DOINGSOFTDEP(pvp)) {
1487		softdep_freefile(pvp, ino, mode);
1488		return (0);
1489	}
1490	return (ffs_freefile(pvp, ino, mode));
1491}
1492
1493/*
1494 * Do the actual free operation.
1495 * The specified inode is placed back in the free map.
1496 */
1497 int
1498 ffs_freefile( pvp, ino, mode)
1499	struct vnode *pvp;
1500	ino_t ino;
1501	int mode;
1502{
1503	register struct fs *fs;
1504	register struct cg *cgp;
1505	register struct inode *pip;
1506	struct buf *bp;
1507	int error, cg;
1508	u_int8_t *inosused;
1509
1510	pip = VTOI(pvp);
1511	fs = pip->i_fs;
1512	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1513		panic("ffs_vfree: range: dev = (%d,%d), ino = %d, fs = %s",
1514		    major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1515	cg = ino_to_cg(fs, ino);
1516	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1517		(int)fs->fs_cgsize, NOCRED, &bp);
1518	if (error) {
1519		brelse(bp);
1520		return (error);
1521	}
1522	cgp = (struct cg *)bp->b_data;
1523	if (!cg_chkmagic(cgp)) {
1524		brelse(bp);
1525		return (0);
1526	}
1527	bp->b_xflags |= BX_BKGRDWRITE;
1528	cgp->cg_time = time_second;
1529	inosused = cg_inosused(cgp);
1530	ino %= fs->fs_ipg;
1531	if (isclr(inosused, ino)) {
1532		printf("dev = %s, ino = %lu, fs = %s\n",
1533		    devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1534		if (fs->fs_ronly == 0)
1535			panic("ffs_vfree: freeing free inode");
1536	}
1537	clrbit(inosused, ino);
1538	if (ino < cgp->cg_irotor)
1539		cgp->cg_irotor = ino;
1540	cgp->cg_cs.cs_nifree++;
1541	fs->fs_cstotal.cs_nifree++;
1542	fs->fs_cs(fs, cg).cs_nifree++;
1543	if ((mode & IFMT) == IFDIR) {
1544		cgp->cg_cs.cs_ndir--;
1545		fs->fs_cstotal.cs_ndir--;
1546		fs->fs_cs(fs, cg).cs_ndir--;
1547	}
1548	fs->fs_fmod = 1;
1549	bdwrite(bp);
1550	return (0);
1551}
1552
1553/*
1554 * Find a block of the specified size in the specified cylinder group.
1555 *
1556 * It is a panic if a request is made to find a block if none are
1557 * available.
1558 */
1559static ufs_daddr_t
1560ffs_mapsearch(fs, cgp, bpref, allocsiz)
1561	register struct fs *fs;
1562	register struct cg *cgp;
1563	ufs_daddr_t bpref;
1564	int allocsiz;
1565{
1566	ufs_daddr_t bno;
1567	int start, len, loc, i;
1568	int blk, field, subfield, pos;
1569	u_int8_t *blksfree;
1570
1571	/*
1572	 * find the fragment by searching through the free block
1573	 * map for an appropriate bit pattern
1574	 */
1575	if (bpref)
1576		start = dtogd(fs, bpref) / NBBY;
1577	else
1578		start = cgp->cg_frotor / NBBY;
1579	blksfree = cg_blksfree(cgp);
1580	len = howmany(fs->fs_fpg, NBBY) - start;
1581	loc = scanc((u_int)len, (u_char *)&blksfree[start],
1582		(u_char *)fragtbl[fs->fs_frag],
1583		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1584	if (loc == 0) {
1585		len = start + 1;
1586		start = 0;
1587		loc = scanc((u_int)len, (u_char *)&blksfree[0],
1588			(u_char *)fragtbl[fs->fs_frag],
1589			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1590		if (loc == 0) {
1591			printf("start = %d, len = %d, fs = %s\n",
1592			    start, len, fs->fs_fsmnt);
1593			panic("ffs_alloccg: map corrupted");
1594			/* NOTREACHED */
1595		}
1596	}
1597	bno = (start + len - loc) * NBBY;
1598	cgp->cg_frotor = bno;
1599	/*
1600	 * found the byte in the map
1601	 * sift through the bits to find the selected frag
1602	 */
1603	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1604		blk = blkmap(fs, blksfree, bno);
1605		blk <<= 1;
1606		field = around[allocsiz];
1607		subfield = inside[allocsiz];
1608		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1609			if ((blk & field) == subfield)
1610				return (bno + pos);
1611			field <<= 1;
1612			subfield <<= 1;
1613		}
1614	}
1615	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1616	panic("ffs_alloccg: block not in map");
1617	return (-1);
1618}
1619
1620/*
1621 * Update the cluster map because of an allocation or free.
1622 *
1623 * Cnt == 1 means free; cnt == -1 means allocating.
1624 */
1625static void
1626ffs_clusteracct(fs, cgp, blkno, cnt)
1627	struct fs *fs;
1628	struct cg *cgp;
1629	ufs_daddr_t blkno;
1630	int cnt;
1631{
1632	int32_t *sump;
1633	int32_t *lp;
1634	u_char *freemapp, *mapp;
1635	int i, start, end, forw, back, map, bit;
1636
1637	if (fs->fs_contigsumsize <= 0)
1638		return;
1639	freemapp = cg_clustersfree(cgp);
1640	sump = cg_clustersum(cgp);
1641	/*
1642	 * Allocate or clear the actual block.
1643	 */
1644	if (cnt > 0)
1645		setbit(freemapp, blkno);
1646	else
1647		clrbit(freemapp, blkno);
1648	/*
1649	 * Find the size of the cluster going forward.
1650	 */
1651	start = blkno + 1;
1652	end = start + fs->fs_contigsumsize;
1653	if (end >= cgp->cg_nclusterblks)
1654		end = cgp->cg_nclusterblks;
1655	mapp = &freemapp[start / NBBY];
1656	map = *mapp++;
1657	bit = 1 << (start % NBBY);
1658	for (i = start; i < end; i++) {
1659		if ((map & bit) == 0)
1660			break;
1661		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1662			bit <<= 1;
1663		} else {
1664			map = *mapp++;
1665			bit = 1;
1666		}
1667	}
1668	forw = i - start;
1669	/*
1670	 * Find the size of the cluster going backward.
1671	 */
1672	start = blkno - 1;
1673	end = start - fs->fs_contigsumsize;
1674	if (end < 0)
1675		end = -1;
1676	mapp = &freemapp[start / NBBY];
1677	map = *mapp--;
1678	bit = 1 << (start % NBBY);
1679	for (i = start; i > end; i--) {
1680		if ((map & bit) == 0)
1681			break;
1682		if ((i & (NBBY - 1)) != 0) {
1683			bit >>= 1;
1684		} else {
1685			map = *mapp--;
1686			bit = 1 << (NBBY - 1);
1687		}
1688	}
1689	back = start - i;
1690	/*
1691	 * Account for old cluster and the possibly new forward and
1692	 * back clusters.
1693	 */
1694	i = back + forw + 1;
1695	if (i > fs->fs_contigsumsize)
1696		i = fs->fs_contigsumsize;
1697	sump[i] += cnt;
1698	if (back > 0)
1699		sump[back] -= cnt;
1700	if (forw > 0)
1701		sump[forw] -= cnt;
1702	/*
1703	 * Update cluster summary information.
1704	 */
1705	lp = &sump[fs->fs_contigsumsize];
1706	for (i = fs->fs_contigsumsize; i > 0; i--)
1707		if (*lp-- > 0)
1708			break;
1709	fs->fs_maxcluster[cgp->cg_cgx] = i;
1710}
1711
1712/*
1713 * Fserr prints the name of a file system with an error diagnostic.
1714 *
1715 * The form of the error message is:
1716 *	fs: error message
1717 */
1718static void
1719ffs_fserr(fs, uid, cp)
1720	struct fs *fs;
1721	u_int uid;
1722	char *cp;
1723{
1724	struct proc *p = curproc;	/* XXX */
1725
1726	log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1727			p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1728}
1729