ffs_alloc.c revision 50477
1189251Ssam/*
2189251Ssam * Copyright (c) 1982, 1986, 1989, 1993
3214734Srpaulo *	The Regents of the University of California.  All rights reserved.
4189251Ssam *
5252726Srpaulo * Redistribution and use in source and binary forms, with or without
6252726Srpaulo * modification, are permitted provided that the following conditions
7189251Ssam * are met:
8189251Ssam * 1. Redistributions of source code must retain the above copyright
9189251Ssam *    notice, this list of conditions and the following disclaimer.
10189251Ssam * 2. Redistributions in binary form must reproduce the above copyright
11189251Ssam *    notice, this list of conditions and the following disclaimer in the
12214734Srpaulo *    documentation and/or other materials provided with the distribution.
13189251Ssam * 3. All advertising materials mentioning features or use of this software
14189251Ssam *    must display the following acknowledgement:
15214734Srpaulo *	This product includes software developed by the University of
16189251Ssam *	California, Berkeley and its contributors.
17189251Ssam * 4. Neither the name of the University nor the names of its contributors
18189251Ssam *    may be used to endorse or promote products derived from this software
19189251Ssam *    without specific prior written permission.
20189251Ssam *
21189251Ssam * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22189251Ssam * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23189251Ssam * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24189251Ssam * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25189251Ssam * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26189251Ssam * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27214734Srpaulo * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28189251Ssam * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
34 * $FreeBSD: head/sys/ufs/ffs/ffs_alloc.c 50477 1999-08-28 01:08:13Z peter $
35 */
36
37#include "opt_quota.h"
38
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/buf.h>
42#include <sys/conf.h>
43#include <sys/proc.h>
44#include <sys/vnode.h>
45#include <sys/mount.h>
46#include <sys/kernel.h>
47#include <sys/sysctl.h>
48#include <sys/syslog.h>
49
50#include <ufs/ufs/quota.h>
51#include <ufs/ufs/inode.h>
52#include <ufs/ufs/ufs_extern.h>
53#include <ufs/ufs/ufsmount.h>
54
55#include <ufs/ffs/fs.h>
56#include <ufs/ffs/ffs_extern.h>
57
58typedef ufs_daddr_t allocfcn_t __P((struct inode *ip, int cg, ufs_daddr_t bpref,
59				  int size));
60
61static ufs_daddr_t ffs_alloccg __P((struct inode *, int, ufs_daddr_t, int));
62static ufs_daddr_t
63	      ffs_alloccgblk __P((struct inode *, struct buf *, ufs_daddr_t));
64#ifdef DIAGNOSTIC
65static int	ffs_checkblk __P((struct inode *, ufs_daddr_t, long));
66#endif
67static void	ffs_clusteracct	__P((struct fs *, struct cg *, ufs_daddr_t,
68				     int));
69static ufs_daddr_t ffs_clusteralloc __P((struct inode *, int, ufs_daddr_t,
70	    int));
71static ino_t	ffs_dirpref __P((struct fs *));
72static ufs_daddr_t ffs_fragextend __P((struct inode *, int, long, int, int));
73static void	ffs_fserr __P((struct fs *, u_int, char *));
74static u_long	ffs_hashalloc
75		    __P((struct inode *, int, long, int, allocfcn_t *));
76static ino_t	ffs_nodealloccg __P((struct inode *, int, ufs_daddr_t, int));
77static ufs_daddr_t ffs_mapsearch __P((struct fs *, struct cg *, ufs_daddr_t,
78	    int));
79
80/*
81 * Allocate a block in the file system.
82 *
83 * The size of the requested block is given, which must be some
84 * multiple of fs_fsize and <= fs_bsize.
85 * A preference may be optionally specified. If a preference is given
86 * the following hierarchy is used to allocate a block:
87 *   1) allocate the requested block.
88 *   2) allocate a rotationally optimal block in the same cylinder.
89 *   3) allocate a block in the same cylinder group.
90 *   4) quadradically rehash into other cylinder groups, until an
91 *      available block is located.
92 * If no block preference is given the following heirarchy is used
93 * to allocate a block:
94 *   1) allocate a block in the cylinder group that contains the
95 *      inode for the file.
96 *   2) quadradically rehash into other cylinder groups, until an
97 *      available block is located.
98 */
99int
100ffs_alloc(ip, lbn, bpref, size, cred, bnp)
101	register struct inode *ip;
102	ufs_daddr_t lbn, bpref;
103	int size;
104	struct ucred *cred;
105	ufs_daddr_t *bnp;
106{
107	register struct fs *fs;
108	ufs_daddr_t bno;
109	int cg;
110#ifdef QUOTA
111	int error;
112#endif
113
114	*bnp = 0;
115	fs = ip->i_fs;
116#ifdef DIAGNOSTIC
117	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
118		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
119		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
120		    fs->fs_fsmnt);
121		panic("ffs_alloc: bad size");
122	}
123	if (cred == NOCRED)
124		panic("ffs_alloc: missing credential");
125#endif /* DIAGNOSTIC */
126	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
127		goto nospace;
128	if (cred->cr_uid != 0 &&
129	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
130		goto nospace;
131#ifdef QUOTA
132	error = chkdq(ip, (long)btodb(size), cred, 0);
133	if (error)
134		return (error);
135#endif
136	if (bpref >= fs->fs_size)
137		bpref = 0;
138	if (bpref == 0)
139		cg = ino_to_cg(fs, ip->i_number);
140	else
141		cg = dtog(fs, bpref);
142	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
143					 ffs_alloccg);
144	if (bno > 0) {
145		ip->i_blocks += btodb(size);
146		ip->i_flag |= IN_CHANGE | IN_UPDATE;
147		*bnp = bno;
148		return (0);
149	}
150#ifdef QUOTA
151	/*
152	 * Restore user's disk quota because allocation failed.
153	 */
154	(void) chkdq(ip, (long)-btodb(size), cred, FORCE);
155#endif
156nospace:
157	ffs_fserr(fs, cred->cr_uid, "file system full");
158	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
159	return (ENOSPC);
160}
161
162/*
163 * Reallocate a fragment to a bigger size
164 *
165 * The number and size of the old block is given, and a preference
166 * and new size is also specified. The allocator attempts to extend
167 * the original block. Failing that, the regular block allocator is
168 * invoked to get an appropriate block.
169 */
170int
171ffs_realloccg(ip, lbprev, bpref, osize, nsize, cred, bpp)
172	register struct inode *ip;
173	ufs_daddr_t lbprev;
174	ufs_daddr_t bpref;
175	int osize, nsize;
176	struct ucred *cred;
177	struct buf **bpp;
178{
179	register struct fs *fs;
180	struct buf *bp;
181	int cg, request, error;
182	ufs_daddr_t bprev, bno;
183
184	*bpp = 0;
185	fs = ip->i_fs;
186#ifdef DIAGNOSTIC
187	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
188	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
189		printf(
190		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
191		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
192		    nsize, fs->fs_fsmnt);
193		panic("ffs_realloccg: bad size");
194	}
195	if (cred == NOCRED)
196		panic("ffs_realloccg: missing credential");
197#endif /* DIAGNOSTIC */
198	if (cred->cr_uid != 0 &&
199	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0)
200		goto nospace;
201	if ((bprev = ip->i_db[lbprev]) == 0) {
202		printf("dev = %s, bsize = %ld, bprev = %ld, fs = %s\n",
203		    devtoname(ip->i_dev), (long)fs->fs_bsize, (long)bprev,
204		    fs->fs_fsmnt);
205		panic("ffs_realloccg: bad bprev");
206	}
207	/*
208	 * Allocate the extra space in the buffer.
209	 */
210	error = bread(ITOV(ip), lbprev, osize, NOCRED, &bp);
211	if (error) {
212		brelse(bp);
213		return (error);
214	}
215
216	if( bp->b_blkno == bp->b_lblkno) {
217		if( lbprev >= NDADDR)
218			panic("ffs_realloccg: lbprev out of range");
219		bp->b_blkno = fsbtodb(fs, bprev);
220	}
221
222#ifdef QUOTA
223	error = chkdq(ip, (long)btodb(nsize - osize), cred, 0);
224	if (error) {
225		brelse(bp);
226		return (error);
227	}
228#endif
229	/*
230	 * Check for extension in the existing location.
231	 */
232	cg = dtog(fs, bprev);
233	bno = ffs_fragextend(ip, cg, (long)bprev, osize, nsize);
234	if (bno) {
235		if (bp->b_blkno != fsbtodb(fs, bno))
236			panic("ffs_realloccg: bad blockno");
237		ip->i_blocks += btodb(nsize - osize);
238		ip->i_flag |= IN_CHANGE | IN_UPDATE;
239		allocbuf(bp, nsize);
240		bp->b_flags |= B_DONE;
241		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
242		*bpp = bp;
243		return (0);
244	}
245	/*
246	 * Allocate a new disk location.
247	 */
248	if (bpref >= fs->fs_size)
249		bpref = 0;
250	switch ((int)fs->fs_optim) {
251	case FS_OPTSPACE:
252		/*
253		 * Allocate an exact sized fragment. Although this makes
254		 * best use of space, we will waste time relocating it if
255		 * the file continues to grow. If the fragmentation is
256		 * less than half of the minimum free reserve, we choose
257		 * to begin optimizing for time.
258		 */
259		request = nsize;
260		if (fs->fs_minfree <= 5 ||
261		    fs->fs_cstotal.cs_nffree >
262		    fs->fs_dsize * fs->fs_minfree / (2 * 100))
263			break;
264		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
265			fs->fs_fsmnt);
266		fs->fs_optim = FS_OPTTIME;
267		break;
268	case FS_OPTTIME:
269		/*
270		 * At this point we have discovered a file that is trying to
271		 * grow a small fragment to a larger fragment. To save time,
272		 * we allocate a full sized block, then free the unused portion.
273		 * If the file continues to grow, the `ffs_fragextend' call
274		 * above will be able to grow it in place without further
275		 * copying. If aberrant programs cause disk fragmentation to
276		 * grow within 2% of the free reserve, we choose to begin
277		 * optimizing for space.
278		 */
279		request = fs->fs_bsize;
280		if (fs->fs_cstotal.cs_nffree <
281		    fs->fs_dsize * (fs->fs_minfree - 2) / 100)
282			break;
283		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
284			fs->fs_fsmnt);
285		fs->fs_optim = FS_OPTSPACE;
286		break;
287	default:
288		printf("dev = %s, optim = %ld, fs = %s\n",
289		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
290		panic("ffs_realloccg: bad optim");
291		/* NOTREACHED */
292	}
293	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, request,
294					 ffs_alloccg);
295	if (bno > 0) {
296		bp->b_blkno = fsbtodb(fs, bno);
297		if (!DOINGSOFTDEP(ITOV(ip)))
298			ffs_blkfree(ip, bprev, (long)osize);
299		if (nsize < request)
300			ffs_blkfree(ip, bno + numfrags(fs, nsize),
301			    (long)(request - nsize));
302		ip->i_blocks += btodb(nsize - osize);
303		ip->i_flag |= IN_CHANGE | IN_UPDATE;
304		allocbuf(bp, nsize);
305		bp->b_flags |= B_DONE;
306		bzero((char *)bp->b_data + osize, (u_int)nsize - osize);
307		*bpp = bp;
308		return (0);
309	}
310#ifdef QUOTA
311	/*
312	 * Restore user's disk quota because allocation failed.
313	 */
314	(void) chkdq(ip, (long)-btodb(nsize - osize), cred, FORCE);
315#endif
316	brelse(bp);
317nospace:
318	/*
319	 * no space available
320	 */
321	ffs_fserr(fs, cred->cr_uid, "file system full");
322	uprintf("\n%s: write failed, file system is full\n", fs->fs_fsmnt);
323	return (ENOSPC);
324}
325
326SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
327
328/*
329 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
330 *
331 * The vnode and an array of buffer pointers for a range of sequential
332 * logical blocks to be made contiguous is given. The allocator attempts
333 * to find a range of sequential blocks starting as close as possible to
334 * an fs_rotdelay offset from the end of the allocation for the logical
335 * block immediately preceeding the current range. If successful, the
336 * physical block numbers in the buffer pointers and in the inode are
337 * changed to reflect the new allocation. If unsuccessful, the allocation
338 * is left unchanged. The success in doing the reallocation is returned.
339 * Note that the error return is not reflected back to the user. Rather
340 * the previous block allocation will be used.
341 */
342static int doasyncfree = 1;
343SYSCTL_INT(_vfs_ffs, FFS_ASYNCFREE, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
344
345static int doreallocblks = 1;
346SYSCTL_INT(_vfs_ffs, FFS_REALLOCBLKS, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
347
348#ifdef DEBUG
349static volatile int prtrealloc = 0;
350#endif
351
352int
353ffs_reallocblks(ap)
354	struct vop_reallocblks_args /* {
355		struct vnode *a_vp;
356		struct cluster_save *a_buflist;
357	} */ *ap;
358{
359	struct fs *fs;
360	struct inode *ip;
361	struct vnode *vp;
362	struct buf *sbp, *ebp;
363	ufs_daddr_t *bap, *sbap, *ebap = 0;
364	struct cluster_save *buflist;
365	ufs_daddr_t start_lbn, end_lbn, soff, newblk, blkno;
366	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
367	int i, len, start_lvl, end_lvl, pref, ssize;
368
369	if (doreallocblks == 0)
370		return (ENOSPC);
371	vp = ap->a_vp;
372	ip = VTOI(vp);
373	fs = ip->i_fs;
374	if (fs->fs_contigsumsize <= 0)
375		return (ENOSPC);
376	buflist = ap->a_buflist;
377	len = buflist->bs_nchildren;
378	start_lbn = buflist->bs_children[0]->b_lblkno;
379	end_lbn = start_lbn + len - 1;
380#ifdef DIAGNOSTIC
381	for (i = 0; i < len; i++)
382		if (!ffs_checkblk(ip,
383		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
384			panic("ffs_reallocblks: unallocated block 1");
385	for (i = 1; i < len; i++)
386		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
387			panic("ffs_reallocblks: non-logical cluster");
388	blkno = buflist->bs_children[0]->b_blkno;
389	ssize = fsbtodb(fs, fs->fs_frag);
390	for (i = 1; i < len - 1; i++)
391		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
392			panic("ffs_reallocblks: non-physical cluster %d", i);
393#endif
394	/*
395	 * If the latest allocation is in a new cylinder group, assume that
396	 * the filesystem has decided to move and do not force it back to
397	 * the previous cylinder group.
398	 */
399	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
400	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
401		return (ENOSPC);
402	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
403	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
404		return (ENOSPC);
405	/*
406	 * Get the starting offset and block map for the first block.
407	 */
408	if (start_lvl == 0) {
409		sbap = &ip->i_db[0];
410		soff = start_lbn;
411	} else {
412		idp = &start_ap[start_lvl - 1];
413		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
414			brelse(sbp);
415			return (ENOSPC);
416		}
417		sbap = (ufs_daddr_t *)sbp->b_data;
418		soff = idp->in_off;
419	}
420	/*
421	 * Find the preferred location for the cluster.
422	 */
423	pref = ffs_blkpref(ip, start_lbn, soff, sbap);
424	/*
425	 * If the block range spans two block maps, get the second map.
426	 */
427	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
428		ssize = len;
429	} else {
430#ifdef DIAGNOSTIC
431		if (start_ap[start_lvl-1].in_lbn == idp->in_lbn)
432			panic("ffs_reallocblk: start == end");
433#endif
434		ssize = len - (idp->in_off + 1);
435		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
436			goto fail;
437		ebap = (ufs_daddr_t *)ebp->b_data;
438	}
439	/*
440	 * Search the block map looking for an allocation of the desired size.
441	 */
442	if ((newblk = (ufs_daddr_t)ffs_hashalloc(ip, dtog(fs, pref), (long)pref,
443	    len, ffs_clusteralloc)) == 0)
444		goto fail;
445	/*
446	 * We have found a new contiguous block.
447	 *
448	 * First we have to replace the old block pointers with the new
449	 * block pointers in the inode and indirect blocks associated
450	 * with the file.
451	 */
452#ifdef DEBUG
453	if (prtrealloc)
454		printf("realloc: ino %d, lbns %d-%d\n\told:", ip->i_number,
455		    start_lbn, end_lbn);
456#endif
457	blkno = newblk;
458	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
459		if (i == ssize) {
460			bap = ebap;
461			soff = -i;
462		}
463#ifdef DIAGNOSTIC
464		if (!ffs_checkblk(ip,
465		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
466			panic("ffs_reallocblks: unallocated block 2");
467		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
468			panic("ffs_reallocblks: alloc mismatch");
469#endif
470#ifdef DEBUG
471		if (prtrealloc)
472			printf(" %d,", *bap);
473#endif
474		if (DOINGSOFTDEP(vp)) {
475			if (sbap == &ip->i_db[0] && i < ssize)
476				softdep_setup_allocdirect(ip, start_lbn + i,
477				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
478				    buflist->bs_children[i]);
479			else
480				softdep_setup_allocindir_page(ip, start_lbn + i,
481				    i < ssize ? sbp : ebp, soff + i, blkno,
482				    *bap, buflist->bs_children[i]);
483		}
484		*bap++ = blkno;
485	}
486	/*
487	 * Next we must write out the modified inode and indirect blocks.
488	 * For strict correctness, the writes should be synchronous since
489	 * the old block values may have been written to disk. In practise
490	 * they are almost never written, but if we are concerned about
491	 * strict correctness, the `doasyncfree' flag should be set to zero.
492	 *
493	 * The test on `doasyncfree' should be changed to test a flag
494	 * that shows whether the associated buffers and inodes have
495	 * been written. The flag should be set when the cluster is
496	 * started and cleared whenever the buffer or inode is flushed.
497	 * We can then check below to see if it is set, and do the
498	 * synchronous write only when it has been cleared.
499	 */
500	if (sbap != &ip->i_db[0]) {
501		if (doasyncfree)
502			bdwrite(sbp);
503		else
504			bwrite(sbp);
505	} else {
506		ip->i_flag |= IN_CHANGE | IN_UPDATE;
507		if (!doasyncfree)
508			UFS_UPDATE(vp, 1);
509	}
510	if (ssize < len) {
511		if (doasyncfree)
512			bdwrite(ebp);
513		else
514			bwrite(ebp);
515	}
516	/*
517	 * Last, free the old blocks and assign the new blocks to the buffers.
518	 */
519#ifdef DEBUG
520	if (prtrealloc)
521		printf("\n\tnew:");
522#endif
523	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
524		if (!DOINGSOFTDEP(vp))
525			ffs_blkfree(ip,
526			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
527			    fs->fs_bsize);
528		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
529#ifdef DIAGNOSTIC
530		if (!ffs_checkblk(ip,
531		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
532			panic("ffs_reallocblks: unallocated block 3");
533#endif
534#ifdef DEBUG
535		if (prtrealloc)
536			printf(" %d,", blkno);
537#endif
538	}
539#ifdef DEBUG
540	if (prtrealloc) {
541		prtrealloc--;
542		printf("\n");
543	}
544#endif
545	return (0);
546
547fail:
548	if (ssize < len)
549		brelse(ebp);
550	if (sbap != &ip->i_db[0])
551		brelse(sbp);
552	return (ENOSPC);
553}
554
555/*
556 * Allocate an inode in the file system.
557 *
558 * If allocating a directory, use ffs_dirpref to select the inode.
559 * If allocating in a directory, the following hierarchy is followed:
560 *   1) allocate the preferred inode.
561 *   2) allocate an inode in the same cylinder group.
562 *   3) quadradically rehash into other cylinder groups, until an
563 *      available inode is located.
564 * If no inode preference is given the following heirarchy is used
565 * to allocate an inode:
566 *   1) allocate an inode in cylinder group 0.
567 *   2) quadradically rehash into other cylinder groups, until an
568 *      available inode is located.
569 */
570int
571ffs_valloc(pvp, mode, cred, vpp)
572	struct vnode *pvp;
573	int mode;
574	struct ucred *cred;
575	struct vnode **vpp;
576{
577	register struct inode *pip;
578	register struct fs *fs;
579	register struct inode *ip;
580	ino_t ino, ipref;
581	int cg, error;
582
583	*vpp = NULL;
584	pip = VTOI(pvp);
585	fs = pip->i_fs;
586	if (fs->fs_cstotal.cs_nifree == 0)
587		goto noinodes;
588
589	if ((mode & IFMT) == IFDIR)
590		ipref = ffs_dirpref(fs);
591	else
592		ipref = pip->i_number;
593	if (ipref >= fs->fs_ncg * fs->fs_ipg)
594		ipref = 0;
595	cg = ino_to_cg(fs, ipref);
596	ino = (ino_t)ffs_hashalloc(pip, cg, (long)ipref, mode,
597					(allocfcn_t *)ffs_nodealloccg);
598	if (ino == 0)
599		goto noinodes;
600	error = VFS_VGET(pvp->v_mount, ino, vpp);
601	if (error) {
602		UFS_VFREE(pvp, ino, mode);
603		return (error);
604	}
605	ip = VTOI(*vpp);
606	if (ip->i_mode) {
607		printf("mode = 0%o, inum = %lu, fs = %s\n",
608		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
609		panic("ffs_valloc: dup alloc");
610	}
611	if (ip->i_blocks) {				/* XXX */
612		printf("free inode %s/%lu had %ld blocks\n",
613		    fs->fs_fsmnt, (u_long)ino, (long)ip->i_blocks);
614		ip->i_blocks = 0;
615	}
616	ip->i_flags = 0;
617	/*
618	 * Set up a new generation number for this inode.
619	 */
620	if (ip->i_gen == 0 || ++ip->i_gen == 0)
621		ip->i_gen = random() / 2 + 1;
622	return (0);
623noinodes:
624	ffs_fserr(fs, cred->cr_uid, "out of inodes");
625	uprintf("\n%s: create/symlink failed, no inodes free\n", fs->fs_fsmnt);
626	return (ENOSPC);
627}
628
629/*
630 * Find a cylinder to place a directory.
631 *
632 * The policy implemented by this algorithm is to select from
633 * among those cylinder groups with above the average number of
634 * free inodes, the one with the smallest number of directories.
635 */
636static ino_t
637ffs_dirpref(fs)
638	register struct fs *fs;
639{
640	int cg, minndir, mincg, avgifree;
641
642	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
643	minndir = fs->fs_ipg;
644	mincg = 0;
645	for (cg = 0; cg < fs->fs_ncg; cg++)
646		if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
647		    fs->fs_cs(fs, cg).cs_nifree >= avgifree) {
648			mincg = cg;
649			minndir = fs->fs_cs(fs, cg).cs_ndir;
650		}
651	return ((ino_t)(fs->fs_ipg * mincg));
652}
653
654/*
655 * Select the desired position for the next block in a file.  The file is
656 * logically divided into sections. The first section is composed of the
657 * direct blocks. Each additional section contains fs_maxbpg blocks.
658 *
659 * If no blocks have been allocated in the first section, the policy is to
660 * request a block in the same cylinder group as the inode that describes
661 * the file. If no blocks have been allocated in any other section, the
662 * policy is to place the section in a cylinder group with a greater than
663 * average number of free blocks.  An appropriate cylinder group is found
664 * by using a rotor that sweeps the cylinder groups. When a new group of
665 * blocks is needed, the sweep begins in the cylinder group following the
666 * cylinder group from which the previous allocation was made. The sweep
667 * continues until a cylinder group with greater than the average number
668 * of free blocks is found. If the allocation is for the first block in an
669 * indirect block, the information on the previous allocation is unavailable;
670 * here a best guess is made based upon the logical block number being
671 * allocated.
672 *
673 * If a section is already partially allocated, the policy is to
674 * contiguously allocate fs_maxcontig blocks.  The end of one of these
675 * contiguous blocks and the beginning of the next is physically separated
676 * so that the disk head will be in transit between them for at least
677 * fs_rotdelay milliseconds.  This is to allow time for the processor to
678 * schedule another I/O transfer.
679 */
680ufs_daddr_t
681ffs_blkpref(ip, lbn, indx, bap)
682	struct inode *ip;
683	ufs_daddr_t lbn;
684	int indx;
685	ufs_daddr_t *bap;
686{
687	register struct fs *fs;
688	register int cg;
689	int avgbfree, startcg;
690	ufs_daddr_t nextblk;
691
692	fs = ip->i_fs;
693	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
694		if (lbn < NDADDR) {
695			cg = ino_to_cg(fs, ip->i_number);
696			return (fs->fs_fpg * cg + fs->fs_frag);
697		}
698		/*
699		 * Find a cylinder with greater than average number of
700		 * unused data blocks.
701		 */
702		if (indx == 0 || bap[indx - 1] == 0)
703			startcg =
704			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
705		else
706			startcg = dtog(fs, bap[indx - 1]) + 1;
707		startcg %= fs->fs_ncg;
708		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
709		for (cg = startcg; cg < fs->fs_ncg; cg++)
710			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
711				fs->fs_cgrotor = cg;
712				return (fs->fs_fpg * cg + fs->fs_frag);
713			}
714		for (cg = 0; cg <= startcg; cg++)
715			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
716				fs->fs_cgrotor = cg;
717				return (fs->fs_fpg * cg + fs->fs_frag);
718			}
719		return (0);
720	}
721	/*
722	 * One or more previous blocks have been laid out. If less
723	 * than fs_maxcontig previous blocks are contiguous, the
724	 * next block is requested contiguously, otherwise it is
725	 * requested rotationally delayed by fs_rotdelay milliseconds.
726	 */
727	nextblk = bap[indx - 1] + fs->fs_frag;
728	if (fs->fs_rotdelay == 0 || indx < fs->fs_maxcontig ||
729	    bap[indx - fs->fs_maxcontig] +
730	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
731		return (nextblk);
732	/*
733	 * Here we convert ms of delay to frags as:
734	 * (frags) = (ms) * (rev/sec) * (sect/rev) /
735	 *	((sect/frag) * (ms/sec))
736	 * then round up to the next block.
737	 */
738	nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
739	    (NSPF(fs) * 1000), fs->fs_frag);
740	return (nextblk);
741}
742
743/*
744 * Implement the cylinder overflow algorithm.
745 *
746 * The policy implemented by this algorithm is:
747 *   1) allocate the block in its requested cylinder group.
748 *   2) quadradically rehash on the cylinder group number.
749 *   3) brute force search for a free block.
750 */
751/*VARARGS5*/
752static u_long
753ffs_hashalloc(ip, cg, pref, size, allocator)
754	struct inode *ip;
755	int cg;
756	long pref;
757	int size;	/* size for data blocks, mode for inodes */
758	allocfcn_t *allocator;
759{
760	register struct fs *fs;
761	long result;	/* XXX why not same type as we return? */
762	int i, icg = cg;
763
764	fs = ip->i_fs;
765	/*
766	 * 1: preferred cylinder group
767	 */
768	result = (*allocator)(ip, cg, pref, size);
769	if (result)
770		return (result);
771	/*
772	 * 2: quadratic rehash
773	 */
774	for (i = 1; i < fs->fs_ncg; i *= 2) {
775		cg += i;
776		if (cg >= fs->fs_ncg)
777			cg -= fs->fs_ncg;
778		result = (*allocator)(ip, cg, 0, size);
779		if (result)
780			return (result);
781	}
782	/*
783	 * 3: brute force search
784	 * Note that we start at i == 2, since 0 was checked initially,
785	 * and 1 is always checked in the quadratic rehash.
786	 */
787	cg = (icg + 2) % fs->fs_ncg;
788	for (i = 2; i < fs->fs_ncg; i++) {
789		result = (*allocator)(ip, cg, 0, size);
790		if (result)
791			return (result);
792		cg++;
793		if (cg == fs->fs_ncg)
794			cg = 0;
795	}
796	return (0);
797}
798
799/*
800 * Determine whether a fragment can be extended.
801 *
802 * Check to see if the necessary fragments are available, and
803 * if they are, allocate them.
804 */
805static ufs_daddr_t
806ffs_fragextend(ip, cg, bprev, osize, nsize)
807	struct inode *ip;
808	int cg;
809	long bprev;
810	int osize, nsize;
811{
812	register struct fs *fs;
813	register struct cg *cgp;
814	struct buf *bp;
815	long bno;
816	int frags, bbase;
817	int i, error;
818
819	fs = ip->i_fs;
820	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
821		return (0);
822	frags = numfrags(fs, nsize);
823	bbase = fragnum(fs, bprev);
824	if (bbase > fragnum(fs, (bprev + frags - 1))) {
825		/* cannot extend across a block boundary */
826		return (0);
827	}
828	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
829		(int)fs->fs_cgsize, NOCRED, &bp);
830	if (error) {
831		brelse(bp);
832		return (0);
833	}
834	cgp = (struct cg *)bp->b_data;
835	if (!cg_chkmagic(cgp)) {
836		brelse(bp);
837		return (0);
838	}
839	cgp->cg_time = time_second;
840	bno = dtogd(fs, bprev);
841	for (i = numfrags(fs, osize); i < frags; i++)
842		if (isclr(cg_blksfree(cgp), bno + i)) {
843			brelse(bp);
844			return (0);
845		}
846	/*
847	 * the current fragment can be extended
848	 * deduct the count on fragment being extended into
849	 * increase the count on the remaining fragment (if any)
850	 * allocate the extended piece
851	 */
852	for (i = frags; i < fs->fs_frag - bbase; i++)
853		if (isclr(cg_blksfree(cgp), bno + i))
854			break;
855	cgp->cg_frsum[i - numfrags(fs, osize)]--;
856	if (i != frags)
857		cgp->cg_frsum[i - frags]++;
858	for (i = numfrags(fs, osize); i < frags; i++) {
859		clrbit(cg_blksfree(cgp), bno + i);
860		cgp->cg_cs.cs_nffree--;
861		fs->fs_cstotal.cs_nffree--;
862		fs->fs_cs(fs, cg).cs_nffree--;
863	}
864	fs->fs_fmod = 1;
865	if (DOINGSOFTDEP(ITOV(ip)))
866		softdep_setup_blkmapdep(bp, fs, bprev);
867	bdwrite(bp);
868	return (bprev);
869}
870
871/*
872 * Determine whether a block can be allocated.
873 *
874 * Check to see if a block of the appropriate size is available,
875 * and if it is, allocate it.
876 */
877static ufs_daddr_t
878ffs_alloccg(ip, cg, bpref, size)
879	struct inode *ip;
880	int cg;
881	ufs_daddr_t bpref;
882	int size;
883{
884	register struct fs *fs;
885	register struct cg *cgp;
886	struct buf *bp;
887	register int i;
888	ufs_daddr_t bno, blkno;
889	int allocsiz, error, frags;
890
891	fs = ip->i_fs;
892	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
893		return (0);
894	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
895		(int)fs->fs_cgsize, NOCRED, &bp);
896	if (error) {
897		brelse(bp);
898		return (0);
899	}
900	cgp = (struct cg *)bp->b_data;
901	if (!cg_chkmagic(cgp) ||
902	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
903		brelse(bp);
904		return (0);
905	}
906	cgp->cg_time = time_second;
907	if (size == fs->fs_bsize) {
908		bno = ffs_alloccgblk(ip, bp, bpref);
909		bdwrite(bp);
910		return (bno);
911	}
912	/*
913	 * check to see if any fragments are already available
914	 * allocsiz is the size which will be allocated, hacking
915	 * it down to a smaller size if necessary
916	 */
917	frags = numfrags(fs, size);
918	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
919		if (cgp->cg_frsum[allocsiz] != 0)
920			break;
921	if (allocsiz == fs->fs_frag) {
922		/*
923		 * no fragments were available, so a block will be
924		 * allocated, and hacked up
925		 */
926		if (cgp->cg_cs.cs_nbfree == 0) {
927			brelse(bp);
928			return (0);
929		}
930		bno = ffs_alloccgblk(ip, bp, bpref);
931		bpref = dtogd(fs, bno);
932		for (i = frags; i < fs->fs_frag; i++)
933			setbit(cg_blksfree(cgp), bpref + i);
934		i = fs->fs_frag - frags;
935		cgp->cg_cs.cs_nffree += i;
936		fs->fs_cstotal.cs_nffree += i;
937		fs->fs_cs(fs, cg).cs_nffree += i;
938		fs->fs_fmod = 1;
939		cgp->cg_frsum[i]++;
940		bdwrite(bp);
941		return (bno);
942	}
943	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
944	if (bno < 0) {
945		brelse(bp);
946		return (0);
947	}
948	for (i = 0; i < frags; i++)
949		clrbit(cg_blksfree(cgp), bno + i);
950	cgp->cg_cs.cs_nffree -= frags;
951	fs->fs_cstotal.cs_nffree -= frags;
952	fs->fs_cs(fs, cg).cs_nffree -= frags;
953	fs->fs_fmod = 1;
954	cgp->cg_frsum[allocsiz]--;
955	if (frags != allocsiz)
956		cgp->cg_frsum[allocsiz - frags]++;
957	blkno = cg * fs->fs_fpg + bno;
958	if (DOINGSOFTDEP(ITOV(ip)))
959		softdep_setup_blkmapdep(bp, fs, blkno);
960	bdwrite(bp);
961	return ((u_long)blkno);
962}
963
964/*
965 * Allocate a block in a cylinder group.
966 *
967 * This algorithm implements the following policy:
968 *   1) allocate the requested block.
969 *   2) allocate a rotationally optimal block in the same cylinder.
970 *   3) allocate the next available block on the block rotor for the
971 *      specified cylinder group.
972 * Note that this routine only allocates fs_bsize blocks; these
973 * blocks may be fragmented by the routine that allocates them.
974 */
975static ufs_daddr_t
976ffs_alloccgblk(ip, bp, bpref)
977	struct inode *ip;
978	struct buf *bp;
979	ufs_daddr_t bpref;
980{
981	struct fs *fs;
982	struct cg *cgp;
983	ufs_daddr_t bno, blkno;
984	int cylno, pos, delta;
985	short *cylbp;
986	register int i;
987
988	fs = ip->i_fs;
989	cgp = (struct cg *)bp->b_data;
990	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
991		bpref = cgp->cg_rotor;
992		goto norot;
993	}
994	bpref = blknum(fs, bpref);
995	bpref = dtogd(fs, bpref);
996	/*
997	 * if the requested block is available, use it
998	 */
999	if (ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bpref))) {
1000		bno = bpref;
1001		goto gotit;
1002	}
1003	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
1004		/*
1005		 * Block layout information is not available.
1006		 * Leaving bpref unchanged means we take the
1007		 * next available free block following the one
1008		 * we just allocated. Hopefully this will at
1009		 * least hit a track cache on drives of unknown
1010		 * geometry (e.g. SCSI).
1011		 */
1012		goto norot;
1013	}
1014	/*
1015	 * check for a block available on the same cylinder
1016	 */
1017	cylno = cbtocylno(fs, bpref);
1018	if (cg_blktot(cgp)[cylno] == 0)
1019		goto norot;
1020	/*
1021	 * check the summary information to see if a block is
1022	 * available in the requested cylinder starting at the
1023	 * requested rotational position and proceeding around.
1024	 */
1025	cylbp = cg_blks(fs, cgp, cylno);
1026	pos = cbtorpos(fs, bpref);
1027	for (i = pos; i < fs->fs_nrpos; i++)
1028		if (cylbp[i] > 0)
1029			break;
1030	if (i == fs->fs_nrpos)
1031		for (i = 0; i < pos; i++)
1032			if (cylbp[i] > 0)
1033				break;
1034	if (cylbp[i] > 0) {
1035		/*
1036		 * found a rotational position, now find the actual
1037		 * block. A panic if none is actually there.
1038		 */
1039		pos = cylno % fs->fs_cpc;
1040		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
1041		if (fs_postbl(fs, pos)[i] == -1) {
1042			printf("pos = %d, i = %d, fs = %s\n",
1043			    pos, i, fs->fs_fsmnt);
1044			panic("ffs_alloccgblk: cyl groups corrupted");
1045		}
1046		for (i = fs_postbl(fs, pos)[i];; ) {
1047			if (ffs_isblock(fs, cg_blksfree(cgp), bno + i)) {
1048				bno = blkstofrags(fs, (bno + i));
1049				goto gotit;
1050			}
1051			delta = fs_rotbl(fs)[i];
1052			if (delta <= 0 ||
1053			    delta + i > fragstoblks(fs, fs->fs_fpg))
1054				break;
1055			i += delta;
1056		}
1057		printf("pos = %d, i = %d, fs = %s\n", pos, i, fs->fs_fsmnt);
1058		panic("ffs_alloccgblk: can't find blk in cyl");
1059	}
1060norot:
1061	/*
1062	 * no blocks in the requested cylinder, so take next
1063	 * available one in this cylinder group.
1064	 */
1065	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1066	if (bno < 0)
1067		return (0);
1068	cgp->cg_rotor = bno;
1069gotit:
1070	blkno = fragstoblks(fs, bno);
1071	ffs_clrblock(fs, cg_blksfree(cgp), (long)blkno);
1072	ffs_clusteracct(fs, cgp, blkno, -1);
1073	cgp->cg_cs.cs_nbfree--;
1074	fs->fs_cstotal.cs_nbfree--;
1075	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1076	cylno = cbtocylno(fs, bno);
1077	cg_blks(fs, cgp, cylno)[cbtorpos(fs, bno)]--;
1078	cg_blktot(cgp)[cylno]--;
1079	fs->fs_fmod = 1;
1080	blkno = cgp->cg_cgx * fs->fs_fpg + bno;
1081	if (DOINGSOFTDEP(ITOV(ip)))
1082		softdep_setup_blkmapdep(bp, fs, blkno);
1083	return (blkno);
1084}
1085
1086/*
1087 * Determine whether a cluster can be allocated.
1088 *
1089 * We do not currently check for optimal rotational layout if there
1090 * are multiple choices in the same cylinder group. Instead we just
1091 * take the first one that we find following bpref.
1092 */
1093static ufs_daddr_t
1094ffs_clusteralloc(ip, cg, bpref, len)
1095	struct inode *ip;
1096	int cg;
1097	ufs_daddr_t bpref;
1098	int len;
1099{
1100	register struct fs *fs;
1101	register struct cg *cgp;
1102	struct buf *bp;
1103	int i, got, run, bno, bit, map;
1104	u_char *mapp;
1105	int32_t *lp;
1106
1107	fs = ip->i_fs;
1108	if (fs->fs_maxcluster[cg] < len)
1109		return (NULL);
1110	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1111	    NOCRED, &bp))
1112		goto fail;
1113	cgp = (struct cg *)bp->b_data;
1114	if (!cg_chkmagic(cgp))
1115		goto fail;
1116	/*
1117	 * Check to see if a cluster of the needed size (or bigger) is
1118	 * available in this cylinder group.
1119	 */
1120	lp = &cg_clustersum(cgp)[len];
1121	for (i = len; i <= fs->fs_contigsumsize; i++)
1122		if (*lp++ > 0)
1123			break;
1124	if (i > fs->fs_contigsumsize) {
1125		/*
1126		 * This is the first time looking for a cluster in this
1127		 * cylinder group. Update the cluster summary information
1128		 * to reflect the true maximum sized cluster so that
1129		 * future cluster allocation requests can avoid reading
1130		 * the cylinder group map only to find no clusters.
1131		 */
1132		lp = &cg_clustersum(cgp)[len - 1];
1133		for (i = len - 1; i > 0; i--)
1134			if (*lp-- > 0)
1135				break;
1136		fs->fs_maxcluster[cg] = i;
1137		goto fail;
1138	}
1139	/*
1140	 * Search the cluster map to find a big enough cluster.
1141	 * We take the first one that we find, even if it is larger
1142	 * than we need as we prefer to get one close to the previous
1143	 * block allocation. We do not search before the current
1144	 * preference point as we do not want to allocate a block
1145	 * that is allocated before the previous one (as we will
1146	 * then have to wait for another pass of the elevator
1147	 * algorithm before it will be read). We prefer to fail and
1148	 * be recalled to try an allocation in the next cylinder group.
1149	 */
1150	if (dtog(fs, bpref) != cg)
1151		bpref = 0;
1152	else
1153		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1154	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1155	map = *mapp++;
1156	bit = 1 << (bpref % NBBY);
1157	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1158		if ((map & bit) == 0) {
1159			run = 0;
1160		} else {
1161			run++;
1162			if (run == len)
1163				break;
1164		}
1165		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1166			bit <<= 1;
1167		} else {
1168			map = *mapp++;
1169			bit = 1;
1170		}
1171	}
1172	if (got >= cgp->cg_nclusterblks)
1173		goto fail;
1174	/*
1175	 * Allocate the cluster that we have found.
1176	 */
1177	for (i = 1; i <= len; i++)
1178		if (!ffs_isblock(fs, cg_blksfree(cgp), got - run + i))
1179			panic("ffs_clusteralloc: map mismatch");
1180	bno = cg * fs->fs_fpg + blkstofrags(fs, got - run + 1);
1181	if (dtog(fs, bno) != cg)
1182		panic("ffs_clusteralloc: allocated out of group");
1183	len = blkstofrags(fs, len);
1184	for (i = 0; i < len; i += fs->fs_frag)
1185		if ((got = ffs_alloccgblk(ip, bp, bno + i)) != bno + i)
1186			panic("ffs_clusteralloc: lost block");
1187	bdwrite(bp);
1188	return (bno);
1189
1190fail:
1191	brelse(bp);
1192	return (0);
1193}
1194
1195/*
1196 * Determine whether an inode can be allocated.
1197 *
1198 * Check to see if an inode is available, and if it is,
1199 * allocate it using the following policy:
1200 *   1) allocate the requested inode.
1201 *   2) allocate the next available inode after the requested
1202 *      inode in the specified cylinder group.
1203 */
1204static ino_t
1205ffs_nodealloccg(ip, cg, ipref, mode)
1206	struct inode *ip;
1207	int cg;
1208	ufs_daddr_t ipref;
1209	int mode;
1210{
1211	register struct fs *fs;
1212	register struct cg *cgp;
1213	struct buf *bp;
1214	int error, start, len, loc, map, i;
1215
1216	fs = ip->i_fs;
1217	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1218		return (0);
1219	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1220		(int)fs->fs_cgsize, NOCRED, &bp);
1221	if (error) {
1222		brelse(bp);
1223		return (0);
1224	}
1225	cgp = (struct cg *)bp->b_data;
1226	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1227		brelse(bp);
1228		return (0);
1229	}
1230	cgp->cg_time = time_second;
1231	if (ipref) {
1232		ipref %= fs->fs_ipg;
1233		if (isclr(cg_inosused(cgp), ipref))
1234			goto gotit;
1235	}
1236	start = cgp->cg_irotor / NBBY;
1237	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1238	loc = skpc(0xff, len, &cg_inosused(cgp)[start]);
1239	if (loc == 0) {
1240		len = start + 1;
1241		start = 0;
1242		loc = skpc(0xff, len, &cg_inosused(cgp)[0]);
1243		if (loc == 0) {
1244			printf("cg = %d, irotor = %ld, fs = %s\n",
1245			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1246			panic("ffs_nodealloccg: map corrupted");
1247			/* NOTREACHED */
1248		}
1249	}
1250	i = start + len - loc;
1251	map = cg_inosused(cgp)[i];
1252	ipref = i * NBBY;
1253	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1254		if ((map & i) == 0) {
1255			cgp->cg_irotor = ipref;
1256			goto gotit;
1257		}
1258	}
1259	printf("fs = %s\n", fs->fs_fsmnt);
1260	panic("ffs_nodealloccg: block not in map");
1261	/* NOTREACHED */
1262gotit:
1263	if (DOINGSOFTDEP(ITOV(ip)))
1264		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1265	setbit(cg_inosused(cgp), ipref);
1266	cgp->cg_cs.cs_nifree--;
1267	fs->fs_cstotal.cs_nifree--;
1268	fs->fs_cs(fs, cg).cs_nifree--;
1269	fs->fs_fmod = 1;
1270	if ((mode & IFMT) == IFDIR) {
1271		cgp->cg_cs.cs_ndir++;
1272		fs->fs_cstotal.cs_ndir++;
1273		fs->fs_cs(fs, cg).cs_ndir++;
1274	}
1275	bdwrite(bp);
1276	return (cg * fs->fs_ipg + ipref);
1277}
1278
1279/*
1280 * Free a block or fragment.
1281 *
1282 * The specified block or fragment is placed back in the
1283 * free map. If a fragment is deallocated, a possible
1284 * block reassembly is checked.
1285 */
1286void
1287ffs_blkfree(ip, bno, size)
1288	register struct inode *ip;
1289	ufs_daddr_t bno;
1290	long size;
1291{
1292	register struct fs *fs;
1293	register struct cg *cgp;
1294	struct buf *bp;
1295	ufs_daddr_t blkno;
1296	int i, error, cg, blk, frags, bbase;
1297
1298	fs = ip->i_fs;
1299	VOP_FREEBLKS(ip->i_devvp, fsbtodb(fs, bno), size);
1300	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1301	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1302		printf("dev=%s, bno = %ld, bsize = %ld, size = %ld, fs = %s\n",
1303		    devtoname(ip->i_dev), (long)bno, (long)fs->fs_bsize, size,
1304		    fs->fs_fsmnt);
1305		panic("ffs_blkfree: bad size");
1306	}
1307	cg = dtog(fs, bno);
1308	if ((u_int)bno >= fs->fs_size) {
1309		printf("bad block %ld, ino %lu\n",
1310		    (long)bno, (u_long)ip->i_number);
1311		ffs_fserr(fs, ip->i_uid, "bad block");
1312		return;
1313	}
1314	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1315		(int)fs->fs_cgsize, NOCRED, &bp);
1316	if (error) {
1317		brelse(bp);
1318		return;
1319	}
1320	cgp = (struct cg *)bp->b_data;
1321	if (!cg_chkmagic(cgp)) {
1322		brelse(bp);
1323		return;
1324	}
1325	cgp->cg_time = time_second;
1326	bno = dtogd(fs, bno);
1327	if (size == fs->fs_bsize) {
1328		blkno = fragstoblks(fs, bno);
1329		if (!ffs_isfreeblock(fs, cg_blksfree(cgp), blkno)) {
1330			printf("dev = %s, block = %ld, fs = %s\n",
1331			    devtoname(ip->i_dev), (long)bno, fs->fs_fsmnt);
1332			panic("ffs_blkfree: freeing free block");
1333		}
1334		ffs_setblock(fs, cg_blksfree(cgp), blkno);
1335		ffs_clusteracct(fs, cgp, blkno, 1);
1336		cgp->cg_cs.cs_nbfree++;
1337		fs->fs_cstotal.cs_nbfree++;
1338		fs->fs_cs(fs, cg).cs_nbfree++;
1339		i = cbtocylno(fs, bno);
1340		cg_blks(fs, cgp, i)[cbtorpos(fs, bno)]++;
1341		cg_blktot(cgp)[i]++;
1342	} else {
1343		bbase = bno - fragnum(fs, bno);
1344		/*
1345		 * decrement the counts associated with the old frags
1346		 */
1347		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1348		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1349		/*
1350		 * deallocate the fragment
1351		 */
1352		frags = numfrags(fs, size);
1353		for (i = 0; i < frags; i++) {
1354			if (isset(cg_blksfree(cgp), bno + i)) {
1355				printf("dev = %s, block = %ld, fs = %s\n",
1356				    devtoname(ip->i_dev), (long)(bno + i),
1357				    fs->fs_fsmnt);
1358				panic("ffs_blkfree: freeing free frag");
1359			}
1360			setbit(cg_blksfree(cgp), bno + i);
1361		}
1362		cgp->cg_cs.cs_nffree += i;
1363		fs->fs_cstotal.cs_nffree += i;
1364		fs->fs_cs(fs, cg).cs_nffree += i;
1365		/*
1366		 * add back in counts associated with the new frags
1367		 */
1368		blk = blkmap(fs, cg_blksfree(cgp), bbase);
1369		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1370		/*
1371		 * if a complete block has been reassembled, account for it
1372		 */
1373		blkno = fragstoblks(fs, bbase);
1374		if (ffs_isblock(fs, cg_blksfree(cgp), blkno)) {
1375			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1376			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1377			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1378			ffs_clusteracct(fs, cgp, blkno, 1);
1379			cgp->cg_cs.cs_nbfree++;
1380			fs->fs_cstotal.cs_nbfree++;
1381			fs->fs_cs(fs, cg).cs_nbfree++;
1382			i = cbtocylno(fs, bbase);
1383			cg_blks(fs, cgp, i)[cbtorpos(fs, bbase)]++;
1384			cg_blktot(cgp)[i]++;
1385		}
1386	}
1387	fs->fs_fmod = 1;
1388	bdwrite(bp);
1389}
1390
1391#ifdef DIAGNOSTIC
1392/*
1393 * Verify allocation of a block or fragment. Returns true if block or
1394 * fragment is allocated, false if it is free.
1395 */
1396static int
1397ffs_checkblk(ip, bno, size)
1398	struct inode *ip;
1399	ufs_daddr_t bno;
1400	long size;
1401{
1402	struct fs *fs;
1403	struct cg *cgp;
1404	struct buf *bp;
1405	int i, error, frags, free;
1406
1407	fs = ip->i_fs;
1408	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1409		printf("bsize = %ld, size = %ld, fs = %s\n",
1410		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1411		panic("ffs_checkblk: bad size");
1412	}
1413	if ((u_int)bno >= fs->fs_size)
1414		panic("ffs_checkblk: bad block %d", bno);
1415	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1416		(int)fs->fs_cgsize, NOCRED, &bp);
1417	if (error)
1418		panic("ffs_checkblk: cg bread failed");
1419	cgp = (struct cg *)bp->b_data;
1420	if (!cg_chkmagic(cgp))
1421		panic("ffs_checkblk: cg magic mismatch");
1422	bno = dtogd(fs, bno);
1423	if (size == fs->fs_bsize) {
1424		free = ffs_isblock(fs, cg_blksfree(cgp), fragstoblks(fs, bno));
1425	} else {
1426		frags = numfrags(fs, size);
1427		for (free = 0, i = 0; i < frags; i++)
1428			if (isset(cg_blksfree(cgp), bno + i))
1429				free++;
1430		if (free != 0 && free != frags)
1431			panic("ffs_checkblk: partially free fragment");
1432	}
1433	brelse(bp);
1434	return (!free);
1435}
1436#endif /* DIAGNOSTIC */
1437
1438/*
1439 * Free an inode.
1440 */
1441int
1442ffs_vfree( pvp, ino, mode)
1443	struct vnode *pvp;
1444	ino_t ino;
1445	int mode;
1446{
1447	if (DOINGSOFTDEP(pvp)) {
1448		softdep_freefile(pvp, ino, mode);
1449		return (0);
1450	}
1451	return (ffs_freefile(pvp, ino, mode));
1452}
1453
1454/*
1455 * Do the actual free operation.
1456 * The specified inode is placed back in the free map.
1457 */
1458 int
1459 ffs_freefile( pvp, ino, mode)
1460	struct vnode *pvp;
1461	ino_t ino;
1462	int mode;
1463{
1464	register struct fs *fs;
1465	register struct cg *cgp;
1466	register struct inode *pip;
1467	struct buf *bp;
1468	int error, cg;
1469
1470	pip = VTOI(pvp);
1471	fs = pip->i_fs;
1472	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
1473		panic("ffs_vfree: range: dev = (%d,%d), ino = %d, fs = %s",
1474		    major(pip->i_dev), minor(pip->i_dev), ino, fs->fs_fsmnt);
1475	cg = ino_to_cg(fs, ino);
1476	error = bread(pip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1477		(int)fs->fs_cgsize, NOCRED, &bp);
1478	if (error) {
1479		brelse(bp);
1480		return (error);
1481	}
1482	cgp = (struct cg *)bp->b_data;
1483	if (!cg_chkmagic(cgp)) {
1484		brelse(bp);
1485		return (0);
1486	}
1487	cgp->cg_time = time_second;
1488	ino %= fs->fs_ipg;
1489	if (isclr(cg_inosused(cgp), ino)) {
1490		printf("dev = %s, ino = %lu, fs = %s\n",
1491		    devtoname(pip->i_dev), (u_long)ino, fs->fs_fsmnt);
1492		if (fs->fs_ronly == 0)
1493			panic("ffs_vfree: freeing free inode");
1494	}
1495	clrbit(cg_inosused(cgp), ino);
1496	if (ino < cgp->cg_irotor)
1497		cgp->cg_irotor = ino;
1498	cgp->cg_cs.cs_nifree++;
1499	fs->fs_cstotal.cs_nifree++;
1500	fs->fs_cs(fs, cg).cs_nifree++;
1501	if ((mode & IFMT) == IFDIR) {
1502		cgp->cg_cs.cs_ndir--;
1503		fs->fs_cstotal.cs_ndir--;
1504		fs->fs_cs(fs, cg).cs_ndir--;
1505	}
1506	fs->fs_fmod = 1;
1507	bdwrite(bp);
1508	return (0);
1509}
1510
1511/*
1512 * Find a block of the specified size in the specified cylinder group.
1513 *
1514 * It is a panic if a request is made to find a block if none are
1515 * available.
1516 */
1517static ufs_daddr_t
1518ffs_mapsearch(fs, cgp, bpref, allocsiz)
1519	register struct fs *fs;
1520	register struct cg *cgp;
1521	ufs_daddr_t bpref;
1522	int allocsiz;
1523{
1524	ufs_daddr_t bno;
1525	int start, len, loc, i;
1526	int blk, field, subfield, pos;
1527
1528	/*
1529	 * find the fragment by searching through the free block
1530	 * map for an appropriate bit pattern
1531	 */
1532	if (bpref)
1533		start = dtogd(fs, bpref) / NBBY;
1534	else
1535		start = cgp->cg_frotor / NBBY;
1536	len = howmany(fs->fs_fpg, NBBY) - start;
1537	loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[start],
1538		(u_char *)fragtbl[fs->fs_frag],
1539		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1540	if (loc == 0) {
1541		len = start + 1;
1542		start = 0;
1543		loc = scanc((u_int)len, (u_char *)&cg_blksfree(cgp)[0],
1544			(u_char *)fragtbl[fs->fs_frag],
1545			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
1546		if (loc == 0) {
1547			printf("start = %d, len = %d, fs = %s\n",
1548			    start, len, fs->fs_fsmnt);
1549			panic("ffs_alloccg: map corrupted");
1550			/* NOTREACHED */
1551		}
1552	}
1553	bno = (start + len - loc) * NBBY;
1554	cgp->cg_frotor = bno;
1555	/*
1556	 * found the byte in the map
1557	 * sift through the bits to find the selected frag
1558	 */
1559	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
1560		blk = blkmap(fs, cg_blksfree(cgp), bno);
1561		blk <<= 1;
1562		field = around[allocsiz];
1563		subfield = inside[allocsiz];
1564		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
1565			if ((blk & field) == subfield)
1566				return (bno + pos);
1567			field <<= 1;
1568			subfield <<= 1;
1569		}
1570	}
1571	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
1572	panic("ffs_alloccg: block not in map");
1573	return (-1);
1574}
1575
1576/*
1577 * Update the cluster map because of an allocation or free.
1578 *
1579 * Cnt == 1 means free; cnt == -1 means allocating.
1580 */
1581static void
1582ffs_clusteracct(fs, cgp, blkno, cnt)
1583	struct fs *fs;
1584	struct cg *cgp;
1585	ufs_daddr_t blkno;
1586	int cnt;
1587{
1588	int32_t *sump;
1589	int32_t *lp;
1590	u_char *freemapp, *mapp;
1591	int i, start, end, forw, back, map, bit;
1592
1593	if (fs->fs_contigsumsize <= 0)
1594		return;
1595	freemapp = cg_clustersfree(cgp);
1596	sump = cg_clustersum(cgp);
1597	/*
1598	 * Allocate or clear the actual block.
1599	 */
1600	if (cnt > 0)
1601		setbit(freemapp, blkno);
1602	else
1603		clrbit(freemapp, blkno);
1604	/*
1605	 * Find the size of the cluster going forward.
1606	 */
1607	start = blkno + 1;
1608	end = start + fs->fs_contigsumsize;
1609	if (end >= cgp->cg_nclusterblks)
1610		end = cgp->cg_nclusterblks;
1611	mapp = &freemapp[start / NBBY];
1612	map = *mapp++;
1613	bit = 1 << (start % NBBY);
1614	for (i = start; i < end; i++) {
1615		if ((map & bit) == 0)
1616			break;
1617		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1618			bit <<= 1;
1619		} else {
1620			map = *mapp++;
1621			bit = 1;
1622		}
1623	}
1624	forw = i - start;
1625	/*
1626	 * Find the size of the cluster going backward.
1627	 */
1628	start = blkno - 1;
1629	end = start - fs->fs_contigsumsize;
1630	if (end < 0)
1631		end = -1;
1632	mapp = &freemapp[start / NBBY];
1633	map = *mapp--;
1634	bit = 1 << (start % NBBY);
1635	for (i = start; i > end; i--) {
1636		if ((map & bit) == 0)
1637			break;
1638		if ((i & (NBBY - 1)) != 0) {
1639			bit >>= 1;
1640		} else {
1641			map = *mapp--;
1642			bit = 1 << (NBBY - 1);
1643		}
1644	}
1645	back = start - i;
1646	/*
1647	 * Account for old cluster and the possibly new forward and
1648	 * back clusters.
1649	 */
1650	i = back + forw + 1;
1651	if (i > fs->fs_contigsumsize)
1652		i = fs->fs_contigsumsize;
1653	sump[i] += cnt;
1654	if (back > 0)
1655		sump[back] -= cnt;
1656	if (forw > 0)
1657		sump[forw] -= cnt;
1658	/*
1659	 * Update cluster summary information.
1660	 */
1661	lp = &sump[fs->fs_contigsumsize];
1662	for (i = fs->fs_contigsumsize; i > 0; i--)
1663		if (*lp-- > 0)
1664			break;
1665	fs->fs_maxcluster[cgp->cg_cgx] = i;
1666}
1667
1668/*
1669 * Fserr prints the name of a file system with an error diagnostic.
1670 *
1671 * The form of the error message is:
1672 *	fs: error message
1673 */
1674static void
1675ffs_fserr(fs, uid, cp)
1676	struct fs *fs;
1677	u_int uid;
1678	char *cp;
1679{
1680	struct proc *p = curproc;	/* XXX */
1681
1682	log(LOG_ERR, "pid %d (%s), uid %d on %s: %s\n", p ? p->p_pid : -1,
1683			p ? p->p_comm : "-", uid, fs->fs_fsmnt, cp);
1684}
1685