ffs_alloc.c revision 174126
1/*-
2 * Copyright (c) 2002 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and Network Associates Laboratories, the Security
7 * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9 * research program
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * Copyright (c) 1982, 1986, 1989, 1993
33 *	The Regents of the University of California.  All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 *    notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 *    notice, this list of conditions and the following disclaimer in the
42 *    documentation and/or other materials provided with the distribution.
43 * 4. Neither the name of the University nor the names of its contributors
44 *    may be used to endorse or promote products derived from this software
45 *    without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 *	@(#)ffs_alloc.c	8.18 (Berkeley) 5/26/95
60 */
61
62#include <sys/cdefs.h>
63__FBSDID("$FreeBSD: head/sys/ufs/ffs/ffs_alloc.c 174126 2007-12-01 13:12:43Z kensmith $");
64
65#include "opt_quota.h"
66
67#include <sys/param.h>
68#include <sys/systm.h>
69#include <sys/bio.h>
70#include <sys/buf.h>
71#include <sys/conf.h>
72#include <sys/file.h>
73#include <sys/filedesc.h>
74#include <sys/priv.h>
75#include <sys/proc.h>
76#include <sys/vnode.h>
77#include <sys/mount.h>
78#include <sys/kernel.h>
79#include <sys/sysctl.h>
80#include <sys/syslog.h>
81
82#include <ufs/ufs/extattr.h>
83#include <ufs/ufs/quota.h>
84#include <ufs/ufs/inode.h>
85#include <ufs/ufs/ufs_extern.h>
86#include <ufs/ufs/ufsmount.h>
87
88#include <ufs/ffs/fs.h>
89#include <ufs/ffs/ffs_extern.h>
90
91typedef ufs2_daddr_t allocfcn_t(struct inode *ip, int cg, ufs2_daddr_t bpref,
92				  int size);
93
94static ufs2_daddr_t ffs_alloccg(struct inode *, int, ufs2_daddr_t, int);
95static ufs2_daddr_t
96	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t);
97#ifdef INVARIANTS
98static int	ffs_checkblk(struct inode *, ufs2_daddr_t, long);
99#endif
100static ufs2_daddr_t ffs_clusteralloc(struct inode *, int, ufs2_daddr_t, int);
101static void	ffs_clusteracct(struct ufsmount *, struct fs *, struct cg *,
102		    ufs1_daddr_t, int);
103static ino_t	ffs_dirpref(struct inode *);
104static ufs2_daddr_t ffs_fragextend(struct inode *, int, ufs2_daddr_t, int, int);
105static void	ffs_fserr(struct fs *, ino_t, char *);
106static ufs2_daddr_t	ffs_hashalloc
107		(struct inode *, int, ufs2_daddr_t, int, allocfcn_t *);
108static ufs2_daddr_t ffs_nodealloccg(struct inode *, int, ufs2_daddr_t, int);
109static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
110static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
111static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
112
113/*
114 * Allocate a block in the filesystem.
115 *
116 * The size of the requested block is given, which must be some
117 * multiple of fs_fsize and <= fs_bsize.
118 * A preference may be optionally specified. If a preference is given
119 * the following hierarchy is used to allocate a block:
120 *   1) allocate the requested block.
121 *   2) allocate a rotationally optimal block in the same cylinder.
122 *   3) allocate a block in the same cylinder group.
123 *   4) quadradically rehash into other cylinder groups, until an
124 *      available block is located.
125 * If no block preference is given the following hierarchy is used
126 * to allocate a block:
127 *   1) allocate a block in the cylinder group that contains the
128 *      inode for the file.
129 *   2) quadradically rehash into other cylinder groups, until an
130 *      available block is located.
131 */
132int
133ffs_alloc(ip, lbn, bpref, size, cred, bnp)
134	struct inode *ip;
135	ufs2_daddr_t lbn, bpref;
136	int size;
137	struct ucred *cred;
138	ufs2_daddr_t *bnp;
139{
140	struct fs *fs;
141	struct ufsmount *ump;
142	ufs2_daddr_t bno;
143	int cg, reclaimed;
144	static struct timeval lastfail;
145	static int curfail;
146	int64_t delta;
147#ifdef QUOTA
148	int error;
149#endif
150
151	*bnp = 0;
152	fs = ip->i_fs;
153	ump = ip->i_ump;
154	mtx_assert(UFS_MTX(ump), MA_OWNED);
155#ifdef INVARIANTS
156	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
157		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
158		    devtoname(ip->i_dev), (long)fs->fs_bsize, size,
159		    fs->fs_fsmnt);
160		panic("ffs_alloc: bad size");
161	}
162	if (cred == NOCRED)
163		panic("ffs_alloc: missing credential");
164#endif /* INVARIANTS */
165	reclaimed = 0;
166retry:
167#ifdef QUOTA
168	UFS_UNLOCK(ump);
169	error = chkdq(ip, btodb(size), cred, 0);
170	if (error)
171		return (error);
172	UFS_LOCK(ump);
173#endif
174	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
175		goto nospace;
176	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
177	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
178		goto nospace;
179	if (bpref >= fs->fs_size)
180		bpref = 0;
181	if (bpref == 0)
182		cg = ino_to_cg(fs, ip->i_number);
183	else
184		cg = dtog(fs, bpref);
185	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
186	if (bno > 0) {
187		delta = btodb(size);
188		if (ip->i_flag & IN_SPACECOUNTED) {
189			UFS_LOCK(ump);
190			fs->fs_pendingblocks += delta;
191			UFS_UNLOCK(ump);
192		}
193		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
194		ip->i_flag |= IN_CHANGE | IN_UPDATE;
195		*bnp = bno;
196		return (0);
197	}
198nospace:
199#ifdef QUOTA
200	UFS_UNLOCK(ump);
201	/*
202	 * Restore user's disk quota because allocation failed.
203	 */
204	(void) chkdq(ip, -btodb(size), cred, FORCE);
205	UFS_LOCK(ump);
206#endif
207	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
208		reclaimed = 1;
209		softdep_request_cleanup(fs, ITOV(ip));
210		goto retry;
211	}
212	UFS_UNLOCK(ump);
213	if (ppsratecheck(&lastfail, &curfail, 1)) {
214		ffs_fserr(fs, ip->i_number, "filesystem full");
215		uprintf("\n%s: write failed, filesystem is full\n",
216		    fs->fs_fsmnt);
217	}
218	return (ENOSPC);
219}
220
221/*
222 * Reallocate a fragment to a bigger size
223 *
224 * The number and size of the old block is given, and a preference
225 * and new size is also specified. The allocator attempts to extend
226 * the original block. Failing that, the regular block allocator is
227 * invoked to get an appropriate block.
228 */
229int
230ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, cred, bpp)
231	struct inode *ip;
232	ufs2_daddr_t lbprev;
233	ufs2_daddr_t bprev;
234	ufs2_daddr_t bpref;
235	int osize, nsize;
236	struct ucred *cred;
237	struct buf **bpp;
238{
239	struct vnode *vp;
240	struct fs *fs;
241	struct buf *bp;
242	struct ufsmount *ump;
243	int cg, request, error, reclaimed;
244	ufs2_daddr_t bno;
245	static struct timeval lastfail;
246	static int curfail;
247	int64_t delta;
248
249	*bpp = 0;
250	vp = ITOV(ip);
251	fs = ip->i_fs;
252	bp = NULL;
253	ump = ip->i_ump;
254	mtx_assert(UFS_MTX(ump), MA_OWNED);
255#ifdef INVARIANTS
256	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
257		panic("ffs_realloccg: allocation on suspended filesystem");
258	if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
259	    (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
260		printf(
261		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
262		    devtoname(ip->i_dev), (long)fs->fs_bsize, osize,
263		    nsize, fs->fs_fsmnt);
264		panic("ffs_realloccg: bad size");
265	}
266	if (cred == NOCRED)
267		panic("ffs_realloccg: missing credential");
268#endif /* INVARIANTS */
269	reclaimed = 0;
270retry:
271	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE, 0) &&
272	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
273		goto nospace;
274	}
275	if (bprev == 0) {
276		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
277		    devtoname(ip->i_dev), (long)fs->fs_bsize, (intmax_t)bprev,
278		    fs->fs_fsmnt);
279		panic("ffs_realloccg: bad bprev");
280	}
281	UFS_UNLOCK(ump);
282	/*
283	 * Allocate the extra space in the buffer.
284	 */
285	error = bread(vp, lbprev, osize, NOCRED, &bp);
286	if (error) {
287		brelse(bp);
288		return (error);
289	}
290
291	if (bp->b_blkno == bp->b_lblkno) {
292		if (lbprev >= NDADDR)
293			panic("ffs_realloccg: lbprev out of range");
294		bp->b_blkno = fsbtodb(fs, bprev);
295	}
296
297#ifdef QUOTA
298	error = chkdq(ip, btodb(nsize - osize), cred, 0);
299	if (error) {
300		brelse(bp);
301		return (error);
302	}
303#endif
304	/*
305	 * Check for extension in the existing location.
306	 */
307	cg = dtog(fs, bprev);
308	UFS_LOCK(ump);
309	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
310	if (bno) {
311		if (bp->b_blkno != fsbtodb(fs, bno))
312			panic("ffs_realloccg: bad blockno");
313		delta = btodb(nsize - osize);
314		if (ip->i_flag & IN_SPACECOUNTED) {
315			UFS_LOCK(ump);
316			fs->fs_pendingblocks += delta;
317			UFS_UNLOCK(ump);
318		}
319		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
320		ip->i_flag |= IN_CHANGE | IN_UPDATE;
321		allocbuf(bp, nsize);
322		bp->b_flags |= B_DONE;
323		if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO)
324			bzero((char *)bp->b_data + osize, nsize - osize);
325		else
326			vfs_bio_clrbuf(bp);
327		*bpp = bp;
328		return (0);
329	}
330	/*
331	 * Allocate a new disk location.
332	 */
333	if (bpref >= fs->fs_size)
334		bpref = 0;
335	switch ((int)fs->fs_optim) {
336	case FS_OPTSPACE:
337		/*
338		 * Allocate an exact sized fragment. Although this makes
339		 * best use of space, we will waste time relocating it if
340		 * the file continues to grow. If the fragmentation is
341		 * less than half of the minimum free reserve, we choose
342		 * to begin optimizing for time.
343		 */
344		request = nsize;
345		if (fs->fs_minfree <= 5 ||
346		    fs->fs_cstotal.cs_nffree >
347		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
348			break;
349		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
350			fs->fs_fsmnt);
351		fs->fs_optim = FS_OPTTIME;
352		break;
353	case FS_OPTTIME:
354		/*
355		 * At this point we have discovered a file that is trying to
356		 * grow a small fragment to a larger fragment. To save time,
357		 * we allocate a full sized block, then free the unused portion.
358		 * If the file continues to grow, the `ffs_fragextend' call
359		 * above will be able to grow it in place without further
360		 * copying. If aberrant programs cause disk fragmentation to
361		 * grow within 2% of the free reserve, we choose to begin
362		 * optimizing for space.
363		 */
364		request = fs->fs_bsize;
365		if (fs->fs_cstotal.cs_nffree <
366		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
367			break;
368		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
369			fs->fs_fsmnt);
370		fs->fs_optim = FS_OPTSPACE;
371		break;
372	default:
373		printf("dev = %s, optim = %ld, fs = %s\n",
374		    devtoname(ip->i_dev), (long)fs->fs_optim, fs->fs_fsmnt);
375		panic("ffs_realloccg: bad optim");
376		/* NOTREACHED */
377	}
378	bno = ffs_hashalloc(ip, cg, bpref, request, ffs_alloccg);
379	if (bno > 0) {
380		bp->b_blkno = fsbtodb(fs, bno);
381		if (!DOINGSOFTDEP(vp))
382			ffs_blkfree(ump, fs, ip->i_devvp, bprev, (long)osize,
383			    ip->i_number);
384		if (nsize < request)
385			ffs_blkfree(ump, fs, ip->i_devvp,
386			    bno + numfrags(fs, nsize),
387			    (long)(request - nsize), ip->i_number);
388		delta = btodb(nsize - osize);
389		if (ip->i_flag & IN_SPACECOUNTED) {
390			UFS_LOCK(ump);
391			fs->fs_pendingblocks += delta;
392			UFS_UNLOCK(ump);
393		}
394		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
395		ip->i_flag |= IN_CHANGE | IN_UPDATE;
396		allocbuf(bp, nsize);
397		bp->b_flags |= B_DONE;
398		if ((bp->b_flags & (B_MALLOC | B_VMIO)) != B_VMIO)
399			bzero((char *)bp->b_data + osize, nsize - osize);
400		else
401			vfs_bio_clrbuf(bp);
402		*bpp = bp;
403		return (0);
404	}
405#ifdef QUOTA
406	UFS_UNLOCK(ump);
407	/*
408	 * Restore user's disk quota because allocation failed.
409	 */
410	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
411	UFS_LOCK(ump);
412#endif
413nospace:
414	/*
415	 * no space available
416	 */
417	if (fs->fs_pendingblocks > 0 && reclaimed == 0) {
418		reclaimed = 1;
419		softdep_request_cleanup(fs, vp);
420		UFS_UNLOCK(ump);
421		if (bp)
422			brelse(bp);
423		UFS_LOCK(ump);
424		goto retry;
425	}
426	UFS_UNLOCK(ump);
427	if (bp)
428		brelse(bp);
429	if (ppsratecheck(&lastfail, &curfail, 1)) {
430		ffs_fserr(fs, ip->i_number, "filesystem full");
431		uprintf("\n%s: write failed, filesystem is full\n",
432		    fs->fs_fsmnt);
433	}
434	return (ENOSPC);
435}
436
437/*
438 * Reallocate a sequence of blocks into a contiguous sequence of blocks.
439 *
440 * The vnode and an array of buffer pointers for a range of sequential
441 * logical blocks to be made contiguous is given. The allocator attempts
442 * to find a range of sequential blocks starting as close as possible
443 * from the end of the allocation for the logical block immediately
444 * preceding the current range. If successful, the physical block numbers
445 * in the buffer pointers and in the inode are changed to reflect the new
446 * allocation. If unsuccessful, the allocation is left unchanged. The
447 * success in doing the reallocation is returned. Note that the error
448 * return is not reflected back to the user. Rather the previous block
449 * allocation will be used.
450 */
451
452SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem");
453
454static int doasyncfree = 1;
455SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, "");
456
457static int doreallocblks = 1;
458SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, "");
459
460#ifdef DEBUG
461static volatile int prtrealloc = 0;
462#endif
463
464int
465ffs_reallocblks(ap)
466	struct vop_reallocblks_args /* {
467		struct vnode *a_vp;
468		struct cluster_save *a_buflist;
469	} */ *ap;
470{
471
472	if (doreallocblks == 0)
473		return (ENOSPC);
474	if (VTOI(ap->a_vp)->i_ump->um_fstype == UFS1)
475		return (ffs_reallocblks_ufs1(ap));
476	return (ffs_reallocblks_ufs2(ap));
477}
478
479static int
480ffs_reallocblks_ufs1(ap)
481	struct vop_reallocblks_args /* {
482		struct vnode *a_vp;
483		struct cluster_save *a_buflist;
484	} */ *ap;
485{
486	struct fs *fs;
487	struct inode *ip;
488	struct vnode *vp;
489	struct buf *sbp, *ebp;
490	ufs1_daddr_t *bap, *sbap, *ebap = 0;
491	struct cluster_save *buflist;
492	struct ufsmount *ump;
493	ufs_lbn_t start_lbn, end_lbn;
494	ufs1_daddr_t soff, newblk, blkno;
495	ufs2_daddr_t pref;
496	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
497	int i, len, start_lvl, end_lvl, ssize;
498
499	vp = ap->a_vp;
500	ip = VTOI(vp);
501	fs = ip->i_fs;
502	ump = ip->i_ump;
503	if (fs->fs_contigsumsize <= 0)
504		return (ENOSPC);
505	buflist = ap->a_buflist;
506	len = buflist->bs_nchildren;
507	start_lbn = buflist->bs_children[0]->b_lblkno;
508	end_lbn = start_lbn + len - 1;
509#ifdef INVARIANTS
510	for (i = 0; i < len; i++)
511		if (!ffs_checkblk(ip,
512		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
513			panic("ffs_reallocblks: unallocated block 1");
514	for (i = 1; i < len; i++)
515		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
516			panic("ffs_reallocblks: non-logical cluster");
517	blkno = buflist->bs_children[0]->b_blkno;
518	ssize = fsbtodb(fs, fs->fs_frag);
519	for (i = 1; i < len - 1; i++)
520		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
521			panic("ffs_reallocblks: non-physical cluster %d", i);
522#endif
523	/*
524	 * If the latest allocation is in a new cylinder group, assume that
525	 * the filesystem has decided to move and do not force it back to
526	 * the previous cylinder group.
527	 */
528	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
529	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
530		return (ENOSPC);
531	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
532	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
533		return (ENOSPC);
534	/*
535	 * Get the starting offset and block map for the first block.
536	 */
537	if (start_lvl == 0) {
538		sbap = &ip->i_din1->di_db[0];
539		soff = start_lbn;
540	} else {
541		idp = &start_ap[start_lvl - 1];
542		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
543			brelse(sbp);
544			return (ENOSPC);
545		}
546		sbap = (ufs1_daddr_t *)sbp->b_data;
547		soff = idp->in_off;
548	}
549	/*
550	 * If the block range spans two block maps, get the second map.
551	 */
552	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
553		ssize = len;
554	} else {
555#ifdef INVARIANTS
556		if (start_lvl > 0 &&
557		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
558			panic("ffs_reallocblk: start == end");
559#endif
560		ssize = len - (idp->in_off + 1);
561		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
562			goto fail;
563		ebap = (ufs1_daddr_t *)ebp->b_data;
564	}
565	/*
566	 * Find the preferred location for the cluster.
567	 */
568	UFS_LOCK(ump);
569	pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
570	/*
571	 * Search the block map looking for an allocation of the desired size.
572	 */
573	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
574	    len, ffs_clusteralloc)) == 0) {
575		UFS_UNLOCK(ump);
576		goto fail;
577	}
578	/*
579	 * We have found a new contiguous block.
580	 *
581	 * First we have to replace the old block pointers with the new
582	 * block pointers in the inode and indirect blocks associated
583	 * with the file.
584	 */
585#ifdef DEBUG
586	if (prtrealloc)
587		printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
588		    (intmax_t)start_lbn, (intmax_t)end_lbn);
589#endif
590	blkno = newblk;
591	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
592		if (i == ssize) {
593			bap = ebap;
594			soff = -i;
595		}
596#ifdef INVARIANTS
597		if (!ffs_checkblk(ip,
598		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
599			panic("ffs_reallocblks: unallocated block 2");
600		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
601			panic("ffs_reallocblks: alloc mismatch");
602#endif
603#ifdef DEBUG
604		if (prtrealloc)
605			printf(" %d,", *bap);
606#endif
607		if (DOINGSOFTDEP(vp)) {
608			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
609				softdep_setup_allocdirect(ip, start_lbn + i,
610				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
611				    buflist->bs_children[i]);
612			else
613				softdep_setup_allocindir_page(ip, start_lbn + i,
614				    i < ssize ? sbp : ebp, soff + i, blkno,
615				    *bap, buflist->bs_children[i]);
616		}
617		*bap++ = blkno;
618	}
619	/*
620	 * Next we must write out the modified inode and indirect blocks.
621	 * For strict correctness, the writes should be synchronous since
622	 * the old block values may have been written to disk. In practise
623	 * they are almost never written, but if we are concerned about
624	 * strict correctness, the `doasyncfree' flag should be set to zero.
625	 *
626	 * The test on `doasyncfree' should be changed to test a flag
627	 * that shows whether the associated buffers and inodes have
628	 * been written. The flag should be set when the cluster is
629	 * started and cleared whenever the buffer or inode is flushed.
630	 * We can then check below to see if it is set, and do the
631	 * synchronous write only when it has been cleared.
632	 */
633	if (sbap != &ip->i_din1->di_db[0]) {
634		if (doasyncfree)
635			bdwrite(sbp);
636		else
637			bwrite(sbp);
638	} else {
639		ip->i_flag |= IN_CHANGE | IN_UPDATE;
640		if (!doasyncfree)
641			ffs_update(vp, 1);
642	}
643	if (ssize < len) {
644		if (doasyncfree)
645			bdwrite(ebp);
646		else
647			bwrite(ebp);
648	}
649	/*
650	 * Last, free the old blocks and assign the new blocks to the buffers.
651	 */
652#ifdef DEBUG
653	if (prtrealloc)
654		printf("\n\tnew:");
655#endif
656	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
657		if (!DOINGSOFTDEP(vp))
658			ffs_blkfree(ump, fs, ip->i_devvp,
659			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
660			    fs->fs_bsize, ip->i_number);
661		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
662#ifdef INVARIANTS
663		if (!ffs_checkblk(ip,
664		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
665			panic("ffs_reallocblks: unallocated block 3");
666#endif
667#ifdef DEBUG
668		if (prtrealloc)
669			printf(" %d,", blkno);
670#endif
671	}
672#ifdef DEBUG
673	if (prtrealloc) {
674		prtrealloc--;
675		printf("\n");
676	}
677#endif
678	return (0);
679
680fail:
681	if (ssize < len)
682		brelse(ebp);
683	if (sbap != &ip->i_din1->di_db[0])
684		brelse(sbp);
685	return (ENOSPC);
686}
687
688static int
689ffs_reallocblks_ufs2(ap)
690	struct vop_reallocblks_args /* {
691		struct vnode *a_vp;
692		struct cluster_save *a_buflist;
693	} */ *ap;
694{
695	struct fs *fs;
696	struct inode *ip;
697	struct vnode *vp;
698	struct buf *sbp, *ebp;
699	ufs2_daddr_t *bap, *sbap, *ebap = 0;
700	struct cluster_save *buflist;
701	struct ufsmount *ump;
702	ufs_lbn_t start_lbn, end_lbn;
703	ufs2_daddr_t soff, newblk, blkno, pref;
704	struct indir start_ap[NIADDR + 1], end_ap[NIADDR + 1], *idp;
705	int i, len, start_lvl, end_lvl, ssize;
706
707	vp = ap->a_vp;
708	ip = VTOI(vp);
709	fs = ip->i_fs;
710	ump = ip->i_ump;
711	if (fs->fs_contigsumsize <= 0)
712		return (ENOSPC);
713	buflist = ap->a_buflist;
714	len = buflist->bs_nchildren;
715	start_lbn = buflist->bs_children[0]->b_lblkno;
716	end_lbn = start_lbn + len - 1;
717#ifdef INVARIANTS
718	for (i = 0; i < len; i++)
719		if (!ffs_checkblk(ip,
720		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
721			panic("ffs_reallocblks: unallocated block 1");
722	for (i = 1; i < len; i++)
723		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
724			panic("ffs_reallocblks: non-logical cluster");
725	blkno = buflist->bs_children[0]->b_blkno;
726	ssize = fsbtodb(fs, fs->fs_frag);
727	for (i = 1; i < len - 1; i++)
728		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
729			panic("ffs_reallocblks: non-physical cluster %d", i);
730#endif
731	/*
732	 * If the latest allocation is in a new cylinder group, assume that
733	 * the filesystem has decided to move and do not force it back to
734	 * the previous cylinder group.
735	 */
736	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
737	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
738		return (ENOSPC);
739	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
740	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
741		return (ENOSPC);
742	/*
743	 * Get the starting offset and block map for the first block.
744	 */
745	if (start_lvl == 0) {
746		sbap = &ip->i_din2->di_db[0];
747		soff = start_lbn;
748	} else {
749		idp = &start_ap[start_lvl - 1];
750		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
751			brelse(sbp);
752			return (ENOSPC);
753		}
754		sbap = (ufs2_daddr_t *)sbp->b_data;
755		soff = idp->in_off;
756	}
757	/*
758	 * If the block range spans two block maps, get the second map.
759	 */
760	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
761		ssize = len;
762	} else {
763#ifdef INVARIANTS
764		if (start_lvl > 0 &&
765		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
766			panic("ffs_reallocblk: start == end");
767#endif
768		ssize = len - (idp->in_off + 1);
769		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
770			goto fail;
771		ebap = (ufs2_daddr_t *)ebp->b_data;
772	}
773	/*
774	 * Find the preferred location for the cluster.
775	 */
776	UFS_LOCK(ump);
777	pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
778	/*
779	 * Search the block map looking for an allocation of the desired size.
780	 */
781	if ((newblk = ffs_hashalloc(ip, dtog(fs, pref), pref,
782	    len, ffs_clusteralloc)) == 0) {
783		UFS_UNLOCK(ump);
784		goto fail;
785	}
786	/*
787	 * We have found a new contiguous block.
788	 *
789	 * First we have to replace the old block pointers with the new
790	 * block pointers in the inode and indirect blocks associated
791	 * with the file.
792	 */
793#ifdef DEBUG
794	if (prtrealloc)
795		printf("realloc: ino %d, lbns %jd-%jd\n\told:", ip->i_number,
796		    (intmax_t)start_lbn, (intmax_t)end_lbn);
797#endif
798	blkno = newblk;
799	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
800		if (i == ssize) {
801			bap = ebap;
802			soff = -i;
803		}
804#ifdef INVARIANTS
805		if (!ffs_checkblk(ip,
806		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
807			panic("ffs_reallocblks: unallocated block 2");
808		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
809			panic("ffs_reallocblks: alloc mismatch");
810#endif
811#ifdef DEBUG
812		if (prtrealloc)
813			printf(" %jd,", (intmax_t)*bap);
814#endif
815		if (DOINGSOFTDEP(vp)) {
816			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
817				softdep_setup_allocdirect(ip, start_lbn + i,
818				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
819				    buflist->bs_children[i]);
820			else
821				softdep_setup_allocindir_page(ip, start_lbn + i,
822				    i < ssize ? sbp : ebp, soff + i, blkno,
823				    *bap, buflist->bs_children[i]);
824		}
825		*bap++ = blkno;
826	}
827	/*
828	 * Next we must write out the modified inode and indirect blocks.
829	 * For strict correctness, the writes should be synchronous since
830	 * the old block values may have been written to disk. In practise
831	 * they are almost never written, but if we are concerned about
832	 * strict correctness, the `doasyncfree' flag should be set to zero.
833	 *
834	 * The test on `doasyncfree' should be changed to test a flag
835	 * that shows whether the associated buffers and inodes have
836	 * been written. The flag should be set when the cluster is
837	 * started and cleared whenever the buffer or inode is flushed.
838	 * We can then check below to see if it is set, and do the
839	 * synchronous write only when it has been cleared.
840	 */
841	if (sbap != &ip->i_din2->di_db[0]) {
842		if (doasyncfree)
843			bdwrite(sbp);
844		else
845			bwrite(sbp);
846	} else {
847		ip->i_flag |= IN_CHANGE | IN_UPDATE;
848		if (!doasyncfree)
849			ffs_update(vp, 1);
850	}
851	if (ssize < len) {
852		if (doasyncfree)
853			bdwrite(ebp);
854		else
855			bwrite(ebp);
856	}
857	/*
858	 * Last, free the old blocks and assign the new blocks to the buffers.
859	 */
860#ifdef DEBUG
861	if (prtrealloc)
862		printf("\n\tnew:");
863#endif
864	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
865		if (!DOINGSOFTDEP(vp))
866			ffs_blkfree(ump, fs, ip->i_devvp,
867			    dbtofsb(fs, buflist->bs_children[i]->b_blkno),
868			    fs->fs_bsize, ip->i_number);
869		buflist->bs_children[i]->b_blkno = fsbtodb(fs, blkno);
870#ifdef INVARIANTS
871		if (!ffs_checkblk(ip,
872		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
873			panic("ffs_reallocblks: unallocated block 3");
874#endif
875#ifdef DEBUG
876		if (prtrealloc)
877			printf(" %jd,", (intmax_t)blkno);
878#endif
879	}
880#ifdef DEBUG
881	if (prtrealloc) {
882		prtrealloc--;
883		printf("\n");
884	}
885#endif
886	return (0);
887
888fail:
889	if (ssize < len)
890		brelse(ebp);
891	if (sbap != &ip->i_din2->di_db[0])
892		brelse(sbp);
893	return (ENOSPC);
894}
895
896/*
897 * Allocate an inode in the filesystem.
898 *
899 * If allocating a directory, use ffs_dirpref to select the inode.
900 * If allocating in a directory, the following hierarchy is followed:
901 *   1) allocate the preferred inode.
902 *   2) allocate an inode in the same cylinder group.
903 *   3) quadradically rehash into other cylinder groups, until an
904 *      available inode is located.
905 * If no inode preference is given the following hierarchy is used
906 * to allocate an inode:
907 *   1) allocate an inode in cylinder group 0.
908 *   2) quadradically rehash into other cylinder groups, until an
909 *      available inode is located.
910 */
911int
912ffs_valloc(pvp, mode, cred, vpp)
913	struct vnode *pvp;
914	int mode;
915	struct ucred *cred;
916	struct vnode **vpp;
917{
918	struct inode *pip;
919	struct fs *fs;
920	struct inode *ip;
921	struct timespec ts;
922	struct ufsmount *ump;
923	ino_t ino, ipref;
924	int cg, error;
925	static struct timeval lastfail;
926	static int curfail;
927
928	*vpp = NULL;
929	pip = VTOI(pvp);
930	fs = pip->i_fs;
931	ump = pip->i_ump;
932
933	UFS_LOCK(ump);
934	if (fs->fs_cstotal.cs_nifree == 0)
935		goto noinodes;
936
937	if ((mode & IFMT) == IFDIR)
938		ipref = ffs_dirpref(pip);
939	else
940		ipref = pip->i_number;
941	if (ipref >= fs->fs_ncg * fs->fs_ipg)
942		ipref = 0;
943	cg = ino_to_cg(fs, ipref);
944	/*
945	 * Track number of dirs created one after another
946	 * in a same cg without intervening by files.
947	 */
948	if ((mode & IFMT) == IFDIR) {
949		if (fs->fs_contigdirs[cg] < 255)
950			fs->fs_contigdirs[cg]++;
951	} else {
952		if (fs->fs_contigdirs[cg] > 0)
953			fs->fs_contigdirs[cg]--;
954	}
955	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode,
956					(allocfcn_t *)ffs_nodealloccg);
957	if (ino == 0)
958		goto noinodes;
959	error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp);
960	if (error) {
961		ffs_vfree(pvp, ino, mode);
962		return (error);
963	}
964	ip = VTOI(*vpp);
965	if (ip->i_mode) {
966		printf("mode = 0%o, inum = %lu, fs = %s\n",
967		    ip->i_mode, (u_long)ip->i_number, fs->fs_fsmnt);
968		panic("ffs_valloc: dup alloc");
969	}
970	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
971		printf("free inode %s/%lu had %ld blocks\n",
972		    fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks));
973		DIP_SET(ip, i_blocks, 0);
974	}
975	ip->i_flags = 0;
976	DIP_SET(ip, i_flags, 0);
977	/*
978	 * Set up a new generation number for this inode.
979	 */
980	if (ip->i_gen == 0 || ++ip->i_gen == 0)
981		ip->i_gen = arc4random() / 2 + 1;
982	DIP_SET(ip, i_gen, ip->i_gen);
983	if (fs->fs_magic == FS_UFS2_MAGIC) {
984		vfs_timestamp(&ts);
985		ip->i_din2->di_birthtime = ts.tv_sec;
986		ip->i_din2->di_birthnsec = ts.tv_nsec;
987	}
988	ip->i_flag = 0;
989	vnode_destroy_vobject(*vpp);
990	(*vpp)->v_type = VNON;
991	if (fs->fs_magic == FS_UFS2_MAGIC)
992		(*vpp)->v_op = &ffs_vnodeops2;
993	else
994		(*vpp)->v_op = &ffs_vnodeops1;
995	return (0);
996noinodes:
997	UFS_UNLOCK(ump);
998	if (ppsratecheck(&lastfail, &curfail, 1)) {
999		ffs_fserr(fs, pip->i_number, "out of inodes");
1000		uprintf("\n%s: create/symlink failed, no inodes free\n",
1001		    fs->fs_fsmnt);
1002	}
1003	return (ENOSPC);
1004}
1005
1006/*
1007 * Find a cylinder group to place a directory.
1008 *
1009 * The policy implemented by this algorithm is to allocate a
1010 * directory inode in the same cylinder group as its parent
1011 * directory, but also to reserve space for its files inodes
1012 * and data. Restrict the number of directories which may be
1013 * allocated one after another in the same cylinder group
1014 * without intervening allocation of files.
1015 *
1016 * If we allocate a first level directory then force allocation
1017 * in another cylinder group.
1018 */
1019static ino_t
1020ffs_dirpref(pip)
1021	struct inode *pip;
1022{
1023	struct fs *fs;
1024	int cg, prefcg, dirsize, cgsize;
1025	int avgifree, avgbfree, avgndir, curdirsize;
1026	int minifree, minbfree, maxndir;
1027	int mincg, minndir;
1028	int maxcontigdirs;
1029
1030	mtx_assert(UFS_MTX(pip->i_ump), MA_OWNED);
1031	fs = pip->i_fs;
1032
1033	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1034	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1035	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1036
1037	/*
1038	 * Force allocation in another cg if creating a first level dir.
1039	 */
1040	ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref");
1041	if (ITOV(pip)->v_vflag & VV_ROOT) {
1042		prefcg = arc4random() % fs->fs_ncg;
1043		mincg = prefcg;
1044		minndir = fs->fs_ipg;
1045		for (cg = prefcg; cg < fs->fs_ncg; cg++)
1046			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1047			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1048			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1049				mincg = cg;
1050				minndir = fs->fs_cs(fs, cg).cs_ndir;
1051			}
1052		for (cg = 0; cg < prefcg; cg++)
1053			if (fs->fs_cs(fs, cg).cs_ndir < minndir &&
1054			    fs->fs_cs(fs, cg).cs_nifree >= avgifree &&
1055			    fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1056				mincg = cg;
1057				minndir = fs->fs_cs(fs, cg).cs_ndir;
1058			}
1059		return ((ino_t)(fs->fs_ipg * mincg));
1060	}
1061
1062	/*
1063	 * Count various limits which used for
1064	 * optimal allocation of a directory inode.
1065	 */
1066	maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg);
1067	minifree = avgifree - avgifree / 4;
1068	if (minifree < 1)
1069		minifree = 1;
1070	minbfree = avgbfree - avgbfree / 4;
1071	if (minbfree < 1)
1072		minbfree = 1;
1073	cgsize = fs->fs_fsize * fs->fs_fpg;
1074	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1075	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1076	if (dirsize < curdirsize)
1077		dirsize = curdirsize;
1078	if (dirsize <= 0)
1079		maxcontigdirs = 0;		/* dirsize overflowed */
1080	else
1081		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1082	if (fs->fs_avgfpdir > 0)
1083		maxcontigdirs = min(maxcontigdirs,
1084				    fs->fs_ipg / fs->fs_avgfpdir);
1085	if (maxcontigdirs == 0)
1086		maxcontigdirs = 1;
1087
1088	/*
1089	 * Limit number of dirs in one cg and reserve space for
1090	 * regular files, but only if we have no deficit in
1091	 * inodes or space.
1092	 */
1093	prefcg = ino_to_cg(fs, pip->i_number);
1094	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1095		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1096		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1097	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1098			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1099				return ((ino_t)(fs->fs_ipg * cg));
1100		}
1101	for (cg = 0; cg < prefcg; cg++)
1102		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1103		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1104	    	    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1105			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1106				return ((ino_t)(fs->fs_ipg * cg));
1107		}
1108	/*
1109	 * This is a backstop when we have deficit in space.
1110	 */
1111	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1112		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1113			return ((ino_t)(fs->fs_ipg * cg));
1114	for (cg = 0; cg < prefcg; cg++)
1115		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1116			break;
1117	return ((ino_t)(fs->fs_ipg * cg));
1118}
1119
1120/*
1121 * Select the desired position for the next block in a file.  The file is
1122 * logically divided into sections. The first section is composed of the
1123 * direct blocks. Each additional section contains fs_maxbpg blocks.
1124 *
1125 * If no blocks have been allocated in the first section, the policy is to
1126 * request a block in the same cylinder group as the inode that describes
1127 * the file. If no blocks have been allocated in any other section, the
1128 * policy is to place the section in a cylinder group with a greater than
1129 * average number of free blocks.  An appropriate cylinder group is found
1130 * by using a rotor that sweeps the cylinder groups. When a new group of
1131 * blocks is needed, the sweep begins in the cylinder group following the
1132 * cylinder group from which the previous allocation was made. The sweep
1133 * continues until a cylinder group with greater than the average number
1134 * of free blocks is found. If the allocation is for the first block in an
1135 * indirect block, the information on the previous allocation is unavailable;
1136 * here a best guess is made based upon the logical block number being
1137 * allocated.
1138 *
1139 * If a section is already partially allocated, the policy is to
1140 * contiguously allocate fs_maxcontig blocks. The end of one of these
1141 * contiguous blocks and the beginning of the next is laid out
1142 * contiguously if possible.
1143 */
1144ufs2_daddr_t
1145ffs_blkpref_ufs1(ip, lbn, indx, bap)
1146	struct inode *ip;
1147	ufs_lbn_t lbn;
1148	int indx;
1149	ufs1_daddr_t *bap;
1150{
1151	struct fs *fs;
1152	int cg;
1153	int avgbfree, startcg;
1154
1155	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1156	fs = ip->i_fs;
1157	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1158		if (lbn < NDADDR + NINDIR(fs)) {
1159			cg = ino_to_cg(fs, ip->i_number);
1160			return (cgbase(fs, cg) + fs->fs_frag);
1161		}
1162		/*
1163		 * Find a cylinder with greater than average number of
1164		 * unused data blocks.
1165		 */
1166		if (indx == 0 || bap[indx - 1] == 0)
1167			startcg =
1168			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1169		else
1170			startcg = dtog(fs, bap[indx - 1]) + 1;
1171		startcg %= fs->fs_ncg;
1172		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1173		for (cg = startcg; cg < fs->fs_ncg; cg++)
1174			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1175				fs->fs_cgrotor = cg;
1176				return (cgbase(fs, cg) + fs->fs_frag);
1177			}
1178		for (cg = 0; cg <= startcg; cg++)
1179			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1180				fs->fs_cgrotor = cg;
1181				return (cgbase(fs, cg) + fs->fs_frag);
1182			}
1183		return (0);
1184	}
1185	/*
1186	 * We just always try to lay things out contiguously.
1187	 */
1188	return (bap[indx - 1] + fs->fs_frag);
1189}
1190
1191/*
1192 * Same as above, but for UFS2
1193 */
1194ufs2_daddr_t
1195ffs_blkpref_ufs2(ip, lbn, indx, bap)
1196	struct inode *ip;
1197	ufs_lbn_t lbn;
1198	int indx;
1199	ufs2_daddr_t *bap;
1200{
1201	struct fs *fs;
1202	int cg;
1203	int avgbfree, startcg;
1204
1205	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1206	fs = ip->i_fs;
1207	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
1208		if (lbn < NDADDR + NINDIR(fs)) {
1209			cg = ino_to_cg(fs, ip->i_number);
1210			return (cgbase(fs, cg) + fs->fs_frag);
1211		}
1212		/*
1213		 * Find a cylinder with greater than average number of
1214		 * unused data blocks.
1215		 */
1216		if (indx == 0 || bap[indx - 1] == 0)
1217			startcg =
1218			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
1219		else
1220			startcg = dtog(fs, bap[indx - 1]) + 1;
1221		startcg %= fs->fs_ncg;
1222		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1223		for (cg = startcg; cg < fs->fs_ncg; cg++)
1224			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1225				fs->fs_cgrotor = cg;
1226				return (cgbase(fs, cg) + fs->fs_frag);
1227			}
1228		for (cg = 0; cg <= startcg; cg++)
1229			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1230				fs->fs_cgrotor = cg;
1231				return (cgbase(fs, cg) + fs->fs_frag);
1232			}
1233		return (0);
1234	}
1235	/*
1236	 * We just always try to lay things out contiguously.
1237	 */
1238	return (bap[indx - 1] + fs->fs_frag);
1239}
1240
1241/*
1242 * Implement the cylinder overflow algorithm.
1243 *
1244 * The policy implemented by this algorithm is:
1245 *   1) allocate the block in its requested cylinder group.
1246 *   2) quadradically rehash on the cylinder group number.
1247 *   3) brute force search for a free block.
1248 *
1249 * Must be called with the UFS lock held.  Will release the lock on success
1250 * and return with it held on failure.
1251 */
1252/*VARARGS5*/
1253static ufs2_daddr_t
1254ffs_hashalloc(ip, cg, pref, size, allocator)
1255	struct inode *ip;
1256	int cg;
1257	ufs2_daddr_t pref;
1258	int size;	/* size for data blocks, mode for inodes */
1259	allocfcn_t *allocator;
1260{
1261	struct fs *fs;
1262	ufs2_daddr_t result;
1263	int i, icg = cg;
1264
1265	mtx_assert(UFS_MTX(ip->i_ump), MA_OWNED);
1266#ifdef INVARIANTS
1267	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1268		panic("ffs_hashalloc: allocation on suspended filesystem");
1269#endif
1270	fs = ip->i_fs;
1271	/*
1272	 * 1: preferred cylinder group
1273	 */
1274	result = (*allocator)(ip, cg, pref, size);
1275	if (result)
1276		return (result);
1277	/*
1278	 * 2: quadratic rehash
1279	 */
1280	for (i = 1; i < fs->fs_ncg; i *= 2) {
1281		cg += i;
1282		if (cg >= fs->fs_ncg)
1283			cg -= fs->fs_ncg;
1284		result = (*allocator)(ip, cg, 0, size);
1285		if (result)
1286			return (result);
1287	}
1288	/*
1289	 * 3: brute force search
1290	 * Note that we start at i == 2, since 0 was checked initially,
1291	 * and 1 is always checked in the quadratic rehash.
1292	 */
1293	cg = (icg + 2) % fs->fs_ncg;
1294	for (i = 2; i < fs->fs_ncg; i++) {
1295		result = (*allocator)(ip, cg, 0, size);
1296		if (result)
1297			return (result);
1298		cg++;
1299		if (cg == fs->fs_ncg)
1300			cg = 0;
1301	}
1302	return (0);
1303}
1304
1305/*
1306 * Determine whether a fragment can be extended.
1307 *
1308 * Check to see if the necessary fragments are available, and
1309 * if they are, allocate them.
1310 */
1311static ufs2_daddr_t
1312ffs_fragextend(ip, cg, bprev, osize, nsize)
1313	struct inode *ip;
1314	int cg;
1315	ufs2_daddr_t bprev;
1316	int osize, nsize;
1317{
1318	struct fs *fs;
1319	struct cg *cgp;
1320	struct buf *bp;
1321	struct ufsmount *ump;
1322	int nffree;
1323	long bno;
1324	int frags, bbase;
1325	int i, error;
1326	u_int8_t *blksfree;
1327
1328	ump = ip->i_ump;
1329	fs = ip->i_fs;
1330	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1331		return (0);
1332	frags = numfrags(fs, nsize);
1333	bbase = fragnum(fs, bprev);
1334	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1335		/* cannot extend across a block boundary */
1336		return (0);
1337	}
1338	UFS_UNLOCK(ump);
1339	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1340		(int)fs->fs_cgsize, NOCRED, &bp);
1341	if (error)
1342		goto fail;
1343	cgp = (struct cg *)bp->b_data;
1344	if (!cg_chkmagic(cgp))
1345		goto fail;
1346	bp->b_xflags |= BX_BKGRDWRITE;
1347	cgp->cg_old_time = cgp->cg_time = time_second;
1348	bno = dtogd(fs, bprev);
1349	blksfree = cg_blksfree(cgp);
1350	for (i = numfrags(fs, osize); i < frags; i++)
1351		if (isclr(blksfree, bno + i))
1352			goto fail;
1353	/*
1354	 * the current fragment can be extended
1355	 * deduct the count on fragment being extended into
1356	 * increase the count on the remaining fragment (if any)
1357	 * allocate the extended piece
1358	 */
1359	for (i = frags; i < fs->fs_frag - bbase; i++)
1360		if (isclr(blksfree, bno + i))
1361			break;
1362	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1363	if (i != frags)
1364		cgp->cg_frsum[i - frags]++;
1365	for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1366		clrbit(blksfree, bno + i);
1367		cgp->cg_cs.cs_nffree--;
1368		nffree++;
1369	}
1370	UFS_LOCK(ump);
1371	fs->fs_cstotal.cs_nffree -= nffree;
1372	fs->fs_cs(fs, cg).cs_nffree -= nffree;
1373	fs->fs_fmod = 1;
1374	ACTIVECLEAR(fs, cg);
1375	UFS_UNLOCK(ump);
1376	if (DOINGSOFTDEP(ITOV(ip)))
1377		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev);
1378	bdwrite(bp);
1379	return (bprev);
1380
1381fail:
1382	brelse(bp);
1383	UFS_LOCK(ump);
1384	return (0);
1385
1386}
1387
1388/*
1389 * Determine whether a block can be allocated.
1390 *
1391 * Check to see if a block of the appropriate size is available,
1392 * and if it is, allocate it.
1393 */
1394static ufs2_daddr_t
1395ffs_alloccg(ip, cg, bpref, size)
1396	struct inode *ip;
1397	int cg;
1398	ufs2_daddr_t bpref;
1399	int size;
1400{
1401	struct fs *fs;
1402	struct cg *cgp;
1403	struct buf *bp;
1404	struct ufsmount *ump;
1405	ufs1_daddr_t bno;
1406	ufs2_daddr_t blkno;
1407	int i, allocsiz, error, frags;
1408	u_int8_t *blksfree;
1409
1410	ump = ip->i_ump;
1411	fs = ip->i_fs;
1412	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1413		return (0);
1414	UFS_UNLOCK(ump);
1415	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1416		(int)fs->fs_cgsize, NOCRED, &bp);
1417	if (error)
1418		goto fail;
1419	cgp = (struct cg *)bp->b_data;
1420	if (!cg_chkmagic(cgp) ||
1421	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize))
1422		goto fail;
1423	bp->b_xflags |= BX_BKGRDWRITE;
1424	cgp->cg_old_time = cgp->cg_time = time_second;
1425	if (size == fs->fs_bsize) {
1426		UFS_LOCK(ump);
1427		blkno = ffs_alloccgblk(ip, bp, bpref);
1428		ACTIVECLEAR(fs, cg);
1429		UFS_UNLOCK(ump);
1430		bdwrite(bp);
1431		return (blkno);
1432	}
1433	/*
1434	 * check to see if any fragments are already available
1435	 * allocsiz is the size which will be allocated, hacking
1436	 * it down to a smaller size if necessary
1437	 */
1438	blksfree = cg_blksfree(cgp);
1439	frags = numfrags(fs, size);
1440	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1441		if (cgp->cg_frsum[allocsiz] != 0)
1442			break;
1443	if (allocsiz == fs->fs_frag) {
1444		/*
1445		 * no fragments were available, so a block will be
1446		 * allocated, and hacked up
1447		 */
1448		if (cgp->cg_cs.cs_nbfree == 0)
1449			goto fail;
1450		UFS_LOCK(ump);
1451		blkno = ffs_alloccgblk(ip, bp, bpref);
1452		bno = dtogd(fs, blkno);
1453		for (i = frags; i < fs->fs_frag; i++)
1454			setbit(blksfree, bno + i);
1455		i = fs->fs_frag - frags;
1456		cgp->cg_cs.cs_nffree += i;
1457		fs->fs_cstotal.cs_nffree += i;
1458		fs->fs_cs(fs, cg).cs_nffree += i;
1459		fs->fs_fmod = 1;
1460		cgp->cg_frsum[i]++;
1461		ACTIVECLEAR(fs, cg);
1462		UFS_UNLOCK(ump);
1463		bdwrite(bp);
1464		return (blkno);
1465	}
1466	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1467	if (bno < 0)
1468		goto fail;
1469	for (i = 0; i < frags; i++)
1470		clrbit(blksfree, bno + i);
1471	cgp->cg_cs.cs_nffree -= frags;
1472	cgp->cg_frsum[allocsiz]--;
1473	if (frags != allocsiz)
1474		cgp->cg_frsum[allocsiz - frags]++;
1475	UFS_LOCK(ump);
1476	fs->fs_cstotal.cs_nffree -= frags;
1477	fs->fs_cs(fs, cg).cs_nffree -= frags;
1478	fs->fs_fmod = 1;
1479	blkno = cgbase(fs, cg) + bno;
1480	ACTIVECLEAR(fs, cg);
1481	UFS_UNLOCK(ump);
1482	if (DOINGSOFTDEP(ITOV(ip)))
1483		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno);
1484	bdwrite(bp);
1485	return (blkno);
1486
1487fail:
1488	brelse(bp);
1489	UFS_LOCK(ump);
1490	return (0);
1491}
1492
1493/*
1494 * Allocate a block in a cylinder group.
1495 *
1496 * This algorithm implements the following policy:
1497 *   1) allocate the requested block.
1498 *   2) allocate a rotationally optimal block in the same cylinder.
1499 *   3) allocate the next available block on the block rotor for the
1500 *      specified cylinder group.
1501 * Note that this routine only allocates fs_bsize blocks; these
1502 * blocks may be fragmented by the routine that allocates them.
1503 */
1504static ufs2_daddr_t
1505ffs_alloccgblk(ip, bp, bpref)
1506	struct inode *ip;
1507	struct buf *bp;
1508	ufs2_daddr_t bpref;
1509{
1510	struct fs *fs;
1511	struct cg *cgp;
1512	struct ufsmount *ump;
1513	ufs1_daddr_t bno;
1514	ufs2_daddr_t blkno;
1515	u_int8_t *blksfree;
1516
1517	fs = ip->i_fs;
1518	ump = ip->i_ump;
1519	mtx_assert(UFS_MTX(ump), MA_OWNED);
1520	cgp = (struct cg *)bp->b_data;
1521	blksfree = cg_blksfree(cgp);
1522	if (bpref == 0 || dtog(fs, bpref) != cgp->cg_cgx) {
1523		bpref = cgp->cg_rotor;
1524	} else {
1525		bpref = blknum(fs, bpref);
1526		bno = dtogd(fs, bpref);
1527		/*
1528		 * if the requested block is available, use it
1529		 */
1530		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1531			goto gotit;
1532	}
1533	/*
1534	 * Take the next available block in this cylinder group.
1535	 */
1536	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1537	if (bno < 0)
1538		return (0);
1539	cgp->cg_rotor = bno;
1540gotit:
1541	blkno = fragstoblks(fs, bno);
1542	ffs_clrblock(fs, blksfree, (long)blkno);
1543	ffs_clusteracct(ump, fs, cgp, blkno, -1);
1544	cgp->cg_cs.cs_nbfree--;
1545	fs->fs_cstotal.cs_nbfree--;
1546	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1547	fs->fs_fmod = 1;
1548	blkno = cgbase(fs, cgp->cg_cgx) + bno;
1549	/* XXX Fixme. */
1550	UFS_UNLOCK(ump);
1551	if (DOINGSOFTDEP(ITOV(ip)))
1552		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno);
1553	UFS_LOCK(ump);
1554	return (blkno);
1555}
1556
1557/*
1558 * Determine whether a cluster can be allocated.
1559 *
1560 * We do not currently check for optimal rotational layout if there
1561 * are multiple choices in the same cylinder group. Instead we just
1562 * take the first one that we find following bpref.
1563 */
1564static ufs2_daddr_t
1565ffs_clusteralloc(ip, cg, bpref, len)
1566	struct inode *ip;
1567	int cg;
1568	ufs2_daddr_t bpref;
1569	int len;
1570{
1571	struct fs *fs;
1572	struct cg *cgp;
1573	struct buf *bp;
1574	struct ufsmount *ump;
1575	int i, run, bit, map, got;
1576	ufs2_daddr_t bno;
1577	u_char *mapp;
1578	int32_t *lp;
1579	u_int8_t *blksfree;
1580
1581	fs = ip->i_fs;
1582	ump = ip->i_ump;
1583	if (fs->fs_maxcluster[cg] < len)
1584		return (0);
1585	UFS_UNLOCK(ump);
1586	if (bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)), (int)fs->fs_cgsize,
1587	    NOCRED, &bp))
1588		goto fail_lock;
1589	cgp = (struct cg *)bp->b_data;
1590	if (!cg_chkmagic(cgp))
1591		goto fail_lock;
1592	bp->b_xflags |= BX_BKGRDWRITE;
1593	/*
1594	 * Check to see if a cluster of the needed size (or bigger) is
1595	 * available in this cylinder group.
1596	 */
1597	lp = &cg_clustersum(cgp)[len];
1598	for (i = len; i <= fs->fs_contigsumsize; i++)
1599		if (*lp++ > 0)
1600			break;
1601	if (i > fs->fs_contigsumsize) {
1602		/*
1603		 * This is the first time looking for a cluster in this
1604		 * cylinder group. Update the cluster summary information
1605		 * to reflect the true maximum sized cluster so that
1606		 * future cluster allocation requests can avoid reading
1607		 * the cylinder group map only to find no clusters.
1608		 */
1609		lp = &cg_clustersum(cgp)[len - 1];
1610		for (i = len - 1; i > 0; i--)
1611			if (*lp-- > 0)
1612				break;
1613		UFS_LOCK(ump);
1614		fs->fs_maxcluster[cg] = i;
1615		goto fail;
1616	}
1617	/*
1618	 * Search the cluster map to find a big enough cluster.
1619	 * We take the first one that we find, even if it is larger
1620	 * than we need as we prefer to get one close to the previous
1621	 * block allocation. We do not search before the current
1622	 * preference point as we do not want to allocate a block
1623	 * that is allocated before the previous one (as we will
1624	 * then have to wait for another pass of the elevator
1625	 * algorithm before it will be read). We prefer to fail and
1626	 * be recalled to try an allocation in the next cylinder group.
1627	 */
1628	if (dtog(fs, bpref) != cg)
1629		bpref = 0;
1630	else
1631		bpref = fragstoblks(fs, dtogd(fs, blknum(fs, bpref)));
1632	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
1633	map = *mapp++;
1634	bit = 1 << (bpref % NBBY);
1635	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
1636		if ((map & bit) == 0) {
1637			run = 0;
1638		} else {
1639			run++;
1640			if (run == len)
1641				break;
1642		}
1643		if ((got & (NBBY - 1)) != (NBBY - 1)) {
1644			bit <<= 1;
1645		} else {
1646			map = *mapp++;
1647			bit = 1;
1648		}
1649	}
1650	if (got >= cgp->cg_nclusterblks)
1651		goto fail_lock;
1652	/*
1653	 * Allocate the cluster that we have found.
1654	 */
1655	blksfree = cg_blksfree(cgp);
1656	for (i = 1; i <= len; i++)
1657		if (!ffs_isblock(fs, blksfree, got - run + i))
1658			panic("ffs_clusteralloc: map mismatch");
1659	bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
1660	if (dtog(fs, bno) != cg)
1661		panic("ffs_clusteralloc: allocated out of group");
1662	len = blkstofrags(fs, len);
1663	UFS_LOCK(ump);
1664	for (i = 0; i < len; i += fs->fs_frag)
1665		if (ffs_alloccgblk(ip, bp, bno + i) != bno + i)
1666			panic("ffs_clusteralloc: lost block");
1667	ACTIVECLEAR(fs, cg);
1668	UFS_UNLOCK(ump);
1669	bdwrite(bp);
1670	return (bno);
1671
1672fail_lock:
1673	UFS_LOCK(ump);
1674fail:
1675	brelse(bp);
1676	return (0);
1677}
1678
1679/*
1680 * Determine whether an inode can be allocated.
1681 *
1682 * Check to see if an inode is available, and if it is,
1683 * allocate it using the following policy:
1684 *   1) allocate the requested inode.
1685 *   2) allocate the next available inode after the requested
1686 *      inode in the specified cylinder group.
1687 */
1688static ufs2_daddr_t
1689ffs_nodealloccg(ip, cg, ipref, mode)
1690	struct inode *ip;
1691	int cg;
1692	ufs2_daddr_t ipref;
1693	int mode;
1694{
1695	struct fs *fs;
1696	struct cg *cgp;
1697	struct buf *bp, *ibp;
1698	struct ufsmount *ump;
1699	u_int8_t *inosused;
1700	struct ufs2_dinode *dp2;
1701	int error, start, len, loc, map, i;
1702
1703	fs = ip->i_fs;
1704	ump = ip->i_ump;
1705	if (fs->fs_cs(fs, cg).cs_nifree == 0)
1706		return (0);
1707	UFS_UNLOCK(ump);
1708	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, cg)),
1709		(int)fs->fs_cgsize, NOCRED, &bp);
1710	if (error) {
1711		brelse(bp);
1712		UFS_LOCK(ump);
1713		return (0);
1714	}
1715	cgp = (struct cg *)bp->b_data;
1716	if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0) {
1717		brelse(bp);
1718		UFS_LOCK(ump);
1719		return (0);
1720	}
1721	bp->b_xflags |= BX_BKGRDWRITE;
1722	cgp->cg_old_time = cgp->cg_time = time_second;
1723	inosused = cg_inosused(cgp);
1724	if (ipref) {
1725		ipref %= fs->fs_ipg;
1726		if (isclr(inosused, ipref))
1727			goto gotit;
1728	}
1729	start = cgp->cg_irotor / NBBY;
1730	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
1731	loc = skpc(0xff, len, &inosused[start]);
1732	if (loc == 0) {
1733		len = start + 1;
1734		start = 0;
1735		loc = skpc(0xff, len, &inosused[0]);
1736		if (loc == 0) {
1737			printf("cg = %d, irotor = %ld, fs = %s\n",
1738			    cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
1739			panic("ffs_nodealloccg: map corrupted");
1740			/* NOTREACHED */
1741		}
1742	}
1743	i = start + len - loc;
1744	map = inosused[i];
1745	ipref = i * NBBY;
1746	for (i = 1; i < (1 << NBBY); i <<= 1, ipref++) {
1747		if ((map & i) == 0) {
1748			cgp->cg_irotor = ipref;
1749			goto gotit;
1750		}
1751	}
1752	printf("fs = %s\n", fs->fs_fsmnt);
1753	panic("ffs_nodealloccg: block not in map");
1754	/* NOTREACHED */
1755gotit:
1756	/*
1757	 * Check to see if we need to initialize more inodes.
1758	 */
1759	ibp = NULL;
1760	if (fs->fs_magic == FS_UFS2_MAGIC &&
1761	    ipref + INOPB(fs) > cgp->cg_initediblk &&
1762	    cgp->cg_initediblk < cgp->cg_niblk) {
1763		ibp = getblk(ip->i_devvp, fsbtodb(fs,
1764		    ino_to_fsba(fs, cg * fs->fs_ipg + cgp->cg_initediblk)),
1765		    (int)fs->fs_bsize, 0, 0, 0);
1766		bzero(ibp->b_data, (int)fs->fs_bsize);
1767		dp2 = (struct ufs2_dinode *)(ibp->b_data);
1768		for (i = 0; i < INOPB(fs); i++) {
1769			dp2->di_gen = arc4random() / 2 + 1;
1770			dp2++;
1771		}
1772		cgp->cg_initediblk += INOPB(fs);
1773	}
1774	UFS_LOCK(ump);
1775	ACTIVECLEAR(fs, cg);
1776	setbit(inosused, ipref);
1777	cgp->cg_cs.cs_nifree--;
1778	fs->fs_cstotal.cs_nifree--;
1779	fs->fs_cs(fs, cg).cs_nifree--;
1780	fs->fs_fmod = 1;
1781	if ((mode & IFMT) == IFDIR) {
1782		cgp->cg_cs.cs_ndir++;
1783		fs->fs_cstotal.cs_ndir++;
1784		fs->fs_cs(fs, cg).cs_ndir++;
1785	}
1786	UFS_UNLOCK(ump);
1787	if (DOINGSOFTDEP(ITOV(ip)))
1788		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref);
1789	bdwrite(bp);
1790	if (ibp != NULL)
1791		bawrite(ibp);
1792	return (cg * fs->fs_ipg + ipref);
1793}
1794
1795/*
1796 * check if a block is free
1797 */
1798static int
1799ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h)
1800{
1801
1802	switch ((int)fs->fs_frag) {
1803	case 8:
1804		return (cp[h] == 0);
1805	case 4:
1806		return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
1807	case 2:
1808		return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
1809	case 1:
1810		return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
1811	default:
1812		panic("ffs_isfreeblock");
1813	}
1814	return (0);
1815}
1816
1817/*
1818 * Free a block or fragment.
1819 *
1820 * The specified block or fragment is placed back in the
1821 * free map. If a fragment is deallocated, a possible
1822 * block reassembly is checked.
1823 */
1824void
1825ffs_blkfree(ump, fs, devvp, bno, size, inum)
1826	struct ufsmount *ump;
1827	struct fs *fs;
1828	struct vnode *devvp;
1829	ufs2_daddr_t bno;
1830	long size;
1831	ino_t inum;
1832{
1833	struct cg *cgp;
1834	struct buf *bp;
1835	ufs1_daddr_t fragno, cgbno;
1836	ufs2_daddr_t cgblkno;
1837	int i, cg, blk, frags, bbase;
1838	u_int8_t *blksfree;
1839	struct cdev *dev;
1840
1841	cg = dtog(fs, bno);
1842	if (devvp->v_type != VCHR) {
1843		/* devvp is a snapshot */
1844		dev = VTOI(devvp)->i_devvp->v_rdev;
1845		cgblkno = fragstoblks(fs, cgtod(fs, cg));
1846	} else {
1847		/* devvp is a normal disk device */
1848		dev = devvp->v_rdev;
1849		cgblkno = fsbtodb(fs, cgtod(fs, cg));
1850		ASSERT_VOP_LOCKED(devvp, "ffs_blkfree");
1851		if ((devvp->v_vflag & VV_COPYONWRITE) &&
1852		    ffs_snapblkfree(fs, devvp, bno, size, inum))
1853			return;
1854	}
1855#ifdef INVARIANTS
1856	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
1857	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
1858		printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
1859		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
1860		    size, fs->fs_fsmnt);
1861		panic("ffs_blkfree: bad size");
1862	}
1863#endif
1864	if ((u_int)bno >= fs->fs_size) {
1865		printf("bad block %jd, ino %lu\n", (intmax_t)bno,
1866		    (u_long)inum);
1867		ffs_fserr(fs, inum, "bad block");
1868		return;
1869	}
1870	if (bread(devvp, cgblkno, (int)fs->fs_cgsize, NOCRED, &bp)) {
1871		brelse(bp);
1872		return;
1873	}
1874	cgp = (struct cg *)bp->b_data;
1875	if (!cg_chkmagic(cgp)) {
1876		brelse(bp);
1877		return;
1878	}
1879	bp->b_xflags |= BX_BKGRDWRITE;
1880	cgp->cg_old_time = cgp->cg_time = time_second;
1881	cgbno = dtogd(fs, bno);
1882	blksfree = cg_blksfree(cgp);
1883	UFS_LOCK(ump);
1884	if (size == fs->fs_bsize) {
1885		fragno = fragstoblks(fs, cgbno);
1886		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
1887			if (devvp->v_type != VCHR) {
1888				UFS_UNLOCK(ump);
1889				/* devvp is a snapshot */
1890				brelse(bp);
1891				return;
1892			}
1893			printf("dev = %s, block = %jd, fs = %s\n",
1894			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
1895			panic("ffs_blkfree: freeing free block");
1896		}
1897		ffs_setblock(fs, blksfree, fragno);
1898		ffs_clusteracct(ump, fs, cgp, fragno, 1);
1899		cgp->cg_cs.cs_nbfree++;
1900		fs->fs_cstotal.cs_nbfree++;
1901		fs->fs_cs(fs, cg).cs_nbfree++;
1902	} else {
1903		bbase = cgbno - fragnum(fs, cgbno);
1904		/*
1905		 * decrement the counts associated with the old frags
1906		 */
1907		blk = blkmap(fs, blksfree, bbase);
1908		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
1909		/*
1910		 * deallocate the fragment
1911		 */
1912		frags = numfrags(fs, size);
1913		for (i = 0; i < frags; i++) {
1914			if (isset(blksfree, cgbno + i)) {
1915				printf("dev = %s, block = %jd, fs = %s\n",
1916				    devtoname(dev), (intmax_t)(bno + i),
1917				    fs->fs_fsmnt);
1918				panic("ffs_blkfree: freeing free frag");
1919			}
1920			setbit(blksfree, cgbno + i);
1921		}
1922		cgp->cg_cs.cs_nffree += i;
1923		fs->fs_cstotal.cs_nffree += i;
1924		fs->fs_cs(fs, cg).cs_nffree += i;
1925		/*
1926		 * add back in counts associated with the new frags
1927		 */
1928		blk = blkmap(fs, blksfree, bbase);
1929		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
1930		/*
1931		 * if a complete block has been reassembled, account for it
1932		 */
1933		fragno = fragstoblks(fs, bbase);
1934		if (ffs_isblock(fs, blksfree, fragno)) {
1935			cgp->cg_cs.cs_nffree -= fs->fs_frag;
1936			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
1937			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
1938			ffs_clusteracct(ump, fs, cgp, fragno, 1);
1939			cgp->cg_cs.cs_nbfree++;
1940			fs->fs_cstotal.cs_nbfree++;
1941			fs->fs_cs(fs, cg).cs_nbfree++;
1942		}
1943	}
1944	fs->fs_fmod = 1;
1945	ACTIVECLEAR(fs, cg);
1946	UFS_UNLOCK(ump);
1947	bdwrite(bp);
1948}
1949
1950#ifdef INVARIANTS
1951/*
1952 * Verify allocation of a block or fragment. Returns true if block or
1953 * fragment is allocated, false if it is free.
1954 */
1955static int
1956ffs_checkblk(ip, bno, size)
1957	struct inode *ip;
1958	ufs2_daddr_t bno;
1959	long size;
1960{
1961	struct fs *fs;
1962	struct cg *cgp;
1963	struct buf *bp;
1964	ufs1_daddr_t cgbno;
1965	int i, error, frags, free;
1966	u_int8_t *blksfree;
1967
1968	fs = ip->i_fs;
1969	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
1970		printf("bsize = %ld, size = %ld, fs = %s\n",
1971		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
1972		panic("ffs_checkblk: bad size");
1973	}
1974	if ((u_int)bno >= fs->fs_size)
1975		panic("ffs_checkblk: bad block %jd", (intmax_t)bno);
1976	error = bread(ip->i_devvp, fsbtodb(fs, cgtod(fs, dtog(fs, bno))),
1977		(int)fs->fs_cgsize, NOCRED, &bp);
1978	if (error)
1979		panic("ffs_checkblk: cg bread failed");
1980	cgp = (struct cg *)bp->b_data;
1981	if (!cg_chkmagic(cgp))
1982		panic("ffs_checkblk: cg magic mismatch");
1983	bp->b_xflags |= BX_BKGRDWRITE;
1984	blksfree = cg_blksfree(cgp);
1985	cgbno = dtogd(fs, bno);
1986	if (size == fs->fs_bsize) {
1987		free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
1988	} else {
1989		frags = numfrags(fs, size);
1990		for (free = 0, i = 0; i < frags; i++)
1991			if (isset(blksfree, cgbno + i))
1992				free++;
1993		if (free != 0 && free != frags)
1994			panic("ffs_checkblk: partially free fragment");
1995	}
1996	brelse(bp);
1997	return (!free);
1998}
1999#endif /* INVARIANTS */
2000
2001/*
2002 * Free an inode.
2003 */
2004int
2005ffs_vfree(pvp, ino, mode)
2006	struct vnode *pvp;
2007	ino_t ino;
2008	int mode;
2009{
2010	struct inode *ip;
2011
2012	if (DOINGSOFTDEP(pvp)) {
2013		softdep_freefile(pvp, ino, mode);
2014		return (0);
2015	}
2016	ip = VTOI(pvp);
2017	return (ffs_freefile(ip->i_ump, ip->i_fs, ip->i_devvp, ino, mode));
2018}
2019
2020/*
2021 * Do the actual free operation.
2022 * The specified inode is placed back in the free map.
2023 */
2024int
2025ffs_freefile(ump, fs, devvp, ino, mode)
2026	struct ufsmount *ump;
2027	struct fs *fs;
2028	struct vnode *devvp;
2029	ino_t ino;
2030	int mode;
2031{
2032	struct cg *cgp;
2033	struct buf *bp;
2034	ufs2_daddr_t cgbno;
2035	int error, cg;
2036	u_int8_t *inosused;
2037	struct cdev *dev;
2038
2039	cg = ino_to_cg(fs, ino);
2040	if (devvp->v_type != VCHR) {
2041		/* devvp is a snapshot */
2042		dev = VTOI(devvp)->i_devvp->v_rdev;
2043		cgbno = fragstoblks(fs, cgtod(fs, cg));
2044	} else {
2045		/* devvp is a normal disk device */
2046		dev = devvp->v_rdev;
2047		cgbno = fsbtodb(fs, cgtod(fs, cg));
2048	}
2049	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2050		panic("ffs_freefile: range: dev = %s, ino = %lu, fs = %s",
2051		    devtoname(dev), (u_long)ino, fs->fs_fsmnt);
2052	if ((error = bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp))) {
2053		brelse(bp);
2054		return (error);
2055	}
2056	cgp = (struct cg *)bp->b_data;
2057	if (!cg_chkmagic(cgp)) {
2058		brelse(bp);
2059		return (0);
2060	}
2061	bp->b_xflags |= BX_BKGRDWRITE;
2062	cgp->cg_old_time = cgp->cg_time = time_second;
2063	inosused = cg_inosused(cgp);
2064	ino %= fs->fs_ipg;
2065	if (isclr(inosused, ino)) {
2066		printf("dev = %s, ino = %lu, fs = %s\n", devtoname(dev),
2067		    (u_long)ino + cg * fs->fs_ipg, fs->fs_fsmnt);
2068		if (fs->fs_ronly == 0)
2069			panic("ffs_freefile: freeing free inode");
2070	}
2071	clrbit(inosused, ino);
2072	if (ino < cgp->cg_irotor)
2073		cgp->cg_irotor = ino;
2074	cgp->cg_cs.cs_nifree++;
2075	UFS_LOCK(ump);
2076	fs->fs_cstotal.cs_nifree++;
2077	fs->fs_cs(fs, cg).cs_nifree++;
2078	if ((mode & IFMT) == IFDIR) {
2079		cgp->cg_cs.cs_ndir--;
2080		fs->fs_cstotal.cs_ndir--;
2081		fs->fs_cs(fs, cg).cs_ndir--;
2082	}
2083	fs->fs_fmod = 1;
2084	ACTIVECLEAR(fs, cg);
2085	UFS_UNLOCK(ump);
2086	bdwrite(bp);
2087	return (0);
2088}
2089
2090/*
2091 * Check to see if a file is free.
2092 */
2093int
2094ffs_checkfreefile(fs, devvp, ino)
2095	struct fs *fs;
2096	struct vnode *devvp;
2097	ino_t ino;
2098{
2099	struct cg *cgp;
2100	struct buf *bp;
2101	ufs2_daddr_t cgbno;
2102	int ret, cg;
2103	u_int8_t *inosused;
2104
2105	cg = ino_to_cg(fs, ino);
2106	if (devvp->v_type != VCHR) {
2107		/* devvp is a snapshot */
2108		cgbno = fragstoblks(fs, cgtod(fs, cg));
2109	} else {
2110		/* devvp is a normal disk device */
2111		cgbno = fsbtodb(fs, cgtod(fs, cg));
2112	}
2113	if ((u_int)ino >= fs->fs_ipg * fs->fs_ncg)
2114		return (1);
2115	if (bread(devvp, cgbno, (int)fs->fs_cgsize, NOCRED, &bp)) {
2116		brelse(bp);
2117		return (1);
2118	}
2119	cgp = (struct cg *)bp->b_data;
2120	if (!cg_chkmagic(cgp)) {
2121		brelse(bp);
2122		return (1);
2123	}
2124	inosused = cg_inosused(cgp);
2125	ino %= fs->fs_ipg;
2126	ret = isclr(inosused, ino);
2127	brelse(bp);
2128	return (ret);
2129}
2130
2131/*
2132 * Find a block of the specified size in the specified cylinder group.
2133 *
2134 * It is a panic if a request is made to find a block if none are
2135 * available.
2136 */
2137static ufs1_daddr_t
2138ffs_mapsearch(fs, cgp, bpref, allocsiz)
2139	struct fs *fs;
2140	struct cg *cgp;
2141	ufs2_daddr_t bpref;
2142	int allocsiz;
2143{
2144	ufs1_daddr_t bno;
2145	int start, len, loc, i;
2146	int blk, field, subfield, pos;
2147	u_int8_t *blksfree;
2148
2149	/*
2150	 * find the fragment by searching through the free block
2151	 * map for an appropriate bit pattern
2152	 */
2153	if (bpref)
2154		start = dtogd(fs, bpref) / NBBY;
2155	else
2156		start = cgp->cg_frotor / NBBY;
2157	blksfree = cg_blksfree(cgp);
2158	len = howmany(fs->fs_fpg, NBBY) - start;
2159	loc = scanc((u_int)len, (u_char *)&blksfree[start],
2160		fragtbl[fs->fs_frag],
2161		(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2162	if (loc == 0) {
2163		len = start + 1;
2164		start = 0;
2165		loc = scanc((u_int)len, (u_char *)&blksfree[0],
2166			fragtbl[fs->fs_frag],
2167			(u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2168		if (loc == 0) {
2169			printf("start = %d, len = %d, fs = %s\n",
2170			    start, len, fs->fs_fsmnt);
2171			panic("ffs_alloccg: map corrupted");
2172			/* NOTREACHED */
2173		}
2174	}
2175	bno = (start + len - loc) * NBBY;
2176	cgp->cg_frotor = bno;
2177	/*
2178	 * found the byte in the map
2179	 * sift through the bits to find the selected frag
2180	 */
2181	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
2182		blk = blkmap(fs, blksfree, bno);
2183		blk <<= 1;
2184		field = around[allocsiz];
2185		subfield = inside[allocsiz];
2186		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
2187			if ((blk & field) == subfield)
2188				return (bno + pos);
2189			field <<= 1;
2190			subfield <<= 1;
2191		}
2192	}
2193	printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt);
2194	panic("ffs_alloccg: block not in map");
2195	return (-1);
2196}
2197
2198/*
2199 * Update the cluster map because of an allocation or free.
2200 *
2201 * Cnt == 1 means free; cnt == -1 means allocating.
2202 */
2203void
2204ffs_clusteracct(ump, fs, cgp, blkno, cnt)
2205	struct ufsmount *ump;
2206	struct fs *fs;
2207	struct cg *cgp;
2208	ufs1_daddr_t blkno;
2209	int cnt;
2210{
2211	int32_t *sump;
2212	int32_t *lp;
2213	u_char *freemapp, *mapp;
2214	int i, start, end, forw, back, map, bit;
2215
2216	mtx_assert(UFS_MTX(ump), MA_OWNED);
2217
2218	if (fs->fs_contigsumsize <= 0)
2219		return;
2220	freemapp = cg_clustersfree(cgp);
2221	sump = cg_clustersum(cgp);
2222	/*
2223	 * Allocate or clear the actual block.
2224	 */
2225	if (cnt > 0)
2226		setbit(freemapp, blkno);
2227	else
2228		clrbit(freemapp, blkno);
2229	/*
2230	 * Find the size of the cluster going forward.
2231	 */
2232	start = blkno + 1;
2233	end = start + fs->fs_contigsumsize;
2234	if (end >= cgp->cg_nclusterblks)
2235		end = cgp->cg_nclusterblks;
2236	mapp = &freemapp[start / NBBY];
2237	map = *mapp++;
2238	bit = 1 << (start % NBBY);
2239	for (i = start; i < end; i++) {
2240		if ((map & bit) == 0)
2241			break;
2242		if ((i & (NBBY - 1)) != (NBBY - 1)) {
2243			bit <<= 1;
2244		} else {
2245			map = *mapp++;
2246			bit = 1;
2247		}
2248	}
2249	forw = i - start;
2250	/*
2251	 * Find the size of the cluster going backward.
2252	 */
2253	start = blkno - 1;
2254	end = start - fs->fs_contigsumsize;
2255	if (end < 0)
2256		end = -1;
2257	mapp = &freemapp[start / NBBY];
2258	map = *mapp--;
2259	bit = 1 << (start % NBBY);
2260	for (i = start; i > end; i--) {
2261		if ((map & bit) == 0)
2262			break;
2263		if ((i & (NBBY - 1)) != 0) {
2264			bit >>= 1;
2265		} else {
2266			map = *mapp--;
2267			bit = 1 << (NBBY - 1);
2268		}
2269	}
2270	back = start - i;
2271	/*
2272	 * Account for old cluster and the possibly new forward and
2273	 * back clusters.
2274	 */
2275	i = back + forw + 1;
2276	if (i > fs->fs_contigsumsize)
2277		i = fs->fs_contigsumsize;
2278	sump[i] += cnt;
2279	if (back > 0)
2280		sump[back] -= cnt;
2281	if (forw > 0)
2282		sump[forw] -= cnt;
2283	/*
2284	 * Update cluster summary information.
2285	 */
2286	lp = &sump[fs->fs_contigsumsize];
2287	for (i = fs->fs_contigsumsize; i > 0; i--)
2288		if (*lp-- > 0)
2289			break;
2290	fs->fs_maxcluster[cgp->cg_cgx] = i;
2291}
2292
2293/*
2294 * Fserr prints the name of a filesystem with an error diagnostic.
2295 *
2296 * The form of the error message is:
2297 *	fs: error message
2298 */
2299static void
2300ffs_fserr(fs, inum, cp)
2301	struct fs *fs;
2302	ino_t inum;
2303	char *cp;
2304{
2305	struct thread *td = curthread;	/* XXX */
2306	struct proc *p = td->td_proc;
2307
2308	log(LOG_ERR, "pid %d (%s), uid %d inumber %d on %s: %s\n",
2309	    p->p_pid, p->p_comm, td->td_ucred->cr_uid, inum, fs->fs_fsmnt, cp);
2310}
2311
2312/*
2313 * This function provides the capability for the fsck program to
2314 * update an active filesystem. Eleven operations are provided:
2315 *
2316 * adjrefcnt(inode, amt) - adjusts the reference count on the
2317 *	specified inode by the specified amount. Under normal
2318 *	operation the count should always go down. Decrementing
2319 *	the count to zero will cause the inode to be freed.
2320 * adjblkcnt(inode, amt) - adjust the number of blocks used to
2321 *	by the specifed amount.
2322 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
2323 *	adjust the superblock summary.
2324 * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
2325 *	are marked as free. Inodes should never have to be marked
2326 *	as in use.
2327 * freefiles(inode, count) - file inodes [inode..inode + count - 1]
2328 *	are marked as free. Inodes should never have to be marked
2329 *	as in use.
2330 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
2331 *	are marked as free. Blocks should never have to be marked
2332 *	as in use.
2333 * setflags(flags, set/clear) - the fs_flags field has the specified
2334 *	flags set (second parameter +1) or cleared (second parameter -1).
2335 */
2336
2337static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
2338
2339SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT,
2340	0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count");
2341
2342static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR,
2343	sysctl_ffs_fsck, "Adjust Inode Used Blocks Count");
2344
2345static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR,
2346	sysctl_ffs_fsck, "Adjust number of directories");
2347
2348static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR,
2349	sysctl_ffs_fsck, "Adjust number of free blocks");
2350
2351static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR,
2352	sysctl_ffs_fsck, "Adjust number of free inodes");
2353
2354static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR,
2355	sysctl_ffs_fsck, "Adjust number of free frags");
2356
2357static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR,
2358	sysctl_ffs_fsck, "Adjust number of free clusters");
2359
2360static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR,
2361	sysctl_ffs_fsck, "Free Range of Directory Inodes");
2362
2363static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR,
2364	sysctl_ffs_fsck, "Free Range of File Inodes");
2365
2366static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR,
2367	sysctl_ffs_fsck, "Free Range of Blocks");
2368
2369static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR,
2370	sysctl_ffs_fsck, "Change Filesystem Flags");
2371
2372#ifdef DEBUG
2373static int fsckcmds = 0;
2374SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, "");
2375#endif /* DEBUG */
2376
2377static int
2378sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
2379{
2380	struct fsck_cmd cmd;
2381	struct ufsmount *ump;
2382	struct vnode *vp;
2383	struct inode *ip;
2384	struct mount *mp;
2385	struct fs *fs;
2386	ufs2_daddr_t blkno;
2387	long blkcnt, blksize;
2388	struct file *fp;
2389	int filetype, error;
2390
2391	if (req->newlen > sizeof cmd)
2392		return (EBADRPC);
2393	if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0)
2394		return (error);
2395	if (cmd.version != FFS_CMD_VERSION)
2396		return (ERPCMISMATCH);
2397	if ((error = getvnode(curproc->p_fd, cmd.handle, &fp)) != 0)
2398		return (error);
2399	vn_start_write(fp->f_data, &mp, V_WAIT);
2400	if (mp == 0 || strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
2401		vn_finished_write(mp);
2402		fdrop(fp, curthread);
2403		return (EINVAL);
2404	}
2405	if (mp->mnt_flag & MNT_RDONLY) {
2406		vn_finished_write(mp);
2407		fdrop(fp, curthread);
2408		return (EROFS);
2409	}
2410	ump = VFSTOUFS(mp);
2411	fs = ump->um_fs;
2412	filetype = IFREG;
2413
2414	switch (oidp->oid_number) {
2415
2416	case FFS_SET_FLAGS:
2417#ifdef DEBUG
2418		if (fsckcmds)
2419			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
2420			    cmd.size > 0 ? "set" : "clear");
2421#endif /* DEBUG */
2422		if (cmd.size > 0)
2423			fs->fs_flags |= (long)cmd.value;
2424		else
2425			fs->fs_flags &= ~(long)cmd.value;
2426		break;
2427
2428	case FFS_ADJ_REFCNT:
2429#ifdef DEBUG
2430		if (fsckcmds) {
2431			printf("%s: adjust inode %jd count by %jd\n",
2432			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2433			    (intmax_t)cmd.size);
2434		}
2435#endif /* DEBUG */
2436		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2437			break;
2438		ip = VTOI(vp);
2439		ip->i_nlink += cmd.size;
2440		DIP_SET(ip, i_nlink, ip->i_nlink);
2441		ip->i_effnlink += cmd.size;
2442		ip->i_flag |= IN_CHANGE;
2443		if (DOINGSOFTDEP(vp))
2444			softdep_change_linkcnt(ip);
2445		vput(vp);
2446		break;
2447
2448	case FFS_ADJ_BLKCNT:
2449#ifdef DEBUG
2450		if (fsckcmds) {
2451			printf("%s: adjust inode %jd block count by %jd\n",
2452			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
2453			    (intmax_t)cmd.size);
2454		}
2455#endif /* DEBUG */
2456		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
2457			break;
2458		ip = VTOI(vp);
2459		if (ip->i_flag & IN_SPACECOUNTED) {
2460			UFS_LOCK(ump);
2461			fs->fs_pendingblocks += cmd.size;
2462			UFS_UNLOCK(ump);
2463		}
2464		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
2465		ip->i_flag |= IN_CHANGE;
2466		vput(vp);
2467		break;
2468
2469	case FFS_DIR_FREE:
2470		filetype = IFDIR;
2471		/* fall through */
2472
2473	case FFS_FILE_FREE:
2474#ifdef DEBUG
2475		if (fsckcmds) {
2476			if (cmd.size == 1)
2477				printf("%s: free %s inode %d\n",
2478				    mp->mnt_stat.f_mntonname,
2479				    filetype == IFDIR ? "directory" : "file",
2480				    (ino_t)cmd.value);
2481			else
2482				printf("%s: free %s inodes %d-%d\n",
2483				    mp->mnt_stat.f_mntonname,
2484				    filetype == IFDIR ? "directory" : "file",
2485				    (ino_t)cmd.value,
2486				    (ino_t)(cmd.value + cmd.size - 1));
2487		}
2488#endif /* DEBUG */
2489		while (cmd.size > 0) {
2490			if ((error = ffs_freefile(ump, fs, ump->um_devvp,
2491			    cmd.value, filetype)))
2492				break;
2493			cmd.size -= 1;
2494			cmd.value += 1;
2495		}
2496		break;
2497
2498	case FFS_BLK_FREE:
2499#ifdef DEBUG
2500		if (fsckcmds) {
2501			if (cmd.size == 1)
2502				printf("%s: free block %jd\n",
2503				    mp->mnt_stat.f_mntonname,
2504				    (intmax_t)cmd.value);
2505			else
2506				printf("%s: free blocks %jd-%jd\n",
2507				    mp->mnt_stat.f_mntonname,
2508				    (intmax_t)cmd.value,
2509				    (intmax_t)cmd.value + cmd.size - 1);
2510		}
2511#endif /* DEBUG */
2512		blkno = cmd.value;
2513		blkcnt = cmd.size;
2514		blksize = fs->fs_frag - (blkno % fs->fs_frag);
2515		while (blkcnt > 0) {
2516			if (blksize > blkcnt)
2517				blksize = blkcnt;
2518			ffs_blkfree(ump, fs, ump->um_devvp, blkno,
2519			    blksize * fs->fs_fsize, ROOTINO);
2520			blkno += blksize;
2521			blkcnt -= blksize;
2522			blksize = fs->fs_frag;
2523		}
2524		break;
2525
2526	/*
2527	 * Adjust superblock summaries.  fsck(8) is expected to
2528	 * submit deltas when necessary.
2529	 */
2530	case FFS_ADJ_NDIR:
2531#ifdef DEBUG
2532		if (fsckcmds) {
2533			printf("%s: adjust number of directories by %jd\n",
2534			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2535		}
2536#endif /* DEBUG */
2537		fs->fs_cstotal.cs_ndir += cmd.value;
2538		break;
2539	case FFS_ADJ_NBFREE:
2540#ifdef DEBUG
2541		if (fsckcmds) {
2542			printf("%s: adjust number of free blocks by %+jd\n",
2543			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2544		}
2545#endif /* DEBUG */
2546		fs->fs_cstotal.cs_nbfree += cmd.value;
2547		break;
2548	case FFS_ADJ_NIFREE:
2549#ifdef DEBUG
2550		if (fsckcmds) {
2551			printf("%s: adjust number of free inodes by %+jd\n",
2552			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2553		}
2554#endif /* DEBUG */
2555		fs->fs_cstotal.cs_nifree += cmd.value;
2556		break;
2557	case FFS_ADJ_NFFREE:
2558#ifdef DEBUG
2559		if (fsckcmds) {
2560			printf("%s: adjust number of free frags by %+jd\n",
2561			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2562		}
2563#endif /* DEBUG */
2564		fs->fs_cstotal.cs_nffree += cmd.value;
2565		break;
2566	case FFS_ADJ_NUMCLUSTERS:
2567#ifdef DEBUG
2568		if (fsckcmds) {
2569			printf("%s: adjust number of free clusters by %+jd\n",
2570			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
2571		}
2572#endif /* DEBUG */
2573		fs->fs_cstotal.cs_numclusters += cmd.value;
2574		break;
2575
2576	default:
2577#ifdef DEBUG
2578		if (fsckcmds) {
2579			printf("Invalid request %d from fsck\n",
2580			    oidp->oid_number);
2581		}
2582#endif /* DEBUG */
2583		error = EINVAL;
2584		break;
2585
2586	}
2587	fdrop(fp, curthread);
2588	vn_finished_write(mp);
2589	return (error);
2590}
2591